task.py 76.9 KB
Newer Older
1
import abc
2
import ast
lintangsutawika's avatar
lintangsutawika committed
3
import logging
4
import random
5
6
import re
from collections.abc import Callable
7
from copy import deepcopy
8
from dataclasses import asdict, dataclass
9
from inspect import getsource
10
11
12
13
14
15
16
17
18
19
20
21
from typing import (
    Any,
    Dict,
    Iterable,
    Iterator,
    List,
    Literal,
    Mapping,
    Optional,
    Tuple,
    Union,
)
22
23
24

import datasets
import numpy as np
25
from tqdm import tqdm
26
27

from lm_eval import utils
28
from lm_eval.api import samplers
29
30
from lm_eval.api.instance import Instance, OutputType
from lm_eval.api.metrics import bits_per_byte, mean, weighted_perplexity
lintangsutawika's avatar
lintangsutawika committed
31
from lm_eval.api.registry import (
32
33
    AGGREGATION_REGISTRY,
    DEFAULT_METRIC_REGISTRY,
haileyschoelkopf's avatar
haileyschoelkopf committed
34
    get_aggregation,
35
    get_metric,
36
    get_metric_aggregation,
haileyschoelkopf's avatar
haileyschoelkopf committed
37
    is_higher_better,
lintangsutawika's avatar
lintangsutawika committed
38
)
39
from lm_eval.caching.cache import load_from_cache, save_to_cache
40
41
42
from lm_eval.filters import build_filter_ensemble
from lm_eval.prompts import get_prompt

43

44
45
46
47
ALL_OUTPUT_TYPES = [
    "loglikelihood",
    "multiple_choice",
    "loglikelihood_rolling",
48
    "generate_until",
49
50
]

Lintang Sutawika's avatar
Lintang Sutawika committed
51
eval_logger = logging.getLogger(__name__)
52

lintangsutawika's avatar
lintangsutawika committed
53

54
55
@dataclass
class TaskConfig(dict):
56
    # task naming/registry
57
58
    task: Optional[str] = None
    task_alias: Optional[str] = None
Lintang Sutawika's avatar
Lintang Sutawika committed
59
    tag: Optional[Union[str, list]] = None
60
61
62
    # HF dataset options.
    # which dataset to use,
    # and what splits for what purpose
Baber Abbasi's avatar
Baber Abbasi committed
63
    custom_dataset: Optional[Callable] = None
64
65
66
67
68
69
    dataset_path: Optional[str] = None
    dataset_name: Optional[str] = None
    dataset_kwargs: Optional[dict] = None
    training_split: Optional[str] = None
    validation_split: Optional[str] = None
    test_split: Optional[str] = None
70
    fewshot_split: Optional[str] = (
Baber Abbasi's avatar
Baber Abbasi committed
71
        None  # TODO: assert that this not None if num_fewshot > 0. (?) assert if this is same split as one evaluating (?)
72
    )
73
74
    # formatting / prompting options.
    # see docs/advanced_task_guide.md for more info
75
76
77
    process_docs: Optional[Callable] = None
    doc_to_text: Optional[Union[Callable, str]] = None
    doc_to_target: Optional[Union[Callable, str]] = None
78
    doc_to_image: Union[Callable, str] = None
79
    doc_to_audio: Union[Callable, str] = None
Hojin Lee's avatar
Hojin Lee committed
80
    unsafe_code: bool = False
81
82
83
    doc_to_choice: Optional[Union[Callable, str, dict, list]] = None
    process_results: Optional[Union[Callable, str]] = None
    use_prompt: Optional[str] = None
84
    description: str = ""
85
86
    target_delimiter: str = " "
    fewshot_delimiter: str = "\n\n"
87
    fewshot_config: Optional[dict] = None
88
    # runtime configuration options
89
    num_fewshot: Optional[int] = None
90
    # scoring options
91
92
93
    metric_list: Optional[list] = None
    output_type: OutputType = "generate_until"
    generation_kwargs: Optional[dict] = None
94
    repeats: int = 1
95
    filter_list: Optional[Union[str, list]] = None
96
    should_decontaminate: bool = False
97
    doc_to_decontamination_query: Optional[str] = None
Baber Abbasi's avatar
Baber Abbasi committed
98
    gen_prefix: Optional[str] = None
99
100
101
    metadata: Optional[dict] = (
        None  # by default, not used in the code. allows for users to pass arbitrary info to tasks
    )
102

Ethan Smith's avatar
Ethan Smith committed
103
    def __post_init__(self) -> None:
Lintang Sutawika's avatar
Lintang Sutawika committed
104
        if self.generation_kwargs is not None:
105
            if self.output_type != "generate_until":
106
                eval_logger.warning(
107
                    f"[{self.task}] passed `generation_kwargs`, but not using `output_type: generate_until`!"
Lintang Sutawika's avatar
Lintang Sutawika committed
108
109
110
111
112
113
114
115
                )

            if "temperature" in self.generation_kwargs:
                self.generation_kwargs["temperature"] = float(
                    self.generation_kwargs["temperature"]
                )

            if "until" not in self.generation_kwargs:
Baber Abbasi's avatar
Baber Abbasi committed
116
117
118
                eval_logger.warning(
                    f"{self.task}: No `until` specified in `generation_kwargs`! Defaulting to the fewshot_delimiter={repr(self.fewshot_delimiter)}"
                )
119
                self.generation_kwargs["until"] = [self.fewshot_delimiter]
Lintang Sutawika's avatar
Lintang Sutawika committed
120
        else:
121
            if self.output_type == "generate_until":
Lintang Sutawika's avatar
Lintang Sutawika committed
122
123
                # ensure that we greedily generate in absence of explicit arguments otherwise
                self.generation_kwargs = {
124
125
126
127
128
                    "until": (
                        None
                        if self.fewshot_delimiter is None
                        else [self.fewshot_delimiter]
                    ),
Lintang Sutawika's avatar
Lintang Sutawika committed
129
                    "do_sample": False,
Baber Abbasi's avatar
Baber Abbasi committed
130
                    "temperature": 0,
Lintang Sutawika's avatar
Lintang Sutawika committed
131
                }
Baber Abbasi's avatar
Baber Abbasi committed
132
133
134
                eval_logger.warning(
                    f"{self.task}: No `generation_kwargs` specified in task config, defaulting to {self.generation_kwargs}"
                )
135

136
137
138
    def __getitem__(self, item):
        return getattr(self, item)

139
140
141
    def __setitem__(self, item, value):
        return setattr(self, item, value)

142
    def to_dict(self, keep_callable: bool = False) -> dict:
143
144
        """dumps the current config as a dictionary object, as a printable format.
        null fields will not be printed.
haileyschoelkopf's avatar
haileyschoelkopf committed
145
        Used for dumping results alongside full task configuration
146

haileyschoelkopf's avatar
haileyschoelkopf committed
147
148
149
150
151
152
153
154
155
156
        :return: dict
            A printable dictionary version of the TaskConfig object.

        # TODO: should any default value in the TaskConfig not be printed?
        """
        cfg_dict = asdict(self)
        # remove values that are `None`
        for k, v in list(cfg_dict.items()):
            if v is None:
                cfg_dict.pop(k)
157
158
159
160
161
162
163
164
165
166
            elif k == "metric_list":
                for metric_dict in v:
                    for metric_key, metric_value in metric_dict.items():
                        if callable(metric_value):
                            metric_dict[metric_key] = self.serialize_function(
                                metric_value, keep_callable=keep_callable
                            )
                cfg_dict[k] = v
            elif callable(v):
                cfg_dict[k] = self.serialize_function(v, keep_callable=keep_callable)
haileyschoelkopf's avatar
haileyschoelkopf committed
167
        return cfg_dict
168

169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
    def serialize_function(
        self, value: Union[Callable, str], keep_callable=False
    ) -> Union[Callable, str]:
        """Serializes a given function or string.

        If 'keep_callable' is True, the original callable is returned.
        Otherwise, attempts to return the source code of the callable using 'getsource'.
        """
        if keep_callable:
            return value
        else:
            try:
                return getsource(value)
            except (TypeError, OSError):
                return str(value)

185
186
187
188
189
190
191
192
193
194
195

class Task(abc.ABC):
    """A task represents an entire benchmark including its dataset, problems,
    answers, and evaluation methods. See BoolQ for a simple example implementation

    A `doc` can be any python object which represents one instance of evaluation.
    This is usually a dictionary e.g.
        {"question": ..., "answer": ...} or
        {"question": ..., question, answer)
    """

196
    VERSION: Optional[Union[int, str]] = None
197

198
199
    # The name of the `Task` benchmark as denoted in the HuggingFace datasets Hub
    # or a path to a custom `datasets` loading script.
200
    DATASET_PATH: Optional[str] = None
201
202

    # The name of a subset within `DATASET_PATH`.
203
    DATASET_NAME: Optional[str] = None
204

205
    OUTPUT_TYPE: Optional[OutputType] = None
lintangsutawika's avatar
lintangsutawika committed
206

207
208
    def __init__(
        self,
209
210
211
212
        data_dir: Optional[str] = None,
        cache_dir: Optional[str] = None,
        download_mode: Optional[datasets.DownloadMode] = None,
        config: Optional[Mapping] = None,  # Union[dict, TaskConfig]
Ethan Smith's avatar
Ethan Smith committed
213
    ) -> None:
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
        """
        :param data_dir: str
            Stores the path to a local folder containing the `Task`'s data files.
            Use this to specify the path to manually downloaded data (usually when
            the dataset is not publicly accessible).
        :param cache_dir: str
            The directory to read/write the `Task` dataset. This follows the
            HuggingFace `datasets` API with the default cache directory located at:
                `~/.cache/huggingface/datasets`
            NOTE: You can change the cache location globally for a given process
            to another directory:
                `export HF_DATASETS_CACHE="/path/to/another/directory"`
        :param download_mode: datasets.DownloadMode
            How to treat pre-existing `Task` downloads and data.
            - `datasets.DownloadMode.REUSE_DATASET_IF_EXISTS`
                Reuse download and reuse dataset.
            - `datasets.DownloadMode.REUSE_CACHE_IF_EXISTS`
                Reuse download with fresh dataset.
            - `datasets.DownloadMode.FORCE_REDOWNLOAD`
                Fresh download and fresh dataset.
        """
        self.download(data_dir, cache_dir, download_mode)
236
237
238
        self._training_docs: Optional[list] = None
        self._fewshot_docs: Optional[list] = None
        self._instances: Optional[List[Instance]] = None
239

240
        self._config: TaskConfig = TaskConfig({**config}) if config else TaskConfig()
241

lintangsutawika's avatar
lintangsutawika committed
242
        self._filters = [build_filter_ensemble("none", [["take_first", None]])]
243
244
245
        self.fewshot_rnd: Optional[random.Random] = (
            None  # purposely induce errors in case of improper usage
        )
246

247
248
249
250
251
252
    def download(
        self,
        data_dir: Optional[str] = None,
        cache_dir: Optional[str] = None,
        download_mode=None,
    ) -> None:
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
        """Downloads and returns the task dataset.
        Override this method to download the dataset from a custom API.

        :param data_dir: str
            Stores the path to a local folder containing the `Task`'s data files.
            Use this to specify the path to manually downloaded data (usually when
            the dataset is not publicly accessible).
        :param cache_dir: str
            The directory to read/write the `Task` dataset. This follows the
            HuggingFace `datasets` API with the default cache directory located at:
                `~/.cache/huggingface/datasets`
            NOTE: You can change the cache location globally for a given process
            by setting the shell environment variable, `HF_DATASETS_CACHE`,
            to another directory:
                `export HF_DATASETS_CACHE="/path/to/another/directory"`
        :param download_mode: datasets.DownloadMode
            How to treat pre-existing `Task` downloads and data.
            - `datasets.DownloadMode.REUSE_DATASET_IF_EXISTS`
                Reuse download and reuse dataset.
            - `datasets.DownloadMode.REUSE_CACHE_IF_EXISTS`
                Reuse download with fresh dataset.
            - `datasets.DownloadMode.FORCE_REDOWNLOAD`
                Fresh download and fresh dataset.
        """
277
278
279
280
281
282
283
        self.dataset = datasets.load_dataset(
            path=self.DATASET_PATH,
            name=self.DATASET_NAME,
            data_dir=data_dir,
            cache_dir=cache_dir,
            download_mode=download_mode,
        )
284

285
    @property
286
    def config(self) -> TaskConfig:
287
288
289
        """Returns the TaskConfig associated with this class."""
        return self._config

290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
    @abc.abstractmethod
    def has_training_docs(self):
        """Whether the task has a training set"""
        pass

    @abc.abstractmethod
    def has_validation_docs(self):
        """Whether the task has a validation set"""
        pass

    @abc.abstractmethod
    def has_test_docs(self):
        """Whether the task has a test set"""
        pass

305
    def training_docs(self) -> Iterable:
306
307
308
309
310
311
        """
        :return: Iterable[obj]
            A iterable of any object, that doc_to_text can handle
        """
        return []

312
    def validation_docs(self) -> Iterable:
313
314
315
316
317
318
        """
        :return: Iterable[obj]
            A iterable of any object, that doc_to_text can handle
        """
        return []

319
    def test_docs(self) -> Iterable:
320
321
322
323
324
325
        """
        :return: Iterable[obj]
            A iterable of any object, that doc_to_text can handle
        """
        return []

326
    def fewshot_docs(self) -> Iterable:
327
328
329
330
331
332
333
334
335
        """
        :return: Iterable[obj]
            A iterable of any object, that doc_to_text can handle
        """
        if self.has_training_docs():
            return self.training_docs()
        elif self.has_validation_docs():
            return self.validation_docs()
        else:
Baber Abbasi's avatar
Baber Abbasi committed
336
337
338
339
340
            if self.config.get("num_fewshot", 0) > 0:
                eval_logger.warning(
                    f"[Task: {self.config.task}] has_training_docs and has_validation_docs are False"
                    ", using test_docs as fewshot_docs but this is not recommended."
                )
341
342
            return self.test_docs()

343
    def _process_doc(self, doc: dict) -> dict:
344
345
346
347
348
349
350
351
352
        """
        Override this to process (detokenize, strip, replace, etc.) individual
        documents. This can be used in a map over documents of a data split.
        E.g. `map(self._process_doc, self.dataset["validation"])`

        :return: dict
            The processed version of the specified `doc`.
        """
        return doc
lintangsutawika's avatar
lintangsutawika committed
353

354
    @property
355
    def instances(self) -> List[Instance]:
356
357
358
359
360
361
362
363
364
365
366
        """After calling `task.build_all_requests()`, tasks
        maintain a list of the dataset instances which will be evaluated.
        """
        return self._instances

    def fewshot_examples(self, k, rnd):
        if self._training_docs is None:
            self._training_docs = list(self.training_docs())

        return rnd.sample(self._training_docs, k)

367
368
    def doc_to_decontamination_query(self, doc):
        raise NotImplementedError(
369
370
371
372
373
374
375
376
377
378
379
            "Override doc_to_decontamination_query with document specific decontamination query."
        )

    @abc.abstractmethod
    def doc_to_text(self, doc):
        pass

    @abc.abstractmethod
    def doc_to_target(self, doc):
        pass

380
381
382
383
    # not an abstractmethod because not every language-only task has to implement this
    def doc_to_image(self, doc):
        raise NotImplementedError

384
385
386
    def doc_to_audio(self, doc):
        raise NotImplementedError

Baber Abbasi's avatar
Baber Abbasi committed
387
388
389
    def doc_to_prefix(self, doc):
        return ""

390
391
    def build_all_requests(
        self,
392
        *,
393
        limit: Union[int, None] = None,
394
        samples: Optional[List[int]] = None,
395
396
397
398
399
400
401
402
403
        rank: int = 0,
        world_size: int = 1,
        cache_requests: bool = False,
        rewrite_requests_cache: bool = False,
        system_instruction: Optional[str] = None,
        apply_chat_template: bool = False,
        fewshot_as_multiturn: bool = False,
        chat_template: Optional[Callable] = None,
        tokenizer_name: str = "",
404
    ) -> None:
405
        """Build a set of Instances for a task, and store them in task.instances"""
406
407
408
409

        # used with caching
        og_limit = limit

410
        cache_key = f"requests-{self._config.task}-{self.config.num_fewshot}shot-rank{rank}-world_size{world_size}"
KonradSzafer's avatar
KonradSzafer committed
411
412
413
414
415
416
417
        cache_key += "-chat_template" if apply_chat_template else ""
        cache_key += "-fewshot_as_multiturn" if fewshot_as_multiturn else ""
        cache_key += (
            f"-system_prompt_hash{utils.hash_string(system_instruction)}"
            if system_instruction is not None
            else ""
        )
418
        cache_key += f"-tokenizer{tokenizer_name}"
419

Baber Abbasi's avatar
Baber Abbasi committed
420
        cached_instances = load_from_cache(file_name=cache_key, cache=cache_requests)
421
422
423
424
425
426
427
428
429
430
431
432
433

        if cache_requests and cached_instances and not rewrite_requests_cache:
            cached_instances = cached_instances[:limit]

            flattened_instances = [
                instance
                for instance_group in cached_instances
                for instance in instance_group
            ]

            self._instances = flattened_instances
            return

Baber Abbasi's avatar
Baber Abbasi committed
434
        eval_logger.info(f"Building contexts for {self.config.task} on rank {rank}...")
435

436
        instances = []
437
438
439
440
441
442
443
444
445
446

        # process all documents when caching is specified for simplicity
        if (
            cache_requests
            and (not cached_instances or rewrite_requests_cache)
            and limit is not None
        ):
            limit = None

        doc_id_docs = list(
447
448
449
            self.doc_iterator(
                rank=rank, limit=limit, samples=samples, world_size=world_size
            )
450
451
452
453
454
455
456
        )

        num_docs = len(doc_id_docs)

        for doc_id, doc in tqdm(
            doc_id_docs,
            total=num_docs,
lintangsutawika's avatar
lintangsutawika committed
457
        ):
458
            # sample fewshot context #TODO: need to offset doc_id by rank now!
459
            fewshot_ctx = self.fewshot_context(
460
                doc,
461
                0 if self.config.num_fewshot is None else self.config.num_fewshot,
KonradSzafer's avatar
KonradSzafer committed
462
463
464
                system_instruction,
                apply_chat_template,
                fewshot_as_multiturn,
465
                chat_template,
Baber Abbasi's avatar
Baber Abbasi committed
466
                gen_prefix=self.doc_to_prefix(doc),
467
            )
468

469
            # TODO: we should override self.config.repeats if doing greedy gen so users don't waste time+compute
lintangsutawika's avatar
lintangsutawika committed
470
471
472
            inst = self.construct_requests(
                doc=doc,
                ctx=fewshot_ctx,
473
                metadata=(self.config["task"], doc_id, self.config.repeats),
474
                apply_chat_template=apply_chat_template,
475
                chat_template=chat_template,
lintangsutawika's avatar
lintangsutawika committed
476
            )
477
478
479
480

            if not isinstance(inst, list):
                inst = [inst]

481
482
483
484
485
486
487
488
489
490
491
492
493
            instances.append(inst)

        # now flatten, this is to allow slicing to work with pickles

        sliced_instances = instances[:og_limit]

        flattened_instances = [
            instance
            for instance_group in sliced_instances
            for instance in instance_group
        ]

        self._instances = flattened_instances
494

495
496
        if len(self._instances) == 0:
            raise ValueError("task.build_requests() did not find any docs!")
497

498
499
500
        if cache_requests and (not cached_instances or rewrite_requests_cache):
            save_to_cache(file_name=cache_key, obj=instances)

501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
    @abc.abstractmethod
    def construct_requests(self, doc, ctx, **kwargs):
        """Uses RequestFactory to construct Requests and returns an iterable of
        Requests which will be sent to the LM.

        :param doc:
            The document as returned from training_docs, validation_docs, or test_docs.
        :param ctx: str
            The context string, generated by fewshot_context. This includes the natural
            language description, as well as the few shot examples, and the question
            part of the document for `doc`.
        :param doc_idx: int
            The index of a document within `self.test_docs()` or `self.validation_docs()`,
            whichever is the main split used.
        :param repeats: int
        TODO: update this docstring
lintangsutawika's avatar
lintangsutawika committed
517
            The number of times each instance in a dataset is inferred on. Defaults to 1,
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
            can be increased for techniques like majority voting.
        """
        pass

    @abc.abstractmethod
    def process_results(self, doc, results):
        """Take a single document and the LM results and evaluates, returning a
        dict where keys are the names of submetrics and values are the values of
        the metric for that one document

        :param doc:
            The document as returned from training_docs, validation_docs, or test_docs.
        :param results:
            The results of the requests created in construct_requests.
        """
        pass

    @abc.abstractmethod
    def aggregation(self):
        """
        :returns: {str: [metric_score] -> float}
            A dictionary where keys are the names of submetrics and values are
            functions that aggregate a list of metric scores
        """
        pass

    @abc.abstractmethod
    def higher_is_better(self):
        """
        :returns: {str: bool}
            A dictionary where keys are the names of submetrics and values are
            whether a higher value of the submetric is better
        """
        pass

553
554
555
    def get_config(self, key: str) -> Any:
        return getattr(self._config, key, None)

haileyschoelkopf's avatar
haileyschoelkopf committed
556
557
558
559
560
561
562
563
564
565
    @classmethod
    def count_bytes(cls, doc):
        """Used for byte-level perplexity metrics in rolling loglikelihood"""
        return len(doc.encode("utf-8"))

    @classmethod
    def count_words(cls, doc):
        """Downstream loglikelihood_rolling perplexity tasks with custom word boundaries should override this!"""
        return len(re.split(r"\s+", doc))

566
    @utils.positional_deprecated
Baber Abbasi's avatar
Baber Abbasi committed
567
    def fewshot_context(self, doc, num_fewshot, rnd=None, description=None, **kwargs):
568
569
570
571
572
573
574
        """Returns a fewshot context string that is made up of a prepended description
        (if provided), the `num_fewshot` number of examples, and an appended prompt example.

        :param doc: str
            The document as returned from training_docs, validation_docs, or test_docs.
        :param num_fewshot: int
            The number of fewshot examples to provide in the returned context string.
lintangsutawika's avatar
lintangsutawika committed
575
576
577
578
579
        :param rnd: random.Random
            The pseudo-random number generator used to randomly sample examples.
            WARNING: This is currently a required arg although it's optionalized with a default `None`.
        :param description: str
            The task's description that will be prepended to the fewshot examples.
580
581
582
        :returns: str
            The fewshot context.
        """
583
        if rnd is None:
584
585
586
587
588
589
            if self.fewshot_rnd is not None:
                rnd = self.fewshot_rnd
            else:
                raise ValueError(
                    "A `random.Random` generator argument must be provided to `rnd`"
                )
lintangsutawika's avatar
lintangsutawika committed
590

591
        description = description if description else ""
592
593

        if num_fewshot == 0:
lintangsutawika's avatar
lintangsutawika committed
594
            labeled_examples = ""
595
        else:
lintangsutawika's avatar
lintangsutawika committed
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
            # for sets with no training docs, draw from other set *but ensure no overlap with current doc*
            if self.has_training_docs():
                fewshotex = self.fewshot_examples(k=num_fewshot, rnd=rnd)
            else:
                if self._fewshot_docs is None:
                    self._fewshot_docs = list(
                        self.validation_docs()
                        if self.has_validation_docs()
                        else self.test_docs()
                    )

                fewshotex = rnd.sample(self._fewshot_docs, num_fewshot + 1)

                # get rid of the doc that's the one we're evaluating, if it's in the fewshot
                fewshotex = [x for x in fewshotex if x != doc][:num_fewshot]

            labeled_examples = (
                "\n\n".join(
                    [
                        self.doc_to_text(doc) + self.doc_to_target(doc)
                        for doc in fewshotex
                    ]
                )
                + "\n\n"
lintangsutawika's avatar
lintangsutawika committed
620
            )
621
622

        example = self.doc_to_text(doc)
lintangsutawika's avatar
lintangsutawika committed
623
        return description + labeled_examples + example
624

625
    def apply_filters(self) -> Optional[List[Instance]]:
Baber Abbasi's avatar
Baber Abbasi committed
626
        """Iterates over FilterEnsembles and applies them to instances"""
lintangsutawika's avatar
lintangsutawika committed
627
628
        if hasattr(self, "_filters"):
            for f in self._filters:
629
                f.apply(self._instances)
lintangsutawika's avatar
lintangsutawika committed
630
631
632
        else:
            eval_logger.warning("No filter defined, passing through instances")
            return self._instances
633

baberabb's avatar
baberabb committed
634
    def dump_config(self) -> dict:
Baber Abbasi's avatar
Baber Abbasi committed
635
        """Returns the config as a dictionary."""
636
        # TODO: this should only return the overrides applied to a non-YAML task's configuration.
637
        # (num_fewshot)
638
        return self.config.to_dict()
639

Baber Abbasi's avatar
Baber Abbasi committed
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
    def set_config(self, key: str, value: Any, update: bool = False) -> None:
        """Set or update the configuration for a given key."""
        if key is None:
            raise ValueError("Key must be provided.")

        if update:
            current_value = getattr(self._config, key, {})
            if not isinstance(current_value, dict):
                raise TypeError(
                    f"Expected a dict for key '{key}', got {type(current_value).__name__} instead."
                )
            current_value.update(value)
        else:
            setattr(self._config, key, value)

    def override_metric(self, metric_name: str) -> None:
        """
        Override the default metrics used for evaluation with custom metrics.

        Parameters:
        - metric_name (str): The name of the custom metric to override. Should be registered in api.metrics.
        """
        (
            self._metric_fn_list,
            self._aggregation_list,
            self._metric_fn_kwargs,
            self._higher_is_better,
        ) = ({}, {}, {}, {})
        self._metric_fn_list[metric_name] = get_metric(metric_name)
        self._aggregation_list[metric_name] = get_metric_aggregation(metric_name)
        self._higher_is_better[metric_name] = is_higher_better(metric_name)
        self._metric_fn_kwargs[metric_name] = {}
        if not isinstance(self, ConfigurableTask):
            self.process_results = lambda x, y: {metric_name: get_metric(metric_name)}
            self.aggregation = lambda: {
                metric_name: get_metric_aggregation(metric_name)
            }
        setattr(self._config, "metric_list", [{"metric": metric_name}])
        setattr(self._config, "process_results", None)

680
681
682
683
684
    def set_fewshot_seed(self, seed: Optional[int] = None) -> None:
        self.fewshot_rnd = random.Random(seed)
        if hasattr(self, "sampler"):
            self.sampler.rnd = self.fewshot_rnd

685
686
687
688
689
690
691
    @property
    def eval_docs(self) -> Union[datasets.Dataset, List[dict]]:
        if self.has_test_docs():
            return self.test_docs()
        elif self.has_validation_docs():
            return self.validation_docs()
        else:
692
693
694
            raise ValueError(
                f"Task dataset (path={self.DATASET_PATH}, name={self.DATASET_NAME}) must have valid or test docs!"
            )
695
696

    def doc_iterator(
697
698
699
700
701
702
        self,
        *,
        rank: int = 0,
        limit: Union[int, None] = None,
        world_size: int = 1,
        samples: Optional[List[int]] = None,
703
    ) -> Iterator[Tuple[int, Any]]:
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
        if samples:
            n = len(self.eval_docs)
            assert all([e < n for e in samples]), (
                f"Elements of --samples should be in the interval [0,k-1] where k is the number of total examples. In this case, k={n}."
            )
            eval_logger.info(
                f"{self.config.task}: Evaluating on {len(samples)} examples"
            )
            doc_iterator = utils.create_iterator(
                enumerate(x for i, x in enumerate(self.eval_docs) if i in samples),
                rank=int(rank),
                limit=None,  # limit does not matter here since we are selecting samples directly
                world_size=int(world_size),
            )
        else:
            limit = int(limit) if limit else None
            doc_iterator = utils.create_iterator(
                enumerate(self.eval_docs),
                rank=int(rank),
                limit=limit,
                world_size=int(world_size),
            )
726
727
        return doc_iterator

728

729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
def log_process_results_path(task_instance) -> Tuple[str, list[str], str]:
    """
    Utility function to determine and log which code paths will be followed
    in the process_results method based on the task's initialization state.

    Args:
        task_instance: The ConfigurableTask instance

    Returns:
        List of path identifiers that will be taken in process_results
    """
    paths = []
    task_name = getattr(task_instance.config, "task", "unknown_task")
    output_type = task_instance.OUTPUT_TYPE

    # CRITICAL: Check for custom process_results override first
    if callable(task_instance.config.process_results):
        paths.append("custom_process_results_override")
        path_summary = " -> ".join(paths)
        return task_name, paths, path_summary  # Early return - no other paths matter

    # Base path is always the output type
    base_path = output_type
    paths.append(base_path)

    if "bypass" in task_instance._metric_fn_list.keys():
        paths.append(f"{base_path}_bypass")
        path_summary = " -> ".join(paths)
        return task_name, paths, path_summary

    if output_type == "loglikelihood":
        # Simple path - conditional metric inclusion
        use_metric = list(task_instance._metric_fn_list.keys())
        if "perplexity" in use_metric:
            paths.append(f"{base_path}_perplexity")
        if "acc" in use_metric:
            paths.append(f"{base_path}_acc")

    elif output_type == "loglikelihood_rolling":
        # Conditional metric inclusion
        use_metric = list(task_instance._metric_fn_list.keys())
        if "word_perplexity" in use_metric:
            paths.append(f"{base_path}_word_perplexity")
        if "byte_perplexity" in use_metric:
            paths.append(f"{base_path}_byte_perplexity")
        if "bits_per_byte" in use_metric:
            paths.append(f"{base_path}_bits_per_byte")

    elif output_type == "multiple_choice":
        # Check for mutual info condition (requires both conditions)
        if "acc_mutual_info" in task_instance._metric_fn_list.keys():
            paths.append(f"{base_path}_mutual_info_enabled")

        # Check for multiple_input condition
        if task_instance.multiple_input:
            paths.append(f"{base_path}_multiple_input")

        # Check for multiple_target condition
        if task_instance.multiple_target:
            paths.append(f"{base_path}_multiple_target")
        else:
            paths.append(f"{base_path}_single_target")

        # Track potential gold validation issues
        paths.append(f"{base_path}_gold_validation")

        # Track specific metrics that will be computed
        use_metric = list(task_instance._metric_fn_list.keys())
        metric_paths = []
        for metric in [
            "acc",
            "f1",
            "mcc",
            "acc_norm",
            "exact_match",
            "brier_score",
            "acc_mutual_info",
        ]:
            if metric in use_metric:
                metric_paths.append(metric)
        if metric_paths:
            paths.append(f"{base_path}_metrics_{'_'.join(metric_paths)}")

    elif output_type == "generate_until":
        # Check if doc_to_choice is configured
        # Analyze target structure using test document
        test_doc = task_instance.task_docs[0]
        test_target = task_instance.doc_to_target(test_doc)
        if task_instance.config.doc_to_choice is not None:
            paths.append(f"{base_path}_with_choices")
        # Check if multiple_target (target is a list)
        elif task_instance.multiple_target:
            paths.append(f"{base_path}_multiple_target")
            if not isinstance(test_target, list):
                paths.append(f"{base_path}_multiple_target_type_not_list")
        elif isinstance(test_target, list):
            paths.append(f"{base_path}_target_type_list")
        elif not isinstance(test_target, str) and not isinstance(test_target, list):
            paths.append(f"{base_path}_target_type_{type(test_target)}")

        # Track that we'll loop through all metrics
        paths.append(f"{base_path}_metric_processing_loop")

        # Check for special metric handling
        if task_instance.multiple_target:
            if "exact_match" in task_instance._metric_fn_list.keys():
                paths.append(f"{base_path}_exact_match_multiple_special")
            paths.append(f"{base_path}_multiple_target_metric_aggregation")

        # Check for bypass metrics
        if "bypass" in task_instance._metric_fn_list.keys():
            paths.append(f"{base_path}_bypass_metric")

        # Note: Dict result handling and TypeError handling are runtime-dependent
        paths.append(f"{base_path}_runtime_dependent_paths")

    else:
        paths.append("invalid_output_type_error")

    # Log the determined paths
    path_summary = " -> ".join(paths)
    return task_name, paths, path_summary


853
class ConfigurableTask(Task):
854
    VERSION = "Yaml"
855
    OUTPUT_TYPE = None
856
    CONFIG = None
857
858

    def __init__(
859
860
861
862
863
        self,
        data_dir=None,
        cache_dir=None,
        download_mode=None,
        config: Optional[dict] = None,
Ethan Smith's avatar
Ethan Smith committed
864
    ) -> None:  # TODO no super() call here
865
        # Get pre-configured attributes
866
        self._config = self.CONFIG
867

868
        # Use new configurations if there was no preconfiguration
869
        if self.config is None:
870
            self._config = TaskConfig(**config)
871
872
        # Overwrite configs
        else:
lintangsutawika's avatar
lintangsutawika committed
873
            if config is not None:
874
                self._config.__dict__.update(config)
875

876
        if self.config is None:
lintangsutawika's avatar
lintangsutawika committed
877
878
879
            raise ValueError(
                "Must pass a config to ConfigurableTask, either in cls.CONFIG or `config` kwarg"
            )
880

881
882
883
884
        if isinstance(self.config.metadata, dict):
            if "version" in self.config.metadata:
                self.VERSION = self.config.metadata["version"]

885
        if self.config.output_type is not None:
886
887
888
889
            if self.config.output_type not in ALL_OUTPUT_TYPES:
                raise ValueError(
                    f"Got invalid output_type '{self.config.output_type}', must be in '{','.join(ALL_OUTPUT_TYPES)}'"
                )
890
            self.OUTPUT_TYPE = self.config.output_type
891

892
893
894
895
        if self.config.doc_to_image is not None:
            # mark the task as requiring multimodality.
            self.MULTIMODAL = True

896
897
898
899
        if self.config.doc_to_audio:
            # mark the task as requiring multimodality.
            self.MULTIMODAL = True

Hojin Lee's avatar
Hojin Lee committed
900
901
902
        if self.config.unsafe_code is not False:
            self.UNSAFE_CODE = True

903
904
        if self.config.dataset_path is not None:
            self.DATASET_PATH = self.config.dataset_path
905

906
907
        if self.config.dataset_name is not None:
            self.DATASET_NAME = self.config.dataset_name
908

909
910
911
912
        self._metric_fn_list = {}
        self._metric_fn_kwargs = {}
        self._aggregation_list = {}
        self._higher_is_better = {}
913

914
        if self.config.metric_list is None:
915
            # TODO: handle this in TaskConfig.__post_init__ ?
916
917
            _metric_list = DEFAULT_METRIC_REGISTRY[self.config.output_type]

918
            for metric_name in _metric_list:
haileyschoelkopf's avatar
haileyschoelkopf committed
919
                self._metric_fn_list[metric_name] = get_metric(metric_name)
lintangsutawika's avatar
lintangsutawika committed
920
                self._metric_fn_kwargs[metric_name] = {}
921
922
923
                self._aggregation_list[metric_name] = get_metric_aggregation(
                    metric_name
                )
haileyschoelkopf's avatar
haileyschoelkopf committed
924
                self._higher_is_better[metric_name] = is_higher_better(metric_name)
925
        else:
926
            for metric_config in self.config.metric_list:
927
928
929
930
                if "metric" not in metric_config:
                    raise ValueError(
                        "'metric' key not provided for an entry in 'metric_list', must be specified!"
                    )
931
932
933
934
                metric_name = metric_config["metric"]
                kwargs = {
                    key: metric_config[key]
                    for key in metric_config
Chris's avatar
Chris committed
935
936
                    if key
                    not in ["metric", "aggregation", "higher_is_better", "hf_evaluate"]
937
                }
Chris's avatar
Chris committed
938
939
940
941
                hf_evaluate_metric = (
                    "hf_evaluate" in metric_config
                    and metric_config["hf_evaluate"] is True
                )
942

943
                if self.config.process_results is not None:
944
945
                    self._metric_fn_list[metric_name] = None
                    self._metric_fn_kwargs[metric_name] = {}
946
947
948
949
950
951
                elif callable(metric_name):
                    metric_fn = metric_name.__call__
                    metric_name = metric_name.__name__
                    self._metric_fn_list[metric_name] = metric_fn
                    self._metric_fn_kwargs[metric_name] = kwargs
                else:
Chris's avatar
Chris committed
952
953
954
                    self._metric_fn_list[metric_name] = get_metric(
                        metric_name, hf_evaluate_metric
                    )
955
                    self._metric_fn_kwargs[metric_name] = kwargs
lintangsutawika's avatar
lintangsutawika committed
956

957
                if "aggregation" in metric_config:
958
                    agg_name = metric_config["aggregation"]
959
                    if isinstance(agg_name, str):
haileyschoelkopf's avatar
haileyschoelkopf committed
960
                        self._aggregation_list[metric_name] = get_aggregation(agg_name)
961
                    elif callable(agg_name):  # noqa: E721
962
963
964
                        self._aggregation_list[metric_name] = metric_config[
                            "aggregation"
                        ]
965
                else:
966
                    INV_AGG_REGISTRY = {v: k for k, v in AGGREGATION_REGISTRY.items()}
lintangsutawika's avatar
lintangsutawika committed
967
                    metric_agg = get_metric_aggregation(metric_name)
968
                    eval_logger.warning(
969
                        f"[Task: {self.config.task}] metric {metric_name} is defined, but aggregation is not. "
970
971
                        f"using default "
                        f"aggregation={INV_AGG_REGISTRY[metric_agg]}"
972
                    )
973
                    self._aggregation_list[metric_name] = metric_agg
lintangsutawika's avatar
lintangsutawika committed
974

975
976
977
978
979
980
                if "higher_is_better" in metric_config:
                    self._higher_is_better[metric_name] = metric_config[
                        "higher_is_better"
                    ]
                else:
                    eval_logger.warning(
981
                        f"[Task: {self.config.task}] metric {metric_name} is defined, but higher_is_better is not. "
982
                        f"using default "
haileyschoelkopf's avatar
haileyschoelkopf committed
983
                        f"higher_is_better={is_higher_better(metric_name)}"
984
                    )
haileyschoelkopf's avatar
haileyschoelkopf committed
985
                    self._higher_is_better[metric_name] = is_higher_better(metric_name)
986

987
        self.download(self.config.dataset_kwargs)
988
989
990
        self._training_docs = None
        self._fewshot_docs = None

991
        if self.config.filter_list is not None:
lintangsutawika's avatar
lintangsutawika committed
992
            self._filters = []
993
            for filter_config in self.config.filter_list:
994
995
996
997
998
999
1000
1001
1002
                filter_name = filter_config["name"]
                filter_functions = filter_config["filter"]
                components = []
                for function in filter_functions:
                    kwargs = {
                        key: function[key] for key in function if key != "function"
                    }
                    components.append([function["function"], kwargs])
                filter_pipeline = build_filter_ensemble(filter_name, components)
lintangsutawika's avatar
lintangsutawika committed
1003
                self._filters.append(filter_pipeline)
lintangsutawika's avatar
lintangsutawika committed
1004
        else:
Baber Abbasi's avatar
Baber Abbasi committed
1005
1006
1007
1008
            # TODO: handle repeats in a more general way rather than just discarding
            eval_logger.debug(
                "No custom filters defined. Using default 'take_first' filter for handling repeats."
            )
1009
            self._filters = [build_filter_ensemble("none", [["take_first", None]])]
1010

1011
1012
        if self.config.use_prompt is not None:
            eval_logger.info(f"loading prompt {self.config.use_prompt}")
1013
            self.prompt = get_prompt(
1014
                self.config.use_prompt, self.DATASET_PATH, self.DATASET_NAME
lintangsutawika's avatar
lintangsutawika committed
1015
            )
1016
1017
1018
        else:
            self.prompt = None

lintangsutawika's avatar
lintangsutawika committed
1019
        if self.fewshot_docs() is not None:
1020
1021
1022
1023
            self.fewshot_rnd = (
                random.Random()
            )  # setting with no seed, to be overridden at a later time
            config_sampler: Union[str, Callable] = (
haileyschoelkopf's avatar
haileyschoelkopf committed
1024
1025
1026
                self.config.fewshot_config.get("sampler", "default")
                if self.config.fewshot_config
                else "default"
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
            )
            if isinstance(config_sampler, str):
                self.sampler = samplers.get_sampler(config_sampler)(
                    list(self.fewshot_docs()), self, rnd=self.fewshot_rnd
                )
            elif callable(config_sampler) and issubclass(
                config_sampler, samplers.ContextSampler
            ):
                self.sampler = config_sampler(
                    docs=list(self.fewshot_docs()), task=self, rnd=self.fewshot_rnd
                )
            else:
                raise TypeError(
                    f"fewshot_config.sampler should be a string or callable of ContextSampler type, "
                    f"not {type(config_sampler)}"
                )
1043

1044
        self.task_docs = self.eval_docs
1045

1046
        # Test One Doc
1047
        self.features = list(self.task_docs.features.keys())
1048
1049
        self.multiple_input = 0
        self.multiple_target = 0
1050
        test_doc = self.task_docs[0]
1051
        test_text = self.doc_to_text(test_doc)
1052
        test_target = self.doc_to_target(test_doc)
lintangsutawika's avatar
lintangsutawika committed
1053

1054
        if self.config.doc_to_choice is not None:
lintangsutawika's avatar
lintangsutawika committed
1055
            test_choice = self.doc_to_choice(test_doc)
1056
            if not isinstance(test_choice, list):
lintangsutawika's avatar
lintangsutawika committed
1057
                eval_logger.error("doc_to_choice must return list")
1058
1059
            else:
                num_choice = len(test_choice)
1060

1061
            if isinstance(test_text, int):
Baber Abbasi's avatar
Baber Abbasi committed
1062
1063
1064
                eval_logger.debug(
                    "doc_to_text returned an int. Assuming multiple inputs."
                )
1065
                self.multiple_input = num_choice
1066
1067
        else:
            test_choice = None
1068

1069
        if isinstance(test_target, list):
Baber Abbasi's avatar
Baber Abbasi committed
1070
1071
1072
            eval_logger.debug(
                "doc_to_target returned a list. Assuming multiple targets."
            )
1073
            self.multiple_target = len(test_target)
1074
        else:
1075
            if (isinstance(test_target, int)) and (test_choice is not None):
lintangsutawika's avatar
lintangsutawika committed
1076
                test_target = test_choice[test_target]
1077
            else:
lintangsutawika's avatar
lintangsutawika committed
1078
                test_target = str(test_target)
1079

1080
1081
1082
        if test_choice is not None:
            check_choices = test_choice
        else:
lintangsutawika's avatar
lintangsutawika committed
1083
            check_choices = [test_target]
1084
1085
1086
1087
        if self.config.doc_to_choice is not None:
            for choice in check_choices:
                choice_has_whitespace = True if choice[0].isspace() else False
                delimiter_has_whitespace = (
1088
1089
                    True
                    if self.config.target_delimiter.rstrip()
1090
                    != self.config.target_delimiter
1091
                    else False
1092
                )
1093

1094
                if delimiter_has_whitespace and choice_has_whitespace:
1095
1096
                    eval_logger.debug(
                        f'Both target_delimiter "{self.config.target_delimiter}" and target choice: "{choice}" have whitespace'
1097
1098
                    )
                elif (not delimiter_has_whitespace) and (not choice_has_whitespace):
1099
                    eval_logger.debug(
1100
                        f'Both target_delimiter "{self.config.target_delimiter}" and target choice: "{choice}" do not have whitespace, ignore if the language you are evaluating on does not require/use whitespace'
1101
                    )
1102
        self.paths = log_process_results_path(self)
1103

Baber Abbasi's avatar
Baber Abbasi committed
1104
1105
1106
1107
1108
1109
1110
1111
1112
1113
1114
1115
1116
1117
1118
1119
1120
    def download(
        self, dataset_kwargs: Optional[Dict[str, Any]] = None, **kwargs
    ) -> None:
        if isinstance(self.config.custom_dataset, Callable):
            eval_logger.warning(
                f"{self.config.task}: Custom kwargs can be passed to `--metadata` in console (as json string) or to the TaskManager."
                + "\nFor example --metadata='{\"max_seq_lengths\":[4096, 8192]}'. For details see task Readme."
            )
            self.dataset = self.config.custom_dataset(
                **(self.config.metadata or {}), **(self.config.dataset_kwargs or {})
            )
        else:
            self.dataset = datasets.load_dataset(
                path=self.DATASET_PATH,
                name=self.DATASET_NAME,
                **dataset_kwargs if dataset_kwargs is not None else {},
            )
1121

baberabb's avatar
baberabb committed
1122
    def has_training_docs(self) -> bool:
1123
        if self.config.training_split is not None:
1124
1125
1126
1127
            return True
        else:
            return False

baberabb's avatar
baberabb committed
1128
    def has_validation_docs(self) -> bool:
1129
        if self.config.validation_split is not None:
1130
1131
1132
1133
            return True
        else:
            return False

baberabb's avatar
baberabb committed
1134
    def has_test_docs(self) -> bool:
1135
        if self.config.test_split is not None:
1136
1137
1138
1139
            return True
        else:
            return False

baberabb's avatar
baberabb committed
1140
    def training_docs(self) -> datasets.Dataset:
1141
        if self.has_training_docs():
1142
1143
1144
            if self.config.process_docs is not None:
                return self.config.process_docs(
                    self.dataset[self.config.training_split]
1145
                )
1146
            return self.dataset[self.config.training_split]
1147

baberabb's avatar
baberabb committed
1148
    def validation_docs(self) -> datasets.Dataset:
1149
        if self.has_validation_docs():
1150
1151
1152
            if self.config.process_docs is not None:
                return self.config.process_docs(
                    self.dataset[self.config.validation_split]
1153
                )
1154
            return self.dataset[self.config.validation_split]
1155

baberabb's avatar
baberabb committed
1156
    def test_docs(self) -> datasets.Dataset:
1157
        if self.has_test_docs():
1158
1159
1160
            if self.config.process_docs is not None:
                return self.config.process_docs(self.dataset[self.config.test_split])
            return self.dataset[self.config.test_split]
1161

1162
    def fewshot_docs(self):
1163
        if self.config.fewshot_split is not None:
1164
1165
            if self.config.process_docs is not None:
                return self.config.process_docs(self.dataset[self.config.fewshot_split])
1166
            return self.dataset[self.config.fewshot_split]
1167
1168
1169
1170
1171
1172
1173
1174
1175
1176
1177
1178
        elif (
            self.config.fewshot_config is not None
            and self.config.fewshot_config.get("samples", None) is not None
        ):
            if isinstance(self.config.fewshot_config["samples"], list):
                return self.config.fewshot_config["samples"]
            elif callable(self.config.fewshot_config["samples"]):
                return self.config.fewshot_config["samples"]()
            else:
                raise Exception(
                    "`fewshot_config['samples']` was incorrectly defined in the configuration. It should be either a list of samples as a dict, or function returning this list."
                )
1179
        else:
1180
            if (self.config.num_fewshot is not None) and (self.config.num_fewshot > 0):
1181
                eval_logger.warning(
Lintang Sutawika's avatar
Lintang Sutawika committed
1182
                    f"[Task: {self.config.task}] "
1183
1184
1185
1186
                    "num_fewshot > 0 but fewshot_split is None. "
                    "using preconfigured rule."
                )
            return super().fewshot_docs()
1187

KonradSzafer's avatar
KonradSzafer committed
1188
1189
1190
1191
1192
    @staticmethod
    def append_target_question(
        labeled_examples: List[Dict[str, str]],
        question: str,
        fewshot_as_multiturn: bool = False,
Baber Abbasi's avatar
Baber Abbasi committed
1193
        gen_prefix: Optional[str] = None,
KonradSzafer's avatar
KonradSzafer committed
1194
1195
1196
1197
1198
1199
1200
1201
    ) -> None:
        """Adds a target question to the labeled examples list.
        If fewshot_as_multiturn is True, or labeled_examples is empty, or the last entry is a system turn, appends the question as a new user entry.
        Otherwise, it is appended to the last user entry, ensuring that the conversation alternates between the user and the assistant.
        """
        if not fewshot_as_multiturn:
            # if no messages or last message is system, append as new user entry
            if len(labeled_examples) == 0 or labeled_examples[-1]["role"] == "system":
1202
                labeled_examples.append({"role": "user", "content": question})
KonradSzafer's avatar
KonradSzafer committed
1203
1204
            # if last message is user, append to it to avoid two user messages in a row
            else:
1205
                labeled_examples[-1]["content"] += question
KonradSzafer's avatar
KonradSzafer committed
1206
1207
        else:
            # if fewshot_as_multiturn is True, append as next user entry (last is always assistant)
1208
            labeled_examples.append({"role": "user", "content": question})
Baber Abbasi's avatar
Baber Abbasi committed
1209
1210
        if gen_prefix:
            labeled_examples.append({"role": "assistant", "content": gen_prefix})
KonradSzafer's avatar
KonradSzafer committed
1211

lintangsutawika's avatar
lintangsutawika committed
1212
    @utils.positional_deprecated
KonradSzafer's avatar
KonradSzafer committed
1213
1214
    def fewshot_context(
        self,
Baber Abbasi's avatar
Baber Abbasi committed
1215
        doc: dict,
KonradSzafer's avatar
KonradSzafer committed
1216
1217
1218
1219
        num_fewshot: int,
        system_instruction: Optional[str] = None,
        apply_chat_template: bool = False,
        fewshot_as_multiturn: bool = False,
1220
        chat_template: Optional[Callable] = None,
Baber Abbasi's avatar
Baber Abbasi committed
1221
        gen_prefix: Optional[str] = None,
Baber Abbasi's avatar
Baber Abbasi committed
1222
    ) -> Union[str, List[str]]:
lintangsutawika's avatar
lintangsutawika committed
1223
1224
1225
1226
1227
1228
1229
        """Returns a fewshot context string that is made up of a prepended description
        (if provided), the `num_fewshot` number of examples, and an appended prompt example.

        :param doc: str
            The document as returned from training_docs, validation_docs, or test_docs.
        :param num_fewshot: int
            The number of fewshot examples to provide in the returned context string.
KonradSzafer's avatar
KonradSzafer committed
1230
1231
1232
1233
1234
1235
        :param  system_instruction: str
            System instruction to be applied to the prompt.
        :param apply_chat_template: bool
            Whether to apply the chat template to the fewshot context.
        :param fewshot_as_multiturn: bool
            Whether to provide the fewshot examples as a multiturn conversation or a single user turn.
1236
1237
        :param chat_template:
            callable (from lm.apply_chat_template) that takes in a list[Dict] chat transcript and renders it into a string.
1238
1239
        :param gen_prefix:
            String to append after the <|assistant|> token.
lintangsutawika's avatar
lintangsutawika committed
1240
1241
1242
        :returns: str
            The fewshot context.
        """
KonradSzafer's avatar
KonradSzafer committed
1243
1244
1245
1246
1247
1248
        if apply_chat_template:
            labeled_examples = []
        else:
            labeled_examples = ""

        # get task description
1249
1250
        if description := self.config.description:
            description = utils.apply_template(self.config.description, doc)
lintangsutawika's avatar
lintangsutawika committed
1251

KonradSzafer's avatar
KonradSzafer committed
1252
1253
1254
1255
1256
1257
1258
1259
1260
        # create system prompt based on the provided system instruction and description
        if system_instruction is not None and description:
            system_prompt = (
                f"{system_instruction}{self.sampler.fewshot_delimiter}{description}"
            )
        elif system_instruction is not None:
            system_prompt = system_instruction
        elif description:
            system_prompt = description
lintangsutawika's avatar
lintangsutawika committed
1261
        else:
KonradSzafer's avatar
KonradSzafer committed
1262
1263
1264
1265
1266
1267
1268
1269
1270
1271
1272
1273
1274
            system_prompt = ""

        # add system prompt if specified
        if system_prompt:
            if apply_chat_template:
                labeled_examples.append({"role": "system", "content": system_prompt})
            else:
                labeled_examples = system_prompt
        # if few-shot - append examples after the system prompt
        if num_fewshot > 0:
            if apply_chat_template:
                labeled_examples.extend(
                    self.sampler.get_chat_context(
Baber Abbasi's avatar
Baber Abbasi committed
1275
1276
1277
                        doc,
                        num_fewshot,
                        fewshot_as_multiturn,
Baber Abbasi's avatar
Baber Abbasi committed
1278
                        gen_prefix=gen_prefix,
KonradSzafer's avatar
KonradSzafer committed
1279
1280
1281
                    )
                )
            else:
Baber Abbasi's avatar
Baber Abbasi committed
1282
                labeled_examples += self.sampler.get_context(
Baber Abbasi's avatar
Baber Abbasi committed
1283
                    doc, num_fewshot, gen_prefix=gen_prefix
Baber Abbasi's avatar
Baber Abbasi committed
1284
                )
lintangsutawika's avatar
lintangsutawika committed
1285
1286

        example = self.doc_to_text(doc)
KonradSzafer's avatar
KonradSzafer committed
1287
1288
        if apply_chat_template:
            if self.multiple_input:
Baber Abbasi's avatar
Baber Abbasi committed
1289
                # TODO: append prefill?
1290
1291
                if not labeled_examples:
                    return ""
1292
                return chat_template(labeled_examples)
KonradSzafer's avatar
KonradSzafer committed
1293
1294
            if isinstance(example, str):
                self.append_target_question(
Baber Abbasi's avatar
Baber Abbasi committed
1295
1296
1297
                    labeled_examples,
                    example,
                    fewshot_as_multiturn,
Baber Abbasi's avatar
Baber Abbasi committed
1298
                    gen_prefix=gen_prefix,
KonradSzafer's avatar
KonradSzafer committed
1299
1300
1301
1302
1303
1304
1305
                )
            # for loglikelihood create a list of questions with appended choices
            elif isinstance(example, list):
                labeled_examples_list = []
                # copy chat history for each example and append the answer
                for ex in example:
                    chat = deepcopy(labeled_examples)
Baber Abbasi's avatar
Baber Abbasi committed
1306
1307
1308
1309
                    self.append_target_question(
                        chat,
                        ex,
                        fewshot_as_multiturn,
Baber Abbasi's avatar
Baber Abbasi committed
1310
                        gen_prefix=gen_prefix,
Baber Abbasi's avatar
Baber Abbasi committed
1311
1312
1313
1314
1315
                    )
                    # TODO: append prefill?
                    labeled_examples_list.append(
                        chat_template(
                            chat,
Baber Abbasi's avatar
Baber Abbasi committed
1316
                            add_generation_prompt=False if gen_prefix else True,
Baber Abbasi's avatar
Baber Abbasi committed
1317
1318
                        )
                    )
KonradSzafer's avatar
KonradSzafer committed
1319
1320
1321
1322
1323
1324
                return labeled_examples_list
            # if example is an integer, append the choice or convert to string
            elif isinstance(example, int):
                if self.config.doc_to_choice is not None:
                    choices = self.doc_to_choice(doc)
                    self.append_target_question(
Baber Abbasi's avatar
Baber Abbasi committed
1325
1326
1327
                        labeled_examples,
                        choices[example],
                        fewshot_as_multiturn,
Baber Abbasi's avatar
Baber Abbasi committed
1328
                        gen_prefix=gen_prefix,
KonradSzafer's avatar
KonradSzafer committed
1329
1330
1331
                    )
                else:
                    self.append_target_question(
Baber Abbasi's avatar
Baber Abbasi committed
1332
1333
1334
                        labeled_examples,
                        str(example),
                        fewshot_as_multiturn,
Baber Abbasi's avatar
Baber Abbasi committed
1335
                        gen_prefix=gen_prefix,
KonradSzafer's avatar
KonradSzafer committed
1336
1337
                    )
                # return lm.apply_chat_template(labeled_examples)
Baber Abbasi's avatar
Baber Abbasi committed
1338
1339
            return chat_template(
                labeled_examples,
Baber Abbasi's avatar
Baber Abbasi committed
1340
                add_generation_prompt=False if gen_prefix else True,
Baber Abbasi's avatar
Baber Abbasi committed
1341
            )
1342
        else:
Baber Abbasi's avatar
Baber Abbasi committed
1343
            prefix = (
Baber Abbasi's avatar
Baber Abbasi committed
1344
1345
                self.config.target_delimiter + gen_prefix
                if gen_prefix is not None
Baber Abbasi's avatar
Baber Abbasi committed
1346
1347
                else ""
            )
KonradSzafer's avatar
KonradSzafer committed
1348
1349
            if self.multiple_input:
                return labeled_examples
1350
            if isinstance(example, str):
Baber Abbasi's avatar
Baber Abbasi committed
1351
                return labeled_examples + example + prefix
1352
            elif isinstance(example, list):
Baber Abbasi's avatar
Baber Abbasi committed
1353
                return [labeled_examples + ex + prefix for ex in example]
1354
1355
1356
            elif isinstance(example, int):
                if self.config.doc_to_choice is not None:
                    choices = self.doc_to_choice(doc)
Baber Abbasi's avatar
Baber Abbasi committed
1357
                    return labeled_examples + choices[example] + prefix
1358
                else:
Baber Abbasi's avatar
Baber Abbasi committed
1359
                    return labeled_examples + str(example) + prefix
lintangsutawika's avatar
lintangsutawika committed
1360

Baber Abbasi's avatar
Baber Abbasi committed
1361
    def apply_filters(self) -> Optional[List[Instance]]:
Baber Abbasi's avatar
Baber Abbasi committed
1362
        """Iterates over FilterEnsembles and applies them to instances"""
1363
1364
        if hasattr(self, "_filters"):
            for f in self._filters:
1365
                f.apply(self._instances)
1366
1367
1368
1369
        else:
            eval_logger.warning("No filter defined, passing through instances")
            return self._instances

1370
    def should_decontaminate(self):
1371
        return self.config.should_decontaminate
1372

Baber Abbasi's avatar
Baber Abbasi committed
1373
    def doc_to_decontamination_query(self, doc: dict):
1374
        if self.config.should_decontaminate:
1375
1376
            if self.config.doc_to_decontamination_query is None:
                return self.doc_to_text(doc)
1377
            else:
1378
1379
1380
1381
1382
1383
1384
1385
1386
1387
1388
                doc_to_decontamination_query = self.config.doc_to_decontamination_query
                if doc_to_decontamination_query in self.features:
                    return doc[doc_to_decontamination_query]
                elif callable(doc_to_decontamination_query):
                    return doc_to_decontamination_query(doc)
                else:
                    return ast.literal_eval(
                        utils.apply_template(
                            self.config.doc_to_decontamination_query, doc
                        )
                    )
1389

1390
    def _process_doc(self, doc: dict) -> dict:
1391
1392
1393
1394
1395
1396
1397
1398
1399
1400
        """
        Override this to process (detokenize, strip, replace, etc.) individual
        documents. This can be used in a map over documents of a data split.
        E.g. `map(self._process_doc, self.dataset["validation"])`

        :return: dict
            The processed version of the specified `doc`.
        """
        return doc

Yu Shi Jie's avatar
Yu Shi Jie committed
1401
    def doc_to_text(self, doc, doc_to_text=None):
1402
1403
        if self.prompt is not None:
            doc_to_text = self.prompt
Yu Shi Jie's avatar
Yu Shi Jie committed
1404
1405
        elif doc_to_text is not None:
            doc_to_text = doc_to_text
1406
        else:
1407
            doc_to_text = self.config.doc_to_text
lintangsutawika's avatar
lintangsutawika committed
1408

1409
        if isinstance(doc_to_text, int):
1410
            return doc_to_text
1411
        elif isinstance(doc_to_text, str):
1412
            if doc_to_text in self.features:
1413
                # if self.config.doc_to_choice is not None:
1414
1415
                #     return self.doc_to_choice(doc)[doc[doc_to_text]]
                # else:
1416
1417
                return doc[doc_to_text]
            else:
lintangsutawika's avatar
lintangsutawika committed
1418
                text_string = utils.apply_template(doc_to_text, doc)
lintangsutawika's avatar
lintangsutawika committed
1419
                if text_string.isdigit() and self._config.doc_to_choice is not None:
lintangsutawika's avatar
lintangsutawika committed
1420
1421
1422
                    return ast.literal_eval(text_string)
                else:
                    return text_string
1423
        elif callable(doc_to_text):
1424
            return doc_to_text(doc)
lintangsutawika's avatar
lintangsutawika committed
1425
        # Used when applying a Promptsource template
1426
        elif hasattr(doc_to_text, "apply"):
1427
1428
1429
1430
1431
            applied_prompt = doc_to_text.apply(doc)
            if len(applied_prompt) == 2:
                return applied_prompt[0]
            else:
                eval_logger.warning("Applied prompt returns empty string")
1432
                return self.config.fewshot_delimiter
1433
        else:
1434
            print(type(doc_to_text))
1435
            raise TypeError
1436

Yu Shi Jie's avatar
Yu Shi Jie committed
1437
    def doc_to_target(self, doc: Mapping, doc_to_target=None) -> Union[int, str, list]:
1438
1439
        if self.prompt is not None:
            doc_to_target = self.prompt
Yu Shi Jie's avatar
Yu Shi Jie committed
1440
1441
        elif doc_to_target is not None:
            doc_to_target = doc_to_target
1442
        else:
1443
            doc_to_target = self.config.doc_to_target
1444

1445
        if isinstance(doc_to_target, int):
1446
            return doc_to_target
1447
        elif isinstance(doc_to_target, str):
1448
            if doc_to_target in self.features:
1449
                # if self.config.doc_to_choice is not None:
1450
1451
1452
                #     return self.doc_to_choice(doc)[doc[doc_to_target]]
                # else:
                return doc[doc_to_target]
1453
            else:
lintangsutawika's avatar
lintangsutawika committed
1454
                target_string = utils.apply_template(doc_to_target, doc)
lintangsutawika's avatar
lintangsutawika committed
1455
                if target_string.isdigit() and self._config.doc_to_choice is not None:
lintangsutawika's avatar
lintangsutawika committed
1456
                    return ast.literal_eval(target_string)
lintangsutawika's avatar
lintangsutawika committed
1457
1458
1459
1460
1461
                elif (
                    len(target_string) >= 2
                    and (target_string[0] == "[")
                    and (target_string[-1] == "]")
                ):
baberabb's avatar
baberabb committed
1462
1463
1464
1465
                    try:
                        return ast.literal_eval(target_string)
                    except (SyntaxError, ValueError):
                        return target_string
lintangsutawika's avatar
lintangsutawika committed
1466
1467
                else:
                    return target_string
1468
        elif isinstance(doc_to_target, list):
1469
            return doc_to_target
1470
        elif callable(doc_to_target):
1471
            return doc_to_target(doc)
lintangsutawika's avatar
lintangsutawika committed
1472
        # Used when applying a Promptsource template
1473
        elif hasattr(doc_to_target, "apply"):
1474
            applied_prompt = doc_to_target.apply(doc)
1475
1476
1477
1478
            if len(applied_prompt) == 2:
                return applied_prompt[1]
            else:
                eval_logger.warning("Applied prompt returns empty string")
1479
                return self.config.fewshot_delimiter
1480
1481
        else:
            raise TypeError
1482

Yu Shi Jie's avatar
Yu Shi Jie committed
1483
    def doc_to_choice(self, doc: Any, doc_to_choice=None) -> List[str]:
1484
1485
        if self.prompt is not None:
            doc_to_choice = self.prompt
Yu Shi Jie's avatar
Yu Shi Jie committed
1486
1487
        elif doc_to_choice is not None:
            doc_to_choice = doc_to_choice
1488
        elif self.config.doc_to_choice is None:
1489
1490
            eval_logger.error("doc_to_choice was called but not set in config")
        else:
1491
            doc_to_choice = self.config.doc_to_choice
1492

1493
        if isinstance(doc_to_choice, str):
1494
1495
1496
1497
            if doc_to_choice in self.features:
                return doc[doc_to_choice]
            else:
                return ast.literal_eval(utils.apply_template(doc_to_choice, doc))
1498
        elif isinstance(doc_to_choice, list):
1499
            return doc_to_choice
1500
        elif isinstance(doc_to_choice, dict):
1501
1502
1503
1504
1505
1506
1507
            return list(doc_to_choice.values())
        elif callable(doc_to_choice):
            return doc_to_choice(doc)
        elif hasattr(doc_to_choice, "get_answer_choices_list"):
            return doc_to_choice.get_answer_choices_list(doc)
        else:
            raise TypeError
1508

1509
1510
1511
1512
1513
1514
1515
1516
1517
1518
1519
1520
1521
1522
1523
1524
1525
1526
1527
1528
1529
1530
1531
    def doc_to_image(self, doc: Any, doc_to_image=None) -> Union[int, str, list]:
        if doc_to_image is not None:
            doc_to_image = doc_to_image
        elif self.config.doc_to_image is not None:
            doc_to_image = self.config.doc_to_image
        else:
            return None

        if isinstance(doc_to_image, list):
            image_feature = [
                self.doc_to_image(doc, feature) for feature in doc_to_image
            ]
            return [feature for feature in image_feature if feature is not None]
        elif isinstance(doc_to_image, str):
            if doc_to_image in self.features:
                return doc[doc_to_image]
            else:
                return ast.literal_eval(utils.apply_template(doc_to_image, doc))
        elif callable(doc_to_image):
            return doc_to_image(doc)
        else:
            return None

1532
1533
1534
1535
1536
1537
1538
1539
1540
1541
1542
1543
1544
1545
1546
1547
1548
1549
1550
1551
1552
1553
1554
    def doc_to_audio(self, doc: Any, doc_to_audio=None) -> Union[int, str, list]:
        if doc_to_audio is not None:
            doc_to_audio = doc_to_audio
        elif self.config.doc_to_audio is not None:
            doc_to_audio = self.config.doc_to_audio
        else:
            return None

        if isinstance(doc_to_audio, list):
            audio_feature = [
                self.doc_to_audio(doc, feature) for feature in doc_to_audio
            ]
            return [feature for feature in audio_feature if feature is not None]
        elif isinstance(doc_to_audio, str):
            if doc_to_audio in self.features:
                return doc[doc_to_audio]
            else:
                return ast.literal_eval(utils.apply_template(doc_to_audio, doc))
        elif callable(doc_to_audio):
            return doc_to_audio(doc)
        else:
            return None

Baber Abbasi's avatar
Baber Abbasi committed
1555
1556
1557
1558
1559
1560
1561
1562
    def doc_to_prefix(self, doc):
        if (gen_prefix := self.config.gen_prefix) is not None:
            if gen_prefix in self.features:
                return doc[gen_prefix]
            else:
                return utils.apply_template(gen_prefix, doc)
        return None

baberabb's avatar
baberabb committed
1563
1564
1565
    def construct_requests(
        self, doc: dict, ctx: str, **kwargs
    ) -> Union[List[Instance], Instance]:
1566
        apply_chat_template = kwargs.pop("apply_chat_template", False)
1567
        chat_template: Callable | None = kwargs.pop("chat_template", None)
1568

1569
1570
        aux_arguments = None

1571
        if self.OUTPUT_TYPE == "loglikelihood":
lintangsutawika's avatar
lintangsutawika committed
1572
            arguments = (ctx, self.doc_to_target(doc))
1573
        elif self.OUTPUT_TYPE == "loglikelihood_rolling":
lintangsutawika's avatar
lintangsutawika committed
1574
            arguments = (self.doc_to_target(doc),)
1575
        elif self.OUTPUT_TYPE == "multiple_choice":
1576
            choices = self.doc_to_choice(doc)
1577
            target_delimiter = self.config.target_delimiter
1578
1579
            if apply_chat_template:
                target_delimiter = ""
1580
1581
            if self.multiple_input:
                # If there are multiple inputs, choices are placed in the ctx
1582
                # apply chat_template to choices if apply_chat_template
1583
                cont = self.doc_to_target(doc)
1584

1585
                arguments = [
1586
1587
1588
1589
1590
1591
1592
1593
1594
1595
                    (
                        ctx
                        + (
                            chat_template([{"role": "user", "content": choice}])
                            if apply_chat_template
                            else choice
                        ),
                        f"{target_delimiter}{cont}",
                    )
                    for choice in choices
1596
                ]
1597
            else:
1598
                # Otherwise they are placed in the continuation
1599
                arguments = [(ctx, f"{target_delimiter}{cont}") for cont in choices]
1600

1601
1602
1603
1604
1605
1606
1607
1608
1609
1610
1611
1612
1613
1614
1615
1616
1617
1618
1619
1620
1621
1622
1623
1624
            # TODO: we should raise a warning telling users this will at most ~2x runtime.
            if "acc_mutual_info" in self._metric_fn_list.keys():
                # if we are calculating multiple choice accuracy
                # using mutual information instead of raw loglikelihood as metric, need unconditional lls.

                # here mutual info refers to calculating
                # log(P(choice|ctx) / P(choice)) = log(P(choice|ctx)) - log(P(choice))
                # in other words normalizing by subtracting the unconditional logprob of each choice.
                aux_arguments = [("", f"{choice}") for choice in choices]

                arguments.extend(aux_arguments)

        elif self.OUTPUT_TYPE == "generate_until":
            arguments = (ctx, deepcopy(self.config.generation_kwargs))

        multimodal_arg = {}
        if (
            self.config.doc_to_image
        ):  # TODO: ensure that non-multimodal tasks aren't getting visual args
            multimodal_arg = {
                **multimodal_arg,
                **{"visual": self.doc_to_image(doc)},
            }

1625
1626
1627
1628
1629
1630
1631
1632
        if (
            self.config.doc_to_audio
        ):  # TODO: ensure that non-multimodal tasks aren't getting audio args
            multimodal_arg = {
                **multimodal_arg,
                **{"audio": self.doc_to_audio(doc)},
            }

1633
1634
1635
1636
1637
1638
1639
        if bool(multimodal_arg):
            if isinstance(arguments, list):
                arguments = [arg + (multimodal_arg,) for arg in arguments]
            else:
                arguments = arguments + (multimodal_arg,)

        if self.OUTPUT_TYPE == "multiple_choice":
1640
            request_list = [
1641
1642
                Instance(
                    request_type="loglikelihood",
lintangsutawika's avatar
lintangsutawika committed
1643
                    doc=doc,
1644
                    arguments=arg,
1645
                    idx=i,
1646
1647
                    **kwargs,
                )
1648
                for i, arg in enumerate(arguments)
1649
            ]
1650
1651

            return request_list
lintangsutawika's avatar
lintangsutawika committed
1652

lintangsutawika's avatar
lintangsutawika committed
1653
        return Instance(
1654
1655
1656
1657
1658
            request_type=self.OUTPUT_TYPE,
            doc=doc,
            arguments=arguments,
            idx=0,
            **kwargs,
lintangsutawika's avatar
lintangsutawika committed
1659
        )
1660
1661

    def process_results(self, doc, results):
1662
1663
        if callable(self.config.process_results):
            return self.config.process_results(doc, results)
lintangsutawika's avatar
lintangsutawika committed
1664

1665
        result_dict = {}
1666
        use_metric = list(self._metric_fn_list.keys())
1667
1668
1669
        if self.OUTPUT_TYPE == "loglikelihood":
            results = results[0]
            ll, is_greedy = results
1670
1671
1672
1673
            return {
                **({"perplexity": ll} if "perplexity" in use_metric else {}),
                **({"acc": int(is_greedy)} if "acc" in use_metric else {}),
            }
1674
        elif self.OUTPUT_TYPE == "loglikelihood_rolling":
haileyschoelkopf's avatar
haileyschoelkopf committed
1675
            (loglikelihood,) = results
1676
1677
            _words = self.count_words(self.doc_to_target(doc))
            _bytes = self.count_bytes(self.doc_to_target(doc))
haileyschoelkopf's avatar
haileyschoelkopf committed
1678
            return {
1679
1680
1681
1682
1683
1684
1685
1686
1687
1688
1689
1690
1691
1692
1693
                **(
                    {"word_perplexity": (loglikelihood, _words)}
                    if "word_perplexity" in use_metric
                    else {}
                ),
                **(
                    {"byte_perplexity": (loglikelihood, _bytes)}
                    if "byte_perplexity" in use_metric
                    else {}
                ),
                **(
                    {"bits_per_byte": (loglikelihood, _bytes)}
                    if "bits_per_byte" in use_metric
                    else {}
                ),
haileyschoelkopf's avatar
haileyschoelkopf committed
1694
            }
1695
        elif self.OUTPUT_TYPE == "multiple_choice":
1696
            lls, is_greedy = zip(*results)
lintangsutawika's avatar
lintangsutawika committed
1697

1698
            # retrieve choices in List[str] form, to compute choice lengths, etc.
1699
            choices = self.doc_to_choice(doc)
1700
1701
            completion_len = np.array([float(len(i)) for i in choices])

1702
1703
            if (
                2 * len(choices) == len(lls)
1704
                and "acc_mutual_info" in self._metric_fn_list.keys()
1705
1706
1707
1708
            ):
                # then we are doing mutual info.
                # this stores the "dryrun" / unconditional answer loglikelihoods
                lls_unconditional = lls[1::2]
1709
1710
                if len(lls_unconditional) != len(choices):
                    raise ValueError
1711
1712
                # and this stores our "regular" conditional loglikelihoods
                lls = lls[::2]
1713

1714
1715
            pred = np.argmax(lls)
            pred_norm = np.argmax(lls / completion_len)
lintangsutawika's avatar
lintangsutawika committed
1716

1717
1718
            if self.multiple_input:
                gold = self.doc_to_text(doc)
1719
            else:
1720
                gold = self.doc_to_target(doc)
1721
1722

            gold_index_error = False
1723
            if isinstance(gold, list):
Lintang Sutawika's avatar
Lintang Sutawika committed
1724
1725
                gold = [i if i < len(choices) else -100 for i in gold]
                if -100 in gold:
1726
1727
                    gold_index_error = True
            else:
1728
                if isinstance(gold, int):
Lintang Sutawika's avatar
Lintang Sutawika committed
1729
                    gold = gold if gold < len(choices) else -100
1730
                elif isinstance(gold, str):
Lintang Sutawika's avatar
Lintang Sutawika committed
1731
                    gold = choices.index(gold) if gold in choices else -100
lintangsutawika's avatar
lintangsutawika committed
1732

Lintang Sutawika's avatar
Lintang Sutawika committed
1733
                if gold == -100:
1734
1735
1736
1737
                    gold_index_error = True

            if gold_index_error:
                eval_logger.warning(
lintangsutawika's avatar
lintangsutawika committed
1738
                    f"Label index was not in within range of available choices,"
1739
1740
                    f"Sample:\n\n{doc}\n\n"
                )
lintangsutawika's avatar
lintangsutawika committed
1741

1742
            if self.multiple_target:
lintangsutawika's avatar
lintangsutawika committed
1743
1744
                acc = 1.0 if pred in gold else 0.0
                acc_norm = 1.0 if pred_norm in gold else 0.0
Lintang Sutawika's avatar
Lintang Sutawika committed
1745
                exact_match = int(any([is_greedy[i] if i != -100 else 0 for i in gold]))
lintangsutawika's avatar
lintangsutawika committed
1746
1747
1748
            else:
                acc = 1.0 if pred == gold else 0.0
                acc_norm = 1.0 if pred_norm == gold else 0.0
1749
                # TODO: this gets score of 0 on arc_challenge for pythia-70m. need to test that this works properly
Lintang Sutawika's avatar
Lintang Sutawika committed
1750
                exact_match = int(is_greedy[gold]) if gold != -100 else 0
1751

Lintang Sutawika's avatar
Lintang Sutawika committed
1752
1753
1754
1755
            prob_norm = utils.softmax(lls)

            # TODO use keyword arguments to the metric?
            # gold, pred, norm stuff, the original lls,
1756
            result_dict = {
1757
                **({"acc": acc} if "acc" in use_metric else {}),
1758
1759
                **({"f1": (gold, pred)} if "f1" in use_metric else {}),
                **({"mcc": (gold, pred)} if "mcc" in use_metric else {}),
1760
                **({"acc_norm": acc_norm} if "acc_norm" in use_metric else {}),
1761
                **({"exact_match": exact_match} if "exact_match" in use_metric else {}),
Lintang Sutawika's avatar
Lintang Sutawika committed
1762
1763
1764
1765
1766
                **(
                    {"brier_score": (gold, prob_norm)}
                    if "brier_score" in use_metric
                    else {}
                ),
1767
1768
            }

1769
            if "acc_mutual_info" in use_metric:
lintangsutawika's avatar
lintangsutawika committed
1770
1771
1772
                lls_mutual_info = [
                    ll_c - ll_u for ll_c, ll_u in zip(lls, lls_unconditional)
                ]
1773
1774
1775
                acc_mutual_info = 1.0 if np.argmax(lls_mutual_info) == gold else 0.0
                result_dict["acc_mutual_info"] = acc_mutual_info

1776
        elif self.OUTPUT_TYPE == "generate_until":
1777
            gold = self.doc_to_target(doc)
Chris's avatar
Chris committed
1778
            result = results[0]
1779
            if self.config.doc_to_choice is not None:
lintangsutawika's avatar
lintangsutawika committed
1780
                # If you set doc_to_choice,
lintangsutawika's avatar
lintangsutawika committed
1781
                # it assumes that doc_to_target returns a number.
1782
1783
                choices = self.doc_to_choice(doc)
                gold = choices[gold]
1784
1785
            # we expect multiple_targets to be a list.
            elif self.multiple_target:
baberabb's avatar
baberabb committed
1786
                gold = list(gold)
Hojin Lee's avatar
Hojin Lee committed
1787
1788
1789
            # TODO: handle this better
            elif type(gold) is not type(result) and not (
                "bypass" in self._metric_fn_list.keys() or isinstance(result, list)
1790
            ):
Chris's avatar
Chris committed
1791
1792
                # cast gold to the same type as result
                gold = type(result)(gold)
1793

lintangsutawika's avatar
lintangsutawika committed
1794
            for metric in self._metric_fn_list.keys():
haileyschoelkopf's avatar
haileyschoelkopf committed
1795
1796
1797
1798
1799
                if self.multiple_target:
                    # in the case where we have multiple targets,
                    # return true if any are true
                    # TODO: this may break for multipLe_target, non zero-or-1 metrics
                    scores = []
haileyschoelkopf's avatar
haileyschoelkopf committed
1800
1801
1802
1803
                    if not isinstance(gold, list):
                        # sometimes, a multiple_target dataset has exceptions where one doc has only one string answer
                        # print(gold)
                        gold = [gold]
1804
1805
1806
1807
1808
1809
1810
1811
                    if metric == "exact_match":
                        result = [result for _ in range(len(gold))]
                        scores = self._metric_fn_list[metric](
                            references=gold,
                            predictions=result,
                            **self._metric_fn_kwargs[metric],
                        )[metric]
                        result_score = 1.0 if scores > 0.0 else 0.0
haileyschoelkopf's avatar
haileyschoelkopf committed
1812
                    else:
1813
1814
1815
1816
1817
1818
1819
1820
1821
1822
1823
1824
1825
1826
1827
1828
1829
1830
1831
1832
1833
                        for gold_option in gold:
                            try:
                                result_score = self._metric_fn_list[metric](
                                    references=[gold_option],
                                    predictions=[result],
                                    **self._metric_fn_kwargs[metric],
                                )
                            except (
                                TypeError
                            ):  # TODO: this is hacky and I don't want to do it
                                result_score = self._metric_fn_list[metric](
                                    [gold_option, result]
                                )
                            if isinstance(result_score, dict):
                                # TODO: this handles the case where HF evaluate returns a dict.
                                result_score = result_score[metric]
                            scores.append(result_score)
                        if any(scores):
                            result_score = 1.0
                        else:
                            result_score = 0.0
haileyschoelkopf's avatar
haileyschoelkopf committed
1834
                else:
1835
                    try:
1836
                        result_score = self._metric_fn_list[metric](
1837
1838
                            references=[gold],
                            predictions=[result],
1839
                            **self._metric_fn_kwargs[metric],
1840
                        )
1841
                    except TypeError:  # needed for now in order to use a different interface between our own metrics and HF Evaluate metrics
1842
                        result_score = self._metric_fn_list[metric]([gold, result])
1843
1844
1845
1846
1847
1848
1849
                if isinstance(result_score, dict):
                    # TODO: this handles the case where HF evaluate returns a dict.
                    # This allows for multiple metrics to be returned from the same function
                    for k, v in result_score.items():
                        result_dict[k] = v
                else:
                    result_dict[metric] = result_score
1850
        else:
lintangsutawika's avatar
lintangsutawika committed
1851
1852
            raise ValueError(
                f"Passed invalid output_type '{self.OUTPUT_TYPE}' ! Please use one of ",
1853
                "'loglikelihood', 'loglikelihood_rolling', 'generate_until' or 'multiple_choice'",
1854
            )
1855
1856
1857

        return result_dict

Baber Abbasi's avatar
Baber Abbasi committed
1858
    def aggregation(self) -> dict:
1859
1860
        return self._aggregation_list

Baber Abbasi's avatar
Baber Abbasi committed
1861
    def higher_is_better(self) -> dict:
haileyschoelkopf's avatar
haileyschoelkopf committed
1862
        return self._higher_is_better
1863

Baber Abbasi's avatar
Baber Abbasi committed
1864
1865
1866
    def get_config(self, key: str) -> Any:
        return getattr(self._config, key, None)

Lintang Sutawika's avatar
Lintang Sutawika committed
1867
1868
1869
1870
    @property
    def task_name(self) -> Any:
        return getattr(self.config, "task", None)

1871
1872
1873
1874
1875
    def __repr__(self):
        return (
            f"ConfigurableTask(task_name={getattr(self.config, 'task', None)},"
            f"output_type={self.OUTPUT_TYPE},"
            f"num_fewshot={getattr(self.config, 'num_fewshot', None)},"
Baber Abbasi's avatar
Baber Abbasi committed
1876
            f"num_samples={len(self.eval_docs)})"
1877
1878
        )

1879
1880

class MultipleChoiceTask(Task):
1881
    OUTPUT_TYPE = "loglikelihood"
1882

baberabb's avatar
baberabb committed
1883
    def doc_to_target(self, doc: dict) -> str:
1884
1885
        return " " + doc["choices"][doc["gold"]]

baberabb's avatar
baberabb committed
1886
    def construct_requests(self, doc: dict, ctx: str, **kwargs) -> List[Instance]:
1887
        # TODO: add mutual info here?
lintangsutawika's avatar
lintangsutawika committed
1888
1889
        return [
            Instance(
haileyschoelkopf's avatar
haileyschoelkopf committed
1890
                request_type="loglikelihood",
lintangsutawika's avatar
lintangsutawika committed
1891
                doc=doc,
1892
                arguments=(ctx, " {}".format(choice)),
1893
                idx=i,
1894
1895
                **kwargs,
            )
lintangsutawika's avatar
lintangsutawika committed
1896
1897
            for i, choice in enumerate(doc["choices"])
        ]
1898

1899
    def process_results(self, doc: dict, results: Iterable[Tuple[float, bool]]) -> dict:
lintangsutawika's avatar
lintangsutawika committed
1900
1901
1902
        results = [
            res[0] for res in results
        ]  # only retain loglikelihoods, discard is_greedy TODO: do we need is_greedy anywhere?
1903
1904
1905
1906
1907
1908
1909
1910
1911
1912
1913
        gold = doc["gold"]

        acc = 1.0 if np.argmax(results) == gold else 0.0
        completion_len = np.array([float(len(i)) for i in doc["choices"]])
        acc_norm = 1.0 if np.argmax(results / completion_len) == gold else 0.0

        return {
            "acc": acc,
            "acc_norm": acc_norm,
        }

baberabb's avatar
baberabb committed
1914
    def higher_is_better(self) -> dict:
1915
1916
1917
1918
1919
        return {
            "acc": True,
            "acc_norm": True,
        }

baberabb's avatar
baberabb committed
1920
    def aggregation(self) -> dict:
1921
1922
1923
1924
1925
1926
        return {
            "acc": mean,
            "acc_norm": mean,
        }


lintangsutawika's avatar
lintangsutawika committed
1927
class PerplexityTask(Task):
1928
1929
    OUTPUT_TYPE = "loglikelihood_rolling"

baberabb's avatar
baberabb committed
1930
    def has_training_docs(self) -> bool:
1931
1932
        return False

baberabb's avatar
baberabb committed
1933
    def fewshot_examples(self, k: int, rnd) -> List:
1934
1935
1936
1937
        if k != 0:
            raise ValueError(
                "The number of fewshot examples must be 0 for perplexity tasks."
            )
1938
1939
        return []

baberabb's avatar
baberabb committed
1940
    def fewshot_context(self, doc: dict, num_fewshot: int) -> Literal[""]:
1941
1942
1943
1944
        if num_fewshot != 0:
            raise ValueError(
                "The number of fewshot examples must be 0 for perplexity tasks."
            )
1945
1946
1947

        return ""

baberabb's avatar
baberabb committed
1948
    def higher_is_better(self) -> dict:
1949
1950
1951
1952
1953
1954
1955
1956
1957
        return {
            "word_perplexity": False,
            "byte_perplexity": False,
            "bits_per_byte": False,
        }

    def doc_to_decontamination_query(self, doc):
        return doc

Ethan Smith's avatar
Ethan Smith committed
1958
    def doc_to_text(self, doc) -> str:
1959
1960
1961
1962
1963
        return ""

    def doc_to_target(self, doc):
        return doc

1964
1965
1966
    def construct_requests(self, doc: dict, ctx: Optional[str], **kwargs):
        if bool(ctx):
            raise ValueError
1967

lintangsutawika's avatar
lintangsutawika committed
1968
1969
1970
1971
1972
1973
1974
        return Instance(
            request_type=self.OUTPUT_TYPE,
            doc=doc,
            arguments=(self.doc_to_target(doc),),
            idx=0,
            **kwargs,
        )
1975

1976
    def process_results(self, doc: dict, results: Tuple[float]) -> dict:
1977
        (loglikelihood,) = results
haileyschoelkopf's avatar
haileyschoelkopf committed
1978
1979
        words = self.count_words(self.doc_to_target(doc))
        bytes_ = self.count_bytes(self.doc_to_target(doc))
1980
1981
1982
1983
1984
1985
        return {
            "word_perplexity": (loglikelihood, words),
            "byte_perplexity": (loglikelihood, bytes_),
            "bits_per_byte": (loglikelihood, bytes_),
        }

baberabb's avatar
baberabb committed
1986
    def aggregation(self) -> dict:
1987
1988
1989
1990
1991
1992
1993
        return {
            "word_perplexity": weighted_perplexity,
            "byte_perplexity": weighted_perplexity,
            "bits_per_byte": bits_per_byte,
        }

    @classmethod
baberabb's avatar
baberabb committed
1994
    def count_bytes(cls, doc) -> int:
1995
1996
1997
        return len(doc.encode("utf-8"))

    @classmethod
baberabb's avatar
baberabb committed
1998
    def count_words(cls, doc) -> int:
1999
        """Downstream tasks with custom word boundaries should override this!"""
Lintang Sutawika's avatar
Lintang Sutawika committed
2000
        return len(re.split(r"\s+", doc))