task.py 74.3 KB
Newer Older
1
import abc
2
import ast
lintangsutawika's avatar
lintangsutawika committed
3
import logging
4
import random
5
6
import re
from collections.abc import Callable
7
from copy import deepcopy
8
from dataclasses import asdict, dataclass
9
from inspect import getsource
10
11
12
13
14
15
16
17
18
19
20
21
from typing import (
    Any,
    Dict,
    Iterable,
    Iterator,
    List,
    Literal,
    Mapping,
    Optional,
    Tuple,
    Union,
)
22
23
24

import datasets
import numpy as np
25
from tqdm import tqdm
26
27

from lm_eval import utils
28
from lm_eval.api import samplers
29
30
from lm_eval.api.instance import Instance, OutputType
from lm_eval.api.metrics import bits_per_byte, mean, weighted_perplexity
lintangsutawika's avatar
lintangsutawika committed
31
from lm_eval.api.registry import (
32
33
    AGGREGATION_REGISTRY,
    DEFAULT_METRIC_REGISTRY,
haileyschoelkopf's avatar
haileyschoelkopf committed
34
    get_aggregation,
35
    get_metric,
36
    get_metric_aggregation,
haileyschoelkopf's avatar
haileyschoelkopf committed
37
    is_higher_better,
lintangsutawika's avatar
lintangsutawika committed
38
)
Baber's avatar
Baber committed
39
from lm_eval.api.types import GenerateInput, LoglikelihoodInput
40
from lm_eval.caching.cache import load_from_cache, save_to_cache
41
42
43
from lm_eval.filters import build_filter_ensemble
from lm_eval.prompts import get_prompt

44

45
46
47
48
ALL_OUTPUT_TYPES = [
    "loglikelihood",
    "multiple_choice",
    "loglikelihood_rolling",
49
    "generate_until",
50
51
]

Lintang Sutawika's avatar
Lintang Sutawika committed
52
eval_logger = logging.getLogger(__name__)
53

lintangsutawika's avatar
lintangsutawika committed
54

55
56
@dataclass
class TaskConfig(dict):
57
    # task naming/registry
58
59
    task: Optional[str] = None
    task_alias: Optional[str] = None
Lintang Sutawika's avatar
Lintang Sutawika committed
60
    tag: Optional[Union[str, list]] = None
61
62
63
    # HF dataset options.
    # which dataset to use,
    # and what splits for what purpose
Baber Abbasi's avatar
Baber Abbasi committed
64
    custom_dataset: Optional[Callable] = None
65
66
67
68
69
70
    dataset_path: Optional[str] = None
    dataset_name: Optional[str] = None
    dataset_kwargs: Optional[dict] = None
    training_split: Optional[str] = None
    validation_split: Optional[str] = None
    test_split: Optional[str] = None
71
    fewshot_split: Optional[str] = (
Baber Abbasi's avatar
Baber Abbasi committed
72
        None  # TODO: assert that this not None if num_fewshot > 0. (?) assert if this is same split as one evaluating (?)
73
    )
74
75
    # formatting / prompting options.
    # see docs/advanced_task_guide.md for more info
76
77
78
    process_docs: Optional[Callable] = None
    doc_to_text: Optional[Union[Callable, str]] = None
    doc_to_target: Optional[Union[Callable, str]] = None
79
    doc_to_image: Union[Callable, str] = None
80
    doc_to_audio: Union[Callable, str] = None
Hojin Lee's avatar
Hojin Lee committed
81
    unsafe_code: bool = False
82
83
84
    doc_to_choice: Optional[Union[Callable, str, dict, list]] = None
    process_results: Optional[Union[Callable, str]] = None
    use_prompt: Optional[str] = None
85
    description: str = ""
86
87
    target_delimiter: str = " "
    fewshot_delimiter: str = "\n\n"
88
    fewshot_config: Optional[dict] = None
89
    # runtime configuration options
90
    num_fewshot: Optional[int] = None
91
    # scoring options
92
93
94
    metric_list: Optional[list] = None
    output_type: OutputType = "generate_until"
    generation_kwargs: Optional[dict] = None
95
    repeats: int = 1
96
    filter_list: Optional[Union[str, list]] = None
97
    should_decontaminate: bool = False
98
    doc_to_decontamination_query: Optional[str] = None
Baber Abbasi's avatar
Baber Abbasi committed
99
    gen_prefix: Optional[str] = None
100
101
102
    metadata: Optional[dict] = (
        None  # by default, not used in the code. allows for users to pass arbitrary info to tasks
    )
103

Ethan Smith's avatar
Ethan Smith committed
104
    def __post_init__(self) -> None:
Lintang Sutawika's avatar
Lintang Sutawika committed
105
        if self.generation_kwargs is not None:
106
            if self.output_type != "generate_until":
107
                eval_logger.warning(
108
                    f"[{self.task}] passed `generation_kwargs`, but not using `output_type: generate_until`!"
Lintang Sutawika's avatar
Lintang Sutawika committed
109
110
111
112
113
114
115
116
                )

            if "temperature" in self.generation_kwargs:
                self.generation_kwargs["temperature"] = float(
                    self.generation_kwargs["temperature"]
                )

            if "until" not in self.generation_kwargs:
Baber Abbasi's avatar
Baber Abbasi committed
117
118
119
                eval_logger.warning(
                    f"{self.task}: No `until` specified in `generation_kwargs`! Defaulting to the fewshot_delimiter={repr(self.fewshot_delimiter)}"
                )
120
                self.generation_kwargs["until"] = [self.fewshot_delimiter]
Lintang Sutawika's avatar
Lintang Sutawika committed
121
        else:
122
            if self.output_type == "generate_until":
Lintang Sutawika's avatar
Lintang Sutawika committed
123
124
                # ensure that we greedily generate in absence of explicit arguments otherwise
                self.generation_kwargs = {
125
126
127
128
129
                    "until": (
                        None
                        if self.fewshot_delimiter is None
                        else [self.fewshot_delimiter]
                    ),
Lintang Sutawika's avatar
Lintang Sutawika committed
130
                    "do_sample": False,
Baber Abbasi's avatar
Baber Abbasi committed
131
                    "temperature": 0,
Lintang Sutawika's avatar
Lintang Sutawika committed
132
                }
Baber Abbasi's avatar
Baber Abbasi committed
133
134
135
                eval_logger.warning(
                    f"{self.task}: No `generation_kwargs` specified in task config, defaulting to {self.generation_kwargs}"
                )
136

137
138
139
    def __getitem__(self, item):
        return getattr(self, item)

140
141
142
    def __setitem__(self, item, value):
        return setattr(self, item, value)

143
    def to_dict(self, keep_callable: bool = False) -> dict:
144
145
        """dumps the current config as a dictionary object, as a printable format.
        null fields will not be printed.
haileyschoelkopf's avatar
haileyschoelkopf committed
146
        Used for dumping results alongside full task configuration
147

haileyschoelkopf's avatar
haileyschoelkopf committed
148
149
150
151
152
153
154
155
156
157
        :return: dict
            A printable dictionary version of the TaskConfig object.

        # TODO: should any default value in the TaskConfig not be printed?
        """
        cfg_dict = asdict(self)
        # remove values that are `None`
        for k, v in list(cfg_dict.items()):
            if v is None:
                cfg_dict.pop(k)
158
159
160
161
162
163
164
165
166
167
            elif k == "metric_list":
                for metric_dict in v:
                    for metric_key, metric_value in metric_dict.items():
                        if callable(metric_value):
                            metric_dict[metric_key] = self.serialize_function(
                                metric_value, keep_callable=keep_callable
                            )
                cfg_dict[k] = v
            elif callable(v):
                cfg_dict[k] = self.serialize_function(v, keep_callable=keep_callable)
haileyschoelkopf's avatar
haileyschoelkopf committed
168
        return cfg_dict
169

170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
    def serialize_function(
        self, value: Union[Callable, str], keep_callable=False
    ) -> Union[Callable, str]:
        """Serializes a given function or string.

        If 'keep_callable' is True, the original callable is returned.
        Otherwise, attempts to return the source code of the callable using 'getsource'.
        """
        if keep_callable:
            return value
        else:
            try:
                return getsource(value)
            except (TypeError, OSError):
                return str(value)

186
187
188
189
190
191
192
193
194
195
196

class Task(abc.ABC):
    """A task represents an entire benchmark including its dataset, problems,
    answers, and evaluation methods. See BoolQ for a simple example implementation

    A `doc` can be any python object which represents one instance of evaluation.
    This is usually a dictionary e.g.
        {"question": ..., "answer": ...} or
        {"question": ..., question, answer)
    """

197
    VERSION: Optional[Union[int, str]] = None
198

199
200
    # The name of the `Task` benchmark as denoted in the HuggingFace datasets Hub
    # or a path to a custom `datasets` loading script.
201
    DATASET_PATH: Optional[str] = None
202
203

    # The name of a subset within `DATASET_PATH`.
204
    DATASET_NAME: Optional[str] = None
205

206
    OUTPUT_TYPE: Optional[OutputType] = None
lintangsutawika's avatar
lintangsutawika committed
207

208
209
    def __init__(
        self,
210
211
212
213
        data_dir: Optional[str] = None,
        cache_dir: Optional[str] = None,
        download_mode: Optional[datasets.DownloadMode] = None,
        config: Optional[Mapping] = None,  # Union[dict, TaskConfig]
Ethan Smith's avatar
Ethan Smith committed
214
    ) -> None:
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
        """
        :param data_dir: str
            Stores the path to a local folder containing the `Task`'s data files.
            Use this to specify the path to manually downloaded data (usually when
            the dataset is not publicly accessible).
        :param cache_dir: str
            The directory to read/write the `Task` dataset. This follows the
            HuggingFace `datasets` API with the default cache directory located at:
                `~/.cache/huggingface/datasets`
            NOTE: You can change the cache location globally for a given process
            to another directory:
                `export HF_DATASETS_CACHE="/path/to/another/directory"`
        :param download_mode: datasets.DownloadMode
            How to treat pre-existing `Task` downloads and data.
            - `datasets.DownloadMode.REUSE_DATASET_IF_EXISTS`
                Reuse download and reuse dataset.
            - `datasets.DownloadMode.REUSE_CACHE_IF_EXISTS`
                Reuse download with fresh dataset.
            - `datasets.DownloadMode.FORCE_REDOWNLOAD`
                Fresh download and fresh dataset.
        """
        self.download(data_dir, cache_dir, download_mode)
237
238
239
        self._training_docs: Optional[list] = None
        self._fewshot_docs: Optional[list] = None
        self._instances: Optional[List[Instance]] = None
240

241
        self._config: TaskConfig = TaskConfig({**config}) if config else TaskConfig()
242

lintangsutawika's avatar
lintangsutawika committed
243
        self._filters = [build_filter_ensemble("none", [["take_first", None]])]
244
245
246
        self.fewshot_rnd: Optional[random.Random] = (
            None  # purposely induce errors in case of improper usage
        )
247

248
249
250
251
252
253
    def download(
        self,
        data_dir: Optional[str] = None,
        cache_dir: Optional[str] = None,
        download_mode=None,
    ) -> None:
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
        """Downloads and returns the task dataset.
        Override this method to download the dataset from a custom API.

        :param data_dir: str
            Stores the path to a local folder containing the `Task`'s data files.
            Use this to specify the path to manually downloaded data (usually when
            the dataset is not publicly accessible).
        :param cache_dir: str
            The directory to read/write the `Task` dataset. This follows the
            HuggingFace `datasets` API with the default cache directory located at:
                `~/.cache/huggingface/datasets`
            NOTE: You can change the cache location globally for a given process
            by setting the shell environment variable, `HF_DATASETS_CACHE`,
            to another directory:
                `export HF_DATASETS_CACHE="/path/to/another/directory"`
        :param download_mode: datasets.DownloadMode
            How to treat pre-existing `Task` downloads and data.
            - `datasets.DownloadMode.REUSE_DATASET_IF_EXISTS`
                Reuse download and reuse dataset.
            - `datasets.DownloadMode.REUSE_CACHE_IF_EXISTS`
                Reuse download with fresh dataset.
            - `datasets.DownloadMode.FORCE_REDOWNLOAD`
                Fresh download and fresh dataset.
        """
278
279
280
281
282
283
284
        self.dataset = datasets.load_dataset(
            path=self.DATASET_PATH,
            name=self.DATASET_NAME,
            data_dir=data_dir,
            cache_dir=cache_dir,
            download_mode=download_mode,
        )
285

286
    @property
287
    def config(self) -> TaskConfig:
288
289
290
        """Returns the TaskConfig associated with this class."""
        return self._config

291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
    @abc.abstractmethod
    def has_training_docs(self):
        """Whether the task has a training set"""
        pass

    @abc.abstractmethod
    def has_validation_docs(self):
        """Whether the task has a validation set"""
        pass

    @abc.abstractmethod
    def has_test_docs(self):
        """Whether the task has a test set"""
        pass

306
    def training_docs(self) -> Iterable:
307
308
309
310
311
312
        """
        :return: Iterable[obj]
            A iterable of any object, that doc_to_text can handle
        """
        return []

313
    def validation_docs(self) -> Iterable:
314
315
316
317
318
319
        """
        :return: Iterable[obj]
            A iterable of any object, that doc_to_text can handle
        """
        return []

320
    def test_docs(self) -> Iterable:
321
322
323
324
325
326
        """
        :return: Iterable[obj]
            A iterable of any object, that doc_to_text can handle
        """
        return []

327
    def fewshot_docs(self) -> Iterable:
328
329
330
331
332
333
334
335
336
        """
        :return: Iterable[obj]
            A iterable of any object, that doc_to_text can handle
        """
        if self.has_training_docs():
            return self.training_docs()
        elif self.has_validation_docs():
            return self.validation_docs()
        else:
Baber Abbasi's avatar
Baber Abbasi committed
337
338
339
340
341
            if self.config.get("num_fewshot", 0) > 0:
                eval_logger.warning(
                    f"[Task: {self.config.task}] has_training_docs and has_validation_docs are False"
                    ", using test_docs as fewshot_docs but this is not recommended."
                )
342
343
            return self.test_docs()

344
    def _process_doc(self, doc: dict) -> dict:
345
346
347
348
349
350
351
352
353
        """
        Override this to process (detokenize, strip, replace, etc.) individual
        documents. This can be used in a map over documents of a data split.
        E.g. `map(self._process_doc, self.dataset["validation"])`

        :return: dict
            The processed version of the specified `doc`.
        """
        return doc
lintangsutawika's avatar
lintangsutawika committed
354

355
    @property
356
    def instances(self) -> List[Instance]:
357
358
359
360
361
362
363
364
365
366
367
        """After calling `task.build_all_requests()`, tasks
        maintain a list of the dataset instances which will be evaluated.
        """
        return self._instances

    def fewshot_examples(self, k, rnd):
        if self._training_docs is None:
            self._training_docs = list(self.training_docs())

        return rnd.sample(self._training_docs, k)

368
369
    def doc_to_decontamination_query(self, doc):
        raise NotImplementedError(
370
371
372
373
374
375
376
377
378
379
380
            "Override doc_to_decontamination_query with document specific decontamination query."
        )

    @abc.abstractmethod
    def doc_to_text(self, doc):
        pass

    @abc.abstractmethod
    def doc_to_target(self, doc):
        pass

381
382
383
384
    # not an abstractmethod because not every language-only task has to implement this
    def doc_to_image(self, doc):
        raise NotImplementedError

385
386
387
    def doc_to_audio(self, doc):
        raise NotImplementedError

Baber Abbasi's avatar
Baber Abbasi committed
388
389
390
    def doc_to_prefix(self, doc):
        return ""

391
392
    def build_all_requests(
        self,
393
        *,
394
        limit: Union[int, None] = None,
395
        samples: Optional[List[int]] = None,
396
397
398
399
400
401
402
403
404
        rank: int = 0,
        world_size: int = 1,
        cache_requests: bool = False,
        rewrite_requests_cache: bool = False,
        system_instruction: Optional[str] = None,
        apply_chat_template: bool = False,
        fewshot_as_multiturn: bool = False,
        chat_template: Optional[Callable] = None,
        tokenizer_name: str = "",
405
    ) -> None:
406
        """Build a set of Instances for a task, and store them in task.instances"""
407
408
409
410

        # used with caching
        og_limit = limit

411
        cache_key = f"requests-{self._config.task}-{self.config.num_fewshot}shot-rank{rank}-world_size{world_size}"
KonradSzafer's avatar
KonradSzafer committed
412
413
414
415
416
417
418
        cache_key += "-chat_template" if apply_chat_template else ""
        cache_key += "-fewshot_as_multiturn" if fewshot_as_multiturn else ""
        cache_key += (
            f"-system_prompt_hash{utils.hash_string(system_instruction)}"
            if system_instruction is not None
            else ""
        )
419
        cache_key += f"-tokenizer{tokenizer_name}"
420

Baber Abbasi's avatar
Baber Abbasi committed
421
        cached_instances = load_from_cache(file_name=cache_key, cache=cache_requests)
422
423
424
425
426
427
428
429
430
431
432
433
434

        if cache_requests and cached_instances and not rewrite_requests_cache:
            cached_instances = cached_instances[:limit]

            flattened_instances = [
                instance
                for instance_group in cached_instances
                for instance in instance_group
            ]

            self._instances = flattened_instances
            return

Baber Abbasi's avatar
Baber Abbasi committed
435
        eval_logger.info(f"Building contexts for {self.config.task} on rank {rank}...")
436

437
        instances = []
438
439
440
441
442
443
444
445
446
447

        # process all documents when caching is specified for simplicity
        if (
            cache_requests
            and (not cached_instances or rewrite_requests_cache)
            and limit is not None
        ):
            limit = None

        doc_id_docs = list(
448
449
450
            self.doc_iterator(
                rank=rank, limit=limit, samples=samples, world_size=world_size
            )
451
452
453
454
455
456
457
        )

        num_docs = len(doc_id_docs)

        for doc_id, doc in tqdm(
            doc_id_docs,
            total=num_docs,
lintangsutawika's avatar
lintangsutawika committed
458
        ):
459
            # sample fewshot context #TODO: need to offset doc_id by rank now!
460
            fewshot_ctx = self.fewshot_context(
461
                doc,
462
463
464
465
466
467
468
                num_fewshot=0
                if self.config.num_fewshot is None
                else self.config.num_fewshot,
                system_instruction=system_instruction,
                apply_chat_template=apply_chat_template,
                fewshot_as_multiturn=fewshot_as_multiturn,
                chat_template=chat_template,
Baber Abbasi's avatar
Baber Abbasi committed
469
                gen_prefix=self.doc_to_prefix(doc),
470
            )
471

472
            # TODO: we should override self.config.repeats if doing greedy gen so users don't waste time+compute
lintangsutawika's avatar
lintangsutawika committed
473
474
475
            inst = self.construct_requests(
                doc=doc,
                ctx=fewshot_ctx,
476
                metadata=(self.config["task"], doc_id, self.config.repeats),
477
                apply_chat_template=apply_chat_template,
478
                chat_template=chat_template,
lintangsutawika's avatar
lintangsutawika committed
479
            )
480
481
482
483

            if not isinstance(inst, list):
                inst = [inst]

484
485
486
487
488
489
490
491
492
493
494
495
496
            instances.append(inst)

        # now flatten, this is to allow slicing to work with pickles

        sliced_instances = instances[:og_limit]

        flattened_instances = [
            instance
            for instance_group in sliced_instances
            for instance in instance_group
        ]

        self._instances = flattened_instances
497

498
499
        if len(self._instances) == 0:
            raise ValueError("task.build_requests() did not find any docs!")
500

501
502
503
        if cache_requests and (not cached_instances or rewrite_requests_cache):
            save_to_cache(file_name=cache_key, obj=instances)

504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
    @abc.abstractmethod
    def construct_requests(self, doc, ctx, **kwargs):
        """Uses RequestFactory to construct Requests and returns an iterable of
        Requests which will be sent to the LM.

        :param doc:
            The document as returned from training_docs, validation_docs, or test_docs.
        :param ctx: str
            The context string, generated by fewshot_context. This includes the natural
            language description, as well as the few shot examples, and the question
            part of the document for `doc`.
        :param doc_idx: int
            The index of a document within `self.test_docs()` or `self.validation_docs()`,
            whichever is the main split used.
        :param repeats: int
        TODO: update this docstring
lintangsutawika's avatar
lintangsutawika committed
520
            The number of times each instance in a dataset is inferred on. Defaults to 1,
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
            can be increased for techniques like majority voting.
        """
        pass

    @abc.abstractmethod
    def process_results(self, doc, results):
        """Take a single document and the LM results and evaluates, returning a
        dict where keys are the names of submetrics and values are the values of
        the metric for that one document

        :param doc:
            The document as returned from training_docs, validation_docs, or test_docs.
        :param results:
            The results of the requests created in construct_requests.
        """
        pass

    @abc.abstractmethod
    def aggregation(self):
        """
        :returns: {str: [metric_score] -> float}
            A dictionary where keys are the names of submetrics and values are
            functions that aggregate a list of metric scores
        """
        pass

    @abc.abstractmethod
    def higher_is_better(self):
        """
        :returns: {str: bool}
            A dictionary where keys are the names of submetrics and values are
            whether a higher value of the submetric is better
        """
        pass

556
557
558
    def get_config(self, key: str) -> Any:
        return getattr(self._config, key, None)

haileyschoelkopf's avatar
haileyschoelkopf committed
559
560
561
562
563
564
565
566
567
568
    @classmethod
    def count_bytes(cls, doc):
        """Used for byte-level perplexity metrics in rolling loglikelihood"""
        return len(doc.encode("utf-8"))

    @classmethod
    def count_words(cls, doc):
        """Downstream loglikelihood_rolling perplexity tasks with custom word boundaries should override this!"""
        return len(re.split(r"\s+", doc))

569
    @utils.positional_deprecated
Baber Abbasi's avatar
Baber Abbasi committed
570
    def fewshot_context(self, doc, num_fewshot, rnd=None, description=None, **kwargs):
571
572
573
574
575
576
577
        """Returns a fewshot context string that is made up of a prepended description
        (if provided), the `num_fewshot` number of examples, and an appended prompt example.

        :param doc: str
            The document as returned from training_docs, validation_docs, or test_docs.
        :param num_fewshot: int
            The number of fewshot examples to provide in the returned context string.
lintangsutawika's avatar
lintangsutawika committed
578
579
580
581
582
        :param rnd: random.Random
            The pseudo-random number generator used to randomly sample examples.
            WARNING: This is currently a required arg although it's optionalized with a default `None`.
        :param description: str
            The task's description that will be prepended to the fewshot examples.
583
584
585
        :returns: str
            The fewshot context.
        """
586
        if rnd is None:
587
588
589
590
591
592
            if self.fewshot_rnd is not None:
                rnd = self.fewshot_rnd
            else:
                raise ValueError(
                    "A `random.Random` generator argument must be provided to `rnd`"
                )
lintangsutawika's avatar
lintangsutawika committed
593

594
        description = description if description else ""
595
596

        if num_fewshot == 0:
lintangsutawika's avatar
lintangsutawika committed
597
            labeled_examples = ""
598
        else:
lintangsutawika's avatar
lintangsutawika committed
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
            # for sets with no training docs, draw from other set *but ensure no overlap with current doc*
            if self.has_training_docs():
                fewshotex = self.fewshot_examples(k=num_fewshot, rnd=rnd)
            else:
                if self._fewshot_docs is None:
                    self._fewshot_docs = list(
                        self.validation_docs()
                        if self.has_validation_docs()
                        else self.test_docs()
                    )

                fewshotex = rnd.sample(self._fewshot_docs, num_fewshot + 1)

                # get rid of the doc that's the one we're evaluating, if it's in the fewshot
                fewshotex = [x for x in fewshotex if x != doc][:num_fewshot]

            labeled_examples = (
                "\n\n".join(
                    [
                        self.doc_to_text(doc) + self.doc_to_target(doc)
                        for doc in fewshotex
                    ]
                )
                + "\n\n"
lintangsutawika's avatar
lintangsutawika committed
623
            )
624
625

        example = self.doc_to_text(doc)
lintangsutawika's avatar
lintangsutawika committed
626
        return description + labeled_examples + example
627

628
    def apply_filters(self) -> Optional[List[Instance]]:
Baber Abbasi's avatar
Baber Abbasi committed
629
        """Iterates over FilterEnsembles and applies them to instances"""
lintangsutawika's avatar
lintangsutawika committed
630
631
        if hasattr(self, "_filters"):
            for f in self._filters:
632
                f.apply(self._instances)
lintangsutawika's avatar
lintangsutawika committed
633
634
635
        else:
            eval_logger.warning("No filter defined, passing through instances")
            return self._instances
636

baberabb's avatar
baberabb committed
637
    def dump_config(self) -> dict:
Baber Abbasi's avatar
Baber Abbasi committed
638
        """Returns the config as a dictionary."""
639
        # TODO: this should only return the overrides applied to a non-YAML task's configuration.
640
        # (num_fewshot)
641
        return self.config.to_dict()
642

Baber Abbasi's avatar
Baber Abbasi committed
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
    def set_config(self, key: str, value: Any, update: bool = False) -> None:
        """Set or update the configuration for a given key."""
        if key is None:
            raise ValueError("Key must be provided.")

        if update:
            current_value = getattr(self._config, key, {})
            if not isinstance(current_value, dict):
                raise TypeError(
                    f"Expected a dict for key '{key}', got {type(current_value).__name__} instead."
                )
            current_value.update(value)
        else:
            setattr(self._config, key, value)

    def override_metric(self, metric_name: str) -> None:
        """
        Override the default metrics used for evaluation with custom metrics.

        Parameters:
        - metric_name (str): The name of the custom metric to override. Should be registered in api.metrics.
        """
        (
            self._metric_fn_list,
            self._aggregation_list,
            self._metric_fn_kwargs,
            self._higher_is_better,
        ) = ({}, {}, {}, {})
        self._metric_fn_list[metric_name] = get_metric(metric_name)
        self._aggregation_list[metric_name] = get_metric_aggregation(metric_name)
        self._higher_is_better[metric_name] = is_higher_better(metric_name)
        self._metric_fn_kwargs[metric_name] = {}
        if not isinstance(self, ConfigurableTask):
            self.process_results = lambda x, y: {metric_name: get_metric(metric_name)}
            self.aggregation = lambda: {
                metric_name: get_metric_aggregation(metric_name)
            }
        setattr(self._config, "metric_list", [{"metric": metric_name}])
        setattr(self._config, "process_results", None)

683
684
685
686
687
    def set_fewshot_seed(self, seed: Optional[int] = None) -> None:
        self.fewshot_rnd = random.Random(seed)
        if hasattr(self, "sampler"):
            self.sampler.rnd = self.fewshot_rnd

688
689
690
691
692
693
694
    @property
    def eval_docs(self) -> Union[datasets.Dataset, List[dict]]:
        if self.has_test_docs():
            return self.test_docs()
        elif self.has_validation_docs():
            return self.validation_docs()
        else:
695
696
697
            raise ValueError(
                f"Task dataset (path={self.DATASET_PATH}, name={self.DATASET_NAME}) must have valid or test docs!"
            )
698
699

    def doc_iterator(
700
701
702
703
704
705
        self,
        *,
        rank: int = 0,
        limit: Union[int, None] = None,
        world_size: int = 1,
        samples: Optional[List[int]] = None,
706
    ) -> Iterator[Tuple[int, Any]]:
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
        if samples:
            n = len(self.eval_docs)
            assert all([e < n for e in samples]), (
                f"Elements of --samples should be in the interval [0,k-1] where k is the number of total examples. In this case, k={n}."
            )
            eval_logger.info(
                f"{self.config.task}: Evaluating on {len(samples)} examples"
            )
            doc_iterator = utils.create_iterator(
                enumerate(x for i, x in enumerate(self.eval_docs) if i in samples),
                rank=int(rank),
                limit=None,  # limit does not matter here since we are selecting samples directly
                world_size=int(world_size),
            )
        else:
            limit = int(limit) if limit else None
            doc_iterator = utils.create_iterator(
                enumerate(self.eval_docs),
                rank=int(rank),
                limit=limit,
                world_size=int(world_size),
            )
729
730
        return doc_iterator

731
732

class ConfigurableTask(Task):
733
    VERSION = "Yaml"
734
    OUTPUT_TYPE = None
735
    CONFIG = None
736
737

    def __init__(
738
739
740
741
742
        self,
        data_dir=None,
        cache_dir=None,
        download_mode=None,
        config: Optional[dict] = None,
Ethan Smith's avatar
Ethan Smith committed
743
    ) -> None:  # TODO no super() call here
744
        # Get pre-configured attributes
745
        self._config = self.CONFIG
746

747
        # Use new configurations if there was no preconfiguration
748
        if self.config is None:
749
            self._config = TaskConfig(**config)
750
751
        # Overwrite configs
        else:
lintangsutawika's avatar
lintangsutawika committed
752
            if config is not None:
753
                self._config.__dict__.update(config)
754

755
        if self.config is None:
lintangsutawika's avatar
lintangsutawika committed
756
757
758
            raise ValueError(
                "Must pass a config to ConfigurableTask, either in cls.CONFIG or `config` kwarg"
            )
759

760
761
762
763
        if isinstance(self.config.metadata, dict):
            if "version" in self.config.metadata:
                self.VERSION = self.config.metadata["version"]

764
        if self.config.output_type is not None:
765
766
767
768
            if self.config.output_type not in ALL_OUTPUT_TYPES:
                raise ValueError(
                    f"Got invalid output_type '{self.config.output_type}', must be in '{','.join(ALL_OUTPUT_TYPES)}'"
                )
769
            self.OUTPUT_TYPE = self.config.output_type
770

771
772
773
774
        if self.config.doc_to_image is not None:
            # mark the task as requiring multimodality.
            self.MULTIMODAL = True

775
776
777
778
        if self.config.doc_to_audio:
            # mark the task as requiring multimodality.
            self.MULTIMODAL = True

Hojin Lee's avatar
Hojin Lee committed
779
780
781
        if self.config.unsafe_code is not False:
            self.UNSAFE_CODE = True

782
783
        if self.config.dataset_path is not None:
            self.DATASET_PATH = self.config.dataset_path
784

785
786
        if self.config.dataset_name is not None:
            self.DATASET_NAME = self.config.dataset_name
787

788
789
790
791
        self._metric_fn_list = {}
        self._metric_fn_kwargs = {}
        self._aggregation_list = {}
        self._higher_is_better = {}
792

793
        if self.config.metric_list is None:
794
            # TODO: handle this in TaskConfig.__post_init__ ?
795
796
            _metric_list = DEFAULT_METRIC_REGISTRY[self.config.output_type]

797
            for metric_name in _metric_list:
haileyschoelkopf's avatar
haileyschoelkopf committed
798
                self._metric_fn_list[metric_name] = get_metric(metric_name)
lintangsutawika's avatar
lintangsutawika committed
799
                self._metric_fn_kwargs[metric_name] = {}
800
801
802
                self._aggregation_list[metric_name] = get_metric_aggregation(
                    metric_name
                )
haileyschoelkopf's avatar
haileyschoelkopf committed
803
                self._higher_is_better[metric_name] = is_higher_better(metric_name)
804
        else:
805
            for metric_config in self.config.metric_list:
806
807
808
809
                if "metric" not in metric_config:
                    raise ValueError(
                        "'metric' key not provided for an entry in 'metric_list', must be specified!"
                    )
810
811
812
813
                metric_name = metric_config["metric"]
                kwargs = {
                    key: metric_config[key]
                    for key in metric_config
Chris's avatar
Chris committed
814
815
                    if key
                    not in ["metric", "aggregation", "higher_is_better", "hf_evaluate"]
816
                }
Chris's avatar
Chris committed
817
818
819
820
                hf_evaluate_metric = (
                    "hf_evaluate" in metric_config
                    and metric_config["hf_evaluate"] is True
                )
821

822
                if self.config.process_results is not None:
823
824
                    self._metric_fn_list[metric_name] = None
                    self._metric_fn_kwargs[metric_name] = {}
825
826
827
828
829
830
                elif callable(metric_name):
                    metric_fn = metric_name.__call__
                    metric_name = metric_name.__name__
                    self._metric_fn_list[metric_name] = metric_fn
                    self._metric_fn_kwargs[metric_name] = kwargs
                else:
Chris's avatar
Chris committed
831
832
833
                    self._metric_fn_list[metric_name] = get_metric(
                        metric_name, hf_evaluate_metric
                    )
834
                    self._metric_fn_kwargs[metric_name] = kwargs
lintangsutawika's avatar
lintangsutawika committed
835

836
                if "aggregation" in metric_config:
837
                    agg_name = metric_config["aggregation"]
838
                    if isinstance(agg_name, str):
haileyschoelkopf's avatar
haileyschoelkopf committed
839
                        self._aggregation_list[metric_name] = get_aggregation(agg_name)
840
                    elif callable(agg_name):  # noqa: E721
841
842
843
                        self._aggregation_list[metric_name] = metric_config[
                            "aggregation"
                        ]
844
                else:
845
                    INV_AGG_REGISTRY = {v: k for k, v in AGGREGATION_REGISTRY.items()}
lintangsutawika's avatar
lintangsutawika committed
846
                    metric_agg = get_metric_aggregation(metric_name)
847
                    eval_logger.warning(
848
                        f"[Task: {self.config.task}] metric {metric_name} is defined, but aggregation is not. "
849
850
                        f"using default "
                        f"aggregation={INV_AGG_REGISTRY[metric_agg]}"
851
                    )
852
                    self._aggregation_list[metric_name] = metric_agg
lintangsutawika's avatar
lintangsutawika committed
853

854
855
856
857
858
859
                if "higher_is_better" in metric_config:
                    self._higher_is_better[metric_name] = metric_config[
                        "higher_is_better"
                    ]
                else:
                    eval_logger.warning(
860
                        f"[Task: {self.config.task}] metric {metric_name} is defined, but higher_is_better is not. "
861
                        f"using default "
haileyschoelkopf's avatar
haileyschoelkopf committed
862
                        f"higher_is_better={is_higher_better(metric_name)}"
863
                    )
haileyschoelkopf's avatar
haileyschoelkopf committed
864
                    self._higher_is_better[metric_name] = is_higher_better(metric_name)
865

866
        self.download(self.config.dataset_kwargs)
867
868
869
        self._training_docs = None
        self._fewshot_docs = None

870
        if self.config.filter_list is not None:
lintangsutawika's avatar
lintangsutawika committed
871
            self._filters = []
872
            for filter_config in self.config.filter_list:
873
874
875
876
877
878
879
880
881
                filter_name = filter_config["name"]
                filter_functions = filter_config["filter"]
                components = []
                for function in filter_functions:
                    kwargs = {
                        key: function[key] for key in function if key != "function"
                    }
                    components.append([function["function"], kwargs])
                filter_pipeline = build_filter_ensemble(filter_name, components)
lintangsutawika's avatar
lintangsutawika committed
882
                self._filters.append(filter_pipeline)
lintangsutawika's avatar
lintangsutawika committed
883
        else:
Baber Abbasi's avatar
Baber Abbasi committed
884
885
886
887
            # TODO: handle repeats in a more general way rather than just discarding
            eval_logger.debug(
                "No custom filters defined. Using default 'take_first' filter for handling repeats."
            )
888
            # self._filters = [build_filter_ensemble("none", [["take_first", None]])]
889

890
891
        if self.config.use_prompt is not None:
            eval_logger.info(f"loading prompt {self.config.use_prompt}")
892
            self.prompt = get_prompt(
893
                self.config.use_prompt, self.DATASET_PATH, self.DATASET_NAME
lintangsutawika's avatar
lintangsutawika committed
894
            )
895
896
897
        else:
            self.prompt = None

lintangsutawika's avatar
lintangsutawika committed
898
        if self.fewshot_docs() is not None:
899
900
901
902
            self.fewshot_rnd = (
                random.Random()
            )  # setting with no seed, to be overridden at a later time
            config_sampler: Union[str, Callable] = (
haileyschoelkopf's avatar
haileyschoelkopf committed
903
904
905
                self.config.fewshot_config.get("sampler", "default")
                if self.config.fewshot_config
                else "default"
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
            )
            if isinstance(config_sampler, str):
                self.sampler = samplers.get_sampler(config_sampler)(
                    list(self.fewshot_docs()), self, rnd=self.fewshot_rnd
                )
            elif callable(config_sampler) and issubclass(
                config_sampler, samplers.ContextSampler
            ):
                self.sampler = config_sampler(
                    docs=list(self.fewshot_docs()), task=self, rnd=self.fewshot_rnd
                )
            else:
                raise TypeError(
                    f"fewshot_config.sampler should be a string or callable of ContextSampler type, "
                    f"not {type(config_sampler)}"
                )
922

923
        self.task_docs = self.eval_docs
924

925
        # Test One Doc
926
        self.features = list(self.task_docs.features.keys())
927
928
        self.multiple_input = 0
        self.multiple_target = 0
929
        test_doc = self.task_docs[0]
930
        test_text = self.doc_to_text(test_doc)
931
        test_target = self.doc_to_target(test_doc)
lintangsutawika's avatar
lintangsutawika committed
932

933
        if self.config.doc_to_choice is not None:
lintangsutawika's avatar
lintangsutawika committed
934
            test_choice = self.doc_to_choice(test_doc)
935
            if not isinstance(test_choice, list):
lintangsutawika's avatar
lintangsutawika committed
936
                eval_logger.error("doc_to_choice must return list")
937
938
            else:
                num_choice = len(test_choice)
939

940
            if isinstance(test_text, int):
Baber Abbasi's avatar
Baber Abbasi committed
941
942
943
                eval_logger.debug(
                    "doc_to_text returned an int. Assuming multiple inputs."
                )
944
                self.multiple_input = num_choice
945
946
        else:
            test_choice = None
947

948
        if isinstance(test_target, list):
Baber Abbasi's avatar
Baber Abbasi committed
949
950
951
            eval_logger.debug(
                "doc_to_target returned a list. Assuming multiple targets."
            )
952
            self.multiple_target = len(test_target)
953
        else:
954
            if (isinstance(test_target, int)) and (test_choice is not None):
lintangsutawika's avatar
lintangsutawika committed
955
                test_target = test_choice[test_target]
956
            else:
lintangsutawika's avatar
lintangsutawika committed
957
                test_target = str(test_target)
958

959
960
961
        if test_choice is not None:
            check_choices = test_choice
        else:
lintangsutawika's avatar
lintangsutawika committed
962
            check_choices = [test_target]
963
964
965
966
        if self.config.doc_to_choice is not None:
            for choice in check_choices:
                choice_has_whitespace = True if choice[0].isspace() else False
                delimiter_has_whitespace = (
967
968
                    True
                    if self.config.target_delimiter.rstrip()
969
                    != self.config.target_delimiter
970
                    else False
971
                )
972

973
                if delimiter_has_whitespace and choice_has_whitespace:
974
975
                    eval_logger.debug(
                        f'Both target_delimiter "{self.config.target_delimiter}" and target choice: "{choice}" have whitespace'
976
977
                    )
                elif (not delimiter_has_whitespace) and (not choice_has_whitespace):
978
                    eval_logger.debug(
979
                        f'Both target_delimiter "{self.config.target_delimiter}" and target choice: "{choice}" do not have whitespace, ignore if the language you are evaluating on does not require/use whitespace'
980
981
                    )

Baber Abbasi's avatar
Baber Abbasi committed
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
    def download(
        self, dataset_kwargs: Optional[Dict[str, Any]] = None, **kwargs
    ) -> None:
        if isinstance(self.config.custom_dataset, Callable):
            eval_logger.warning(
                f"{self.config.task}: Custom kwargs can be passed to `--metadata` in console (as json string) or to the TaskManager."
                + "\nFor example --metadata='{\"max_seq_lengths\":[4096, 8192]}'. For details see task Readme."
            )
            self.dataset = self.config.custom_dataset(
                **(self.config.metadata or {}), **(self.config.dataset_kwargs or {})
            )
        else:
            self.dataset = datasets.load_dataset(
                path=self.DATASET_PATH,
                name=self.DATASET_NAME,
                **dataset_kwargs if dataset_kwargs is not None else {},
            )
999

baberabb's avatar
baberabb committed
1000
    def has_training_docs(self) -> bool:
1001
        if self.config.training_split is not None:
1002
1003
1004
1005
            return True
        else:
            return False

baberabb's avatar
baberabb committed
1006
    def has_validation_docs(self) -> bool:
1007
        if self.config.validation_split is not None:
1008
1009
1010
1011
            return True
        else:
            return False

baberabb's avatar
baberabb committed
1012
    def has_test_docs(self) -> bool:
1013
        if self.config.test_split is not None:
1014
1015
1016
1017
            return True
        else:
            return False

baberabb's avatar
baberabb committed
1018
    def training_docs(self) -> datasets.Dataset:
1019
        if self.has_training_docs():
1020
1021
1022
            if self.config.process_docs is not None:
                return self.config.process_docs(
                    self.dataset[self.config.training_split]
1023
                )
1024
            return self.dataset[self.config.training_split]
1025

baberabb's avatar
baberabb committed
1026
    def validation_docs(self) -> datasets.Dataset:
1027
        if self.has_validation_docs():
1028
1029
1030
            if self.config.process_docs is not None:
                return self.config.process_docs(
                    self.dataset[self.config.validation_split]
1031
                )
1032
            return self.dataset[self.config.validation_split]
1033

baberabb's avatar
baberabb committed
1034
    def test_docs(self) -> datasets.Dataset:
1035
        if self.has_test_docs():
1036
1037
1038
            if self.config.process_docs is not None:
                return self.config.process_docs(self.dataset[self.config.test_split])
            return self.dataset[self.config.test_split]
1039

1040
    def fewshot_docs(self):
1041
        if self.config.fewshot_split is not None:
1042
1043
            if self.config.process_docs is not None:
                return self.config.process_docs(self.dataset[self.config.fewshot_split])
1044
            return self.dataset[self.config.fewshot_split]
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
        elif (
            self.config.fewshot_config is not None
            and self.config.fewshot_config.get("samples", None) is not None
        ):
            if isinstance(self.config.fewshot_config["samples"], list):
                return self.config.fewshot_config["samples"]
            elif callable(self.config.fewshot_config["samples"]):
                return self.config.fewshot_config["samples"]()
            else:
                raise Exception(
                    "`fewshot_config['samples']` was incorrectly defined in the configuration. It should be either a list of samples as a dict, or function returning this list."
                )
1057
        else:
1058
            if (self.config.num_fewshot is not None) and (self.config.num_fewshot > 0):
1059
                eval_logger.warning(
Lintang Sutawika's avatar
Lintang Sutawika committed
1060
                    f"[Task: {self.config.task}] "
1061
1062
1063
1064
                    "num_fewshot > 0 but fewshot_split is None. "
                    "using preconfigured rule."
                )
            return super().fewshot_docs()
1065

KonradSzafer's avatar
KonradSzafer committed
1066
1067
1068
1069
1070
    @staticmethod
    def append_target_question(
        labeled_examples: List[Dict[str, str]],
        question: str,
        fewshot_as_multiturn: bool = False,
Baber Abbasi's avatar
Baber Abbasi committed
1071
        gen_prefix: Optional[str] = None,
KonradSzafer's avatar
KonradSzafer committed
1072
1073
1074
1075
1076
1077
1078
1079
    ) -> None:
        """Adds a target question to the labeled examples list.
        If fewshot_as_multiturn is True, or labeled_examples is empty, or the last entry is a system turn, appends the question as a new user entry.
        Otherwise, it is appended to the last user entry, ensuring that the conversation alternates between the user and the assistant.
        """
        if not fewshot_as_multiturn:
            # if no messages or last message is system, append as new user entry
            if len(labeled_examples) == 0 or labeled_examples[-1]["role"] == "system":
1080
                labeled_examples.append({"role": "user", "content": question})
KonradSzafer's avatar
KonradSzafer committed
1081
1082
            # if last message is user, append to it to avoid two user messages in a row
            else:
1083
                labeled_examples[-1]["content"] += question
KonradSzafer's avatar
KonradSzafer committed
1084
1085
        else:
            # if fewshot_as_multiturn is True, append as next user entry (last is always assistant)
1086
            labeled_examples.append({"role": "user", "content": question})
Baber Abbasi's avatar
Baber Abbasi committed
1087
1088
        if gen_prefix:
            labeled_examples.append({"role": "assistant", "content": gen_prefix})
KonradSzafer's avatar
KonradSzafer committed
1089

lintangsutawika's avatar
lintangsutawika committed
1090
    @utils.positional_deprecated
KonradSzafer's avatar
KonradSzafer committed
1091
1092
    def fewshot_context(
        self,
Baber Abbasi's avatar
Baber Abbasi committed
1093
        doc: dict,
KonradSzafer's avatar
KonradSzafer committed
1094
1095
1096
1097
        num_fewshot: int,
        system_instruction: Optional[str] = None,
        apply_chat_template: bool = False,
        fewshot_as_multiturn: bool = False,
1098
        chat_template: Optional[Callable] = None,
Baber Abbasi's avatar
Baber Abbasi committed
1099
        gen_prefix: Optional[str] = None,
Baber Abbasi's avatar
Baber Abbasi committed
1100
    ) -> Union[str, List[str]]:
lintangsutawika's avatar
lintangsutawika committed
1101
1102
1103
1104
1105
1106
1107
        """Returns a fewshot context string that is made up of a prepended description
        (if provided), the `num_fewshot` number of examples, and an appended prompt example.

        :param doc: str
            The document as returned from training_docs, validation_docs, or test_docs.
        :param num_fewshot: int
            The number of fewshot examples to provide in the returned context string.
KonradSzafer's avatar
KonradSzafer committed
1108
1109
1110
1111
1112
1113
        :param  system_instruction: str
            System instruction to be applied to the prompt.
        :param apply_chat_template: bool
            Whether to apply the chat template to the fewshot context.
        :param fewshot_as_multiturn: bool
            Whether to provide the fewshot examples as a multiturn conversation or a single user turn.
1114
1115
        :param chat_template:
            callable (from lm.apply_chat_template) that takes in a list[Dict] chat transcript and renders it into a string.
1116
1117
        :param gen_prefix:
            String to append after the <|assistant|> token.
lintangsutawika's avatar
lintangsutawika committed
1118
1119
1120
        :returns: str
            The fewshot context.
        """
KonradSzafer's avatar
KonradSzafer committed
1121
1122
1123
1124
1125
1126
        if apply_chat_template:
            labeled_examples = []
        else:
            labeled_examples = ""

        # get task description
1127
1128
        if description := self.config.description:
            description = utils.apply_template(self.config.description, doc)
lintangsutawika's avatar
lintangsutawika committed
1129

KonradSzafer's avatar
KonradSzafer committed
1130
1131
1132
1133
1134
1135
1136
1137
1138
        # create system prompt based on the provided system instruction and description
        if system_instruction is not None and description:
            system_prompt = (
                f"{system_instruction}{self.sampler.fewshot_delimiter}{description}"
            )
        elif system_instruction is not None:
            system_prompt = system_instruction
        elif description:
            system_prompt = description
lintangsutawika's avatar
lintangsutawika committed
1139
        else:
KonradSzafer's avatar
KonradSzafer committed
1140
1141
1142
1143
1144
1145
1146
1147
1148
1149
1150
1151
1152
            system_prompt = ""

        # add system prompt if specified
        if system_prompt:
            if apply_chat_template:
                labeled_examples.append({"role": "system", "content": system_prompt})
            else:
                labeled_examples = system_prompt
        # if few-shot - append examples after the system prompt
        if num_fewshot > 0:
            if apply_chat_template:
                labeled_examples.extend(
                    self.sampler.get_chat_context(
Baber Abbasi's avatar
Baber Abbasi committed
1153
1154
1155
                        doc,
                        num_fewshot,
                        fewshot_as_multiturn,
Baber Abbasi's avatar
Baber Abbasi committed
1156
                        gen_prefix=gen_prefix,
KonradSzafer's avatar
KonradSzafer committed
1157
1158
1159
                    )
                )
            else:
Baber Abbasi's avatar
Baber Abbasi committed
1160
                labeled_examples += self.sampler.get_context(
Baber Abbasi's avatar
Baber Abbasi committed
1161
                    doc, num_fewshot, gen_prefix=gen_prefix
Baber Abbasi's avatar
Baber Abbasi committed
1162
                )
lintangsutawika's avatar
lintangsutawika committed
1163
1164

        example = self.doc_to_text(doc)
KonradSzafer's avatar
KonradSzafer committed
1165
1166
        if apply_chat_template:
            if self.multiple_input:
Baber Abbasi's avatar
Baber Abbasi committed
1167
                # TODO: append prefill?
1168
1169
                if not labeled_examples:
                    return ""
1170
                return chat_template(labeled_examples)
KonradSzafer's avatar
KonradSzafer committed
1171
1172
            if isinstance(example, str):
                self.append_target_question(
Baber Abbasi's avatar
Baber Abbasi committed
1173
1174
1175
                    labeled_examples,
                    example,
                    fewshot_as_multiturn,
Baber Abbasi's avatar
Baber Abbasi committed
1176
                    gen_prefix=gen_prefix,
KonradSzafer's avatar
KonradSzafer committed
1177
1178
1179
1180
1181
1182
1183
                )
            # for loglikelihood create a list of questions with appended choices
            elif isinstance(example, list):
                labeled_examples_list = []
                # copy chat history for each example and append the answer
                for ex in example:
                    chat = deepcopy(labeled_examples)
Baber Abbasi's avatar
Baber Abbasi committed
1184
1185
1186
1187
                    self.append_target_question(
                        chat,
                        ex,
                        fewshot_as_multiturn,
Baber Abbasi's avatar
Baber Abbasi committed
1188
                        gen_prefix=gen_prefix,
Baber Abbasi's avatar
Baber Abbasi committed
1189
1190
1191
1192
1193
                    )
                    # TODO: append prefill?
                    labeled_examples_list.append(
                        chat_template(
                            chat,
Baber Abbasi's avatar
Baber Abbasi committed
1194
                            add_generation_prompt=False if gen_prefix else True,
Baber Abbasi's avatar
Baber Abbasi committed
1195
1196
                        )
                    )
KonradSzafer's avatar
KonradSzafer committed
1197
1198
1199
1200
1201
1202
                return labeled_examples_list
            # if example is an integer, append the choice or convert to string
            elif isinstance(example, int):
                if self.config.doc_to_choice is not None:
                    choices = self.doc_to_choice(doc)
                    self.append_target_question(
Baber Abbasi's avatar
Baber Abbasi committed
1203
1204
1205
                        labeled_examples,
                        choices[example],
                        fewshot_as_multiturn,
Baber Abbasi's avatar
Baber Abbasi committed
1206
                        gen_prefix=gen_prefix,
KonradSzafer's avatar
KonradSzafer committed
1207
1208
1209
                    )
                else:
                    self.append_target_question(
Baber Abbasi's avatar
Baber Abbasi committed
1210
1211
1212
                        labeled_examples,
                        str(example),
                        fewshot_as_multiturn,
Baber Abbasi's avatar
Baber Abbasi committed
1213
                        gen_prefix=gen_prefix,
KonradSzafer's avatar
KonradSzafer committed
1214
1215
                    )
                # return lm.apply_chat_template(labeled_examples)
Baber Abbasi's avatar
Baber Abbasi committed
1216
1217
            return chat_template(
                labeled_examples,
Baber Abbasi's avatar
Baber Abbasi committed
1218
                add_generation_prompt=False if gen_prefix else True,
Baber Abbasi's avatar
Baber Abbasi committed
1219
            )
1220
        else:
Baber Abbasi's avatar
Baber Abbasi committed
1221
            prefix = (
Baber Abbasi's avatar
Baber Abbasi committed
1222
1223
                self.config.target_delimiter + gen_prefix
                if gen_prefix is not None
Baber Abbasi's avatar
Baber Abbasi committed
1224
1225
                else ""
            )
KonradSzafer's avatar
KonradSzafer committed
1226
1227
            if self.multiple_input:
                return labeled_examples
1228
            if isinstance(example, str):
Baber Abbasi's avatar
Baber Abbasi committed
1229
                return labeled_examples + example + prefix
1230
            elif isinstance(example, list):
Baber Abbasi's avatar
Baber Abbasi committed
1231
                return [labeled_examples + ex + prefix for ex in example]
1232
1233
1234
            elif isinstance(example, int):
                if self.config.doc_to_choice is not None:
                    choices = self.doc_to_choice(doc)
Baber Abbasi's avatar
Baber Abbasi committed
1235
                    return labeled_examples + choices[example] + prefix
1236
                else:
Baber Abbasi's avatar
Baber Abbasi committed
1237
                    return labeled_examples + str(example) + prefix
lintangsutawika's avatar
lintangsutawika committed
1238

Baber Abbasi's avatar
Baber Abbasi committed
1239
    def apply_filters(self) -> Optional[List[Instance]]:
Baber Abbasi's avatar
Baber Abbasi committed
1240
        """Iterates over FilterEnsembles and applies them to instances"""
1241
1242
        if hasattr(self, "_filters"):
            for f in self._filters:
1243
                f.apply(self._instances)
1244
1245
1246
1247
        else:
            eval_logger.warning("No filter defined, passing through instances")
            return self._instances

1248
    def should_decontaminate(self):
1249
        return self.config.should_decontaminate
1250

Baber Abbasi's avatar
Baber Abbasi committed
1251
    def doc_to_decontamination_query(self, doc: dict):
1252
        if self.config.should_decontaminate:
1253
1254
            if self.config.doc_to_decontamination_query is None:
                return self.doc_to_text(doc)
1255
            else:
1256
1257
1258
1259
1260
1261
1262
1263
1264
1265
1266
                doc_to_decontamination_query = self.config.doc_to_decontamination_query
                if doc_to_decontamination_query in self.features:
                    return doc[doc_to_decontamination_query]
                elif callable(doc_to_decontamination_query):
                    return doc_to_decontamination_query(doc)
                else:
                    return ast.literal_eval(
                        utils.apply_template(
                            self.config.doc_to_decontamination_query, doc
                        )
                    )
1267

1268
    def _process_doc(self, doc: dict) -> dict:
1269
1270
1271
1272
1273
1274
1275
1276
1277
1278
        """
        Override this to process (detokenize, strip, replace, etc.) individual
        documents. This can be used in a map over documents of a data split.
        E.g. `map(self._process_doc, self.dataset["validation"])`

        :return: dict
            The processed version of the specified `doc`.
        """
        return doc

Yu Shi Jie's avatar
Yu Shi Jie committed
1279
    def doc_to_text(self, doc, doc_to_text=None):
1280
1281
        if self.prompt is not None:
            doc_to_text = self.prompt
Yu Shi Jie's avatar
Yu Shi Jie committed
1282
1283
        elif doc_to_text is not None:
            doc_to_text = doc_to_text
1284
        else:
1285
            doc_to_text = self.config.doc_to_text
lintangsutawika's avatar
lintangsutawika committed
1286

1287
        if isinstance(doc_to_text, int):
1288
            return doc_to_text
1289
        elif isinstance(doc_to_text, str):
1290
            if doc_to_text in self.features:
1291
                # if self.config.doc_to_choice is not None:
1292
1293
                #     return self.doc_to_choice(doc)[doc[doc_to_text]]
                # else:
1294
1295
                return doc[doc_to_text]
            else:
lintangsutawika's avatar
lintangsutawika committed
1296
                text_string = utils.apply_template(doc_to_text, doc)
lintangsutawika's avatar
lintangsutawika committed
1297
                if text_string.isdigit() and self._config.doc_to_choice is not None:
lintangsutawika's avatar
lintangsutawika committed
1298
1299
1300
                    return ast.literal_eval(text_string)
                else:
                    return text_string
1301
        elif callable(doc_to_text):
1302
            return doc_to_text(doc)
lintangsutawika's avatar
lintangsutawika committed
1303
        # Used when applying a Promptsource template
1304
        elif hasattr(doc_to_text, "apply"):
1305
1306
1307
1308
1309
            applied_prompt = doc_to_text.apply(doc)
            if len(applied_prompt) == 2:
                return applied_prompt[0]
            else:
                eval_logger.warning("Applied prompt returns empty string")
1310
                return self.config.fewshot_delimiter
1311
        else:
1312
            print(type(doc_to_text))
1313
            raise TypeError
1314

Yu Shi Jie's avatar
Yu Shi Jie committed
1315
    def doc_to_target(self, doc: Mapping, doc_to_target=None) -> Union[int, str, list]:
1316
1317
        if self.prompt is not None:
            doc_to_target = self.prompt
Yu Shi Jie's avatar
Yu Shi Jie committed
1318
1319
        elif doc_to_target is not None:
            doc_to_target = doc_to_target
1320
        else:
1321
            doc_to_target = self.config.doc_to_target
1322

1323
        if isinstance(doc_to_target, int):
1324
            return doc_to_target
1325
        elif isinstance(doc_to_target, str):
1326
            if doc_to_target in self.features:
1327
                # if self.config.doc_to_choice is not None:
1328
1329
1330
                #     return self.doc_to_choice(doc)[doc[doc_to_target]]
                # else:
                return doc[doc_to_target]
1331
            else:
lintangsutawika's avatar
lintangsutawika committed
1332
                target_string = utils.apply_template(doc_to_target, doc)
lintangsutawika's avatar
lintangsutawika committed
1333
                if target_string.isdigit() and self._config.doc_to_choice is not None:
lintangsutawika's avatar
lintangsutawika committed
1334
                    return ast.literal_eval(target_string)
lintangsutawika's avatar
lintangsutawika committed
1335
1336
1337
1338
1339
                elif (
                    len(target_string) >= 2
                    and (target_string[0] == "[")
                    and (target_string[-1] == "]")
                ):
baberabb's avatar
baberabb committed
1340
1341
1342
1343
                    try:
                        return ast.literal_eval(target_string)
                    except (SyntaxError, ValueError):
                        return target_string
lintangsutawika's avatar
lintangsutawika committed
1344
1345
                else:
                    return target_string
1346
        elif isinstance(doc_to_target, list):
1347
            return doc_to_target
1348
        elif callable(doc_to_target):
1349
            return doc_to_target(doc)
lintangsutawika's avatar
lintangsutawika committed
1350
        # Used when applying a Promptsource template
1351
        elif hasattr(doc_to_target, "apply"):
1352
            applied_prompt = doc_to_target.apply(doc)
1353
1354
1355
1356
            if len(applied_prompt) == 2:
                return applied_prompt[1]
            else:
                eval_logger.warning("Applied prompt returns empty string")
1357
                return self.config.fewshot_delimiter
1358
1359
        else:
            raise TypeError
1360

Yu Shi Jie's avatar
Yu Shi Jie committed
1361
    def doc_to_choice(self, doc: Any, doc_to_choice=None) -> List[str]:
1362
1363
        if self.prompt is not None:
            doc_to_choice = self.prompt
Yu Shi Jie's avatar
Yu Shi Jie committed
1364
1365
        elif doc_to_choice is not None:
            doc_to_choice = doc_to_choice
1366
        elif self.config.doc_to_choice is None:
1367
1368
            eval_logger.error("doc_to_choice was called but not set in config")
        else:
1369
            doc_to_choice = self.config.doc_to_choice
1370

1371
        if isinstance(doc_to_choice, str):
1372
1373
1374
1375
            if doc_to_choice in self.features:
                return doc[doc_to_choice]
            else:
                return ast.literal_eval(utils.apply_template(doc_to_choice, doc))
1376
        elif isinstance(doc_to_choice, list):
1377
            return doc_to_choice
1378
        elif isinstance(doc_to_choice, dict):
1379
1380
1381
1382
1383
1384
1385
            return list(doc_to_choice.values())
        elif callable(doc_to_choice):
            return doc_to_choice(doc)
        elif hasattr(doc_to_choice, "get_answer_choices_list"):
            return doc_to_choice.get_answer_choices_list(doc)
        else:
            raise TypeError
1386

1387
1388
1389
1390
1391
1392
1393
1394
1395
1396
1397
1398
1399
1400
1401
1402
1403
1404
1405
1406
1407
1408
1409
    def doc_to_image(self, doc: Any, doc_to_image=None) -> Union[int, str, list]:
        if doc_to_image is not None:
            doc_to_image = doc_to_image
        elif self.config.doc_to_image is not None:
            doc_to_image = self.config.doc_to_image
        else:
            return None

        if isinstance(doc_to_image, list):
            image_feature = [
                self.doc_to_image(doc, feature) for feature in doc_to_image
            ]
            return [feature for feature in image_feature if feature is not None]
        elif isinstance(doc_to_image, str):
            if doc_to_image in self.features:
                return doc[doc_to_image]
            else:
                return ast.literal_eval(utils.apply_template(doc_to_image, doc))
        elif callable(doc_to_image):
            return doc_to_image(doc)
        else:
            return None

1410
1411
1412
1413
1414
1415
1416
1417
1418
1419
1420
1421
1422
1423
1424
1425
1426
1427
1428
1429
1430
1431
1432
    def doc_to_audio(self, doc: Any, doc_to_audio=None) -> Union[int, str, list]:
        if doc_to_audio is not None:
            doc_to_audio = doc_to_audio
        elif self.config.doc_to_audio is not None:
            doc_to_audio = self.config.doc_to_audio
        else:
            return None

        if isinstance(doc_to_audio, list):
            audio_feature = [
                self.doc_to_audio(doc, feature) for feature in doc_to_audio
            ]
            return [feature for feature in audio_feature if feature is not None]
        elif isinstance(doc_to_audio, str):
            if doc_to_audio in self.features:
                return doc[doc_to_audio]
            else:
                return ast.literal_eval(utils.apply_template(doc_to_audio, doc))
        elif callable(doc_to_audio):
            return doc_to_audio(doc)
        else:
            return None

Baber Abbasi's avatar
Baber Abbasi committed
1433
1434
1435
1436
1437
1438
1439
1440
    def doc_to_prefix(self, doc):
        if (gen_prefix := self.config.gen_prefix) is not None:
            if gen_prefix in self.features:
                return doc[gen_prefix]
            else:
                return utils.apply_template(gen_prefix, doc)
        return None

baberabb's avatar
baberabb committed
1441
1442
1443
    def construct_requests(
        self, doc: dict, ctx: str, **kwargs
    ) -> Union[List[Instance], Instance]:
1444
        apply_chat_template = kwargs.pop("apply_chat_template", False)
1445
        chat_template: Callable | None = kwargs.pop("chat_template", None)
1446

1447
1448
        aux_arguments = None

1449
        if self.OUTPUT_TYPE == "loglikelihood":
lintangsutawika's avatar
lintangsutawika committed
1450
            arguments = (ctx, self.doc_to_target(doc))
1451
        elif self.OUTPUT_TYPE == "loglikelihood_rolling":
lintangsutawika's avatar
lintangsutawika committed
1452
            arguments = (self.doc_to_target(doc),)
1453
        elif self.OUTPUT_TYPE == "multiple_choice":
1454
            choices = self.doc_to_choice(doc)
1455
            target_delimiter = self.config.target_delimiter
1456
1457
            if apply_chat_template:
                target_delimiter = ""
1458
1459
            if self.multiple_input:
                # If there are multiple inputs, choices are placed in the ctx
1460
                # apply chat_template to choices if apply_chat_template
1461
                cont = self.doc_to_target(doc)
1462

1463
                arguments = [
1464
1465
1466
1467
1468
1469
1470
1471
1472
1473
                    (
                        ctx
                        + (
                            chat_template([{"role": "user", "content": choice}])
                            if apply_chat_template
                            else choice
                        ),
                        f"{target_delimiter}{cont}",
                    )
                    for choice in choices
1474
                ]
1475
            else:
1476
                # Otherwise they are placed in the continuation
1477
                arguments = [(ctx, f"{target_delimiter}{cont}") for cont in choices]
1478

1479
1480
1481
1482
1483
1484
1485
1486
            # TODO: we should raise a warning telling users this will at most ~2x runtime.
            if "acc_mutual_info" in self._metric_fn_list.keys():
                # if we are calculating multiple choice accuracy
                # using mutual information instead of raw loglikelihood as metric, need unconditional lls.

                # here mutual info refers to calculating
                # log(P(choice|ctx) / P(choice)) = log(P(choice|ctx)) - log(P(choice))
                # in other words normalizing by subtracting the unconditional logprob of each choice.
1487
1488
1489
1490
                # TODO: should these be strided? will have to modify the processing in process_results if so
                aux_arguments = [
                    ("", f"{target_delimiter}{choice}") for choice in choices
                ]
1491
1492
1493
1494
1495
1496

                arguments.extend(aux_arguments)

        elif self.OUTPUT_TYPE == "generate_until":
            arguments = (ctx, deepcopy(self.config.generation_kwargs))

Baber's avatar
Baber committed
1497
1498
1499
1500
1501
1502
1503
        else:
            raise ValueError(
                f"Unsupported OUTPUT_TYPE: '{self.OUTPUT_TYPE}'. "
                f"Expected one of: 'loglikelihood', 'loglikelihood_rolling', "
                f"'multiple_choice', 'generate_until'"
            )

1504
1505
1506
1507
1508
1509
1510
1511
1512
        multimodal_arg = {}
        if (
            self.config.doc_to_image
        ):  # TODO: ensure that non-multimodal tasks aren't getting visual args
            multimodal_arg = {
                **multimodal_arg,
                **{"visual": self.doc_to_image(doc)},
            }

1513
1514
1515
1516
1517
1518
1519
1520
        if (
            self.config.doc_to_audio
        ):  # TODO: ensure that non-multimodal tasks aren't getting audio args
            multimodal_arg = {
                **multimodal_arg,
                **{"audio": self.doc_to_audio(doc)},
            }

1521
1522
1523
1524
1525
1526
1527
        if bool(multimodal_arg):
            if isinstance(arguments, list):
                arguments = [arg + (multimodal_arg,) for arg in arguments]
            else:
                arguments = arguments + (multimodal_arg,)

        if self.OUTPUT_TYPE == "multiple_choice":
1528
            request_list = [
1529
1530
                Instance(
                    request_type="loglikelihood",
lintangsutawika's avatar
lintangsutawika committed
1531
                    doc=doc,
Baber's avatar
Baber committed
1532
                    arguments=LoglikelihoodInput(context=arg[0], continuation=arg[1]),
1533
                    idx=i,
1534
1535
                    **kwargs,
                )
1536
                for i, arg in enumerate(arguments)
1537
            ]
1538
1539

            return request_list
lintangsutawika's avatar
lintangsutawika committed
1540

lintangsutawika's avatar
lintangsutawika committed
1541
        return Instance(
1542
1543
            request_type=self.OUTPUT_TYPE,
            doc=doc,
Baber's avatar
Baber committed
1544
1545
1546
            arguments=LoglikelihoodInput(*arguments)
            if self.OUTPUT_TYPE in ["loglikelihood", "loglikelihood_rolling"]
            else GenerateInput(*arguments),
1547
1548
            idx=0,
            **kwargs,
lintangsutawika's avatar
lintangsutawika committed
1549
        )
1550
1551

    def process_results(self, doc, results):
1552
1553
        if callable(self.config.process_results):
            return self.config.process_results(doc, results)
lintangsutawika's avatar
lintangsutawika committed
1554

1555
        result_dict = {}
1556
        use_metric = list(self._metric_fn_list.keys())
1557
1558
1559
        if self.OUTPUT_TYPE == "loglikelihood":
            results = results[0]
            ll, is_greedy = results
1560
1561
1562
1563
            return {
                **({"perplexity": ll} if "perplexity" in use_metric else {}),
                **({"acc": int(is_greedy)} if "acc" in use_metric else {}),
            }
1564
        elif self.OUTPUT_TYPE == "loglikelihood_rolling":
haileyschoelkopf's avatar
haileyschoelkopf committed
1565
            (loglikelihood,) = results
1566
1567
            _words = self.count_words(self.doc_to_target(doc))
            _bytes = self.count_bytes(self.doc_to_target(doc))
haileyschoelkopf's avatar
haileyschoelkopf committed
1568
            return {
1569
1570
1571
1572
1573
1574
1575
1576
1577
1578
1579
1580
1581
1582
1583
                **(
                    {"word_perplexity": (loglikelihood, _words)}
                    if "word_perplexity" in use_metric
                    else {}
                ),
                **(
                    {"byte_perplexity": (loglikelihood, _bytes)}
                    if "byte_perplexity" in use_metric
                    else {}
                ),
                **(
                    {"bits_per_byte": (loglikelihood, _bytes)}
                    if "bits_per_byte" in use_metric
                    else {}
                ),
haileyschoelkopf's avatar
haileyschoelkopf committed
1584
            }
1585
        elif self.OUTPUT_TYPE == "multiple_choice":
1586
            lls, is_greedy = zip(*results)
lintangsutawika's avatar
lintangsutawika committed
1587

1588
            # retrieve choices in List[str] form, to compute choice lengths, etc.
1589
            choices = self.doc_to_choice(doc)
1590
1591
            completion_len = np.array([float(len(i)) for i in choices])

1592
1593
            if (
                2 * len(choices) == len(lls)
1594
                and "acc_mutual_info" in self._metric_fn_list.keys()
1595
1596
1597
            ):
                # then we are doing mutual info.
                # this stores the "dryrun" / unconditional answer loglikelihoods
1598
1599
                # as we extend the args list with unconditional ("", continuation) pairs
                lls_unconditional = lls[len(choices) :]
1600
1601
                if len(lls_unconditional) != len(choices):
                    raise ValueError
1602
                # and this stores our "regular" conditional loglikelihoods
1603
                lls = lls[: len(choices)]
1604

1605
1606
            pred = np.argmax(lls)
            pred_norm = np.argmax(lls / completion_len)
lintangsutawika's avatar
lintangsutawika committed
1607

1608
1609
            if self.multiple_input:
                gold = self.doc_to_text(doc)
1610
            else:
1611
                gold = self.doc_to_target(doc)
1612
1613

            gold_index_error = False
1614
            if isinstance(gold, list):
Lintang Sutawika's avatar
Lintang Sutawika committed
1615
1616
                gold = [i if i < len(choices) else -100 for i in gold]
                if -100 in gold:
1617
1618
                    gold_index_error = True
            else:
1619
                if isinstance(gold, int):
Lintang Sutawika's avatar
Lintang Sutawika committed
1620
                    gold = gold if gold < len(choices) else -100
1621
                elif isinstance(gold, str):
Lintang Sutawika's avatar
Lintang Sutawika committed
1622
                    gold = choices.index(gold) if gold in choices else -100
lintangsutawika's avatar
lintangsutawika committed
1623

Lintang Sutawika's avatar
Lintang Sutawika committed
1624
                if gold == -100:
1625
1626
1627
1628
                    gold_index_error = True

            if gold_index_error:
                eval_logger.warning(
lintangsutawika's avatar
lintangsutawika committed
1629
                    f"Label index was not in within range of available choices,"
1630
1631
                    f"Sample:\n\n{doc}\n\n"
                )
lintangsutawika's avatar
lintangsutawika committed
1632

1633
            if self.multiple_target:
lintangsutawika's avatar
lintangsutawika committed
1634
1635
                acc = 1.0 if pred in gold else 0.0
                acc_norm = 1.0 if pred_norm in gold else 0.0
Lintang Sutawika's avatar
Lintang Sutawika committed
1636
                exact_match = int(any([is_greedy[i] if i != -100 else 0 for i in gold]))
lintangsutawika's avatar
lintangsutawika committed
1637
1638
1639
            else:
                acc = 1.0 if pred == gold else 0.0
                acc_norm = 1.0 if pred_norm == gold else 0.0
1640
                # TODO: this gets score of 0 on arc_challenge for pythia-70m. need to test that this works properly
Lintang Sutawika's avatar
Lintang Sutawika committed
1641
                exact_match = int(is_greedy[gold]) if gold != -100 else 0
1642

Lintang Sutawika's avatar
Lintang Sutawika committed
1643
1644
1645
1646
            prob_norm = utils.softmax(lls)

            # TODO use keyword arguments to the metric?
            # gold, pred, norm stuff, the original lls,
1647
            result_dict = {
1648
                **({"acc": acc} if "acc" in use_metric else {}),
1649
1650
                **({"f1": (gold, pred)} if "f1" in use_metric else {}),
                **({"mcc": (gold, pred)} if "mcc" in use_metric else {}),
1651
                **({"acc_norm": acc_norm} if "acc_norm" in use_metric else {}),
1652
                **({"exact_match": exact_match} if "exact_match" in use_metric else {}),
Lintang Sutawika's avatar
Lintang Sutawika committed
1653
1654
1655
1656
1657
                **(
                    {"brier_score": (gold, prob_norm)}
                    if "brier_score" in use_metric
                    else {}
                ),
1658
1659
            }

1660
            if "acc_mutual_info" in use_metric:
lintangsutawika's avatar
lintangsutawika committed
1661
1662
1663
                lls_mutual_info = [
                    ll_c - ll_u for ll_c, ll_u in zip(lls, lls_unconditional)
                ]
1664
1665
1666
                acc_mutual_info = 1.0 if np.argmax(lls_mutual_info) == gold else 0.0
                result_dict["acc_mutual_info"] = acc_mutual_info

1667
        elif self.OUTPUT_TYPE == "generate_until":
1668
            gold = self.doc_to_target(doc)
Chris's avatar
Chris committed
1669
            result = results[0]
1670
            if self.config.doc_to_choice is not None:
lintangsutawika's avatar
lintangsutawika committed
1671
                # If you set doc_to_choice,
lintangsutawika's avatar
lintangsutawika committed
1672
                # it assumes that doc_to_target returns a number.
1673
1674
                choices = self.doc_to_choice(doc)
                gold = choices[gold]
1675
1676
            # we expect multiple_targets to be a list.
            elif self.multiple_target:
baberabb's avatar
baberabb committed
1677
                gold = list(gold)
Hojin Lee's avatar
Hojin Lee committed
1678
1679
1680
            # TODO: handle this better
            elif type(gold) is not type(result) and not (
                "bypass" in self._metric_fn_list.keys() or isinstance(result, list)
1681
            ):
Chris's avatar
Chris committed
1682
1683
                # cast gold to the same type as result
                gold = type(result)(gold)
1684

lintangsutawika's avatar
lintangsutawika committed
1685
            for metric in self._metric_fn_list.keys():
haileyschoelkopf's avatar
haileyschoelkopf committed
1686
1687
1688
1689
1690
                if self.multiple_target:
                    # in the case where we have multiple targets,
                    # return true if any are true
                    # TODO: this may break for multipLe_target, non zero-or-1 metrics
                    scores = []
haileyschoelkopf's avatar
haileyschoelkopf committed
1691
1692
1693
1694
                    if not isinstance(gold, list):
                        # sometimes, a multiple_target dataset has exceptions where one doc has only one string answer
                        # print(gold)
                        gold = [gold]
1695
1696
1697
1698
1699
1700
1701
1702
                    if metric == "exact_match":
                        result = [result for _ in range(len(gold))]
                        scores = self._metric_fn_list[metric](
                            references=gold,
                            predictions=result,
                            **self._metric_fn_kwargs[metric],
                        )[metric]
                        result_score = 1.0 if scores > 0.0 else 0.0
haileyschoelkopf's avatar
haileyschoelkopf committed
1703
                    else:
1704
1705
1706
1707
1708
1709
1710
1711
1712
1713
1714
1715
1716
1717
1718
1719
1720
1721
1722
1723
1724
                        for gold_option in gold:
                            try:
                                result_score = self._metric_fn_list[metric](
                                    references=[gold_option],
                                    predictions=[result],
                                    **self._metric_fn_kwargs[metric],
                                )
                            except (
                                TypeError
                            ):  # TODO: this is hacky and I don't want to do it
                                result_score = self._metric_fn_list[metric](
                                    [gold_option, result]
                                )
                            if isinstance(result_score, dict):
                                # TODO: this handles the case where HF evaluate returns a dict.
                                result_score = result_score[metric]
                            scores.append(result_score)
                        if any(scores):
                            result_score = 1.0
                        else:
                            result_score = 0.0
haileyschoelkopf's avatar
haileyschoelkopf committed
1725
                else:
1726
                    try:
1727
                        result_score = self._metric_fn_list[metric](
1728
1729
                            references=[gold],
                            predictions=[result],
1730
                            **self._metric_fn_kwargs[metric],
1731
                        )
1732
                    except TypeError:  # needed for now in order to use a different interface between our own metrics and HF Evaluate metrics
1733
                        result_score = self._metric_fn_list[metric]([gold, result])
1734
1735
1736
1737
1738
1739
1740
                if isinstance(result_score, dict):
                    # TODO: this handles the case where HF evaluate returns a dict.
                    # This allows for multiple metrics to be returned from the same function
                    for k, v in result_score.items():
                        result_dict[k] = v
                else:
                    result_dict[metric] = result_score
1741
        else:
lintangsutawika's avatar
lintangsutawika committed
1742
1743
            raise ValueError(
                f"Passed invalid output_type '{self.OUTPUT_TYPE}' ! Please use one of ",
1744
                "'loglikelihood', 'loglikelihood_rolling', 'generate_until' or 'multiple_choice'",
1745
            )
1746
1747
1748

        return result_dict

Baber Abbasi's avatar
Baber Abbasi committed
1749
    def aggregation(self) -> dict:
1750
1751
        return self._aggregation_list

Baber Abbasi's avatar
Baber Abbasi committed
1752
    def higher_is_better(self) -> dict:
haileyschoelkopf's avatar
haileyschoelkopf committed
1753
        return self._higher_is_better
1754

Baber Abbasi's avatar
Baber Abbasi committed
1755
1756
1757
    def get_config(self, key: str) -> Any:
        return getattr(self._config, key, None)

Lintang Sutawika's avatar
Lintang Sutawika committed
1758
1759
1760
1761
    @property
    def task_name(self) -> Any:
        return getattr(self.config, "task", None)

1762
1763
1764
1765
1766
    def __repr__(self):
        return (
            f"ConfigurableTask(task_name={getattr(self.config, 'task', None)},"
            f"output_type={self.OUTPUT_TYPE},"
            f"num_fewshot={getattr(self.config, 'num_fewshot', None)},"
Baber Abbasi's avatar
Baber Abbasi committed
1767
            f"num_samples={len(self.eval_docs)})"
1768
1769
        )

1770
1771
1772
1773
1774
1775
1776
1777
1778
1779
1780
1781
1782
1783
1784
1785
1786
1787
1788
1789
1790
1791
1792
1793
1794
1795
1796
1797
1798
1799
1800
1801
1802
1803
1804
1805
1806
1807
1808
1809
    def calculate_metrics(
        self, instances_by_doc_id, filter_key, samples, rank, limit, world_size
    ):
        """Calculate metrics for all datapoints in the task.

        Args:
            instances_by_doc_id (dict): Dictionary mapping doc_ids to lists of instances.
            filter_key (str): The filter key to use for filtered responses.
            samples (dict, optional): Dictionary of sample indices to evaluate.
            rank (int): The process rank.
            limit (int, optional): Limit on number of examples to evaluate.
            world_size (int): Total number of processes.

        Returns:
            list: A list of metrics calculated for each document.
        """
        all_metrics = []
        # indices = samples.get(self.config.task, None) if samples is not None else None

        doc_iterator = self.doc_iterator(
            rank=rank,
            limit=limit,
            world_size=world_size,
            # samples=indices,
        )

        for doc_id, doc in doc_iterator:
            # doc_id_true = indices[doc_id] if indices else doc_id
            requests = instances_by_doc_id[doc_id]

            metrics = [
                self.process_results(doc, response)
                for req in requests
                for response in req.filtered_resps[filter_key]
            ]

            all_metrics.extend(metrics)

        return all_metrics

1810
1811

class MultipleChoiceTask(Task):
1812
    OUTPUT_TYPE = "loglikelihood"
1813

baberabb's avatar
baberabb committed
1814
    def doc_to_target(self, doc: dict) -> str:
1815
1816
        return " " + doc["choices"][doc["gold"]]

baberabb's avatar
baberabb committed
1817
    def construct_requests(self, doc: dict, ctx: str, **kwargs) -> List[Instance]:
1818
        # TODO: add mutual info here?
lintangsutawika's avatar
lintangsutawika committed
1819
1820
        return [
            Instance(
haileyschoelkopf's avatar
haileyschoelkopf committed
1821
                request_type="loglikelihood",
lintangsutawika's avatar
lintangsutawika committed
1822
                doc=doc,
1823
                arguments=(ctx, " {}".format(choice)),
1824
                idx=i,
1825
1826
                **kwargs,
            )
lintangsutawika's avatar
lintangsutawika committed
1827
1828
            for i, choice in enumerate(doc["choices"])
        ]
1829

1830
    def process_results(self, doc: dict, results: Iterable[Tuple[float, bool]]) -> dict:
lintangsutawika's avatar
lintangsutawika committed
1831
1832
1833
        results = [
            res[0] for res in results
        ]  # only retain loglikelihoods, discard is_greedy TODO: do we need is_greedy anywhere?
1834
1835
1836
1837
1838
1839
1840
1841
1842
1843
1844
        gold = doc["gold"]

        acc = 1.0 if np.argmax(results) == gold else 0.0
        completion_len = np.array([float(len(i)) for i in doc["choices"]])
        acc_norm = 1.0 if np.argmax(results / completion_len) == gold else 0.0

        return {
            "acc": acc,
            "acc_norm": acc_norm,
        }

baberabb's avatar
baberabb committed
1845
    def higher_is_better(self) -> dict:
1846
1847
1848
1849
1850
        return {
            "acc": True,
            "acc_norm": True,
        }

baberabb's avatar
baberabb committed
1851
    def aggregation(self) -> dict:
1852
1853
1854
1855
1856
1857
        return {
            "acc": mean,
            "acc_norm": mean,
        }


lintangsutawika's avatar
lintangsutawika committed
1858
class PerplexityTask(Task):
Baber's avatar
Baber committed
1859
    OUTPUT_TYPE: OutputType = "loglikelihood_rolling"
1860

baberabb's avatar
baberabb committed
1861
    def has_training_docs(self) -> bool:
1862
1863
        return False

baberabb's avatar
baberabb committed
1864
    def fewshot_examples(self, k: int, rnd) -> List:
1865
1866
1867
1868
        if k != 0:
            raise ValueError(
                "The number of fewshot examples must be 0 for perplexity tasks."
            )
1869
1870
        return []

baberabb's avatar
baberabb committed
1871
    def fewshot_context(self, doc: dict, num_fewshot: int) -> Literal[""]:
1872
1873
1874
1875
        if num_fewshot != 0:
            raise ValueError(
                "The number of fewshot examples must be 0 for perplexity tasks."
            )
1876
1877
1878

        return ""

baberabb's avatar
baberabb committed
1879
    def higher_is_better(self) -> dict:
1880
1881
1882
1883
1884
1885
1886
1887
1888
        return {
            "word_perplexity": False,
            "byte_perplexity": False,
            "bits_per_byte": False,
        }

    def doc_to_decontamination_query(self, doc):
        return doc

Ethan Smith's avatar
Ethan Smith committed
1889
    def doc_to_text(self, doc) -> str:
1890
1891
1892
1893
1894
        return ""

    def doc_to_target(self, doc):
        return doc

1895
1896
1897
    def construct_requests(self, doc: dict, ctx: Optional[str], **kwargs):
        if bool(ctx):
            raise ValueError
1898

lintangsutawika's avatar
lintangsutawika committed
1899
1900
1901
1902
1903
1904
1905
        return Instance(
            request_type=self.OUTPUT_TYPE,
            doc=doc,
            arguments=(self.doc_to_target(doc),),
            idx=0,
            **kwargs,
        )
1906

1907
    def process_results(self, doc: dict, results: Tuple[float]) -> dict:
1908
        (loglikelihood,) = results
haileyschoelkopf's avatar
haileyschoelkopf committed
1909
1910
        words = self.count_words(self.doc_to_target(doc))
        bytes_ = self.count_bytes(self.doc_to_target(doc))
1911
1912
1913
1914
1915
1916
        return {
            "word_perplexity": (loglikelihood, words),
            "byte_perplexity": (loglikelihood, bytes_),
            "bits_per_byte": (loglikelihood, bytes_),
        }

baberabb's avatar
baberabb committed
1917
    def aggregation(self) -> dict:
1918
1919
1920
1921
1922
1923
1924
        return {
            "word_perplexity": weighted_perplexity,
            "byte_perplexity": weighted_perplexity,
            "bits_per_byte": bits_per_byte,
        }

    @classmethod
baberabb's avatar
baberabb committed
1925
    def count_bytes(cls, doc) -> int:
1926
1927
1928
        return len(doc.encode("utf-8"))

    @classmethod
baberabb's avatar
baberabb committed
1929
    def count_words(cls, doc) -> int:
1930
        """Downstream tasks with custom word boundaries should override this!"""
Lintang Sutawika's avatar
Lintang Sutawika committed
1931
        return len(re.split(r"\s+", doc))