task.py 67.1 KB
Newer Older
1
import abc
2
import ast
lintangsutawika's avatar
lintangsutawika committed
3
import logging
4
import random
5
6
import re
from collections.abc import Callable
7
from copy import deepcopy
lintangsutawika's avatar
lintangsutawika committed
8
from dataclasses import asdict, dataclass
9
from inspect import getsource
10
11
12
13
14
15
16
17
18
19
20
21
from typing import (
    Any,
    Dict,
    Iterable,
    Iterator,
    List,
    Literal,
    Mapping,
    Optional,
    Tuple,
    Union,
)
22
23
24

import datasets
import numpy as np
lintangsutawika's avatar
lintangsutawika committed
25
import shortuuid
26
from tqdm import tqdm
27
28

from lm_eval import utils
29
from lm_eval.api import samplers
30
31
from lm_eval.api.instance import Instance, OutputType
from lm_eval.api.metrics import bits_per_byte, mean, weighted_perplexity
lintangsutawika's avatar
lintangsutawika committed
32
from lm_eval.api.registry import (
33
34
    AGGREGATION_REGISTRY,
    DEFAULT_METRIC_REGISTRY,
haileyschoelkopf's avatar
haileyschoelkopf committed
35
    get_aggregation,
36
    get_metric,
37
    get_metric_aggregation,
haileyschoelkopf's avatar
haileyschoelkopf committed
38
    is_higher_better,
lintangsutawika's avatar
lintangsutawika committed
39
)
40
from lm_eval.caching.cache import load_from_cache, save_to_cache
41
42
43
from lm_eval.filters import build_filter_ensemble
from lm_eval.prompts import get_prompt

44

45
46
47
48
ALL_OUTPUT_TYPES = [
    "loglikelihood",
    "multiple_choice",
    "loglikelihood_rolling",
49
    "generate_until",
50
51
]

52
eval_logger = logging.getLogger("lm-eval")
53

lintangsutawika's avatar
lintangsutawika committed
54

55
56
57
@dataclass
class AggMetricConfig(dict):
    metric: Optional[str] = "acc"
lintangsutawika's avatar
lintangsutawika committed
58
    metric_alias: Optional[str] = None
59
60
    aggregation: Optional[str] = "mean"
    weight_by_size: Optional[str] = False
lintangsutawika's avatar
lintangsutawika committed
61
    filter_list: Optional[Union[str, list]] = "none"
62
63
64
65

    def __post_init__(self):
        if isinstance(self.filter_list, str):
            self.filter_list = [self.filter_list]
lintangsutawika's avatar
lintangsutawika committed
66

lintangsutawika's avatar
lintangsutawika committed
67

lintangsutawika's avatar
lintangsutawika committed
68
69
@dataclass
class GroupConfig(dict):
lintangsutawika's avatar
lintangsutawika committed
70
71
72
    group: Optional[str] = None
    group_alias: Optional[str] = None
    task: Optional[Union[str, list]] = None
73
    tag_to_task: Optional[str] = False
74
    aggregate_metric: Optional[
75
76
        Union[List[AggMetricConfig], AggMetricConfig, dict]
    ] = None
lintangsutawika's avatar
lintangsutawika committed
77
78
79
    metadata: Optional[
        dict
    ] = None  # by default, not used in the code. allows for users to pass arbitrary info to tasks
lintangsutawika's avatar
lintangsutawika committed
80
81
82
83
84
85
86

    def __getitem__(self, item):
        return getattr(self, item)

    def __setitem__(self, item, value):
        return setattr(self, item, value)

87
    def __post_init__(self):
lintangsutawika's avatar
lintangsutawika committed
88
89
90
        if self.aggregate_metric is not None:
            if isinstance(self.aggregate_metric, dict):
                self.aggregate_metric = [self.aggregate_metric]
91

lintangsutawika's avatar
lintangsutawika committed
92
            self.aggregate_metric = [
93
                AggMetricConfig(**item) if isinstance(item, dict) else item
lintangsutawika's avatar
lintangsutawika committed
94
                for item in self.aggregate_metric
95
96
            ]

lintangsutawika's avatar
lintangsutawika committed
97
98
99
100
101
102
103
104
105
106
107
108
109
    def to_dict(self, keep_callable: bool = False) -> dict:
        """dumps the current config as a dictionary object, as a printable format.
        null fields will not be printed.
        Used for dumping results alongside full task configuration

        :return: dict
            A printable dictionary version of the TaskConfig object.

        # TODO: should any default value in the TaskConfig not be printed?
        """
        cfg_dict = asdict(self)
        # remove values that are `None`
        for k, v in list(cfg_dict.items()):
lintangsutawika's avatar
lintangsutawika committed
110
            if callable(v):
lintangsutawika's avatar
lintangsutawika committed
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
                cfg_dict[k] = self.serialize_function(v, keep_callable=keep_callable)
        return cfg_dict

    def serialize_function(
        self, value: Union[Callable, str], keep_callable=False
    ) -> Union[Callable, str]:
        """Serializes a given function or string.

        If 'keep_callable' is True, the original callable is returned.
        Otherwise, attempts to return the source code of the callable using 'getsource'.
        """
        if keep_callable:
            return value
        else:
            try:
                return getsource(value)
            except (TypeError, OSError):
                return str(value)


lintangsutawika's avatar
lintangsutawika committed
131
132
133
134
135
class ConfigurableGroup(abc.ABC):
    def __init__(
        self,
        config: Optional[dict] = None,
    ) -> None:
lintangsutawika's avatar
lintangsutawika committed
136
        # Create a unique identifier ID
lintangsutawika's avatar
lintangsutawika committed
137
        self._config = GroupConfig(**config)
138
        self._task_id = self._config.group
lintangsutawika's avatar
lintangsutawika committed
139
140
141
142

    @property
    def group(self):
        return self._config.group
143

lintangsutawika's avatar
lintangsutawika committed
144
145
146
    @property
    def group_alias(self):
        return self._config.group_alias
147
148
149
150
151

    @property
    def version(self):
        return self._config.version

lintangsutawika's avatar
lintangsutawika committed
152
153
154
155
    @property
    def config(self):
        return self._config.to_dict()

lintangsutawika's avatar
lintangsutawika committed
156
157
    @property
    def task_id(self) -> Any:
158
159
160
161
162
        return self._task_id

    @task_id.setter
    def task_id(self, value):
        self._task_id = value
lintangsutawika's avatar
lintangsutawika committed
163
164
165
166

    @property
    def group_name(self) -> Any:
        return self._config.group
lintangsutawika's avatar
lintangsutawika committed
167

lintangsutawika's avatar
lintangsutawika committed
168
169
    def __repr__(self):
        return (
170
            f"ConfigurableGroup(group={self.group}," f"group_alias={self.group_alias})"
lintangsutawika's avatar
lintangsutawika committed
171
172
        )

173

174
175
@dataclass
class TaskConfig(dict):
176
    # task naming/registry
177
178
    task: Optional[str] = None
    task_alias: Optional[str] = None
lintangsutawika's avatar
lintangsutawika committed
179
    tag: Optional[Union[str, list]] = None
180
    group: Optional[Union[str, list]] = None
181
182
183
    # HF dataset options.
    # which dataset to use,
    # and what splits for what purpose
184
185
186
187
188
189
190
191
192
    dataset_path: Optional[str] = None
    dataset_name: Optional[str] = None
    dataset_kwargs: Optional[dict] = None
    training_split: Optional[str] = None
    validation_split: Optional[str] = None
    test_split: Optional[str] = None
    fewshot_split: Optional[
        str
    ] = None  # TODO: assert that this not None if num_fewshot > 0. (?) assert if this is same split as one evaling (?)
193
194
    # formatting / prompting options.
    # see docs/advanced_task_guide.md for more info
195
196
197
198
199
200
    process_docs: Optional[Callable] = None
    doc_to_text: Optional[Union[Callable, str]] = None
    doc_to_target: Optional[Union[Callable, str]] = None
    doc_to_choice: Optional[Union[Callable, str, dict, list]] = None
    process_results: Optional[Union[Callable, str]] = None
    use_prompt: Optional[str] = None
201
    description: str = ""
202
203
    target_delimiter: str = " "
    fewshot_delimiter: str = "\n\n"
204
    fewshot_config: Optional[dict] = None
205
    # runtime configuration options
206
    num_fewshot: Optional[int] = None
207
    # scoring options
208
209
210
    metric_list: Optional[list] = None
    output_type: OutputType = "generate_until"
    generation_kwargs: Optional[dict] = None
211
    repeats: int = 1
212
    filter_list: Optional[Union[str, list]] = None
213
    should_decontaminate: bool = False
214
215
216
217
    doc_to_decontamination_query: Optional[str] = None
    metadata: Optional[
        dict
    ] = None  # by default, not used in the code. allows for users to pass arbitrary info to tasks
218

Ethan Smith's avatar
Ethan Smith committed
219
    def __post_init__(self) -> None:
Lintang Sutawika's avatar
Lintang Sutawika committed
220
        if self.generation_kwargs is not None:
221
            if self.output_type != "generate_until":
222
                eval_logger.warning(
223
                    f"[{self.task}] passed `generation_kwargs`, but not using `output_type: generate_until`!"
Lintang Sutawika's avatar
Lintang Sutawika committed
224
225
226
227
228
229
230
231
                )

            if "temperature" in self.generation_kwargs:
                self.generation_kwargs["temperature"] = float(
                    self.generation_kwargs["temperature"]
                )

            if "until" not in self.generation_kwargs:
232
                self.generation_kwargs["until"] = [self.fewshot_delimiter]
Lintang Sutawika's avatar
Lintang Sutawika committed
233
        else:
234
            if self.output_type == "generate_until":
Lintang Sutawika's avatar
Lintang Sutawika committed
235
236
                # ensure that we greedily generate in absence of explicit arguments otherwise
                self.generation_kwargs = {
237
238
239
240
241
                    "until": (
                        None
                        if self.fewshot_delimiter is None
                        else [self.fewshot_delimiter]
                    ),
Lintang Sutawika's avatar
Lintang Sutawika committed
242
243
                    "do_sample": False,
                }
244

245
246
247
    def __getitem__(self, item):
        return getattr(self, item)

248
249
250
    def __setitem__(self, item, value):
        return setattr(self, item, value)

251
    def to_dict(self, keep_callable: bool = False) -> dict:
252
253
        """dumps the current config as a dictionary object, as a printable format.
        null fields will not be printed.
haileyschoelkopf's avatar
haileyschoelkopf committed
254
        Used for dumping results alongside full task configuration
255

haileyschoelkopf's avatar
haileyschoelkopf committed
256
257
258
259
260
261
262
263
264
265
        :return: dict
            A printable dictionary version of the TaskConfig object.

        # TODO: should any default value in the TaskConfig not be printed?
        """
        cfg_dict = asdict(self)
        # remove values that are `None`
        for k, v in list(cfg_dict.items()):
            if v is None:
                cfg_dict.pop(k)
266
267
268
269
270
271
272
273
274
275
            elif k == "metric_list":
                for metric_dict in v:
                    for metric_key, metric_value in metric_dict.items():
                        if callable(metric_value):
                            metric_dict[metric_key] = self.serialize_function(
                                metric_value, keep_callable=keep_callable
                            )
                cfg_dict[k] = v
            elif callable(v):
                cfg_dict[k] = self.serialize_function(v, keep_callable=keep_callable)
haileyschoelkopf's avatar
haileyschoelkopf committed
276
        return cfg_dict
277

278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
    def serialize_function(
        self, value: Union[Callable, str], keep_callable=False
    ) -> Union[Callable, str]:
        """Serializes a given function or string.

        If 'keep_callable' is True, the original callable is returned.
        Otherwise, attempts to return the source code of the callable using 'getsource'.
        """
        if keep_callable:
            return value
        else:
            try:
                return getsource(value)
            except (TypeError, OSError):
                return str(value)

294
295
296
297
298
299
300
301
302
303
304

class Task(abc.ABC):
    """A task represents an entire benchmark including its dataset, problems,
    answers, and evaluation methods. See BoolQ for a simple example implementation

    A `doc` can be any python object which represents one instance of evaluation.
    This is usually a dictionary e.g.
        {"question": ..., "answer": ...} or
        {"question": ..., question, answer)
    """

305
    VERSION: Optional[Union[int, str]] = None
306

307
308
    # The name of the `Task` benchmark as denoted in the HuggingFace datasets Hub
    # or a path to a custom `datasets` loading script.
309
    DATASET_PATH: Optional[str] = None
310
311

    # The name of a subset within `DATASET_PATH`.
312
    DATASET_NAME: Optional[str] = None
313

314
    OUTPUT_TYPE: Optional[OutputType] = None
lintangsutawika's avatar
lintangsutawika committed
315

316
317
    def __init__(
        self,
318
319
320
321
        data_dir: Optional[str] = None,
        cache_dir: Optional[str] = None,
        download_mode: Optional[datasets.DownloadMode] = None,
        config: Optional[Mapping] = None,  # Union[dict, TaskConfig]
Ethan Smith's avatar
Ethan Smith committed
322
    ) -> None:
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
        """
        :param data_dir: str
            Stores the path to a local folder containing the `Task`'s data files.
            Use this to specify the path to manually downloaded data (usually when
            the dataset is not publicly accessible).
        :param cache_dir: str
            The directory to read/write the `Task` dataset. This follows the
            HuggingFace `datasets` API with the default cache directory located at:
                `~/.cache/huggingface/datasets`
            NOTE: You can change the cache location globally for a given process
            to another directory:
                `export HF_DATASETS_CACHE="/path/to/another/directory"`
        :param download_mode: datasets.DownloadMode
            How to treat pre-existing `Task` downloads and data.
            - `datasets.DownloadMode.REUSE_DATASET_IF_EXISTS`
                Reuse download and reuse dataset.
            - `datasets.DownloadMode.REUSE_CACHE_IF_EXISTS`
                Reuse download with fresh dataset.
            - `datasets.DownloadMode.FORCE_REDOWNLOAD`
                Fresh download and fresh dataset.
        """
        self.download(data_dir, cache_dir, download_mode)
345
346
347
        self._training_docs: Optional[list] = None
        self._fewshot_docs: Optional[list] = None
        self._instances: Optional[List[Instance]] = None
348

349
        # Create a unique identifier ID
lintangsutawika's avatar
lintangsutawika committed
350
        self._task_id = shortuuid.uuid()[:8]
351
        self._config: TaskConfig = TaskConfig({**config}) if config else TaskConfig()
352

lintangsutawika's avatar
lintangsutawika committed
353
        self._filters = [build_filter_ensemble("none", [["take_first", None]])]
354
355
356
        self.fewshot_rnd: Optional[
            random.Random
        ] = None  # purposely induce errors in case of improper usage
357

358
359
360
361
362
363
    def download(
        self,
        data_dir: Optional[str] = None,
        cache_dir: Optional[str] = None,
        download_mode=None,
    ) -> None:
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
        """Downloads and returns the task dataset.
        Override this method to download the dataset from a custom API.

        :param data_dir: str
            Stores the path to a local folder containing the `Task`'s data files.
            Use this to specify the path to manually downloaded data (usually when
            the dataset is not publicly accessible).
        :param cache_dir: str
            The directory to read/write the `Task` dataset. This follows the
            HuggingFace `datasets` API with the default cache directory located at:
                `~/.cache/huggingface/datasets`
            NOTE: You can change the cache location globally for a given process
            by setting the shell environment variable, `HF_DATASETS_CACHE`,
            to another directory:
                `export HF_DATASETS_CACHE="/path/to/another/directory"`
        :param download_mode: datasets.DownloadMode
            How to treat pre-existing `Task` downloads and data.
            - `datasets.DownloadMode.REUSE_DATASET_IF_EXISTS`
                Reuse download and reuse dataset.
            - `datasets.DownloadMode.REUSE_CACHE_IF_EXISTS`
                Reuse download with fresh dataset.
            - `datasets.DownloadMode.FORCE_REDOWNLOAD`
                Fresh download and fresh dataset.
        """
388
389
390
391
392
393
394
        self.dataset = datasets.load_dataset(
            path=self.DATASET_PATH,
            name=self.DATASET_NAME,
            data_dir=data_dir,
            cache_dir=cache_dir,
            download_mode=download_mode,
        )
395

396
    @property
397
    def config(self) -> TaskConfig:
398
399
400
        """Returns the TaskConfig associated with this class."""
        return self._config

401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
    @abc.abstractmethod
    def has_training_docs(self):
        """Whether the task has a training set"""
        pass

    @abc.abstractmethod
    def has_validation_docs(self):
        """Whether the task has a validation set"""
        pass

    @abc.abstractmethod
    def has_test_docs(self):
        """Whether the task has a test set"""
        pass

416
    def training_docs(self) -> Iterable:
417
418
419
420
421
422
        """
        :return: Iterable[obj]
            A iterable of any object, that doc_to_text can handle
        """
        return []

423
    def validation_docs(self) -> Iterable:
424
425
426
427
428
429
        """
        :return: Iterable[obj]
            A iterable of any object, that doc_to_text can handle
        """
        return []

430
    def test_docs(self) -> Iterable:
431
432
433
434
435
436
        """
        :return: Iterable[obj]
            A iterable of any object, that doc_to_text can handle
        """
        return []

437
    def fewshot_docs(self) -> Iterable:
438
439
440
441
442
443
444
445
446
        """
        :return: Iterable[obj]
            A iterable of any object, that doc_to_text can handle
        """
        if self.has_training_docs():
            return self.training_docs()
        elif self.has_validation_docs():
            return self.validation_docs()
        else:
lintangsutawika's avatar
lintangsutawika committed
447
            eval_logger.warning(
448
                f"[Task: {self.config.task}] has_training_docs and has_validation_docs are False"
449
                ", using test_docs as fewshot_docs but this is not recommended."
lintangsutawika's avatar
lintangsutawika committed
450
            )
451
452
            return self.test_docs()

453
    def _process_doc(self, doc: dict) -> dict:
454
455
456
457
458
459
460
461
462
        """
        Override this to process (detokenize, strip, replace, etc.) individual
        documents. This can be used in a map over documents of a data split.
        E.g. `map(self._process_doc, self.dataset["validation"])`

        :return: dict
            The processed version of the specified `doc`.
        """
        return doc
lintangsutawika's avatar
lintangsutawika committed
463

464
    @property
465
    def instances(self) -> List[Instance]:
466
467
468
469
470
471
472
473
474
475
476
        """After calling `task.build_all_requests()`, tasks
        maintain a list of the dataset instances which will be evaluated.
        """
        return self._instances

    def fewshot_examples(self, k, rnd):
        if self._training_docs is None:
            self._training_docs = list(self.training_docs())

        return rnd.sample(self._training_docs, k)

477
478
    def doc_to_decontamination_query(self, doc):
        raise NotImplementedError(
479
480
481
482
483
484
485
486
487
488
489
            "Override doc_to_decontamination_query with document specific decontamination query."
        )

    @abc.abstractmethod
    def doc_to_text(self, doc):
        pass

    @abc.abstractmethod
    def doc_to_target(self, doc):
        pass

490
491
    def build_all_requests(
        self,
492
        *,
493
494
495
496
497
        limit=None,
        rank=None,
        world_size=None,
        cache_requests=False,
        rewrite_requests_cache=False,
KonradSzafer's avatar
KonradSzafer committed
498
499
500
501
        system_instruction=None,
        apply_chat_template=False,
        fewshot_as_multiturn=False,
        lm=None,
502
    ) -> None:
503
        """Build a set of Instances for a task, and store them in task.instances"""
504
505
506
507

        # used with caching
        og_limit = limit

508
        cache_key = f"requests-{self._config.task}-{self.config.num_fewshot}shot-rank{rank}-world_size{world_size}"
KonradSzafer's avatar
KonradSzafer committed
509
510
511
512
513
514
515
516
        cache_key += "-chat_template" if apply_chat_template else ""
        cache_key += "-fewshot_as_multiturn" if fewshot_as_multiturn else ""
        cache_key += (
            f"-system_prompt_hash{utils.hash_string(system_instruction)}"
            if system_instruction is not None
            else ""
        )
        cache_key += f"-tokenizer{lm.tokenizer_name}" if apply_chat_template else ""
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531

        cached_instances = load_from_cache(file_name=cache_key)

        if cache_requests and cached_instances and not rewrite_requests_cache:
            cached_instances = cached_instances[:limit]

            flattened_instances = [
                instance
                for instance_group in cached_instances
                for instance in instance_group
            ]

            self._instances = flattened_instances
            return

Baber Abbasi's avatar
Baber Abbasi committed
532
        eval_logger.info(f"Building contexts for {self.config.task} on rank {rank}...")
533

534
        instances = []
535
536
537
538
539
540
541
542
543
544

        # process all documents when caching is specified for simplicity
        if (
            cache_requests
            and (not cached_instances or rewrite_requests_cache)
            and limit is not None
        ):
            limit = None

        doc_id_docs = list(
545
            self.doc_iterator(rank=rank, limit=limit, world_size=world_size)
546
547
548
549
550
551
552
        )

        num_docs = len(doc_id_docs)

        for doc_id, doc in tqdm(
            doc_id_docs,
            total=num_docs,
lintangsutawika's avatar
lintangsutawika committed
553
        ):
554
            # sample fewshot context #TODO: need to offset doc_id by rank now!
555
            fewshot_ctx = self.fewshot_context(
556
                doc,
557
                0 if self.config.num_fewshot is None else self.config.num_fewshot,
KonradSzafer's avatar
KonradSzafer committed
558
559
560
561
                system_instruction,
                apply_chat_template,
                fewshot_as_multiturn,
                lm,
562
            )
563

564
            # TODO: we should override self.config.repeats if doing greedy gen so users don't waste time+compute
lintangsutawika's avatar
lintangsutawika committed
565
566
567
            inst = self.construct_requests(
                doc=doc,
                ctx=fewshot_ctx,
568
                metadata=(self.config["task"], doc_id, self.config.repeats),
lintangsutawika's avatar
lintangsutawika committed
569
            )
570
571
572
573

            if not isinstance(inst, list):
                inst = [inst]

574
575
576
577
578
579
580
581
582
583
584
585
586
            instances.append(inst)

        # now flatten, this is to allow slicing to work with pickles

        sliced_instances = instances[:og_limit]

        flattened_instances = [
            instance
            for instance_group in sliced_instances
            for instance in instance_group
        ]

        self._instances = flattened_instances
587

588
589
        if len(self._instances) == 0:
            raise ValueError("task.build_requests() did not find any docs!")
590

591
592
593
        if cache_requests and (not cached_instances or rewrite_requests_cache):
            save_to_cache(file_name=cache_key, obj=instances)

594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
    @abc.abstractmethod
    def construct_requests(self, doc, ctx, **kwargs):
        """Uses RequestFactory to construct Requests and returns an iterable of
        Requests which will be sent to the LM.

        :param doc:
            The document as returned from training_docs, validation_docs, or test_docs.
        :param ctx: str
            The context string, generated by fewshot_context. This includes the natural
            language description, as well as the few shot examples, and the question
            part of the document for `doc`.
        :param doc_idx: int
            The index of a document within `self.test_docs()` or `self.validation_docs()`,
            whichever is the main split used.
        :param repeats: int
        TODO: update this docstring
lintangsutawika's avatar
lintangsutawika committed
610
            The number of times each instance in a dataset is inferred on. Defaults to 1,
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
            can be increased for techniques like majority voting.
        """
        pass

    @abc.abstractmethod
    def process_results(self, doc, results):
        """Take a single document and the LM results and evaluates, returning a
        dict where keys are the names of submetrics and values are the values of
        the metric for that one document

        :param doc:
            The document as returned from training_docs, validation_docs, or test_docs.
        :param results:
            The results of the requests created in construct_requests.
        """
        pass

    @abc.abstractmethod
    def aggregation(self):
        """
        :returns: {str: [metric_score] -> float}
            A dictionary where keys are the names of submetrics and values are
            functions that aggregate a list of metric scores
        """
        pass

    @abc.abstractmethod
    def higher_is_better(self):
        """
        :returns: {str: bool}
            A dictionary where keys are the names of submetrics and values are
            whether a higher value of the submetric is better
        """
        pass

646
647
648
    def get_config(self, key: str) -> Any:
        return getattr(self._config, key, None)

haileyschoelkopf's avatar
haileyschoelkopf committed
649
650
651
652
653
654
655
656
657
658
    @classmethod
    def count_bytes(cls, doc):
        """Used for byte-level perplexity metrics in rolling loglikelihood"""
        return len(doc.encode("utf-8"))

    @classmethod
    def count_words(cls, doc):
        """Downstream loglikelihood_rolling perplexity tasks with custom word boundaries should override this!"""
        return len(re.split(r"\s+", doc))

659
    @utils.positional_deprecated
lintangsutawika's avatar
lintangsutawika committed
660
    def fewshot_context(
661
662
663
        self,
        doc,
        num_fewshot,
664
        rnd=None,
665
        description=None,
lintangsutawika's avatar
lintangsutawika committed
666
    ):
667
668
669
670
671
672
673
        """Returns a fewshot context string that is made up of a prepended description
        (if provided), the `num_fewshot` number of examples, and an appended prompt example.

        :param doc: str
            The document as returned from training_docs, validation_docs, or test_docs.
        :param num_fewshot: int
            The number of fewshot examples to provide in the returned context string.
lintangsutawika's avatar
lintangsutawika committed
674
675
676
677
678
        :param rnd: random.Random
            The pseudo-random number generator used to randomly sample examples.
            WARNING: This is currently a required arg although it's optionalized with a default `None`.
        :param description: str
            The task's description that will be prepended to the fewshot examples.
679
680
681
        :returns: str
            The fewshot context.
        """
682
        if rnd is None:
683
684
685
686
687
688
            if self.fewshot_rnd is not None:
                rnd = self.fewshot_rnd
            else:
                raise ValueError(
                    "A `random.Random` generator argument must be provided to `rnd`"
                )
lintangsutawika's avatar
lintangsutawika committed
689

690
        description = description if description else ""
691
692

        if num_fewshot == 0:
lintangsutawika's avatar
lintangsutawika committed
693
            labeled_examples = ""
694
        else:
lintangsutawika's avatar
lintangsutawika committed
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
            # for sets with no training docs, draw from other set *but ensure no overlap with current doc*
            if self.has_training_docs():
                fewshotex = self.fewshot_examples(k=num_fewshot, rnd=rnd)
            else:
                if self._fewshot_docs is None:
                    self._fewshot_docs = list(
                        self.validation_docs()
                        if self.has_validation_docs()
                        else self.test_docs()
                    )

                fewshotex = rnd.sample(self._fewshot_docs, num_fewshot + 1)

                # get rid of the doc that's the one we're evaluating, if it's in the fewshot
                fewshotex = [x for x in fewshotex if x != doc][:num_fewshot]

            labeled_examples = (
                "\n\n".join(
                    [
                        self.doc_to_text(doc) + self.doc_to_target(doc)
                        for doc in fewshotex
                    ]
                )
                + "\n\n"
lintangsutawika's avatar
lintangsutawika committed
719
            )
720
721

        example = self.doc_to_text(doc)
lintangsutawika's avatar
lintangsutawika committed
722
        return description + labeled_examples + example
723

724
    def apply_filters(self) -> Optional[List[Instance]]:
Baber Abbasi's avatar
Baber Abbasi committed
725
        """Iterates over FilterEnsembles and applies them to instances"""
lintangsutawika's avatar
lintangsutawika committed
726
727
        if hasattr(self, "_filters"):
            for f in self._filters:
728
                f.apply(self._instances)
lintangsutawika's avatar
lintangsutawika committed
729
730
731
        else:
            eval_logger.warning("No filter defined, passing through instances")
            return self._instances
732

baberabb's avatar
baberabb committed
733
    def dump_config(self) -> dict:
Baber Abbasi's avatar
Baber Abbasi committed
734
        """Returns the config as a dictionary."""
735
        # TODO: this should only return the overrides applied to a non-YAML task's configuration.
736
        # (num_fewshot)
737
        return self.config.to_dict()
738

Baber Abbasi's avatar
Baber Abbasi committed
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
    def set_config(self, key: str, value: Any, update: bool = False) -> None:
        """Set or update the configuration for a given key."""
        if key is None:
            raise ValueError("Key must be provided.")

        if update:
            current_value = getattr(self._config, key, {})
            if not isinstance(current_value, dict):
                raise TypeError(
                    f"Expected a dict for key '{key}', got {type(current_value).__name__} instead."
                )
            current_value.update(value)
        else:
            setattr(self._config, key, value)

    def override_metric(self, metric_name: str) -> None:
        """
        Override the default metrics used for evaluation with custom metrics.

        Parameters:
        - metric_name (str): The name of the custom metric to override. Should be registered in api.metrics.
        """
        (
            self._metric_fn_list,
            self._aggregation_list,
            self._metric_fn_kwargs,
            self._higher_is_better,
        ) = ({}, {}, {}, {})
        self._metric_fn_list[metric_name] = get_metric(metric_name)
        self._aggregation_list[metric_name] = get_metric_aggregation(metric_name)
        self._higher_is_better[metric_name] = is_higher_better(metric_name)
        self._metric_fn_kwargs[metric_name] = {}
        if not isinstance(self, ConfigurableTask):
            self.process_results = lambda x, y: {metric_name: get_metric(metric_name)}
            self.aggregation = lambda: {
                metric_name: get_metric_aggregation(metric_name)
            }
        setattr(self._config, "metric_list", [{"metric": metric_name}])
        setattr(self._config, "process_results", None)

779
780
781
782
783
    def set_fewshot_seed(self, seed: Optional[int] = None) -> None:
        self.fewshot_rnd = random.Random(seed)
        if hasattr(self, "sampler"):
            self.sampler.rnd = self.fewshot_rnd

784
785
786
787
788
789
790
    @property
    def eval_docs(self) -> Union[datasets.Dataset, List[dict]]:
        if self.has_test_docs():
            return self.test_docs()
        elif self.has_validation_docs():
            return self.validation_docs()
        else:
791
792
793
            raise ValueError(
                f"Task dataset (path={self.DATASET_PATH}, name={self.DATASET_NAME}) must have valid or test docs!"
            )
794
795
796
797
798
799
800
801
802
803
804
805
806

    def doc_iterator(
        self, *, rank: int = 0, limit: Union[int, None] = None, world_size: int = 1
    ) -> Iterator[Tuple[int, Any]]:
        limit = int(limit) if limit else None
        doc_iterator = utils.create_iterator(
            enumerate(self.eval_docs),
            rank=int(rank),
            limit=limit,
            world_size=int(world_size),
        )
        return doc_iterator

807
808
809
    @property
    def task_id(self) -> Any:
        return self._task_id
810

811
812
813
814
    @task_id.setter
    def task_id(self, value):
        self._task_id = value

815

816
class ConfigurableTask(Task):
817
    VERSION = "Yaml"
818
    OUTPUT_TYPE = None
819
    CONFIG = None
820
821

    def __init__(
822
823
824
825
826
        self,
        data_dir=None,
        cache_dir=None,
        download_mode=None,
        config: Optional[dict] = None,
Ethan Smith's avatar
Ethan Smith committed
827
    ) -> None:  # TODO no super() call here
lintangsutawika's avatar
lintangsutawika committed
828
        # Create a unique identifier ID
lintangsutawika's avatar
lintangsutawika committed
829
        self._task_id = shortuuid.uuid()[:8]
lintangsutawika's avatar
lintangsutawika committed
830

831
        # Get pre-configured attributes
832
        self._config = self.CONFIG
833

834
        # Use new configurations if there was no preconfiguration
835
        if self.config is None:
836
            self._config = TaskConfig(**config)
837
838
        # Overwrite configs
        else:
lintangsutawika's avatar
lintangsutawika committed
839
            if config is not None:
840
                self._config.__dict__.update(config)
841

842
        if self.config is None:
lintangsutawika's avatar
lintangsutawika committed
843
844
845
            raise ValueError(
                "Must pass a config to ConfigurableTask, either in cls.CONFIG or `config` kwarg"
            )
846

847
848
849
850
        if isinstance(self.config.metadata, dict):
            if "version" in self.config.metadata:
                self.VERSION = self.config.metadata["version"]

851
        if self.config.output_type is not None:
852
853
854
855
            if self.config.output_type not in ALL_OUTPUT_TYPES:
                raise ValueError(
                    f"Got invalid output_type '{self.config.output_type}', must be in '{','.join(ALL_OUTPUT_TYPES)}'"
                )
856
            self.OUTPUT_TYPE = self.config.output_type
857

858
859
        if self.config.dataset_path is not None:
            self.DATASET_PATH = self.config.dataset_path
860

861
862
        if self.config.dataset_name is not None:
            self.DATASET_NAME = self.config.dataset_name
863

864
865
866
867
        self._metric_fn_list = {}
        self._metric_fn_kwargs = {}
        self._aggregation_list = {}
        self._higher_is_better = {}
868

869
        if self.config.metric_list is None:
870
            # TODO: handle this in TaskConfig.__post_init__ ?
871
872
            _metric_list = DEFAULT_METRIC_REGISTRY[self.config.output_type]

873
            for metric_name in _metric_list:
haileyschoelkopf's avatar
haileyschoelkopf committed
874
                self._metric_fn_list[metric_name] = get_metric(metric_name)
lintangsutawika's avatar
lintangsutawika committed
875
                self._metric_fn_kwargs[metric_name] = {}
876
877
878
                self._aggregation_list[metric_name] = get_metric_aggregation(
                    metric_name
                )
haileyschoelkopf's avatar
haileyschoelkopf committed
879
                self._higher_is_better[metric_name] = is_higher_better(metric_name)
880
        else:
881
            for metric_config in self.config.metric_list:
882
883
884
885
                if "metric" not in metric_config:
                    raise ValueError(
                        "'metric' key not provided for an entry in 'metric_list', must be specified!"
                    )
886
887
888
889
                metric_name = metric_config["metric"]
                kwargs = {
                    key: metric_config[key]
                    for key in metric_config
Chris's avatar
Chris committed
890
891
                    if key
                    not in ["metric", "aggregation", "higher_is_better", "hf_evaluate"]
892
                }
Chris's avatar
Chris committed
893
894
895
896
                hf_evaluate_metric = (
                    "hf_evaluate" in metric_config
                    and metric_config["hf_evaluate"] is True
                )
897

898
                if self.config.process_results is not None:
899
900
                    self._metric_fn_list[metric_name] = None
                    self._metric_fn_kwargs[metric_name] = {}
901
902
903
904
905
906
                elif callable(metric_name):
                    metric_fn = metric_name.__call__
                    metric_name = metric_name.__name__
                    self._metric_fn_list[metric_name] = metric_fn
                    self._metric_fn_kwargs[metric_name] = kwargs
                else:
Chris's avatar
Chris committed
907
908
909
                    self._metric_fn_list[metric_name] = get_metric(
                        metric_name, hf_evaluate_metric
                    )
910
                    self._metric_fn_kwargs[metric_name] = kwargs
lintangsutawika's avatar
lintangsutawika committed
911

912
                if "aggregation" in metric_config:
913
                    agg_name = metric_config["aggregation"]
914
                    if isinstance(agg_name, str):
haileyschoelkopf's avatar
haileyschoelkopf committed
915
                        self._aggregation_list[metric_name] = get_aggregation(agg_name)
916
                    elif callable(agg_name):  # noqa: E721
917
918
919
                        self._aggregation_list[metric_name] = metric_config[
                            "aggregation"
                        ]
920
                else:
921
                    INV_AGG_REGISTRY = {v: k for k, v in AGGREGATION_REGISTRY.items()}
lintangsutawika's avatar
lintangsutawika committed
922
                    metric_agg = get_metric_aggregation(metric_name)
923
                    eval_logger.warning(
924
                        f"[Task: {self.config.task}] metric {metric_name} is defined, but aggregation is not. "
925
926
                        f"using default "
                        f"aggregation={INV_AGG_REGISTRY[metric_agg]}"
927
                    )
928
                    self._aggregation_list[metric_name] = metric_agg
lintangsutawika's avatar
lintangsutawika committed
929

930
931
932
933
934
935
                if "higher_is_better" in metric_config:
                    self._higher_is_better[metric_name] = metric_config[
                        "higher_is_better"
                    ]
                else:
                    eval_logger.warning(
936
                        f"[Task: {self.config.task}] metric {metric_name} is defined, but higher_is_better is not. "
937
                        f"using default "
haileyschoelkopf's avatar
haileyschoelkopf committed
938
                        f"higher_is_better={is_higher_better(metric_name)}"
939
                    )
haileyschoelkopf's avatar
haileyschoelkopf committed
940
                    self._higher_is_better[metric_name] = is_higher_better(metric_name)
941

942
        self.download(self.config.dataset_kwargs)
943
944
945
        self._training_docs = None
        self._fewshot_docs = None

946
        if self.config.filter_list is not None:
lintangsutawika's avatar
lintangsutawika committed
947
            self._filters = []
948
            for filter_config in self.config.filter_list:
949
950
951
952
953
954
955
956
957
                filter_name = filter_config["name"]
                filter_functions = filter_config["filter"]
                components = []
                for function in filter_functions:
                    kwargs = {
                        key: function[key] for key in function if key != "function"
                    }
                    components.append([function["function"], kwargs])
                filter_pipeline = build_filter_ensemble(filter_name, components)
lintangsutawika's avatar
lintangsutawika committed
958
                self._filters.append(filter_pipeline)
lintangsutawika's avatar
lintangsutawika committed
959
        else:
960
            self._filters = [build_filter_ensemble("none", [["take_first", None]])]
961

962
963
        if self.config.use_prompt is not None:
            eval_logger.info(f"loading prompt {self.config.use_prompt}")
964
            self.prompt = get_prompt(
965
                self.config.use_prompt, self.DATASET_PATH, self.DATASET_NAME
lintangsutawika's avatar
lintangsutawika committed
966
            )
967
968
969
        else:
            self.prompt = None

lintangsutawika's avatar
lintangsutawika committed
970
        if self.fewshot_docs() is not None:
971
972
973
974
            self.fewshot_rnd = (
                random.Random()
            )  # setting with no seed, to be overridden at a later time
            config_sampler: Union[str, Callable] = (
haileyschoelkopf's avatar
haileyschoelkopf committed
975
976
977
                self.config.fewshot_config.get("sampler", "default")
                if self.config.fewshot_config
                else "default"
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
            )
            if isinstance(config_sampler, str):
                self.sampler = samplers.get_sampler(config_sampler)(
                    list(self.fewshot_docs()), self, rnd=self.fewshot_rnd
                )
            elif callable(config_sampler) and issubclass(
                config_sampler, samplers.ContextSampler
            ):
                self.sampler = config_sampler(
                    docs=list(self.fewshot_docs()), task=self, rnd=self.fewshot_rnd
                )
            else:
                raise TypeError(
                    f"fewshot_config.sampler should be a string or callable of ContextSampler type, "
                    f"not {type(config_sampler)}"
                )
994

995
        self.task_docs = self.eval_docs
996

997
        # Test One Doc
998
        self.features = list(self.task_docs.features.keys())
999
1000
        self.multiple_input = 0
        self.multiple_target = 0
1001
        test_doc = self.task_docs[0]
1002
        test_text = self.doc_to_text(test_doc)
1003
        test_target = self.doc_to_target(test_doc)
lintangsutawika's avatar
lintangsutawika committed
1004

1005
        if self.config.doc_to_choice is not None:
lintangsutawika's avatar
lintangsutawika committed
1006
            test_choice = self.doc_to_choice(test_doc)
1007
            if not isinstance(test_choice, list):
lintangsutawika's avatar
lintangsutawika committed
1008
                eval_logger.error("doc_to_choice must return list")
1009
1010
            else:
                num_choice = len(test_choice)
1011

1012
            if isinstance(test_text, int):
1013
                self.multiple_input = num_choice
1014
1015
        else:
            test_choice = None
1016

1017
        if isinstance(test_target, list):
1018
            self.multiple_target = len(test_target)
1019
        else:
1020
            if (isinstance(test_target, int)) and (test_choice is not None):
lintangsutawika's avatar
lintangsutawika committed
1021
                test_target = test_choice[test_target]
1022
            else:
lintangsutawika's avatar
lintangsutawika committed
1023
                test_target = str(test_target)
1024

1025
1026
1027
        if test_choice is not None:
            check_choices = test_choice
        else:
lintangsutawika's avatar
lintangsutawika committed
1028
            check_choices = [test_target]
1029
1030
1031
1032
        if self.config.doc_to_choice is not None:
            for choice in check_choices:
                choice_has_whitespace = True if choice[0].isspace() else False
                delimiter_has_whitespace = (
1033
1034
                    True
                    if self.config.target_delimiter.rstrip()
1035
                    != self.config.target_delimiter
1036
                    else False
1037
                )
1038

1039
                if delimiter_has_whitespace and choice_has_whitespace:
1040
1041
                    eval_logger.debug(
                        f'Both target_delimiter "{self.config.target_delimiter}" and target choice: "{choice}" have whitespace'
1042
1043
                    )
                elif (not delimiter_has_whitespace) and (not choice_has_whitespace):
1044
                    eval_logger.debug(
1045
                        f'Both target_delimiter "{self.config.target_delimiter}" and target choice: "{choice}" do not have whitespace, ignore if the language you are evaluating on does not require/use whitespace'
1046
1047
                    )

1048
    def download(self, dataset_kwargs: Optional[Dict[str, Any]] = None) -> None:
1049
1050
1051
1052
1053
1054
        self.dataset = datasets.load_dataset(
            path=self.DATASET_PATH,
            name=self.DATASET_NAME,
            **dataset_kwargs if dataset_kwargs is not None else {},
        )

baberabb's avatar
baberabb committed
1055
    def has_training_docs(self) -> bool:
1056
        if self.config.training_split is not None:
1057
1058
1059
1060
            return True
        else:
            return False

baberabb's avatar
baberabb committed
1061
    def has_validation_docs(self) -> bool:
1062
        if self.config.validation_split is not None:
1063
1064
1065
1066
            return True
        else:
            return False

baberabb's avatar
baberabb committed
1067
    def has_test_docs(self) -> bool:
1068
        if self.config.test_split is not None:
1069
1070
1071
1072
            return True
        else:
            return False

baberabb's avatar
baberabb committed
1073
    def training_docs(self) -> datasets.Dataset:
1074
        if self.has_training_docs():
1075
1076
1077
            if self.config.process_docs is not None:
                return self.config.process_docs(
                    self.dataset[self.config.training_split]
1078
                )
1079
            return self.dataset[self.config.training_split]
1080

baberabb's avatar
baberabb committed
1081
    def validation_docs(self) -> datasets.Dataset:
1082
        if self.has_validation_docs():
1083
1084
1085
            if self.config.process_docs is not None:
                return self.config.process_docs(
                    self.dataset[self.config.validation_split]
1086
                )
1087
            return self.dataset[self.config.validation_split]
1088

baberabb's avatar
baberabb committed
1089
    def test_docs(self) -> datasets.Dataset:
1090
        if self.has_test_docs():
1091
1092
1093
            if self.config.process_docs is not None:
                return self.config.process_docs(self.dataset[self.config.test_split])
            return self.dataset[self.config.test_split]
1094

1095
    def fewshot_docs(self):
1096
        if self.config.fewshot_split is not None:
1097
1098
            if self.config.process_docs is not None:
                return self.config.process_docs(self.dataset[self.config.fewshot_split])
1099
            return self.dataset[self.config.fewshot_split]
1100
1101
1102
1103
1104
1105
1106
1107
1108
1109
1110
1111
        elif (
            self.config.fewshot_config is not None
            and self.config.fewshot_config.get("samples", None) is not None
        ):
            if isinstance(self.config.fewshot_config["samples"], list):
                return self.config.fewshot_config["samples"]
            elif callable(self.config.fewshot_config["samples"]):
                return self.config.fewshot_config["samples"]()
            else:
                raise Exception(
                    "`fewshot_config['samples']` was incorrectly defined in the configuration. It should be either a list of samples as a dict, or function returning this list."
                )
1112
        else:
1113
            if (self.config.num_fewshot is not None) and (self.config.num_fewshot > 0):
1114
                eval_logger.warning(
lintangsutawika's avatar
lintangsutawika committed
1115
                    f"[Task: {self.config.task}] "
1116
1117
1118
1119
                    "num_fewshot > 0 but fewshot_split is None. "
                    "using preconfigured rule."
                )
            return super().fewshot_docs()
1120

KonradSzafer's avatar
KonradSzafer committed
1121
1122
1123
1124
1125
1126
1127
1128
1129
1130
1131
1132
1133
1134
1135
1136
1137
1138
1139
1140
1141
    @staticmethod
    def append_target_question(
        labeled_examples: List[Dict[str, str]],
        question: str,
        fewshot_as_multiturn: bool = False,
    ) -> None:
        """Adds a target question to the labeled examples list.
        If fewshot_as_multiturn is True, or labeled_examples is empty, or the last entry is a system turn, appends the question as a new user entry.
        Otherwise, it is appended to the last user entry, ensuring that the conversation alternates between the user and the assistant.
        """
        if not fewshot_as_multiturn:
            # if no messages or last message is system, append as new user entry
            if len(labeled_examples) == 0 or labeled_examples[-1]["role"] == "system":
                labeled_examples.append({"role": "user", "content": question})
            # if last message is user, append to it to avoid two user messages in a row
            else:
                labeled_examples[-1]["content"] += question
        else:
            # if fewshot_as_multiturn is True, append as next user entry (last is always assistant)
            labeled_examples.append({"role": "user", "content": question})

lintangsutawika's avatar
lintangsutawika committed
1142
    @utils.positional_deprecated
KonradSzafer's avatar
KonradSzafer committed
1143
1144
1145
1146
1147
1148
1149
1150
1151
    def fewshot_context(
        self,
        doc: str,
        num_fewshot: int,
        system_instruction: Optional[str] = None,
        apply_chat_template: bool = False,
        fewshot_as_multiturn: bool = False,
        lm=None,
    ) -> str:
lintangsutawika's avatar
lintangsutawika committed
1152
1153
1154
1155
1156
1157
1158
        """Returns a fewshot context string that is made up of a prepended description
        (if provided), the `num_fewshot` number of examples, and an appended prompt example.

        :param doc: str
            The document as returned from training_docs, validation_docs, or test_docs.
        :param num_fewshot: int
            The number of fewshot examples to provide in the returned context string.
KonradSzafer's avatar
KonradSzafer committed
1159
1160
1161
1162
1163
1164
1165
1166
        :param  system_instruction: str
            System instruction to be applied to the prompt.
        :param apply_chat_template: bool
            Whether to apply the chat template to the fewshot context.
        :param fewshot_as_multiturn: bool
            Whether to provide the fewshot examples as a multiturn conversation or a single user turn.
        :param lm:
            Language model with definition of the tokenizer/function to use for applying the chat template.
lintangsutawika's avatar
lintangsutawika committed
1167
1168
1169
        :returns: str
            The fewshot context.
        """
KonradSzafer's avatar
KonradSzafer committed
1170
1171
1172
1173
1174
1175
1176

        if apply_chat_template:
            labeled_examples = []
        else:
            labeled_examples = ""

        # get task description
1177
1178
        if description := self.config.description:
            description = utils.apply_template(self.config.description, doc)
lintangsutawika's avatar
lintangsutawika committed
1179

KonradSzafer's avatar
KonradSzafer committed
1180
1181
1182
1183
1184
1185
1186
1187
1188
        # create system prompt based on the provided system instruction and description
        if system_instruction is not None and description:
            system_prompt = (
                f"{system_instruction}{self.sampler.fewshot_delimiter}{description}"
            )
        elif system_instruction is not None:
            system_prompt = system_instruction
        elif description:
            system_prompt = description
lintangsutawika's avatar
lintangsutawika committed
1189
        else:
KonradSzafer's avatar
KonradSzafer committed
1190
1191
1192
1193
1194
1195
1196
1197
1198
1199
1200
1201
1202
1203
1204
1205
1206
1207
1208
            system_prompt = ""

        # add system prompt if specified
        if system_prompt:
            if apply_chat_template:
                labeled_examples.append({"role": "system", "content": system_prompt})
            else:
                labeled_examples = system_prompt

        # if few-shot - append examples after the system prompt
        if num_fewshot > 0:
            if apply_chat_template:
                labeled_examples.extend(
                    self.sampler.get_chat_context(
                        doc, num_fewshot, fewshot_as_multiturn
                    )
                )
            else:
                labeled_examples += self.sampler.get_context(doc, num_fewshot)
lintangsutawika's avatar
lintangsutawika committed
1209
1210

        example = self.doc_to_text(doc)
KonradSzafer's avatar
KonradSzafer committed
1211
1212
1213
1214
1215
1216
1217
1218
1219
1220
1221
1222
1223
1224
1225
1226
1227
1228
1229
1230
1231
1232
1233
1234
1235
1236
1237
1238
1239
        if apply_chat_template:
            if self.multiple_input:
                return lm.apply_chat_template(labeled_examples)
            if isinstance(example, str):
                self.append_target_question(
                    labeled_examples, example, fewshot_as_multiturn
                )
            # for loglikelihood create a list of questions with appended choices
            elif isinstance(example, list):
                labeled_examples_list = []
                # copy chat history for each example and append the answer
                for ex in example:
                    chat = deepcopy(labeled_examples)
                    self.append_target_question(chat, ex, fewshot_as_multiturn)
                    labeled_examples_list.append(lm.apply_chat_template(chat))
                return labeled_examples_list
            # if example is an integer, append the choice or convert to string
            elif isinstance(example, int):
                if self.config.doc_to_choice is not None:
                    choices = self.doc_to_choice(doc)
                    self.append_target_question(
                        labeled_examples, choices[example], fewshot_as_multiturn
                    )
                else:
                    self.append_target_question(
                        labeled_examples, str(example), fewshot_as_multiturn
                    )
                # return lm.apply_chat_template(labeled_examples)
            return lm.apply_chat_template(labeled_examples)
1240
        else:
KonradSzafer's avatar
KonradSzafer committed
1241
1242
            if self.multiple_input:
                return labeled_examples
1243
1244
1245
1246
1247
1248
1249
1250
1251
1252
            if isinstance(example, str):
                return labeled_examples + example
            elif isinstance(example, list):
                return [labeled_examples + ex for ex in example]
            elif isinstance(example, int):
                if self.config.doc_to_choice is not None:
                    choices = self.doc_to_choice(doc)
                    return labeled_examples + choices[example]
                else:
                    return labeled_examples + str(example)
lintangsutawika's avatar
lintangsutawika committed
1253

1254
    def apply_filters(self):
Baber Abbasi's avatar
Baber Abbasi committed
1255
        """Iterates over FilterEnsembles and applies them to instances"""
1256
1257
        if hasattr(self, "_filters"):
            for f in self._filters:
1258
                f.apply(self._instances)
1259
1260
1261
1262
        else:
            eval_logger.warning("No filter defined, passing through instances")
            return self._instances

1263
    def should_decontaminate(self):
1264
        return self.config.should_decontaminate
1265
1266

    def doc_to_decontamination_query(self, doc):
1267
        if self.config.should_decontaminate:
1268
1269
            if self.config.doc_to_decontamination_query is None:
                return self.doc_to_text(doc)
1270
            else:
1271
1272
1273
1274
1275
1276
1277
1278
1279
1280
1281
                doc_to_decontamination_query = self.config.doc_to_decontamination_query
                if doc_to_decontamination_query in self.features:
                    return doc[doc_to_decontamination_query]
                elif callable(doc_to_decontamination_query):
                    return doc_to_decontamination_query(doc)
                else:
                    return ast.literal_eval(
                        utils.apply_template(
                            self.config.doc_to_decontamination_query, doc
                        )
                    )
1282

1283
    def _process_doc(self, doc: dict) -> dict:
1284
1285
1286
1287
1288
1289
1290
1291
1292
1293
1294
        """
        Override this to process (detokenize, strip, replace, etc.) individual
        documents. This can be used in a map over documents of a data split.
        E.g. `map(self._process_doc, self.dataset["validation"])`

        :return: dict
            The processed version of the specified `doc`.
        """
        return doc

    def doc_to_text(self, doc):
1295
1296
        if self.prompt is not None:
            doc_to_text = self.prompt
1297
        else:
1298
            doc_to_text = self.config.doc_to_text
lintangsutawika's avatar
lintangsutawika committed
1299

1300
        if isinstance(doc_to_text, int):
1301
            return doc_to_text
1302
        elif isinstance(doc_to_text, str):
1303
            if doc_to_text in self.features:
1304
                # if self.config.doc_to_choice is not None:
1305
1306
                #     return self.doc_to_choice(doc)[doc[doc_to_text]]
                # else:
1307
1308
                return doc[doc_to_text]
            else:
lintangsutawika's avatar
lintangsutawika committed
1309
                text_string = utils.apply_template(doc_to_text, doc)
lintangsutawika's avatar
lintangsutawika committed
1310
                if text_string.isdigit() and self._config.doc_to_choice is not None:
lintangsutawika's avatar
lintangsutawika committed
1311
1312
1313
                    return ast.literal_eval(text_string)
                else:
                    return text_string
1314
        elif callable(doc_to_text):
1315
            return doc_to_text(doc)
lintangsutawika's avatar
lintangsutawika committed
1316
        # Used when applying a Promptsource template
1317
        elif hasattr(doc_to_text, "apply"):
1318
1319
1320
1321
1322
            applied_prompt = doc_to_text.apply(doc)
            if len(applied_prompt) == 2:
                return applied_prompt[0]
            else:
                eval_logger.warning("Applied prompt returns empty string")
1323
                return self.config.fewshot_delimiter
1324
        else:
1325
            print(type(doc_to_text))
1326
            raise TypeError
1327

1328
    def doc_to_target(self, doc: Mapping) -> Union[int, str, list]:
1329
1330
        if self.prompt is not None:
            doc_to_target = self.prompt
1331
        else:
1332
            doc_to_target = self.config.doc_to_target
1333

1334
        if isinstance(doc_to_target, int):
1335
            return doc_to_target
1336
        elif isinstance(doc_to_target, str):
1337
            if doc_to_target in self.features:
1338
                # if self.config.doc_to_choice is not None:
1339
1340
1341
                #     return self.doc_to_choice(doc)[doc[doc_to_target]]
                # else:
                return doc[doc_to_target]
1342
            else:
lintangsutawika's avatar
lintangsutawika committed
1343
                target_string = utils.apply_template(doc_to_target, doc)
lintangsutawika's avatar
lintangsutawika committed
1344
                if target_string.isdigit() and self._config.doc_to_choice is not None:
lintangsutawika's avatar
lintangsutawika committed
1345
                    return ast.literal_eval(target_string)
lintangsutawika's avatar
lintangsutawika committed
1346
1347
1348
1349
1350
                elif (
                    len(target_string) >= 2
                    and (target_string[0] == "[")
                    and (target_string[-1] == "]")
                ):
baberabb's avatar
baberabb committed
1351
1352
1353
1354
                    try:
                        return ast.literal_eval(target_string)
                    except (SyntaxError, ValueError):
                        return target_string
lintangsutawika's avatar
lintangsutawika committed
1355
1356
                else:
                    return target_string
1357
        elif isinstance(doc_to_target, list):
1358
            return doc_to_target
1359
        elif callable(doc_to_target):
1360
            return doc_to_target(doc)
lintangsutawika's avatar
lintangsutawika committed
1361
        # Used when applying a Promptsource template
1362
        elif hasattr(doc_to_target, "apply"):
1363
            applied_prompt = doc_to_target.apply(doc)
1364
1365
1366
1367
            if len(applied_prompt) == 2:
                return applied_prompt[1]
            else:
                eval_logger.warning("Applied prompt returns empty string")
1368
                return self.config.fewshot_delimiter
1369
1370
        else:
            raise TypeError
1371

baberabb's avatar
baberabb committed
1372
    def doc_to_choice(self, doc: Any) -> List[str]:
1373
1374
        if self.prompt is not None:
            doc_to_choice = self.prompt
1375
        elif self.config.doc_to_choice is None:
1376
1377
            eval_logger.error("doc_to_choice was called but not set in config")
        else:
1378
            doc_to_choice = self.config.doc_to_choice
1379

1380
        if isinstance(doc_to_choice, str):
1381
1382
1383
1384
            if doc_to_choice in self.features:
                return doc[doc_to_choice]
            else:
                return ast.literal_eval(utils.apply_template(doc_to_choice, doc))
1385
        elif isinstance(doc_to_choice, list):
1386
            return doc_to_choice
1387
        elif isinstance(doc_to_choice, dict):
1388
1389
1390
1391
1392
1393
1394
            return list(doc_to_choice.values())
        elif callable(doc_to_choice):
            return doc_to_choice(doc)
        elif hasattr(doc_to_choice, "get_answer_choices_list"):
            return doc_to_choice.get_answer_choices_list(doc)
        else:
            raise TypeError
1395

baberabb's avatar
baberabb committed
1396
1397
1398
    def construct_requests(
        self, doc: dict, ctx: str, **kwargs
    ) -> Union[List[Instance], Instance]:
1399
        if self.OUTPUT_TYPE == "loglikelihood":
lintangsutawika's avatar
lintangsutawika committed
1400
            arguments = (ctx, self.doc_to_target(doc))
1401
        elif self.OUTPUT_TYPE == "loglikelihood_rolling":
lintangsutawika's avatar
lintangsutawika committed
1402
            arguments = (self.doc_to_target(doc),)
1403
        elif self.OUTPUT_TYPE == "multiple_choice":
1404
            choices = self.doc_to_choice(doc)
1405
            target_delimiter = self.config.target_delimiter
1406
1407
            if self.multiple_input:
                # If there are multiple inputs, choices are placed in the ctx
1408
                cont = self.doc_to_target(doc)
1409
1410
1411
                arguments = [
                    (ctx + choice, f"{target_delimiter}{cont}") for choice in choices
                ]
1412
            else:
1413
                # Otherwise they are placed in the continuation
1414
                arguments = [(ctx, f"{target_delimiter}{cont}") for cont in choices]
1415

1416
            request_list = [
1417
1418
                Instance(
                    request_type="loglikelihood",
lintangsutawika's avatar
lintangsutawika committed
1419
                    doc=doc,
1420
                    arguments=arg,
1421
                    idx=i,
1422
1423
                    **kwargs,
                )
1424
                for i, arg in enumerate(arguments)
1425
            ]
1426
            # TODO: we should raise a warning telling users this will at most ~2x runtime.
1427
            if "acc_mutual_info" in self._metric_fn_list.keys():
1428
1429
1430
                # if we are calculating multiple choice accuracy
                # using mutual information instead of raw loglikelihood as metric, need unconditional lls.

lintangsutawika's avatar
lintangsutawika committed
1431
                # here mutual info refers to calculating
1432
1433
1434
1435
1436
1437
                # log(P(choice|ctx) / P(choice)) = log(P(choice|ctx)) - log(P(choice))
                # in other words normalizing by subtracting the unconditional logprob of each choice.
                request_list.extend(
                    [
                        Instance(
                            request_type="loglikelihood",
lintangsutawika's avatar
lintangsutawika committed
1438
                            doc=doc,
1439
                            arguments=("", "{}".format(choice)),
1440
1441
1442
                            idx=i,
                            **kwargs,
                        )
lintangsutawika's avatar
lintangsutawika committed
1443
                        for i, choice in enumerate(choices)
1444
1445
1446
                    ]
                )
            return request_list
lintangsutawika's avatar
lintangsutawika committed
1447

1448
        elif self.OUTPUT_TYPE == "generate_until":
1449
            arguments = (ctx, deepcopy(self.config.generation_kwargs))
lintangsutawika's avatar
lintangsutawika committed
1450
1451

        return Instance(
lintangsutawika's avatar
lintangsutawika committed
1452
1453
            request_type=self.OUTPUT_TYPE, doc=doc, arguments=arguments, idx=0, **kwargs
        )
1454
1455

    def process_results(self, doc, results):
1456
1457
        if callable(self.config.process_results):
            return self.config.process_results(doc, results)
lintangsutawika's avatar
lintangsutawika committed
1458

1459
        result_dict = {}
1460
        use_metric = list(self._metric_fn_list.keys())
1461
1462
1463
        if self.OUTPUT_TYPE == "loglikelihood":
            results = results[0]
            ll, is_greedy = results
1464
1465
1466
1467
            return {
                **({"perplexity": ll} if "perplexity" in use_metric else {}),
                **({"acc": int(is_greedy)} if "acc" in use_metric else {}),
            }
1468
        elif self.OUTPUT_TYPE == "loglikelihood_rolling":
haileyschoelkopf's avatar
haileyschoelkopf committed
1469
            (loglikelihood,) = results
1470
1471
            _words = self.count_words(self.doc_to_target(doc))
            _bytes = self.count_bytes(self.doc_to_target(doc))
haileyschoelkopf's avatar
haileyschoelkopf committed
1472
            return {
1473
1474
1475
1476
1477
1478
1479
1480
1481
1482
1483
1484
1485
1486
1487
                **(
                    {"word_perplexity": (loglikelihood, _words)}
                    if "word_perplexity" in use_metric
                    else {}
                ),
                **(
                    {"byte_perplexity": (loglikelihood, _bytes)}
                    if "byte_perplexity" in use_metric
                    else {}
                ),
                **(
                    {"bits_per_byte": (loglikelihood, _bytes)}
                    if "bits_per_byte" in use_metric
                    else {}
                ),
haileyschoelkopf's avatar
haileyschoelkopf committed
1488
            }
1489
        elif self.OUTPUT_TYPE == "multiple_choice":
1490
            lls, is_greedy = zip(*results)
lintangsutawika's avatar
lintangsutawika committed
1491

1492
            # retrieve choices in List[str] form, to compute choice lengths, etc.
1493
            choices = self.doc_to_choice(doc)
1494
1495
            completion_len = np.array([float(len(i)) for i in choices])

1496
1497
            if (
                2 * len(choices) == len(lls)
1498
                and "acc_mutual_info" in self._metric_fn_list.keys()
1499
1500
1501
1502
            ):
                # then we are doing mutual info.
                # this stores the "dryrun" / unconditional answer loglikelihoods
                lls_unconditional = lls[1::2]
1503
1504
                if len(lls_unconditional) != len(choices):
                    raise ValueError
1505
1506
                # and this stores our "regular" conditional loglikelihoods
                lls = lls[::2]
1507

1508
1509
            pred = np.argmax(lls)
            pred_norm = np.argmax(lls / completion_len)
lintangsutawika's avatar
lintangsutawika committed
1510

1511
1512
            if self.multiple_input:
                gold = self.doc_to_text(doc)
1513
            else:
1514
                gold = self.doc_to_target(doc)
1515
1516

            gold_index_error = False
1517
            if isinstance(gold, list):
Lintang Sutawika's avatar
Lintang Sutawika committed
1518
1519
                gold = [i if i < len(choices) else -100 for i in gold]
                if -100 in gold:
1520
1521
                    gold_index_error = True
            else:
1522
                if isinstance(gold, int):
Lintang Sutawika's avatar
Lintang Sutawika committed
1523
                    gold = gold if gold < len(choices) else -100
1524
                elif isinstance(gold, str):
Lintang Sutawika's avatar
Lintang Sutawika committed
1525
                    gold = choices.index(gold) if gold in choices else -100
lintangsutawika's avatar
lintangsutawika committed
1526

Lintang Sutawika's avatar
Lintang Sutawika committed
1527
                if gold == -100:
1528
1529
1530
1531
                    gold_index_error = True

            if gold_index_error:
                eval_logger.warning(
lintangsutawika's avatar
lintangsutawika committed
1532
                    f"Label index was not in within range of available choices,"
1533
1534
                    f"Sample:\n\n{doc}\n\n"
                )
lintangsutawika's avatar
lintangsutawika committed
1535

1536
            if self.multiple_target:
lintangsutawika's avatar
lintangsutawika committed
1537
1538
                acc = 1.0 if pred in gold else 0.0
                acc_norm = 1.0 if pred_norm in gold else 0.0
Lintang Sutawika's avatar
Lintang Sutawika committed
1539
                exact_match = int(any([is_greedy[i] if i != -100 else 0 for i in gold]))
lintangsutawika's avatar
lintangsutawika committed
1540
1541
1542
            else:
                acc = 1.0 if pred == gold else 0.0
                acc_norm = 1.0 if pred_norm == gold else 0.0
1543
                # TODO: this gets score of 0 on arc_challenge for pythia-70m. need to test that this works properly
Lintang Sutawika's avatar
Lintang Sutawika committed
1544
                exact_match = int(is_greedy[gold]) if gold != -100 else 0
1545

Lintang Sutawika's avatar
Lintang Sutawika committed
1546
1547
1548
1549
            prob_norm = utils.softmax(lls)

            # TODO use keyword arguments to the metric?
            # gold, pred, norm stuff, the original lls,
1550
            result_dict = {
1551
                **({"acc": acc} if "acc" in use_metric else {}),
1552
1553
                **({"f1": (gold, pred)} if "f1" in use_metric else {}),
                **({"mcc": (gold, pred)} if "mcc" in use_metric else {}),
1554
                **({"acc_norm": acc_norm} if "acc_norm" in use_metric else {}),
1555
                **({"exact_match": exact_match} if "exact_match" in use_metric else {}),
Lintang Sutawika's avatar
Lintang Sutawika committed
1556
1557
1558
1559
1560
                **(
                    {"brier_score": (gold, prob_norm)}
                    if "brier_score" in use_metric
                    else {}
                ),
1561
1562
            }

1563
            if "acc_mutual_info" in use_metric:
lintangsutawika's avatar
lintangsutawika committed
1564
1565
1566
                lls_mutual_info = [
                    ll_c - ll_u for ll_c, ll_u in zip(lls, lls_unconditional)
                ]
1567
1568
1569
                acc_mutual_info = 1.0 if np.argmax(lls_mutual_info) == gold else 0.0
                result_dict["acc_mutual_info"] = acc_mutual_info

1570
        elif self.OUTPUT_TYPE == "generate_until":
1571
            gold = self.doc_to_target(doc)
Chris's avatar
Chris committed
1572
            result = results[0]
1573
            if self.config.doc_to_choice is not None:
lintangsutawika's avatar
lintangsutawika committed
1574
                # If you set doc_to_choice,
lintangsutawika's avatar
lintangsutawika committed
1575
                # it assumes that doc_to_target returns a number.
1576
1577
                choices = self.doc_to_choice(doc)
                gold = choices[gold]
1578
1579
            # we expect multiple_targets to be a list.
            elif self.multiple_target:
baberabb's avatar
baberabb committed
1580
                gold = list(gold)
Chris's avatar
Chris committed
1581
1582
1583
            elif type(gold) != type(result):
                # cast gold to the same type as result
                gold = type(result)(gold)
1584

lintangsutawika's avatar
lintangsutawika committed
1585
            for metric in self._metric_fn_list.keys():
haileyschoelkopf's avatar
haileyschoelkopf committed
1586
1587
1588
1589
1590
                if self.multiple_target:
                    # in the case where we have multiple targets,
                    # return true if any are true
                    # TODO: this may break for multipLe_target, non zero-or-1 metrics
                    scores = []
haileyschoelkopf's avatar
haileyschoelkopf committed
1591
1592
1593
1594
                    if not isinstance(gold, list):
                        # sometimes, a multiple_target dataset has exceptions where one doc has only one string answer
                        # print(gold)
                        gold = [gold]
1595
1596
1597
1598
1599
1600
1601
1602
                    if metric == "exact_match":
                        result = [result for _ in range(len(gold))]
                        scores = self._metric_fn_list[metric](
                            references=gold,
                            predictions=result,
                            **self._metric_fn_kwargs[metric],
                        )[metric]
                        result_score = 1.0 if scores > 0.0 else 0.0
haileyschoelkopf's avatar
haileyschoelkopf committed
1603
                    else:
1604
1605
1606
1607
1608
1609
1610
1611
1612
1613
1614
1615
1616
1617
1618
1619
1620
1621
1622
1623
1624
                        for gold_option in gold:
                            try:
                                result_score = self._metric_fn_list[metric](
                                    references=[gold_option],
                                    predictions=[result],
                                    **self._metric_fn_kwargs[metric],
                                )
                            except (
                                TypeError
                            ):  # TODO: this is hacky and I don't want to do it
                                result_score = self._metric_fn_list[metric](
                                    [gold_option, result]
                                )
                            if isinstance(result_score, dict):
                                # TODO: this handles the case where HF evaluate returns a dict.
                                result_score = result_score[metric]
                            scores.append(result_score)
                        if any(scores):
                            result_score = 1.0
                        else:
                            result_score = 0.0
haileyschoelkopf's avatar
haileyschoelkopf committed
1625
                else:
1626
                    try:
1627
                        result_score = self._metric_fn_list[metric](
1628
1629
                            references=[gold],
                            predictions=[result],
1630
                            **self._metric_fn_kwargs[metric],
1631
                        )
1632
                    except TypeError:  # needed for now in order to use a different interface between our own metrics and HF Evaluate metrics
1633
                        result_score = self._metric_fn_list[metric]([gold, result])
1634
1635
1636
1637
                    if isinstance(result_score, dict):
                        # TODO: this handles the case where HF evaluate returns a dict.
                        result_score = result_score[metric]
                result_dict[metric] = result_score
1638
        else:
lintangsutawika's avatar
lintangsutawika committed
1639
1640
            raise ValueError(
                f"Passed invalid output_type '{self.OUTPUT_TYPE}' ! Please use one of ",
1641
                "'loglikelihood', 'loglikelihood_rolling', 'generate_until' or 'multiple_choice'",
1642
            )
1643
1644
1645

        return result_dict

Baber Abbasi's avatar
Baber Abbasi committed
1646
    def aggregation(self) -> dict:
1647
1648
        return self._aggregation_list

Baber Abbasi's avatar
Baber Abbasi committed
1649
    def higher_is_better(self) -> dict:
haileyschoelkopf's avatar
haileyschoelkopf committed
1650
        return self._higher_is_better
1651

Baber Abbasi's avatar
Baber Abbasi committed
1652
1653
1654
    def get_config(self, key: str) -> Any:
        return getattr(self._config, key, None)

lintangsutawika's avatar
lintangsutawika committed
1655
1656
1657
    @property
    def task_name(self) -> Any:
        return getattr(self.config, "task", None)
lintangsutawika's avatar
lintangsutawika committed
1658

1659
1660
1661
1662
1663
1664
1665
1666
    def __repr__(self):
        return (
            f"ConfigurableTask(task_name={getattr(self.config, 'task', None)},"
            f"output_type={self.OUTPUT_TYPE},"
            f"num_fewshot={getattr(self.config, 'num_fewshot', None)},"
            f"num_samples={len(self.eval_docs)})"
        )

1667
1668

class MultipleChoiceTask(Task):
1669
    OUTPUT_TYPE = "loglikelihood"
1670

baberabb's avatar
baberabb committed
1671
    def doc_to_target(self, doc: dict) -> str:
1672
1673
        return " " + doc["choices"][doc["gold"]]

baberabb's avatar
baberabb committed
1674
    def construct_requests(self, doc: dict, ctx: str, **kwargs) -> List[Instance]:
1675
        # TODO: add mutual info here?
lintangsutawika's avatar
lintangsutawika committed
1676
1677
        return [
            Instance(
haileyschoelkopf's avatar
haileyschoelkopf committed
1678
                request_type="loglikelihood",
lintangsutawika's avatar
lintangsutawika committed
1679
                doc=doc,
1680
                arguments=(ctx, " {}".format(choice)),
1681
                idx=i,
1682
1683
                **kwargs,
            )
lintangsutawika's avatar
lintangsutawika committed
1684
1685
            for i, choice in enumerate(doc["choices"])
        ]
1686

1687
    def process_results(self, doc: dict, results: Iterable[Tuple[float, bool]]) -> dict:
lintangsutawika's avatar
lintangsutawika committed
1688
1689
1690
        results = [
            res[0] for res in results
        ]  # only retain loglikelihoods, discard is_greedy TODO: do we need is_greedy anywhere?
1691
1692
1693
1694
1695
1696
1697
1698
1699
1700
1701
        gold = doc["gold"]

        acc = 1.0 if np.argmax(results) == gold else 0.0
        completion_len = np.array([float(len(i)) for i in doc["choices"]])
        acc_norm = 1.0 if np.argmax(results / completion_len) == gold else 0.0

        return {
            "acc": acc,
            "acc_norm": acc_norm,
        }

baberabb's avatar
baberabb committed
1702
    def higher_is_better(self) -> dict:
1703
1704
1705
1706
1707
        return {
            "acc": True,
            "acc_norm": True,
        }

baberabb's avatar
baberabb committed
1708
    def aggregation(self) -> dict:
1709
1710
1711
1712
1713
1714
        return {
            "acc": mean,
            "acc_norm": mean,
        }


lintangsutawika's avatar
lintangsutawika committed
1715
class PerplexityTask(Task):
1716
1717
    OUTPUT_TYPE = "loglikelihood_rolling"

baberabb's avatar
baberabb committed
1718
    def has_training_docs(self) -> bool:
1719
1720
        return False

baberabb's avatar
baberabb committed
1721
    def fewshot_examples(self, k: int, rnd) -> List:
1722
1723
1724
1725
        if k != 0:
            raise ValueError(
                "The number of fewshot examples must be 0 for perplexity tasks."
            )
1726
1727
        return []

baberabb's avatar
baberabb committed
1728
    def fewshot_context(self, doc: dict, num_fewshot: int) -> Literal[""]:
1729
1730
1731
1732
        if num_fewshot != 0:
            raise ValueError(
                "The number of fewshot examples must be 0 for perplexity tasks."
            )
1733
1734
1735

        return ""

baberabb's avatar
baberabb committed
1736
    def higher_is_better(self) -> dict:
1737
1738
1739
1740
1741
1742
1743
1744
1745
        return {
            "word_perplexity": False,
            "byte_perplexity": False,
            "bits_per_byte": False,
        }

    def doc_to_decontamination_query(self, doc):
        return doc

Ethan Smith's avatar
Ethan Smith committed
1746
    def doc_to_text(self, doc) -> str:
1747
1748
1749
1750
1751
        return ""

    def doc_to_target(self, doc):
        return doc

1752
1753
1754
    def construct_requests(self, doc: dict, ctx: Optional[str], **kwargs):
        if bool(ctx):
            raise ValueError
1755

lintangsutawika's avatar
lintangsutawika committed
1756
1757
1758
1759
1760
1761
1762
        return Instance(
            request_type=self.OUTPUT_TYPE,
            doc=doc,
            arguments=(self.doc_to_target(doc),),
            idx=0,
            **kwargs,
        )
1763

1764
    def process_results(self, doc: dict, results: Tuple[float]) -> dict:
1765
        (loglikelihood,) = results
haileyschoelkopf's avatar
haileyschoelkopf committed
1766
1767
        words = self.count_words(self.doc_to_target(doc))
        bytes_ = self.count_bytes(self.doc_to_target(doc))
1768
1769
1770
1771
1772
1773
        return {
            "word_perplexity": (loglikelihood, words),
            "byte_perplexity": (loglikelihood, bytes_),
            "bits_per_byte": (loglikelihood, bytes_),
        }

baberabb's avatar
baberabb committed
1774
    def aggregation(self) -> dict:
1775
1776
1777
1778
1779
1780
1781
        return {
            "word_perplexity": weighted_perplexity,
            "byte_perplexity": weighted_perplexity,
            "bits_per_byte": bits_per_byte,
        }

    @classmethod
baberabb's avatar
baberabb committed
1782
    def count_bytes(cls, doc) -> int:
1783
1784
1785
        return len(doc.encode("utf-8"))

    @classmethod
baberabb's avatar
baberabb committed
1786
    def count_words(cls, doc) -> int:
1787
1788
        """Downstream tasks with custom word boundaries should override this!"""
        return len(re.split(r"\s+", doc))