task.py 73.3 KB
Newer Older
1
import abc
2
import ast
lintangsutawika's avatar
lintangsutawika committed
3
import logging
4
import random
5
6
import re
from collections.abc import Callable
7
from copy import deepcopy
8
from dataclasses import asdict, dataclass
Baber's avatar
Baber committed
9
from functools import cached_property
10
from inspect import getsource
11
12
13
14
15
16
17
18
19
20
21
22
from typing import (
    Any,
    Dict,
    Iterable,
    Iterator,
    List,
    Literal,
    Mapping,
    Optional,
    Tuple,
    Union,
)
23
24
25

import datasets
import numpy as np
26
from tqdm import tqdm
Baber's avatar
Baber committed
27
from typing_extensions import deprecated
28
29

from lm_eval import utils
30
from lm_eval.api import samplers
31
32
from lm_eval.api.instance import Instance, OutputType
from lm_eval.api.metrics import bits_per_byte, mean, weighted_perplexity
lintangsutawika's avatar
lintangsutawika committed
33
from lm_eval.api.registry import (
34
35
    AGGREGATION_REGISTRY,
    DEFAULT_METRIC_REGISTRY,
haileyschoelkopf's avatar
haileyschoelkopf committed
36
    get_aggregation,
37
    get_metric,
38
    get_metric_aggregation,
haileyschoelkopf's avatar
haileyschoelkopf committed
39
    is_higher_better,
lintangsutawika's avatar
lintangsutawika committed
40
)
41
from lm_eval.caching.cache import load_from_cache, save_to_cache
42
43
44
from lm_eval.filters import build_filter_ensemble
from lm_eval.prompts import get_prompt

45

46
47
48
49
ALL_OUTPUT_TYPES = [
    "loglikelihood",
    "multiple_choice",
    "loglikelihood_rolling",
50
    "generate_until",
51
52
]

Lintang Sutawika's avatar
Lintang Sutawika committed
53
eval_logger = logging.getLogger(__name__)
54

lintangsutawika's avatar
lintangsutawika committed
55

Baber's avatar
Baber committed
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
@dataclass
class MetricConfig:
    """Encapsulates information about a single metric."""

    name: str
    fn: Optional[Callable] = None
    kwargs: Optional[dict] = None
    aggregation_fn: Optional[Callable] = None
    higher_is_better: bool = True
    hf_evaluate: bool = False

    @cached_property
    def metric_names(self) -> str:
        return self.name

    @cached_property
    def aggregation(self) -> Callable:
        if self.aggregation_fn is None:
            return get_aggregation(self.name)
        return self.aggregation_fn

    @cached_property
    def _higher_is_better(self) -> bool:
        if self.higher_is_better is None:
            return is_higher_better(self.name)
        return self.higher_is_better


@dataclass
class FilterConfig:
    """Encapsulates information about a filter."""

    name: str
    fn: Optional[Callable] = None
    kwargs: Optional[dict] = None


93
94
@dataclass
class TaskConfig(dict):
95
    # task naming/registry
96
97
    task: Optional[str] = None
    task_alias: Optional[str] = None
Lintang Sutawika's avatar
Lintang Sutawika committed
98
    tag: Optional[Union[str, list]] = None
99
100
101
    # HF dataset options.
    # which dataset to use,
    # and what splits for what purpose
Baber Abbasi's avatar
Baber Abbasi committed
102
    custom_dataset: Optional[Callable] = None
103
104
105
106
107
108
    dataset_path: Optional[str] = None
    dataset_name: Optional[str] = None
    dataset_kwargs: Optional[dict] = None
    training_split: Optional[str] = None
    validation_split: Optional[str] = None
    test_split: Optional[str] = None
109
    fewshot_split: Optional[str] = (
Baber Abbasi's avatar
Baber Abbasi committed
110
        None  # TODO: assert that this not None if num_fewshot > 0. (?) assert if this is same split as one evaluating (?)
111
    )
112
113
    # formatting / prompting options.
    # see docs/advanced_task_guide.md for more info
114
115
116
    process_docs: Optional[Callable] = None
    doc_to_text: Optional[Union[Callable, str]] = None
    doc_to_target: Optional[Union[Callable, str]] = None
117
    doc_to_image: Union[Callable, str] = None
118
    doc_to_audio: Union[Callable, str] = None
Hojin Lee's avatar
Hojin Lee committed
119
    unsafe_code: bool = False
120
121
122
    doc_to_choice: Optional[Union[Callable, str, dict, list]] = None
    process_results: Optional[Union[Callable, str]] = None
    use_prompt: Optional[str] = None
123
    description: str = ""
124
125
    target_delimiter: str = " "
    fewshot_delimiter: str = "\n\n"
126
    fewshot_config: Optional[dict] = None
127
    # runtime configuration options
128
    num_fewshot: Optional[int] = None
129
    # scoring options
130
131
132
    metric_list: Optional[list] = None
    output_type: OutputType = "generate_until"
    generation_kwargs: Optional[dict] = None
133
    repeats: int = 1
134
    filter_list: Optional[Union[str, list]] = None
135
    should_decontaminate: bool = False
136
    doc_to_decontamination_query: Optional[str] = None
Baber Abbasi's avatar
Baber Abbasi committed
137
    gen_prefix: Optional[str] = None
138
139
140
    metadata: Optional[dict] = (
        None  # by default, not used in the code. allows for users to pass arbitrary info to tasks
    )
141

Ethan Smith's avatar
Ethan Smith committed
142
    def __post_init__(self) -> None:
Lintang Sutawika's avatar
Lintang Sutawika committed
143
        if self.generation_kwargs is not None:
144
            if self.output_type != "generate_until":
145
                eval_logger.warning(
146
                    f"[{self.task}] passed `generation_kwargs`, but not using `output_type: generate_until`!"
Lintang Sutawika's avatar
Lintang Sutawika committed
147
148
149
150
151
152
153
154
                )

            if "temperature" in self.generation_kwargs:
                self.generation_kwargs["temperature"] = float(
                    self.generation_kwargs["temperature"]
                )

            if "until" not in self.generation_kwargs:
Baber Abbasi's avatar
Baber Abbasi committed
155
156
157
                eval_logger.warning(
                    f"{self.task}: No `until` specified in `generation_kwargs`! Defaulting to the fewshot_delimiter={repr(self.fewshot_delimiter)}"
                )
158
                self.generation_kwargs["until"] = [self.fewshot_delimiter]
Lintang Sutawika's avatar
Lintang Sutawika committed
159
        else:
160
            if self.output_type == "generate_until":
Lintang Sutawika's avatar
Lintang Sutawika committed
161
162
                # ensure that we greedily generate in absence of explicit arguments otherwise
                self.generation_kwargs = {
163
164
165
166
167
                    "until": (
                        None
                        if self.fewshot_delimiter is None
                        else [self.fewshot_delimiter]
                    ),
Lintang Sutawika's avatar
Lintang Sutawika committed
168
                    "do_sample": False,
Baber Abbasi's avatar
Baber Abbasi committed
169
                    "temperature": 0,
Lintang Sutawika's avatar
Lintang Sutawika committed
170
                }
Baber Abbasi's avatar
Baber Abbasi committed
171
172
173
                eval_logger.warning(
                    f"{self.task}: No `generation_kwargs` specified in task config, defaulting to {self.generation_kwargs}"
                )
174

Baber's avatar
Baber committed
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
        if self.metric_list is not None:
            for metric_config in self.metric_list:
                if "metric" not in metric_config:
                    raise ValueError(
                        "'metric' key not provided for an entry in 'metric_list', must be specified!"
                    )

    def get_metrics(self) -> list["MetricConfig"]:
        metrics = []
        if self.metric_list is None:
            _metric_list = DEFAULT_METRIC_REGISTRY[self.output_type]
            metrics.extend(
                MetricConfig(
                    name=metric_name,
                    fn=get_metric(metric_name),
                    aggregation_fn=get_metric_aggregation(metric_name),
                    higher_is_better=is_higher_better(metric_name),
                )
                for metric_name in _metric_list
            )
        else:
            for metric_config in self.metric_list:
                if "metric" not in metric_config:
                    raise ValueError(
                        "'metric' key not provided for an entry in 'metric_list', must be specified!"
                    )
                metric_name = metric_config["metric"]
                _metric_fn_kwargs = {
                    key: metric_config[key]
                    for key in metric_config
                    if key
                    not in ["metric", "aggregation", "higher_is_better", "hf_evaluate"]
                }
                _hf_evaluate_metric: bool = metric_config.get("hf_evaluate", False)
                _metric_fn = None
                _aggregation = None

                if self.process_results is not None:
                    # User will compute metrics inside `process_results()`
                    _metric_name = None
                    _metric_fn_kwargs = {}
                elif callable(metric_name):
                    # User passed a function object
                    _metric_name = metric_name.__name__
                    _metric_fn = metric_name.__call__
                else:
                    # Normal: look up by name
                    _metric_name = get_metric(metric_name, _hf_evaluate_metric)

                # ---------- 3. Decide how to aggregate examples ----------
                if "aggregation" in metric_config:
                    if isinstance(_agg_name := metric_config["aggregation"], str):
                        _aggregation = get_aggregation(_agg_name)
                    elif callable(_agg_name):  # noqa: E721
                        _aggregation = metric_config["aggregation"]
                else:
                    INV_AGG_REGISTRY = {v: k for k, v in AGGREGATION_REGISTRY.items()}
                    _aggregation = get_metric_aggregation(metric_name)
                    eval_logger.warning(
                        f"[Task: {self.task}] metric {metric_name} is defined, but aggregation is not. "
                        f"using default "
                        f"aggregation={INV_AGG_REGISTRY[_aggregation]}"
                    )

                # ---------- 4. Determine “higher-is-better” semantics ----------
                if "higher_is_better" in metric_config:
                    _higher_is_better = metric_config["higher_is_better"]
                else:
                    eval_logger.warning(
                        f"[Task: {self.task}] metric {metric_name} is defined, but higher_is_better is not. "
                        f"using default "
                        f"higher_is_better={is_higher_better(metric_name)}"
                    )
                    _higher_is_better = is_higher_better(metric_name)

                metrics.append(
                    MetricConfig(
                        name=_metric_name,
                        fn=_metric_fn,
                        kwargs=_metric_fn_kwargs,
                        aggregation_fn=_aggregation,
                        higher_is_better=_higher_is_better,
                        hf_evaluate=_hf_evaluate_metric,
                    )
                )
        return metrics

262
263
264
    def __getitem__(self, item):
        return getattr(self, item)

265
266
267
    def __setitem__(self, item, value):
        return setattr(self, item, value)

268
    def to_dict(self, keep_callable: bool = False) -> dict:
269
270
        """dumps the current config as a dictionary object, as a printable format.
        null fields will not be printed.
haileyschoelkopf's avatar
haileyschoelkopf committed
271
        Used for dumping results alongside full task configuration
272

haileyschoelkopf's avatar
haileyschoelkopf committed
273
274
275
276
277
278
279
280
281
282
        :return: dict
            A printable dictionary version of the TaskConfig object.

        # TODO: should any default value in the TaskConfig not be printed?
        """
        cfg_dict = asdict(self)
        # remove values that are `None`
        for k, v in list(cfg_dict.items()):
            if v is None:
                cfg_dict.pop(k)
283
284
285
286
287
288
289
290
291
292
            elif k == "metric_list":
                for metric_dict in v:
                    for metric_key, metric_value in metric_dict.items():
                        if callable(metric_value):
                            metric_dict[metric_key] = self.serialize_function(
                                metric_value, keep_callable=keep_callable
                            )
                cfg_dict[k] = v
            elif callable(v):
                cfg_dict[k] = self.serialize_function(v, keep_callable=keep_callable)
haileyschoelkopf's avatar
haileyschoelkopf committed
293
        return cfg_dict
294

295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
    def serialize_function(
        self, value: Union[Callable, str], keep_callable=False
    ) -> Union[Callable, str]:
        """Serializes a given function or string.

        If 'keep_callable' is True, the original callable is returned.
        Otherwise, attempts to return the source code of the callable using 'getsource'.
        """
        if keep_callable:
            return value
        else:
            try:
                return getsource(value)
            except (TypeError, OSError):
                return str(value)

311
312
313
314
315
316
317
318
319
320
321

class Task(abc.ABC):
    """A task represents an entire benchmark including its dataset, problems,
    answers, and evaluation methods. See BoolQ for a simple example implementation

    A `doc` can be any python object which represents one instance of evaluation.
    This is usually a dictionary e.g.
        {"question": ..., "answer": ...} or
        {"question": ..., question, answer)
    """

322
    VERSION: Optional[Union[int, str]] = None
323

324
325
    # The name of the `Task` benchmark as denoted in the HuggingFace datasets Hub
    # or a path to a custom `datasets` loading script.
326
    DATASET_PATH: Optional[str] = None
327
328

    # The name of a subset within `DATASET_PATH`.
329
    DATASET_NAME: Optional[str] = None
330

331
    OUTPUT_TYPE: Optional[OutputType] = None
lintangsutawika's avatar
lintangsutawika committed
332

333
334
    def __init__(
        self,
335
336
337
338
        data_dir: Optional[str] = None,
        cache_dir: Optional[str] = None,
        download_mode: Optional[datasets.DownloadMode] = None,
        config: Optional[Mapping] = None,  # Union[dict, TaskConfig]
Ethan Smith's avatar
Ethan Smith committed
339
    ) -> None:
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
        """
        :param data_dir: str
            Stores the path to a local folder containing the `Task`'s data files.
            Use this to specify the path to manually downloaded data (usually when
            the dataset is not publicly accessible).
        :param cache_dir: str
            The directory to read/write the `Task` dataset. This follows the
            HuggingFace `datasets` API with the default cache directory located at:
                `~/.cache/huggingface/datasets`
            NOTE: You can change the cache location globally for a given process
            to another directory:
                `export HF_DATASETS_CACHE="/path/to/another/directory"`
        :param download_mode: datasets.DownloadMode
            How to treat pre-existing `Task` downloads and data.
            - `datasets.DownloadMode.REUSE_DATASET_IF_EXISTS`
                Reuse download and reuse dataset.
            - `datasets.DownloadMode.REUSE_CACHE_IF_EXISTS`
                Reuse download with fresh dataset.
            - `datasets.DownloadMode.FORCE_REDOWNLOAD`
                Fresh download and fresh dataset.
        """
        self.download(data_dir, cache_dir, download_mode)
362
363
364
        self._training_docs: Optional[list] = None
        self._fewshot_docs: Optional[list] = None
        self._instances: Optional[List[Instance]] = None
365

366
        self._config: TaskConfig = TaskConfig({**config}) if config else TaskConfig()
367

lintangsutawika's avatar
lintangsutawika committed
368
        self._filters = [build_filter_ensemble("none", [["take_first", None]])]
369
370
371
        self.fewshot_rnd: Optional[random.Random] = (
            None  # purposely induce errors in case of improper usage
        )
372

373
374
375
376
377
378
    def download(
        self,
        data_dir: Optional[str] = None,
        cache_dir: Optional[str] = None,
        download_mode=None,
    ) -> None:
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
        """Downloads and returns the task dataset.
        Override this method to download the dataset from a custom API.

        :param data_dir: str
            Stores the path to a local folder containing the `Task`'s data files.
            Use this to specify the path to manually downloaded data (usually when
            the dataset is not publicly accessible).
        :param cache_dir: str
            The directory to read/write the `Task` dataset. This follows the
            HuggingFace `datasets` API with the default cache directory located at:
                `~/.cache/huggingface/datasets`
            NOTE: You can change the cache location globally for a given process
            by setting the shell environment variable, `HF_DATASETS_CACHE`,
            to another directory:
                `export HF_DATASETS_CACHE="/path/to/another/directory"`
        :param download_mode: datasets.DownloadMode
            How to treat pre-existing `Task` downloads and data.
            - `datasets.DownloadMode.REUSE_DATASET_IF_EXISTS`
                Reuse download and reuse dataset.
            - `datasets.DownloadMode.REUSE_CACHE_IF_EXISTS`
                Reuse download with fresh dataset.
            - `datasets.DownloadMode.FORCE_REDOWNLOAD`
                Fresh download and fresh dataset.
        """
403
404
405
406
407
408
409
        self.dataset = datasets.load_dataset(
            path=self.DATASET_PATH,
            name=self.DATASET_NAME,
            data_dir=data_dir,
            cache_dir=cache_dir,
            download_mode=download_mode,
        )
410

411
    @property
412
    def config(self) -> TaskConfig:
413
414
415
        """Returns the TaskConfig associated with this class."""
        return self._config

416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
    @abc.abstractmethod
    def has_training_docs(self):
        """Whether the task has a training set"""
        pass

    @abc.abstractmethod
    def has_validation_docs(self):
        """Whether the task has a validation set"""
        pass

    @abc.abstractmethod
    def has_test_docs(self):
        """Whether the task has a test set"""
        pass

431
    def training_docs(self) -> Iterable:
432
433
434
435
436
437
        """
        :return: Iterable[obj]
            A iterable of any object, that doc_to_text can handle
        """
        return []

438
    def validation_docs(self) -> Iterable:
439
440
441
442
443
444
        """
        :return: Iterable[obj]
            A iterable of any object, that doc_to_text can handle
        """
        return []

445
    def test_docs(self) -> Iterable:
446
447
448
449
450
451
        """
        :return: Iterable[obj]
            A iterable of any object, that doc_to_text can handle
        """
        return []

452
    def fewshot_docs(self) -> Iterable:
453
454
455
456
457
458
459
460
461
        """
        :return: Iterable[obj]
            A iterable of any object, that doc_to_text can handle
        """
        if self.has_training_docs():
            return self.training_docs()
        elif self.has_validation_docs():
            return self.validation_docs()
        else:
Baber Abbasi's avatar
Baber Abbasi committed
462
463
464
465
466
            if self.config.get("num_fewshot", 0) > 0:
                eval_logger.warning(
                    f"[Task: {self.config.task}] has_training_docs and has_validation_docs are False"
                    ", using test_docs as fewshot_docs but this is not recommended."
                )
467
468
            return self.test_docs()

469
    def _process_doc(self, doc: dict) -> dict:
470
471
472
473
474
475
476
477
478
        """
        Override this to process (detokenize, strip, replace, etc.) individual
        documents. This can be used in a map over documents of a data split.
        E.g. `map(self._process_doc, self.dataset["validation"])`

        :return: dict
            The processed version of the specified `doc`.
        """
        return doc
lintangsutawika's avatar
lintangsutawika committed
479

480
    @property
481
    def instances(self) -> List[Instance]:
482
483
484
485
486
487
488
489
490
491
492
        """After calling `task.build_all_requests()`, tasks
        maintain a list of the dataset instances which will be evaluated.
        """
        return self._instances

    def fewshot_examples(self, k, rnd):
        if self._training_docs is None:
            self._training_docs = list(self.training_docs())

        return rnd.sample(self._training_docs, k)

493
494
    def doc_to_decontamination_query(self, doc):
        raise NotImplementedError(
495
496
497
498
499
500
501
502
503
504
505
            "Override doc_to_decontamination_query with document specific decontamination query."
        )

    @abc.abstractmethod
    def doc_to_text(self, doc):
        pass

    @abc.abstractmethod
    def doc_to_target(self, doc):
        pass

506
507
508
509
    # not an abstractmethod because not every language-only task has to implement this
    def doc_to_image(self, doc):
        raise NotImplementedError

510
511
512
    def doc_to_audio(self, doc):
        raise NotImplementedError

Baber Abbasi's avatar
Baber Abbasi committed
513
514
515
    def doc_to_prefix(self, doc):
        return ""

516
517
    def build_all_requests(
        self,
518
        *,
519
        limit: Union[int, None] = None,
520
        samples: Optional[List[int]] = None,
521
522
523
524
525
526
527
528
529
        rank: int = 0,
        world_size: int = 1,
        cache_requests: bool = False,
        rewrite_requests_cache: bool = False,
        system_instruction: Optional[str] = None,
        apply_chat_template: bool = False,
        fewshot_as_multiturn: bool = False,
        chat_template: Optional[Callable] = None,
        tokenizer_name: str = "",
530
    ) -> None:
531
        """Build a set of Instances for a task, and store them in task.instances"""
532
533
534
535

        # used with caching
        og_limit = limit

536
        cache_key = f"requests-{self._config.task}-{self.config.num_fewshot}shot-rank{rank}-world_size{world_size}"
KonradSzafer's avatar
KonradSzafer committed
537
538
539
540
541
542
543
        cache_key += "-chat_template" if apply_chat_template else ""
        cache_key += "-fewshot_as_multiturn" if fewshot_as_multiturn else ""
        cache_key += (
            f"-system_prompt_hash{utils.hash_string(system_instruction)}"
            if system_instruction is not None
            else ""
        )
544
        cache_key += f"-tokenizer{tokenizer_name}"
545

Baber Abbasi's avatar
Baber Abbasi committed
546
        cached_instances = load_from_cache(file_name=cache_key, cache=cache_requests)
547
548
549
550
551
552
553
554
555
556
557
558
559

        if cache_requests and cached_instances and not rewrite_requests_cache:
            cached_instances = cached_instances[:limit]

            flattened_instances = [
                instance
                for instance_group in cached_instances
                for instance in instance_group
            ]

            self._instances = flattened_instances
            return

Baber Abbasi's avatar
Baber Abbasi committed
560
        eval_logger.info(f"Building contexts for {self.config.task} on rank {rank}...")
561

562
        instances = []
563
564
565
566
567
568
569
570
571
572

        # process all documents when caching is specified for simplicity
        if (
            cache_requests
            and (not cached_instances or rewrite_requests_cache)
            and limit is not None
        ):
            limit = None

        doc_id_docs = list(
573
574
575
            self.doc_iterator(
                rank=rank, limit=limit, samples=samples, world_size=world_size
            )
576
577
578
579
580
581
582
        )

        num_docs = len(doc_id_docs)

        for doc_id, doc in tqdm(
            doc_id_docs,
            total=num_docs,
lintangsutawika's avatar
lintangsutawika committed
583
        ):
584
            # sample fewshot context #TODO: need to offset doc_id by rank now!
585
            fewshot_ctx = self.fewshot_context(
586
                doc,
587
588
589
590
591
592
593
                num_fewshot=0
                if self.config.num_fewshot is None
                else self.config.num_fewshot,
                system_instruction=system_instruction,
                apply_chat_template=apply_chat_template,
                fewshot_as_multiturn=fewshot_as_multiturn,
                chat_template=chat_template,
Baber Abbasi's avatar
Baber Abbasi committed
594
                gen_prefix=self.doc_to_prefix(doc),
595
            )
596

597
            # TODO: we should override self.config.repeats if doing greedy gen so users don't waste time+compute
lintangsutawika's avatar
lintangsutawika committed
598
599
600
            inst = self.construct_requests(
                doc=doc,
                ctx=fewshot_ctx,
601
                metadata=(self.config["task"], doc_id, self.config.repeats),
602
                apply_chat_template=apply_chat_template,
603
                chat_template=chat_template,
lintangsutawika's avatar
lintangsutawika committed
604
            )
605
606
607
608

            if not isinstance(inst, list):
                inst = [inst]

609
610
611
612
613
614
615
616
617
618
619
620
621
            instances.append(inst)

        # now flatten, this is to allow slicing to work with pickles

        sliced_instances = instances[:og_limit]

        flattened_instances = [
            instance
            for instance_group in sliced_instances
            for instance in instance_group
        ]

        self._instances = flattened_instances
622

623
624
        if len(self._instances) == 0:
            raise ValueError("task.build_requests() did not find any docs!")
625

626
627
628
        if cache_requests and (not cached_instances or rewrite_requests_cache):
            save_to_cache(file_name=cache_key, obj=instances)

629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
    @abc.abstractmethod
    def construct_requests(self, doc, ctx, **kwargs):
        """Uses RequestFactory to construct Requests and returns an iterable of
        Requests which will be sent to the LM.

        :param doc:
            The document as returned from training_docs, validation_docs, or test_docs.
        :param ctx: str
            The context string, generated by fewshot_context. This includes the natural
            language description, as well as the few shot examples, and the question
            part of the document for `doc`.
        :param doc_idx: int
            The index of a document within `self.test_docs()` or `self.validation_docs()`,
            whichever is the main split used.
        :param repeats: int
        TODO: update this docstring
lintangsutawika's avatar
lintangsutawika committed
645
            The number of times each instance in a dataset is inferred on. Defaults to 1,
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
            can be increased for techniques like majority voting.
        """
        pass

    @abc.abstractmethod
    def process_results(self, doc, results):
        """Take a single document and the LM results and evaluates, returning a
        dict where keys are the names of submetrics and values are the values of
        the metric for that one document

        :param doc:
            The document as returned from training_docs, validation_docs, or test_docs.
        :param results:
            The results of the requests created in construct_requests.
        """
        pass

Baber's avatar
Baber committed
663
    @deprecated("not used anymore")
664
665
666
667
668
669
670
671
    def aggregation(self):
        """
        :returns: {str: [metric_score] -> float}
            A dictionary where keys are the names of submetrics and values are
            functions that aggregate a list of metric scores
        """
        pass

Baber's avatar
Baber committed
672
    @deprecated("not used anymore")
673
674
675
676
677
678
679
680
    def higher_is_better(self):
        """
        :returns: {str: bool}
            A dictionary where keys are the names of submetrics and values are
            whether a higher value of the submetric is better
        """
        pass

681
682
683
    def get_config(self, key: str) -> Any:
        return getattr(self._config, key, None)

haileyschoelkopf's avatar
haileyschoelkopf committed
684
685
686
687
688
689
690
691
692
693
    @classmethod
    def count_bytes(cls, doc):
        """Used for byte-level perplexity metrics in rolling loglikelihood"""
        return len(doc.encode("utf-8"))

    @classmethod
    def count_words(cls, doc):
        """Downstream loglikelihood_rolling perplexity tasks with custom word boundaries should override this!"""
        return len(re.split(r"\s+", doc))

694
    @utils.positional_deprecated
Baber Abbasi's avatar
Baber Abbasi committed
695
    def fewshot_context(self, doc, num_fewshot, rnd=None, description=None, **kwargs):
696
697
698
699
700
701
702
        """Returns a fewshot context string that is made up of a prepended description
        (if provided), the `num_fewshot` number of examples, and an appended prompt example.

        :param doc: str
            The document as returned from training_docs, validation_docs, or test_docs.
        :param num_fewshot: int
            The number of fewshot examples to provide in the returned context string.
lintangsutawika's avatar
lintangsutawika committed
703
704
705
706
707
        :param rnd: random.Random
            The pseudo-random number generator used to randomly sample examples.
            WARNING: This is currently a required arg although it's optionalized with a default `None`.
        :param description: str
            The task's description that will be prepended to the fewshot examples.
708
709
710
        :returns: str
            The fewshot context.
        """
711
        if rnd is None:
712
713
714
715
716
717
            if self.fewshot_rnd is not None:
                rnd = self.fewshot_rnd
            else:
                raise ValueError(
                    "A `random.Random` generator argument must be provided to `rnd`"
                )
lintangsutawika's avatar
lintangsutawika committed
718

719
        description = description if description else ""
720
721

        if num_fewshot == 0:
lintangsutawika's avatar
lintangsutawika committed
722
            labeled_examples = ""
723
        else:
lintangsutawika's avatar
lintangsutawika committed
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
            # for sets with no training docs, draw from other set *but ensure no overlap with current doc*
            if self.has_training_docs():
                fewshotex = self.fewshot_examples(k=num_fewshot, rnd=rnd)
            else:
                if self._fewshot_docs is None:
                    self._fewshot_docs = list(
                        self.validation_docs()
                        if self.has_validation_docs()
                        else self.test_docs()
                    )

                fewshotex = rnd.sample(self._fewshot_docs, num_fewshot + 1)

                # get rid of the doc that's the one we're evaluating, if it's in the fewshot
                fewshotex = [x for x in fewshotex if x != doc][:num_fewshot]

            labeled_examples = (
                "\n\n".join(
                    [
                        self.doc_to_text(doc) + self.doc_to_target(doc)
                        for doc in fewshotex
                    ]
                )
                + "\n\n"
lintangsutawika's avatar
lintangsutawika committed
748
            )
749
750

        example = self.doc_to_text(doc)
lintangsutawika's avatar
lintangsutawika committed
751
        return description + labeled_examples + example
752

753
    def apply_filters(self) -> Optional[List[Instance]]:
Baber Abbasi's avatar
Baber Abbasi committed
754
        """Iterates over FilterEnsembles and applies them to instances"""
lintangsutawika's avatar
lintangsutawika committed
755
756
        if hasattr(self, "_filters"):
            for f in self._filters:
757
                f.apply(self._instances)
lintangsutawika's avatar
lintangsutawika committed
758
759
760
        else:
            eval_logger.warning("No filter defined, passing through instances")
            return self._instances
761

baberabb's avatar
baberabb committed
762
    def dump_config(self) -> dict:
Baber Abbasi's avatar
Baber Abbasi committed
763
        """Returns the config as a dictionary."""
764
        # TODO: this should only return the overrides applied to a non-YAML task's configuration.
765
        # (num_fewshot)
766
        return self.config.to_dict()
767

Baber Abbasi's avatar
Baber Abbasi committed
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
    def set_config(self, key: str, value: Any, update: bool = False) -> None:
        """Set or update the configuration for a given key."""
        if key is None:
            raise ValueError("Key must be provided.")

        if update:
            current_value = getattr(self._config, key, {})
            if not isinstance(current_value, dict):
                raise TypeError(
                    f"Expected a dict for key '{key}', got {type(current_value).__name__} instead."
                )
            current_value.update(value)
        else:
            setattr(self._config, key, value)

    def override_metric(self, metric_name: str) -> None:
        """
        Override the default metrics used for evaluation with custom metrics.

        Parameters:
        - metric_name (str): The name of the custom metric to override. Should be registered in api.metrics.
        """
Baber's avatar
Baber committed
790
791
792
793
794
795
796
        # if not isinstance(self, ConfigurableTask):
        #     self.process_results = lambda x, y: {metric_name: get_metric(metric_name)}
        #     self.aggregation = lambda: {
        #         metric_name: get_metric_aggregation(metric_name)
        #     }
        setattr(self._config, "metric_list", [MetricConfig(name=metric_name)])
        setattr(self._config, "process_results", lambda *args: {"bypass": 0})
Baber Abbasi's avatar
Baber Abbasi committed
797

798
799
800
801
802
    def set_fewshot_seed(self, seed: Optional[int] = None) -> None:
        self.fewshot_rnd = random.Random(seed)
        if hasattr(self, "sampler"):
            self.sampler.rnd = self.fewshot_rnd

803
804
805
806
807
808
809
    @property
    def eval_docs(self) -> Union[datasets.Dataset, List[dict]]:
        if self.has_test_docs():
            return self.test_docs()
        elif self.has_validation_docs():
            return self.validation_docs()
        else:
810
811
812
            raise ValueError(
                f"Task dataset (path={self.DATASET_PATH}, name={self.DATASET_NAME}) must have valid or test docs!"
            )
813
814

    def doc_iterator(
815
816
817
818
819
820
        self,
        *,
        rank: int = 0,
        limit: Union[int, None] = None,
        world_size: int = 1,
        samples: Optional[List[int]] = None,
821
    ) -> Iterator[Tuple[int, Any]]:
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
        if samples:
            n = len(self.eval_docs)
            assert all([e < n for e in samples]), (
                f"Elements of --samples should be in the interval [0,k-1] where k is the number of total examples. In this case, k={n}."
            )
            eval_logger.info(
                f"{self.config.task}: Evaluating on {len(samples)} examples"
            )
            doc_iterator = utils.create_iterator(
                enumerate(x for i, x in enumerate(self.eval_docs) if i in samples),
                rank=int(rank),
                limit=None,  # limit does not matter here since we are selecting samples directly
                world_size=int(world_size),
            )
        else:
            limit = int(limit) if limit else None
            doc_iterator = utils.create_iterator(
                enumerate(self.eval_docs),
                rank=int(rank),
                limit=limit,
                world_size=int(world_size),
            )
844
845
        return doc_iterator

846
847

class ConfigurableTask(Task):
848
    VERSION = "Yaml"
849
    OUTPUT_TYPE = None
850
    CONFIG = None
851
852

    def __init__(
853
854
855
856
857
        self,
        data_dir=None,
        cache_dir=None,
        download_mode=None,
        config: Optional[dict] = None,
Baber's avatar
Baber committed
858
    ) -> None:
859
        # Get pre-configured attributes
860
        self._config = self.CONFIG
861

862
        # Use new configurations if there was no preconfiguration
863
        if self.config is None:
864
            self._config = TaskConfig(**config)
865
866
        # Overwrite configs
        else:
lintangsutawika's avatar
lintangsutawika committed
867
            if config is not None:
868
                self._config.__dict__.update(config)
869

870
        if self.config is None:
lintangsutawika's avatar
lintangsutawika committed
871
872
873
            raise ValueError(
                "Must pass a config to ConfigurableTask, either in cls.CONFIG or `config` kwarg"
            )
874

875
876
877
878
        if isinstance(self.config.metadata, dict):
            if "version" in self.config.metadata:
                self.VERSION = self.config.metadata["version"]

879
        if self.config.output_type is not None:
880
881
882
883
            if self.config.output_type not in ALL_OUTPUT_TYPES:
                raise ValueError(
                    f"Got invalid output_type '{self.config.output_type}', must be in '{','.join(ALL_OUTPUT_TYPES)}'"
                )
884
            self.OUTPUT_TYPE = self.config.output_type
885

886
887
888
889
        if self.config.doc_to_image is not None:
            # mark the task as requiring multimodality.
            self.MULTIMODAL = True

890
891
892
893
        if self.config.doc_to_audio:
            # mark the task as requiring multimodality.
            self.MULTIMODAL = True

Hojin Lee's avatar
Hojin Lee committed
894
895
896
        if self.config.unsafe_code is not False:
            self.UNSAFE_CODE = True

897
898
        if self.config.dataset_path is not None:
            self.DATASET_PATH = self.config.dataset_path
899

900
901
        if self.config.dataset_name is not None:
            self.DATASET_NAME = self.config.dataset_name
902

Baber's avatar
Baber committed
903
        self.metric_list: list[MetricConfig] = self._config.get_metrics()
904

905
        self.download(self.config.dataset_kwargs)
906
907
908
        self._training_docs = None
        self._fewshot_docs = None

909
        if self.config.filter_list is not None:
lintangsutawika's avatar
lintangsutawika committed
910
            self._filters = []
Baber's avatar
Baber committed
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
            if isinstance(self.config.filter_list, dict):
                for filter_config in self.config.filter_list:
                    self._filters.append(
                        build_filter_ensemble(
                            filter_config["name"],
                            [
                                [
                                    {
                                        key: function[key]
                                        for key in function
                                        if key != "function"
                                    }
                                ]
                                for function in filter_config["filter"]
                            ],
                        )
                    )
lintangsutawika's avatar
lintangsutawika committed
928
        else:
Baber Abbasi's avatar
Baber Abbasi committed
929
930
931
932
            # TODO: handle repeats in a more general way rather than just discarding
            eval_logger.debug(
                "No custom filters defined. Using default 'take_first' filter for handling repeats."
            )
933
            self._filters = [build_filter_ensemble("none", [["take_first", None]])]
934

935
936
        if self.config.use_prompt is not None:
            eval_logger.info(f"loading prompt {self.config.use_prompt}")
937
            self.prompt = get_prompt(
938
                self.config.use_prompt, self.DATASET_PATH, self.DATASET_NAME
lintangsutawika's avatar
lintangsutawika committed
939
            )
940
941
942
        else:
            self.prompt = None

lintangsutawika's avatar
lintangsutawika committed
943
        if self.fewshot_docs() is not None:
944
945
946
947
            self.fewshot_rnd = (
                random.Random()
            )  # setting with no seed, to be overridden at a later time
            config_sampler: Union[str, Callable] = (
haileyschoelkopf's avatar
haileyschoelkopf committed
948
949
950
                self.config.fewshot_config.get("sampler", "default")
                if self.config.fewshot_config
                else "default"
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
            )
            if isinstance(config_sampler, str):
                self.sampler = samplers.get_sampler(config_sampler)(
                    list(self.fewshot_docs()), self, rnd=self.fewshot_rnd
                )
            elif callable(config_sampler) and issubclass(
                config_sampler, samplers.ContextSampler
            ):
                self.sampler = config_sampler(
                    docs=list(self.fewshot_docs()), task=self, rnd=self.fewshot_rnd
                )
            else:
                raise TypeError(
                    f"fewshot_config.sampler should be a string or callable of ContextSampler type, "
                    f"not {type(config_sampler)}"
                )
967

968
        self.task_docs = self.eval_docs
969

970
        # Test One Doc
971
        self.features = list(self.task_docs.features.keys())
972
973
        self.multiple_input = 0
        self.multiple_target = 0
974
        test_doc = self.task_docs[0]
975
        test_text = self.doc_to_text(test_doc)
976
        test_target = self.doc_to_target(test_doc)
lintangsutawika's avatar
lintangsutawika committed
977

978
        if self.config.doc_to_choice is not None:
lintangsutawika's avatar
lintangsutawika committed
979
            test_choice = self.doc_to_choice(test_doc)
980
            if not isinstance(test_choice, list):
lintangsutawika's avatar
lintangsutawika committed
981
                eval_logger.error("doc_to_choice must return list")
982
983
            else:
                num_choice = len(test_choice)
984

985
            if isinstance(test_text, int):
Baber Abbasi's avatar
Baber Abbasi committed
986
987
988
                eval_logger.debug(
                    "doc_to_text returned an int. Assuming multiple inputs."
                )
989
                self.multiple_input = num_choice
990
991
        else:
            test_choice = None
992

993
        if isinstance(test_target, list):
Baber Abbasi's avatar
Baber Abbasi committed
994
995
996
            eval_logger.debug(
                "doc_to_target returned a list. Assuming multiple targets."
            )
997
            self.multiple_target = len(test_target)
998
        else:
999
            if (isinstance(test_target, int)) and (test_choice is not None):
lintangsutawika's avatar
lintangsutawika committed
1000
                test_target = test_choice[test_target]
1001
            else:
lintangsutawika's avatar
lintangsutawika committed
1002
                test_target = str(test_target)
1003

1004
1005
1006
        if test_choice is not None:
            check_choices = test_choice
        else:
lintangsutawika's avatar
lintangsutawika committed
1007
            check_choices = [test_target]
1008
1009
1010
1011
        if self.config.doc_to_choice is not None:
            for choice in check_choices:
                choice_has_whitespace = True if choice[0].isspace() else False
                delimiter_has_whitespace = (
1012
1013
                    True
                    if self.config.target_delimiter.rstrip()
1014
                    != self.config.target_delimiter
1015
                    else False
1016
                )
1017

1018
                if delimiter_has_whitespace and choice_has_whitespace:
1019
1020
                    eval_logger.debug(
                        f'Both target_delimiter "{self.config.target_delimiter}" and target choice: "{choice}" have whitespace'
1021
1022
                    )
                elif (not delimiter_has_whitespace) and (not choice_has_whitespace):
1023
                    eval_logger.debug(
1024
                        f'Both target_delimiter "{self.config.target_delimiter}" and target choice: "{choice}" do not have whitespace, ignore if the language you are evaluating on does not require/use whitespace'
1025
1026
                    )

Baber Abbasi's avatar
Baber Abbasi committed
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
    def download(
        self, dataset_kwargs: Optional[Dict[str, Any]] = None, **kwargs
    ) -> None:
        if isinstance(self.config.custom_dataset, Callable):
            eval_logger.warning(
                f"{self.config.task}: Custom kwargs can be passed to `--metadata` in console (as json string) or to the TaskManager."
                + "\nFor example --metadata='{\"max_seq_lengths\":[4096, 8192]}'. For details see task Readme."
            )
            self.dataset = self.config.custom_dataset(
                **(self.config.metadata or {}), **(self.config.dataset_kwargs or {})
            )
        else:
            self.dataset = datasets.load_dataset(
                path=self.DATASET_PATH,
                name=self.DATASET_NAME,
                **dataset_kwargs if dataset_kwargs is not None else {},
            )
1044

baberabb's avatar
baberabb committed
1045
    def has_training_docs(self) -> bool:
1046
        if self.config.training_split is not None:
1047
1048
1049
1050
            return True
        else:
            return False

baberabb's avatar
baberabb committed
1051
    def has_validation_docs(self) -> bool:
1052
        if self.config.validation_split is not None:
1053
1054
1055
1056
            return True
        else:
            return False

baberabb's avatar
baberabb committed
1057
    def has_test_docs(self) -> bool:
1058
        if self.config.test_split is not None:
1059
1060
1061
1062
            return True
        else:
            return False

baberabb's avatar
baberabb committed
1063
    def training_docs(self) -> datasets.Dataset:
1064
        if self.has_training_docs():
1065
1066
1067
            if self.config.process_docs is not None:
                return self.config.process_docs(
                    self.dataset[self.config.training_split]
1068
                )
1069
            return self.dataset[self.config.training_split]
1070

baberabb's avatar
baberabb committed
1071
    def validation_docs(self) -> datasets.Dataset:
1072
        if self.has_validation_docs():
1073
1074
1075
            if self.config.process_docs is not None:
                return self.config.process_docs(
                    self.dataset[self.config.validation_split]
1076
                )
1077
            return self.dataset[self.config.validation_split]
1078

baberabb's avatar
baberabb committed
1079
    def test_docs(self) -> datasets.Dataset:
1080
        if self.has_test_docs():
1081
1082
1083
            if self.config.process_docs is not None:
                return self.config.process_docs(self.dataset[self.config.test_split])
            return self.dataset[self.config.test_split]
1084

1085
    def fewshot_docs(self):
1086
        if self.config.fewshot_split is not None:
1087
1088
            if self.config.process_docs is not None:
                return self.config.process_docs(self.dataset[self.config.fewshot_split])
1089
            return self.dataset[self.config.fewshot_split]
1090
1091
1092
1093
1094
1095
1096
1097
1098
1099
1100
1101
        elif (
            self.config.fewshot_config is not None
            and self.config.fewshot_config.get("samples", None) is not None
        ):
            if isinstance(self.config.fewshot_config["samples"], list):
                return self.config.fewshot_config["samples"]
            elif callable(self.config.fewshot_config["samples"]):
                return self.config.fewshot_config["samples"]()
            else:
                raise Exception(
                    "`fewshot_config['samples']` was incorrectly defined in the configuration. It should be either a list of samples as a dict, or function returning this list."
                )
1102
        else:
1103
            if (self.config.num_fewshot is not None) and (self.config.num_fewshot > 0):
1104
                eval_logger.warning(
Lintang Sutawika's avatar
Lintang Sutawika committed
1105
                    f"[Task: {self.config.task}] "
1106
1107
1108
1109
                    "num_fewshot > 0 but fewshot_split is None. "
                    "using preconfigured rule."
                )
            return super().fewshot_docs()
1110

KonradSzafer's avatar
KonradSzafer committed
1111
1112
1113
1114
1115
    @staticmethod
    def append_target_question(
        labeled_examples: List[Dict[str, str]],
        question: str,
        fewshot_as_multiturn: bool = False,
Baber Abbasi's avatar
Baber Abbasi committed
1116
        gen_prefix: Optional[str] = None,
KonradSzafer's avatar
KonradSzafer committed
1117
1118
1119
1120
1121
1122
1123
1124
    ) -> None:
        """Adds a target question to the labeled examples list.
        If fewshot_as_multiturn is True, or labeled_examples is empty, or the last entry is a system turn, appends the question as a new user entry.
        Otherwise, it is appended to the last user entry, ensuring that the conversation alternates between the user and the assistant.
        """
        if not fewshot_as_multiturn:
            # if no messages or last message is system, append as new user entry
            if len(labeled_examples) == 0 or labeled_examples[-1]["role"] == "system":
1125
                labeled_examples.append({"role": "user", "content": question})
KonradSzafer's avatar
KonradSzafer committed
1126
1127
            # if last message is user, append to it to avoid two user messages in a row
            else:
1128
                labeled_examples[-1]["content"] += question
KonradSzafer's avatar
KonradSzafer committed
1129
1130
        else:
            # if fewshot_as_multiturn is True, append as next user entry (last is always assistant)
1131
            labeled_examples.append({"role": "user", "content": question})
Baber Abbasi's avatar
Baber Abbasi committed
1132
1133
        if gen_prefix:
            labeled_examples.append({"role": "assistant", "content": gen_prefix})
KonradSzafer's avatar
KonradSzafer committed
1134

lintangsutawika's avatar
lintangsutawika committed
1135
    @utils.positional_deprecated
KonradSzafer's avatar
KonradSzafer committed
1136
1137
    def fewshot_context(
        self,
Baber Abbasi's avatar
Baber Abbasi committed
1138
        doc: dict,
KonradSzafer's avatar
KonradSzafer committed
1139
1140
1141
1142
        num_fewshot: int,
        system_instruction: Optional[str] = None,
        apply_chat_template: bool = False,
        fewshot_as_multiturn: bool = False,
1143
        chat_template: Optional[Callable] = None,
Baber Abbasi's avatar
Baber Abbasi committed
1144
        gen_prefix: Optional[str] = None,
Baber Abbasi's avatar
Baber Abbasi committed
1145
    ) -> Union[str, List[str]]:
lintangsutawika's avatar
lintangsutawika committed
1146
1147
1148
1149
1150
1151
1152
        """Returns a fewshot context string that is made up of a prepended description
        (if provided), the `num_fewshot` number of examples, and an appended prompt example.

        :param doc: str
            The document as returned from training_docs, validation_docs, or test_docs.
        :param num_fewshot: int
            The number of fewshot examples to provide in the returned context string.
KonradSzafer's avatar
KonradSzafer committed
1153
1154
1155
1156
1157
1158
        :param  system_instruction: str
            System instruction to be applied to the prompt.
        :param apply_chat_template: bool
            Whether to apply the chat template to the fewshot context.
        :param fewshot_as_multiturn: bool
            Whether to provide the fewshot examples as a multiturn conversation or a single user turn.
1159
1160
        :param chat_template:
            callable (from lm.apply_chat_template) that takes in a list[Dict] chat transcript and renders it into a string.
1161
1162
        :param gen_prefix:
            String to append after the <|assistant|> token.
lintangsutawika's avatar
lintangsutawika committed
1163
1164
1165
        :returns: str
            The fewshot context.
        """
KonradSzafer's avatar
KonradSzafer committed
1166
1167
1168
1169
1170
1171
        if apply_chat_template:
            labeled_examples = []
        else:
            labeled_examples = ""

        # get task description
1172
1173
        if description := self.config.description:
            description = utils.apply_template(self.config.description, doc)
lintangsutawika's avatar
lintangsutawika committed
1174

KonradSzafer's avatar
KonradSzafer committed
1175
1176
1177
1178
1179
1180
1181
1182
1183
        # create system prompt based on the provided system instruction and description
        if system_instruction is not None and description:
            system_prompt = (
                f"{system_instruction}{self.sampler.fewshot_delimiter}{description}"
            )
        elif system_instruction is not None:
            system_prompt = system_instruction
        elif description:
            system_prompt = description
lintangsutawika's avatar
lintangsutawika committed
1184
        else:
KonradSzafer's avatar
KonradSzafer committed
1185
1186
1187
1188
1189
1190
1191
1192
1193
1194
1195
1196
1197
            system_prompt = ""

        # add system prompt if specified
        if system_prompt:
            if apply_chat_template:
                labeled_examples.append({"role": "system", "content": system_prompt})
            else:
                labeled_examples = system_prompt
        # if few-shot - append examples after the system prompt
        if num_fewshot > 0:
            if apply_chat_template:
                labeled_examples.extend(
                    self.sampler.get_chat_context(
Baber Abbasi's avatar
Baber Abbasi committed
1198
1199
1200
                        doc,
                        num_fewshot,
                        fewshot_as_multiturn,
Baber Abbasi's avatar
Baber Abbasi committed
1201
                        gen_prefix=gen_prefix,
KonradSzafer's avatar
KonradSzafer committed
1202
1203
1204
                    )
                )
            else:
Baber Abbasi's avatar
Baber Abbasi committed
1205
                labeled_examples += self.sampler.get_context(
Baber Abbasi's avatar
Baber Abbasi committed
1206
                    doc, num_fewshot, gen_prefix=gen_prefix
Baber Abbasi's avatar
Baber Abbasi committed
1207
                )
lintangsutawika's avatar
lintangsutawika committed
1208
1209

        example = self.doc_to_text(doc)
KonradSzafer's avatar
KonradSzafer committed
1210
1211
        if apply_chat_template:
            if self.multiple_input:
Baber Abbasi's avatar
Baber Abbasi committed
1212
                # TODO: append prefill?
1213
1214
                if not labeled_examples:
                    return ""
1215
                return chat_template(labeled_examples)
KonradSzafer's avatar
KonradSzafer committed
1216
1217
            if isinstance(example, str):
                self.append_target_question(
Baber Abbasi's avatar
Baber Abbasi committed
1218
1219
1220
                    labeled_examples,
                    example,
                    fewshot_as_multiturn,
Baber Abbasi's avatar
Baber Abbasi committed
1221
                    gen_prefix=gen_prefix,
KonradSzafer's avatar
KonradSzafer committed
1222
1223
1224
1225
1226
1227
1228
                )
            # for loglikelihood create a list of questions with appended choices
            elif isinstance(example, list):
                labeled_examples_list = []
                # copy chat history for each example and append the answer
                for ex in example:
                    chat = deepcopy(labeled_examples)
Baber Abbasi's avatar
Baber Abbasi committed
1229
1230
1231
1232
                    self.append_target_question(
                        chat,
                        ex,
                        fewshot_as_multiturn,
Baber Abbasi's avatar
Baber Abbasi committed
1233
                        gen_prefix=gen_prefix,
Baber Abbasi's avatar
Baber Abbasi committed
1234
1235
1236
1237
1238
                    )
                    # TODO: append prefill?
                    labeled_examples_list.append(
                        chat_template(
                            chat,
Baber Abbasi's avatar
Baber Abbasi committed
1239
                            add_generation_prompt=False if gen_prefix else True,
Baber Abbasi's avatar
Baber Abbasi committed
1240
1241
                        )
                    )
KonradSzafer's avatar
KonradSzafer committed
1242
1243
1244
1245
1246
1247
                return labeled_examples_list
            # if example is an integer, append the choice or convert to string
            elif isinstance(example, int):
                if self.config.doc_to_choice is not None:
                    choices = self.doc_to_choice(doc)
                    self.append_target_question(
Baber Abbasi's avatar
Baber Abbasi committed
1248
1249
1250
                        labeled_examples,
                        choices[example],
                        fewshot_as_multiturn,
Baber Abbasi's avatar
Baber Abbasi committed
1251
                        gen_prefix=gen_prefix,
KonradSzafer's avatar
KonradSzafer committed
1252
1253
1254
                    )
                else:
                    self.append_target_question(
Baber Abbasi's avatar
Baber Abbasi committed
1255
1256
1257
                        labeled_examples,
                        str(example),
                        fewshot_as_multiturn,
Baber Abbasi's avatar
Baber Abbasi committed
1258
                        gen_prefix=gen_prefix,
KonradSzafer's avatar
KonradSzafer committed
1259
1260
                    )
                # return lm.apply_chat_template(labeled_examples)
Baber Abbasi's avatar
Baber Abbasi committed
1261
1262
            return chat_template(
                labeled_examples,
Baber Abbasi's avatar
Baber Abbasi committed
1263
                add_generation_prompt=False if gen_prefix else True,
Baber Abbasi's avatar
Baber Abbasi committed
1264
            )
1265
        else:
Baber Abbasi's avatar
Baber Abbasi committed
1266
            prefix = (
Baber Abbasi's avatar
Baber Abbasi committed
1267
1268
                self.config.target_delimiter + gen_prefix
                if gen_prefix is not None
Baber Abbasi's avatar
Baber Abbasi committed
1269
1270
                else ""
            )
KonradSzafer's avatar
KonradSzafer committed
1271
1272
            if self.multiple_input:
                return labeled_examples
1273
            if isinstance(example, str):
Baber Abbasi's avatar
Baber Abbasi committed
1274
                return labeled_examples + example + prefix
1275
            elif isinstance(example, list):
Baber Abbasi's avatar
Baber Abbasi committed
1276
                return [labeled_examples + ex + prefix for ex in example]
1277
1278
1279
            elif isinstance(example, int):
                if self.config.doc_to_choice is not None:
                    choices = self.doc_to_choice(doc)
Baber Abbasi's avatar
Baber Abbasi committed
1280
                    return labeled_examples + choices[example] + prefix
1281
                else:
Baber Abbasi's avatar
Baber Abbasi committed
1282
                    return labeled_examples + str(example) + prefix
lintangsutawika's avatar
lintangsutawika committed
1283

Baber Abbasi's avatar
Baber Abbasi committed
1284
    def apply_filters(self) -> Optional[List[Instance]]:
Baber Abbasi's avatar
Baber Abbasi committed
1285
        """Iterates over FilterEnsembles and applies them to instances"""
1286
1287
        if hasattr(self, "_filters"):
            for f in self._filters:
1288
                f.apply(self._instances)
1289
1290
1291
1292
        else:
            eval_logger.warning("No filter defined, passing through instances")
            return self._instances

1293
    def should_decontaminate(self):
1294
        return self.config.should_decontaminate
1295

Baber Abbasi's avatar
Baber Abbasi committed
1296
    def doc_to_decontamination_query(self, doc: dict):
1297
        if self.config.should_decontaminate:
1298
1299
            if self.config.doc_to_decontamination_query is None:
                return self.doc_to_text(doc)
1300
            else:
1301
1302
1303
1304
1305
1306
1307
1308
1309
1310
1311
                doc_to_decontamination_query = self.config.doc_to_decontamination_query
                if doc_to_decontamination_query in self.features:
                    return doc[doc_to_decontamination_query]
                elif callable(doc_to_decontamination_query):
                    return doc_to_decontamination_query(doc)
                else:
                    return ast.literal_eval(
                        utils.apply_template(
                            self.config.doc_to_decontamination_query, doc
                        )
                    )
1312

1313
    def _process_doc(self, doc: dict) -> dict:
1314
1315
1316
1317
1318
1319
1320
1321
1322
1323
        """
        Override this to process (detokenize, strip, replace, etc.) individual
        documents. This can be used in a map over documents of a data split.
        E.g. `map(self._process_doc, self.dataset["validation"])`

        :return: dict
            The processed version of the specified `doc`.
        """
        return doc

Yu Shi Jie's avatar
Yu Shi Jie committed
1324
    def doc_to_text(self, doc, doc_to_text=None):
1325
1326
        if self.prompt is not None:
            doc_to_text = self.prompt
Yu Shi Jie's avatar
Yu Shi Jie committed
1327
1328
        elif doc_to_text is not None:
            doc_to_text = doc_to_text
1329
        else:
1330
            doc_to_text = self.config.doc_to_text
lintangsutawika's avatar
lintangsutawika committed
1331

1332
        if isinstance(doc_to_text, int):
1333
            return doc_to_text
1334
        elif isinstance(doc_to_text, str):
1335
            if doc_to_text in self.features:
1336
                # if self.config.doc_to_choice is not None:
1337
1338
                #     return self.doc_to_choice(doc)[doc[doc_to_text]]
                # else:
1339
1340
                return doc[doc_to_text]
            else:
lintangsutawika's avatar
lintangsutawika committed
1341
                text_string = utils.apply_template(doc_to_text, doc)
lintangsutawika's avatar
lintangsutawika committed
1342
                if text_string.isdigit() and self._config.doc_to_choice is not None:
lintangsutawika's avatar
lintangsutawika committed
1343
1344
1345
                    return ast.literal_eval(text_string)
                else:
                    return text_string
1346
        elif callable(doc_to_text):
1347
            return doc_to_text(doc)
lintangsutawika's avatar
lintangsutawika committed
1348
        # Used when applying a Promptsource template
1349
        elif hasattr(doc_to_text, "apply"):
1350
1351
1352
1353
1354
            applied_prompt = doc_to_text.apply(doc)
            if len(applied_prompt) == 2:
                return applied_prompt[0]
            else:
                eval_logger.warning("Applied prompt returns empty string")
1355
                return self.config.fewshot_delimiter
1356
        else:
1357
            print(type(doc_to_text))
1358
            raise TypeError
1359

Yu Shi Jie's avatar
Yu Shi Jie committed
1360
    def doc_to_target(self, doc: Mapping, doc_to_target=None) -> Union[int, str, list]:
1361
1362
        if self.prompt is not None:
            doc_to_target = self.prompt
Yu Shi Jie's avatar
Yu Shi Jie committed
1363
1364
        elif doc_to_target is not None:
            doc_to_target = doc_to_target
1365
        else:
1366
            doc_to_target = self.config.doc_to_target
1367

1368
        if isinstance(doc_to_target, int):
1369
            return doc_to_target
1370
        elif isinstance(doc_to_target, str):
1371
            if doc_to_target in self.features:
1372
                # if self.config.doc_to_choice is not None:
1373
1374
1375
                #     return self.doc_to_choice(doc)[doc[doc_to_target]]
                # else:
                return doc[doc_to_target]
1376
            else:
lintangsutawika's avatar
lintangsutawika committed
1377
                target_string = utils.apply_template(doc_to_target, doc)
lintangsutawika's avatar
lintangsutawika committed
1378
                if target_string.isdigit() and self._config.doc_to_choice is not None:
lintangsutawika's avatar
lintangsutawika committed
1379
                    return ast.literal_eval(target_string)
lintangsutawika's avatar
lintangsutawika committed
1380
1381
1382
1383
1384
                elif (
                    len(target_string) >= 2
                    and (target_string[0] == "[")
                    and (target_string[-1] == "]")
                ):
baberabb's avatar
baberabb committed
1385
1386
1387
1388
                    try:
                        return ast.literal_eval(target_string)
                    except (SyntaxError, ValueError):
                        return target_string
lintangsutawika's avatar
lintangsutawika committed
1389
1390
                else:
                    return target_string
1391
        elif isinstance(doc_to_target, list):
1392
            return doc_to_target
1393
        elif callable(doc_to_target):
1394
            return doc_to_target(doc)
lintangsutawika's avatar
lintangsutawika committed
1395
        # Used when applying a Promptsource template
1396
        elif hasattr(doc_to_target, "apply"):
1397
            applied_prompt = doc_to_target.apply(doc)
1398
1399
1400
1401
            if len(applied_prompt) == 2:
                return applied_prompt[1]
            else:
                eval_logger.warning("Applied prompt returns empty string")
1402
                return self.config.fewshot_delimiter
1403
1404
        else:
            raise TypeError
1405

Yu Shi Jie's avatar
Yu Shi Jie committed
1406
    def doc_to_choice(self, doc: Any, doc_to_choice=None) -> List[str]:
1407
1408
        if self.prompt is not None:
            doc_to_choice = self.prompt
Yu Shi Jie's avatar
Yu Shi Jie committed
1409
1410
        elif doc_to_choice is not None:
            doc_to_choice = doc_to_choice
1411
        elif self.config.doc_to_choice is None:
1412
1413
            eval_logger.error("doc_to_choice was called but not set in config")
        else:
1414
            doc_to_choice = self.config.doc_to_choice
1415

1416
        if isinstance(doc_to_choice, str):
1417
1418
1419
1420
            if doc_to_choice in self.features:
                return doc[doc_to_choice]
            else:
                return ast.literal_eval(utils.apply_template(doc_to_choice, doc))
1421
        elif isinstance(doc_to_choice, list):
1422
            return doc_to_choice
1423
        elif isinstance(doc_to_choice, dict):
1424
1425
1426
1427
1428
1429
1430
            return list(doc_to_choice.values())
        elif callable(doc_to_choice):
            return doc_to_choice(doc)
        elif hasattr(doc_to_choice, "get_answer_choices_list"):
            return doc_to_choice.get_answer_choices_list(doc)
        else:
            raise TypeError
1431

1432
1433
1434
1435
1436
1437
1438
1439
1440
1441
1442
1443
1444
1445
1446
1447
1448
1449
1450
1451
1452
1453
1454
    def doc_to_image(self, doc: Any, doc_to_image=None) -> Union[int, str, list]:
        if doc_to_image is not None:
            doc_to_image = doc_to_image
        elif self.config.doc_to_image is not None:
            doc_to_image = self.config.doc_to_image
        else:
            return None

        if isinstance(doc_to_image, list):
            image_feature = [
                self.doc_to_image(doc, feature) for feature in doc_to_image
            ]
            return [feature for feature in image_feature if feature is not None]
        elif isinstance(doc_to_image, str):
            if doc_to_image in self.features:
                return doc[doc_to_image]
            else:
                return ast.literal_eval(utils.apply_template(doc_to_image, doc))
        elif callable(doc_to_image):
            return doc_to_image(doc)
        else:
            return None

1455
1456
1457
1458
1459
1460
1461
1462
1463
1464
1465
1466
1467
1468
1469
1470
1471
1472
1473
1474
1475
1476
1477
    def doc_to_audio(self, doc: Any, doc_to_audio=None) -> Union[int, str, list]:
        if doc_to_audio is not None:
            doc_to_audio = doc_to_audio
        elif self.config.doc_to_audio is not None:
            doc_to_audio = self.config.doc_to_audio
        else:
            return None

        if isinstance(doc_to_audio, list):
            audio_feature = [
                self.doc_to_audio(doc, feature) for feature in doc_to_audio
            ]
            return [feature for feature in audio_feature if feature is not None]
        elif isinstance(doc_to_audio, str):
            if doc_to_audio in self.features:
                return doc[doc_to_audio]
            else:
                return ast.literal_eval(utils.apply_template(doc_to_audio, doc))
        elif callable(doc_to_audio):
            return doc_to_audio(doc)
        else:
            return None

Baber Abbasi's avatar
Baber Abbasi committed
1478
1479
1480
1481
1482
1483
1484
1485
    def doc_to_prefix(self, doc):
        if (gen_prefix := self.config.gen_prefix) is not None:
            if gen_prefix in self.features:
                return doc[gen_prefix]
            else:
                return utils.apply_template(gen_prefix, doc)
        return None

baberabb's avatar
baberabb committed
1486
1487
1488
    def construct_requests(
        self, doc: dict, ctx: str, **kwargs
    ) -> Union[List[Instance], Instance]:
1489
        apply_chat_template = kwargs.pop("apply_chat_template", False)
1490
        chat_template: Callable | None = kwargs.pop("chat_template", None)
1491

1492
1493
        aux_arguments = None

1494
        if self.OUTPUT_TYPE == "loglikelihood":
lintangsutawika's avatar
lintangsutawika committed
1495
            arguments = (ctx, self.doc_to_target(doc))
1496
        elif self.OUTPUT_TYPE == "loglikelihood_rolling":
lintangsutawika's avatar
lintangsutawika committed
1497
            arguments = (self.doc_to_target(doc),)
1498
        elif self.OUTPUT_TYPE == "multiple_choice":
1499
            choices = self.doc_to_choice(doc)
1500
            target_delimiter = self.config.target_delimiter
1501
1502
            if apply_chat_template:
                target_delimiter = ""
1503
1504
            if self.multiple_input:
                # If there are multiple inputs, choices are placed in the ctx
1505
                # apply chat_template to choices if apply_chat_template
1506
                cont = self.doc_to_target(doc)
1507

1508
                arguments = [
1509
1510
1511
1512
1513
1514
1515
1516
1517
1518
                    (
                        ctx
                        + (
                            chat_template([{"role": "user", "content": choice}])
                            if apply_chat_template
                            else choice
                        ),
                        f"{target_delimiter}{cont}",
                    )
                    for choice in choices
1519
                ]
1520
            else:
1521
                # Otherwise they are placed in the continuation
1522
                arguments = [(ctx, f"{target_delimiter}{cont}") for cont in choices]
1523

1524
            # TODO: we should raise a warning telling users this will at most ~2x runtime.
Baber's avatar
Baber committed
1525
            if "acc_mutual_info" in [m.metric_names for m in self.metric_list]:
1526
1527
1528
1529
1530
1531
                # if we are calculating multiple choice accuracy
                # using mutual information instead of raw loglikelihood as metric, need unconditional lls.

                # here mutual info refers to calculating
                # log(P(choice|ctx) / P(choice)) = log(P(choice|ctx)) - log(P(choice))
                # in other words normalizing by subtracting the unconditional logprob of each choice.
1532
1533
1534
1535
                # TODO: should these be strided? will have to modify the processing in process_results if so
                aux_arguments = [
                    ("", f"{target_delimiter}{choice}") for choice in choices
                ]
1536
1537
1538
1539
1540
1541
1542
1543
1544
1545
1546
1547
1548
1549
1550

                arguments.extend(aux_arguments)

        elif self.OUTPUT_TYPE == "generate_until":
            arguments = (ctx, deepcopy(self.config.generation_kwargs))

        multimodal_arg = {}
        if (
            self.config.doc_to_image
        ):  # TODO: ensure that non-multimodal tasks aren't getting visual args
            multimodal_arg = {
                **multimodal_arg,
                **{"visual": self.doc_to_image(doc)},
            }

1551
1552
1553
1554
1555
1556
1557
1558
        if (
            self.config.doc_to_audio
        ):  # TODO: ensure that non-multimodal tasks aren't getting audio args
            multimodal_arg = {
                **multimodal_arg,
                **{"audio": self.doc_to_audio(doc)},
            }

1559
1560
1561
1562
1563
1564
1565
        if bool(multimodal_arg):
            if isinstance(arguments, list):
                arguments = [arg + (multimodal_arg,) for arg in arguments]
            else:
                arguments = arguments + (multimodal_arg,)

        if self.OUTPUT_TYPE == "multiple_choice":
1566
            request_list = [
1567
1568
                Instance(
                    request_type="loglikelihood",
lintangsutawika's avatar
lintangsutawika committed
1569
                    doc=doc,
1570
                    arguments=arg,
1571
                    idx=i,
1572
1573
                    **kwargs,
                )
1574
                for i, arg in enumerate(arguments)
1575
            ]
1576
1577

            return request_list
lintangsutawika's avatar
lintangsutawika committed
1578

lintangsutawika's avatar
lintangsutawika committed
1579
        return Instance(
1580
1581
1582
1583
1584
            request_type=self.OUTPUT_TYPE,
            doc=doc,
            arguments=arguments,
            idx=0,
            **kwargs,
lintangsutawika's avatar
lintangsutawika committed
1585
        )
1586
1587

    def process_results(self, doc, results):
1588
1589
        if callable(self.config.process_results):
            return self.config.process_results(doc, results)
lintangsutawika's avatar
lintangsutawika committed
1590

1591
        result_dict = {}
Baber's avatar
Baber committed
1592
        use_metric = list(m.metric_names for m in self.metric_list)
1593
1594
1595
        if self.OUTPUT_TYPE == "loglikelihood":
            results = results[0]
            ll, is_greedy = results
1596
1597
1598
1599
            return {
                **({"perplexity": ll} if "perplexity" in use_metric else {}),
                **({"acc": int(is_greedy)} if "acc" in use_metric else {}),
            }
1600
        elif self.OUTPUT_TYPE == "loglikelihood_rolling":
haileyschoelkopf's avatar
haileyschoelkopf committed
1601
            (loglikelihood,) = results
1602
1603
            _words = self.count_words(self.doc_to_target(doc))
            _bytes = self.count_bytes(self.doc_to_target(doc))
haileyschoelkopf's avatar
haileyschoelkopf committed
1604
            return {
1605
1606
1607
1608
1609
1610
1611
1612
1613
1614
1615
1616
1617
1618
1619
                **(
                    {"word_perplexity": (loglikelihood, _words)}
                    if "word_perplexity" in use_metric
                    else {}
                ),
                **(
                    {"byte_perplexity": (loglikelihood, _bytes)}
                    if "byte_perplexity" in use_metric
                    else {}
                ),
                **(
                    {"bits_per_byte": (loglikelihood, _bytes)}
                    if "bits_per_byte" in use_metric
                    else {}
                ),
haileyschoelkopf's avatar
haileyschoelkopf committed
1620
            }
1621
        elif self.OUTPUT_TYPE == "multiple_choice":
1622
            lls, is_greedy = zip(*results)
lintangsutawika's avatar
lintangsutawika committed
1623

1624
            # retrieve choices in List[str] form, to compute choice lengths, etc.
1625
            choices = self.doc_to_choice(doc)
1626
1627
            completion_len = np.array([float(len(i)) for i in choices])

Baber's avatar
Baber committed
1628
            if 2 * len(choices) == len(lls) and "acc_mutual_info" in use_metric:
1629
1630
                # then we are doing mutual info.
                # this stores the "dryrun" / unconditional answer loglikelihoods
1631
1632
                # as we extend the args list with unconditional ("", continuation) pairs
                lls_unconditional = lls[len(choices) :]
1633
1634
                if len(lls_unconditional) != len(choices):
                    raise ValueError
1635
                # and this stores our "regular" conditional loglikelihoods
1636
                lls = lls[: len(choices)]
1637

1638
1639
            pred = np.argmax(lls)
            pred_norm = np.argmax(lls / completion_len)
lintangsutawika's avatar
lintangsutawika committed
1640

1641
1642
            if self.multiple_input:
                gold = self.doc_to_text(doc)
1643
            else:
1644
                gold = self.doc_to_target(doc)
1645
1646

            gold_index_error = False
1647
            if isinstance(gold, list):
Lintang Sutawika's avatar
Lintang Sutawika committed
1648
1649
                gold = [i if i < len(choices) else -100 for i in gold]
                if -100 in gold:
1650
1651
                    gold_index_error = True
            else:
1652
                if isinstance(gold, int):
Lintang Sutawika's avatar
Lintang Sutawika committed
1653
                    gold = gold if gold < len(choices) else -100
1654
                elif isinstance(gold, str):
Lintang Sutawika's avatar
Lintang Sutawika committed
1655
                    gold = choices.index(gold) if gold in choices else -100
lintangsutawika's avatar
lintangsutawika committed
1656

Lintang Sutawika's avatar
Lintang Sutawika committed
1657
                if gold == -100:
1658
1659
1660
1661
                    gold_index_error = True

            if gold_index_error:
                eval_logger.warning(
lintangsutawika's avatar
lintangsutawika committed
1662
                    f"Label index was not in within range of available choices,"
1663
1664
                    f"Sample:\n\n{doc}\n\n"
                )
lintangsutawika's avatar
lintangsutawika committed
1665

1666
            if self.multiple_target:
lintangsutawika's avatar
lintangsutawika committed
1667
1668
                acc = 1.0 if pred in gold else 0.0
                acc_norm = 1.0 if pred_norm in gold else 0.0
Lintang Sutawika's avatar
Lintang Sutawika committed
1669
                exact_match = int(any([is_greedy[i] if i != -100 else 0 for i in gold]))
lintangsutawika's avatar
lintangsutawika committed
1670
1671
1672
            else:
                acc = 1.0 if pred == gold else 0.0
                acc_norm = 1.0 if pred_norm == gold else 0.0
1673
                # TODO: this gets score of 0 on arc_challenge for pythia-70m. need to test that this works properly
Lintang Sutawika's avatar
Lintang Sutawika committed
1674
                exact_match = int(is_greedy[gold]) if gold != -100 else 0
1675

Lintang Sutawika's avatar
Lintang Sutawika committed
1676
1677
1678
1679
            prob_norm = utils.softmax(lls)

            # TODO use keyword arguments to the metric?
            # gold, pred, norm stuff, the original lls,
1680
            result_dict = {
1681
                **({"acc": acc} if "acc" in use_metric else {}),
1682
1683
                **({"f1": (gold, pred)} if "f1" in use_metric else {}),
                **({"mcc": (gold, pred)} if "mcc" in use_metric else {}),
1684
                **({"acc_norm": acc_norm} if "acc_norm" in use_metric else {}),
1685
                **({"exact_match": exact_match} if "exact_match" in use_metric else {}),
Lintang Sutawika's avatar
Lintang Sutawika committed
1686
1687
1688
1689
1690
                **(
                    {"brier_score": (gold, prob_norm)}
                    if "brier_score" in use_metric
                    else {}
                ),
1691
1692
            }

1693
            if "acc_mutual_info" in use_metric:
lintangsutawika's avatar
lintangsutawika committed
1694
1695
1696
                lls_mutual_info = [
                    ll_c - ll_u for ll_c, ll_u in zip(lls, lls_unconditional)
                ]
1697
1698
1699
                acc_mutual_info = 1.0 if np.argmax(lls_mutual_info) == gold else 0.0
                result_dict["acc_mutual_info"] = acc_mutual_info

1700
        elif self.OUTPUT_TYPE == "generate_until":
1701
            gold = self.doc_to_target(doc)
Chris's avatar
Chris committed
1702
            result = results[0]
1703
            if self.config.doc_to_choice is not None:
lintangsutawika's avatar
lintangsutawika committed
1704
                # If you set doc_to_choice,
lintangsutawika's avatar
lintangsutawika committed
1705
                # it assumes that doc_to_target returns a number.
1706
1707
                choices = self.doc_to_choice(doc)
                gold = choices[gold]
1708
1709
            # we expect multiple_targets to be a list.
            elif self.multiple_target:
baberabb's avatar
baberabb committed
1710
                gold = list(gold)
Hojin Lee's avatar
Hojin Lee committed
1711
1712
            # TODO: handle this better
            elif type(gold) is not type(result) and not (
Baber's avatar
Baber committed
1713
                "bypass" in use_metric or isinstance(result, list)
1714
            ):
Chris's avatar
Chris committed
1715
1716
                # cast gold to the same type as result
                gold = type(result)(gold)
1717

Baber's avatar
Baber committed
1718
            for metric in self.metric_list:
haileyschoelkopf's avatar
haileyschoelkopf committed
1719
1720
1721
1722
1723
                if self.multiple_target:
                    # in the case where we have multiple targets,
                    # return true if any are true
                    # TODO: this may break for multipLe_target, non zero-or-1 metrics
                    scores = []
haileyschoelkopf's avatar
haileyschoelkopf committed
1724
1725
1726
1727
                    if not isinstance(gold, list):
                        # sometimes, a multiple_target dataset has exceptions where one doc has only one string answer
                        # print(gold)
                        gold = [gold]
Baber's avatar
Baber committed
1728
                    if metric.name == "exact_match":
1729
                        result = [result for _ in range(len(gold))]
Baber's avatar
Baber committed
1730
                        scores = metric.fn(
1731
1732
                            references=gold,
                            predictions=result,
Baber's avatar
Baber committed
1733
                            **metric.kwargs,
1734
1735
                        )[metric]
                        result_score = 1.0 if scores > 0.0 else 0.0
haileyschoelkopf's avatar
haileyschoelkopf committed
1736
                    else:
1737
1738
                        for gold_option in gold:
                            try:
Baber's avatar
Baber committed
1739
                                result_score = metric.fn(
1740
1741
                                    references=[gold_option],
                                    predictions=[result],
Baber's avatar
Baber committed
1742
                                    **metric.kwargs,
1743
1744
1745
1746
                                )
                            except (
                                TypeError
                            ):  # TODO: this is hacky and I don't want to do it
Baber's avatar
Baber committed
1747
                                result_score = metric.fn([gold_option, result])
1748
1749
1750
1751
1752
1753
1754
1755
                            if isinstance(result_score, dict):
                                # TODO: this handles the case where HF evaluate returns a dict.
                                result_score = result_score[metric]
                            scores.append(result_score)
                        if any(scores):
                            result_score = 1.0
                        else:
                            result_score = 0.0
haileyschoelkopf's avatar
haileyschoelkopf committed
1756
                else:
1757
                    try:
Baber's avatar
Baber committed
1758
                        result_score = metric.fn(
1759
1760
                            references=[gold],
                            predictions=[result],
Baber's avatar
Baber committed
1761
                            **metric.kwargs,
1762
                        )
1763
                    except TypeError:  # needed for now in order to use a different interface between our own metrics and HF Evaluate metrics
Baber's avatar
Baber committed
1764
                        result_score = metric.fn([gold, result])
1765
1766
1767
1768
1769
1770
1771
                if isinstance(result_score, dict):
                    # TODO: this handles the case where HF evaluate returns a dict.
                    # This allows for multiple metrics to be returned from the same function
                    for k, v in result_score.items():
                        result_dict[k] = v
                else:
                    result_dict[metric] = result_score
1772
        else:
lintangsutawika's avatar
lintangsutawika committed
1773
1774
            raise ValueError(
                f"Passed invalid output_type '{self.OUTPUT_TYPE}' ! Please use one of ",
1775
                "'loglikelihood', 'loglikelihood_rolling', 'generate_until' or 'multiple_choice'",
1776
            )
1777
1778
1779

        return result_dict

Baber Abbasi's avatar
Baber Abbasi committed
1780
    def aggregation(self) -> dict:
Baber's avatar
Baber committed
1781
        return {k.name: k.aggregation_fn for k in self.metric_list}
1782

Baber Abbasi's avatar
Baber Abbasi committed
1783
    def higher_is_better(self) -> dict:
Baber's avatar
Baber committed
1784
        return {k.name: k.higher_is_better for k in self.metric_list}
1785

Baber Abbasi's avatar
Baber Abbasi committed
1786
1787
1788
    def get_config(self, key: str) -> Any:
        return getattr(self._config, key, None)

Lintang Sutawika's avatar
Lintang Sutawika committed
1789
1790
1791
1792
    @property
    def task_name(self) -> Any:
        return getattr(self.config, "task", None)

1793
1794
1795
1796
1797
    def __repr__(self):
        return (
            f"ConfigurableTask(task_name={getattr(self.config, 'task', None)},"
            f"output_type={self.OUTPUT_TYPE},"
            f"num_fewshot={getattr(self.config, 'num_fewshot', None)},"
Baber Abbasi's avatar
Baber Abbasi committed
1798
            f"num_samples={len(self.eval_docs)})"
1799
1800
        )

1801
1802

class MultipleChoiceTask(Task):
1803
    OUTPUT_TYPE = "loglikelihood"
1804

baberabb's avatar
baberabb committed
1805
    def doc_to_target(self, doc: dict) -> str:
1806
1807
        return " " + doc["choices"][doc["gold"]]

baberabb's avatar
baberabb committed
1808
    def construct_requests(self, doc: dict, ctx: str, **kwargs) -> List[Instance]:
1809
        # TODO: add mutual info here?
lintangsutawika's avatar
lintangsutawika committed
1810
1811
        return [
            Instance(
haileyschoelkopf's avatar
haileyschoelkopf committed
1812
                request_type="loglikelihood",
lintangsutawika's avatar
lintangsutawika committed
1813
                doc=doc,
1814
                arguments=(ctx, " {}".format(choice)),
1815
                idx=i,
1816
1817
                **kwargs,
            )
lintangsutawika's avatar
lintangsutawika committed
1818
1819
            for i, choice in enumerate(doc["choices"])
        ]
1820

1821
    def process_results(self, doc: dict, results: Iterable[Tuple[float, bool]]) -> dict:
lintangsutawika's avatar
lintangsutawika committed
1822
1823
1824
        results = [
            res[0] for res in results
        ]  # only retain loglikelihoods, discard is_greedy TODO: do we need is_greedy anywhere?
1825
1826
1827
1828
1829
1830
1831
1832
1833
1834
1835
        gold = doc["gold"]

        acc = 1.0 if np.argmax(results) == gold else 0.0
        completion_len = np.array([float(len(i)) for i in doc["choices"]])
        acc_norm = 1.0 if np.argmax(results / completion_len) == gold else 0.0

        return {
            "acc": acc,
            "acc_norm": acc_norm,
        }

baberabb's avatar
baberabb committed
1836
    def higher_is_better(self) -> dict:
1837
1838
1839
1840
1841
        return {
            "acc": True,
            "acc_norm": True,
        }

baberabb's avatar
baberabb committed
1842
    def aggregation(self) -> dict:
1843
1844
1845
1846
1847
1848
        return {
            "acc": mean,
            "acc_norm": mean,
        }


lintangsutawika's avatar
lintangsutawika committed
1849
class PerplexityTask(Task):
1850
1851
    OUTPUT_TYPE = "loglikelihood_rolling"

baberabb's avatar
baberabb committed
1852
    def has_training_docs(self) -> bool:
1853
1854
        return False

baberabb's avatar
baberabb committed
1855
    def fewshot_examples(self, k: int, rnd) -> List:
1856
1857
1858
1859
        if k != 0:
            raise ValueError(
                "The number of fewshot examples must be 0 for perplexity tasks."
            )
1860
1861
        return []

baberabb's avatar
baberabb committed
1862
    def fewshot_context(self, doc: dict, num_fewshot: int) -> Literal[""]:
1863
1864
1865
1866
        if num_fewshot != 0:
            raise ValueError(
                "The number of fewshot examples must be 0 for perplexity tasks."
            )
1867
1868
1869

        return ""

baberabb's avatar
baberabb committed
1870
    def higher_is_better(self) -> dict:
1871
1872
1873
1874
1875
1876
1877
1878
1879
        return {
            "word_perplexity": False,
            "byte_perplexity": False,
            "bits_per_byte": False,
        }

    def doc_to_decontamination_query(self, doc):
        return doc

Ethan Smith's avatar
Ethan Smith committed
1880
    def doc_to_text(self, doc) -> str:
1881
1882
1883
1884
1885
        return ""

    def doc_to_target(self, doc):
        return doc

1886
1887
1888
    def construct_requests(self, doc: dict, ctx: Optional[str], **kwargs):
        if bool(ctx):
            raise ValueError
1889

lintangsutawika's avatar
lintangsutawika committed
1890
1891
1892
1893
1894
1895
1896
        return Instance(
            request_type=self.OUTPUT_TYPE,
            doc=doc,
            arguments=(self.doc_to_target(doc),),
            idx=0,
            **kwargs,
        )
1897

1898
    def process_results(self, doc: dict, results: Tuple[float]) -> dict:
1899
        (loglikelihood,) = results
haileyschoelkopf's avatar
haileyschoelkopf committed
1900
1901
        words = self.count_words(self.doc_to_target(doc))
        bytes_ = self.count_bytes(self.doc_to_target(doc))
1902
1903
1904
1905
1906
1907
        return {
            "word_perplexity": (loglikelihood, words),
            "byte_perplexity": (loglikelihood, bytes_),
            "bits_per_byte": (loglikelihood, bytes_),
        }

baberabb's avatar
baberabb committed
1908
    def aggregation(self) -> dict:
1909
1910
1911
1912
1913
1914
1915
        return {
            "word_perplexity": weighted_perplexity,
            "byte_perplexity": weighted_perplexity,
            "bits_per_byte": bits_per_byte,
        }

    @classmethod
baberabb's avatar
baberabb committed
1916
    def count_bytes(cls, doc) -> int:
1917
1918
1919
        return len(doc.encode("utf-8"))

    @classmethod
baberabb's avatar
baberabb committed
1920
    def count_words(cls, doc) -> int:
1921
        """Downstream tasks with custom word boundaries should override this!"""
Lintang Sutawika's avatar
Lintang Sutawika committed
1922
        return len(re.split(r"\s+", doc))