check_repo.py 45.1 KB
Newer Older
1
2
3
4
5
6
7
8
9
10
11
12
13
14
# coding=utf-8
# Copyright 2020 The HuggingFace Inc. team.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
#     http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
Sylvain Gugger's avatar
Sylvain Gugger committed
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
"""
Utility that performs several consistency checks on the repo. This includes:
- checking all models are properly defined in the __init__ of models/
- checking all models are in the main __init__
- checking all models are properly tested
- checking all object in the main __init__ are documented
- checking all models are in at least one auto class
- checking all the auto mapping are properly defined (no typos, importable)
- checking the list of deprecated models is up to date

Use from the root of the repo with (as used in `make repo-consistency`):

```bash
python utils/check_repo.py
```

It has no auto-fix mode.
"""
33
34
35
import inspect
import os
import re
36
import sys
Sylvain Gugger's avatar
Sylvain Gugger committed
37
import types
38
import warnings
39
from collections import OrderedDict
40
from difflib import get_close_matches
41
from pathlib import Path
Sylvain Gugger's avatar
Sylvain Gugger committed
42
from typing import List, Tuple
43

44
from transformers import is_flax_available, is_tf_available, is_torch_available
45
from transformers.models.auto import get_values
Yih-Dar's avatar
Yih-Dar committed
46
from transformers.models.auto.configuration_auto import CONFIG_MAPPING_NAMES
47
48
49
50
from transformers.models.auto.feature_extraction_auto import FEATURE_EXTRACTOR_MAPPING_NAMES
from transformers.models.auto.image_processing_auto import IMAGE_PROCESSOR_MAPPING_NAMES
from transformers.models.auto.processing_auto import PROCESSOR_MAPPING_NAMES
from transformers.models.auto.tokenization_auto import TOKENIZER_MAPPING_NAMES
51
from transformers.utils import ENV_VARS_TRUE_VALUES, direct_transformers_import
52

53
54
55
56
57

# All paths are set with the intent you should run this script from the root of the repo with the command
# python utils/check_repo.py
PATH_TO_TRANSFORMERS = "src/transformers"
PATH_TO_TESTS = "tests"
58
PATH_TO_DOC = "docs/source/en"
59

60
61
# Update this list with models that are supposed to be private.
PRIVATE_MODELS = [
Jongjyh's avatar
Jongjyh committed
62
    "AltRobertaModel",
63
    "DPRSpanPredictor",
Daniel Stancl's avatar
Daniel Stancl committed
64
    "LongT5Stack",
Li-Huai (Allan) Lin's avatar
Li-Huai (Allan) Lin committed
65
    "RealmBertModel",
66
    "T5Stack",
67
    "MT5Stack",
68
    "UMT5Stack",
Susnato Dhar's avatar
Susnato Dhar committed
69
    "Pop2PianoStack",
70
    "SwitchTransformersStack",
71
    "TFDPRSpanPredictor",
72
73
    "MaskFormerSwinModel",
    "MaskFormerSwinPreTrainedModel",
74
75
    "BridgeTowerTextModel",
    "BridgeTowerVisionModel",
76
77
]

78
79
# Update this list for models that are not tested with a comment explaining the reason it should not be.
# Being in this list is an exception and should **not** be the rule.
80
IGNORE_NON_TESTED = PRIVATE_MODELS.copy() + [
81
    # models to ignore for not tested
NielsRogge's avatar
NielsRogge committed
82
    "InstructBlipQFormerModel",  # Building part of bigger (tested) model.
83
    "UMT5EncoderModel",  # Building part of bigger (tested) model.
NielsRogge's avatar
NielsRogge committed
84
    "Blip2QFormerModel",  # Building part of bigger (tested) model.
85
    "ErnieMForInformationExtraction",
86
    "GraphormerDecoderHead",  # Building part of bigger (tested) model.
87
88
    "JukeboxVQVAE",  # Building part of bigger (tested) model.
    "JukeboxPrior",  # Building part of bigger (tested) model.
89
    "DecisionTransformerGPT2Model",  # Building part of bigger (tested) model.
NielsRogge's avatar
NielsRogge committed
90
    "SegformerDecodeHead",  # Building part of bigger (tested) model.
wangpeng's avatar
wangpeng committed
91
    "MgpstrModel",  # Building part of bigger (tested) model.
92
    "BertLMHeadModel",  # Needs to be setup as decoder.
93
    "MegatronBertLMHeadModel",  # Building part of bigger (tested) model.
Li-Huai (Allan) Lin's avatar
Li-Huai (Allan) Lin committed
94
95
96
97
    "RealmBertModel",  # Building part of bigger (tested) model.
    "RealmReader",  # Not regular model.
    "RealmScorer",  # Not regular model.
    "RealmForOpenQA",  # Not regular model.
98
99
100
    "ReformerForMaskedLM",  # Needs to be setup as decoder.
    "TFElectraMainLayer",  # Building part of bigger (tested) model (should it be a TFPreTrainedModel ?)
    "TFRobertaForMultipleChoice",  # TODO: fix
101
    "TFRobertaPreLayerNormForMultipleChoice",  # TODO: fix
abhishek thakur's avatar
abhishek thakur committed
102
    "SeparableConv1D",  # Building part of bigger (tested) model.
103
    "FlaxBartForCausalLM",  # Building part of bigger (tested) model.
104
    "FlaxBertForCausalLM",  # Building part of bigger (tested) model. Tested implicitly through FlaxRobertaForCausalLM.
Younes Belkada's avatar
Younes Belkada committed
105
    "OPTDecoderWrapper",
106
    "TFSegformerDecodeHead",  # Not a regular model.
Jongjyh's avatar
Jongjyh committed
107
    "AltRobertaModel",  # Building part of bigger (tested) model.
Younes Belkada's avatar
Younes Belkada committed
108
    "BlipTextLMHeadModel",  # No need to test it as it is tested by BlipTextVision models
Matt's avatar
Matt committed
109
    "TFBlipTextLMHeadModel",  # No need to test it as it is tested by BlipTextVision models
110
111
    "BridgeTowerTextModel",  # No need to test it as it is tested by BridgeTowerModel model.
    "BridgeTowerVisionModel",  # No need to test it as it is tested by BridgeTowerModel model.
Yoach Lacombe's avatar
Yoach Lacombe committed
112
113
    "BarkCausalModel",  # Building part of bigger (tested) model.
    "BarkModel",  # Does not have a forward signature - generation tested with integration tests
114
115
116
117
118
]

# Update this list with test files that don't have a tester with a `all_model_classes` variable and which don't
# trigger the common tests.
TEST_FILES_WITH_NO_COMMON_TESTS = [
Yih-Dar's avatar
Yih-Dar committed
119
120
121
122
123
124
125
126
127
128
129
130
131
    "models/decision_transformer/test_modeling_decision_transformer.py",
    "models/camembert/test_modeling_camembert.py",
    "models/mt5/test_modeling_flax_mt5.py",
    "models/mbart/test_modeling_mbart.py",
    "models/mt5/test_modeling_mt5.py",
    "models/pegasus/test_modeling_pegasus.py",
    "models/camembert/test_modeling_tf_camembert.py",
    "models/mt5/test_modeling_tf_mt5.py",
    "models/xlm_roberta/test_modeling_tf_xlm_roberta.py",
    "models/xlm_roberta/test_modeling_flax_xlm_roberta.py",
    "models/xlm_prophetnet/test_modeling_xlm_prophetnet.py",
    "models/xlm_roberta/test_modeling_xlm_roberta.py",
    "models/vision_text_dual_encoder/test_modeling_vision_text_dual_encoder.py",
Matt's avatar
Matt committed
132
    "models/vision_text_dual_encoder/test_modeling_tf_vision_text_dual_encoder.py",
Yih-Dar's avatar
Yih-Dar committed
133
134
    "models/vision_text_dual_encoder/test_modeling_flax_vision_text_dual_encoder.py",
    "models/decision_transformer/test_modeling_decision_transformer.py",
Yoach Lacombe's avatar
Yoach Lacombe committed
135
    "models/bark/test_modeling_bark.py",
136
137
]

138
139
# Update this list for models that are not in any of the auto MODEL_XXX_MAPPING. Being in this list is an exception and
# should **not** be the rule.
140
IGNORE_NON_AUTO_CONFIGURED = PRIVATE_MODELS.copy() + [
141
    # models to ignore for model xxx mapping
142
143
    "AlignTextModel",
    "AlignVisionModel",
144
145
146
147
    "ClapTextModel",
    "ClapTextModelWithProjection",
    "ClapAudioModel",
    "ClapAudioModelWithProjection",
NielsRogge's avatar
NielsRogge committed
148
149
150
    "Blip2ForConditionalGeneration",
    "Blip2QFormerModel",
    "Blip2VisionModel",
151
    "ErnieMForInformationExtraction",
152
    "GitVisionModel",
153
154
    "GraphormerModel",
    "GraphormerForGraphClassification",
Younes Belkada's avatar
Younes Belkada committed
155
156
157
158
159
160
    "BlipForConditionalGeneration",
    "BlipForImageTextRetrieval",
    "BlipForQuestionAnswering",
    "BlipVisionModel",
    "BlipTextLMHeadModel",
    "BlipTextModel",
Matt's avatar
Matt committed
161
162
163
164
165
166
    "TFBlipForConditionalGeneration",
    "TFBlipForImageTextRetrieval",
    "TFBlipForQuestionAnswering",
    "TFBlipVisionModel",
    "TFBlipTextLMHeadModel",
    "TFBlipTextModel",
NielsRogge's avatar
NielsRogge committed
167
    "Swin2SRForImageSuperResolution",
168
169
    "BridgeTowerForImageAndTextRetrieval",
    "BridgeTowerForMaskedLM",
170
    "BridgeTowerForContrastiveLearning",
NielsRogge's avatar
NielsRogge committed
171
172
173
    "CLIPSegForImageSegmentation",
    "CLIPSegVisionModel",
    "CLIPSegTextModel",
Matt's avatar
Matt committed
174
    "EsmForProteinFolding",
175
    "GPTSanJapaneseModel",
176
    "TimeSeriesTransformerForPrediction",
177
    "InformerForPrediction",
178
    "AutoformerForPrediction",
179
180
    "JukeboxVQVAE",
    "JukeboxPrior",
181
    "SamModel",
NielsRogge's avatar
NielsRogge committed
182
    "DPTForDepthEstimation",
183
    "DecisionTransformerGPT2Model",
NielsRogge's avatar
NielsRogge committed
184
    "GLPNForDepthEstimation",
NielsRogge's avatar
NielsRogge committed
185
186
    "ViltForImagesAndTextClassification",
    "ViltForImageAndTextRetrieval",
187
    "ViltForTokenClassification",
NielsRogge's avatar
NielsRogge committed
188
    "ViltForMaskedLM",
NielsRogge's avatar
NielsRogge committed
189
190
    "PerceiverForMultimodalAutoencoding",
    "PerceiverForOpticalFlow",
NielsRogge's avatar
NielsRogge committed
191
    "SegformerDecodeHead",
192
    "TFSegformerDecodeHead",
Kamal Raj's avatar
Kamal Raj committed
193
    "FlaxBeitForMaskedImageModeling",
NielsRogge's avatar
NielsRogge committed
194
    "BeitForMaskedImageModeling",
195
196
    "ChineseCLIPTextModel",
    "ChineseCLIPVisionModel",
Suraj Patil's avatar
Suraj Patil committed
197
    "CLIPTextModel",
198
    "CLIPTextModelWithProjection",
Suraj Patil's avatar
Suraj Patil committed
199
    "CLIPVisionModel",
200
    "CLIPVisionModelWithProjection",
201
202
    "GroupViTTextModel",
    "GroupViTVisionModel",
Yih-Dar's avatar
Yih-Dar committed
203
204
    "TFCLIPTextModel",
    "TFCLIPVisionModel",
205
206
    "TFGroupViTTextModel",
    "TFGroupViTVisionModel",
Suraj Patil's avatar
Suraj Patil committed
207
    "FlaxCLIPTextModel",
208
    "FlaxCLIPTextModelWithProjection",
Suraj Patil's avatar
Suraj Patil committed
209
    "FlaxCLIPVisionModel",
210
    "FlaxWav2Vec2ForCTC",
NielsRogge's avatar
NielsRogge committed
211
    "DetrForSegmentation",
Younes Belkada's avatar
Younes Belkada committed
212
213
214
    "Pix2StructVisionModel",
    "Pix2StructTextModel",
    "Pix2StructForConditionalGeneration",
215
    "ConditionalDetrForSegmentation",
216
217
    "DPRReader",
    "FlaubertForQuestionAnswering",
218
219
220
221
    "FlavaImageCodebook",
    "FlavaTextModel",
    "FlavaImageModel",
    "FlavaMultimodalModel",
222
    "GPT2DoubleHeadsModel",
223
    "GPTSw3DoubleHeadsModel",
NielsRogge's avatar
NielsRogge committed
224
225
    "InstructBlipVisionModel",
    "InstructBlipQFormerModel",
226
    "LayoutLMForQuestionAnswering",
Ryokan RI's avatar
Ryokan RI committed
227
    "LukeForMaskedLM",
NielsRogge's avatar
NielsRogge committed
228
229
230
    "LukeForEntityClassification",
    "LukeForEntityPairClassification",
    "LukeForEntitySpanClassification",
wangpeng's avatar
wangpeng committed
231
    "MgpstrModel",
232
    "OpenAIGPTDoubleHeadsModel",
233
234
235
    "OwlViTTextModel",
    "OwlViTVisionModel",
    "OwlViTForObjectDetection",
236
237
238
    "RagModel",
    "RagSequenceForGeneration",
    "RagTokenForGeneration",
Li-Huai (Allan) Lin's avatar
Li-Huai (Allan) Lin committed
239
240
241
242
    "RealmEmbedder",
    "RealmForOpenQA",
    "RealmScorer",
    "RealmReader",
Ratthachat (Jung)'s avatar
Ratthachat (Jung) committed
243
    "TFDPRReader",
244
    "TFGPT2DoubleHeadsModel",
245
    "TFLayoutLMForQuestionAnswering",
246
    "TFOpenAIGPTDoubleHeadsModel",
Ratthachat (Jung)'s avatar
Ratthachat (Jung) committed
247
248
249
    "TFRagModel",
    "TFRagSequenceForGeneration",
    "TFRagTokenForGeneration",
250
    "Wav2Vec2ForCTC",
Patrick von Platen's avatar
Patrick von Platen committed
251
    "HubertForCTC",
252
253
    "SEWForCTC",
    "SEWDForCTC",
254
255
    "XLMForQuestionAnswering",
    "XLNetForQuestionAnswering",
abhishek thakur's avatar
abhishek thakur committed
256
    "SeparableConv1D",
Gunjan Chhablani's avatar
Gunjan Chhablani committed
257
258
259
260
    "VisualBertForRegionToPhraseAlignment",
    "VisualBertForVisualReasoning",
    "VisualBertForQuestionAnswering",
    "VisualBertForMultipleChoice",
Will Rice's avatar
Will Rice committed
261
    "TFWav2Vec2ForCTC",
Will Rice's avatar
Will Rice committed
262
    "TFHubertForCTC",
NielsRogge's avatar
NielsRogge committed
263
264
    "XCLIPVisionModel",
    "XCLIPTextModel",
Jongjyh's avatar
Jongjyh committed
265
266
267
    "AltCLIPTextModel",
    "AltCLIPVisionModel",
    "AltRobertaModel",
Zineng Tang's avatar
Zineng Tang committed
268
    "TvltForAudioVisualClassification",
Yoach Lacombe's avatar
Yoach Lacombe committed
269
270
271
272
273
274
    "BarkCausalModel",
    "BarkCoarseModel",
    "BarkFineModel",
    "BarkSemanticModel",
    "MusicgenModel",
    "MusicgenForConditionalGeneration",
275
276
277
    "SpeechT5ForSpeechToSpeech",
    "SpeechT5ForTextToSpeech",
    "SpeechT5HifiGan",
278
279
]

280
# DO NOT edit this list!
Sylvain Gugger's avatar
Sylvain Gugger committed
281
# (The corresponding pytorch objects should never have been in the main `__init__`, but it's too late to remove)
282
283
284
285
286
287
288
289
290
291
292
293
294
OBJECT_TO_SKIP_IN_MAIN_INIT_CHECK = [
    "FlaxBertLayer",
    "FlaxBigBirdLayer",
    "FlaxRoFormerLayer",
    "TFBertLayer",
    "TFLxmertEncoder",
    "TFLxmertXLayer",
    "TFMPNetLayer",
    "TFMobileBertLayer",
    "TFSegformerLayer",
    "TFViTMAELayer",
]

Sylvain Gugger's avatar
Sylvain Gugger committed
295
# Update this list for models that have multiple model types for the same model doc.
296
297
298
299
MODEL_TYPE_TO_DOC_MAPPING = OrderedDict(
    [
        ("data2vec-text", "data2vec"),
        ("data2vec-audio", "data2vec"),
300
        ("data2vec-vision", "data2vec"),
NielsRogge's avatar
NielsRogge committed
301
        ("donut-swin", "donut"),
302
303
304
305
    ]
)


306
# This is to make sure the transformers module imported is the one in the repo.
307
transformers = direct_transformers_import(PATH_TO_TRANSFORMERS)
308
309


310
def check_missing_backends():
Sylvain Gugger's avatar
Sylvain Gugger committed
311
312
313
314
    """
    Checks if all backends are installed (otherwise the check of this script is incomplete). Will error in the CI if
    that's not the case but only throw a warning for users running this.
    """
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
    missing_backends = []
    if not is_torch_available():
        missing_backends.append("PyTorch")
    if not is_tf_available():
        missing_backends.append("TensorFlow")
    if not is_flax_available():
        missing_backends.append("Flax")
    if len(missing_backends) > 0:
        missing = ", ".join(missing_backends)
        if os.getenv("TRANSFORMERS_IS_CI", "").upper() in ENV_VARS_TRUE_VALUES:
            raise Exception(
                "Full repo consistency checks require all backends to be installed (with `pip install -e .[dev]` in the "
                f"Transformers repo, the following are missing: {missing}."
            )
        else:
            warnings.warn(
                "Full repo consistency checks require all backends to be installed (with `pip install -e .[dev]` in the "
                f"Transformers repo, the following are missing: {missing}. While it's probably fine as long as you "
                "didn't make any change in one of those backends modeling files, you should probably execute the "
                "command above to be on the safe side."
            )


338
def check_model_list():
Sylvain Gugger's avatar
Sylvain Gugger committed
339
340
341
    """
    Checks the model listed as subfolders of `models` match the models available in `transformers.models`.
    """
342
343
344
345
    # Get the models from the directory structure of `src/transformers/models/`
    models_dir = os.path.join(PATH_TO_TRANSFORMERS, "models")
    _models = []
    for model in os.listdir(models_dir):
Sylvain Gugger's avatar
Sylvain Gugger committed
346
347
        if model == "deprecated":
            continue
348
349
350
351
        model_dir = os.path.join(models_dir, model)
        if os.path.isdir(model_dir) and "__init__.py" in os.listdir(model_dir):
            _models.append(model)

Sylvain Gugger's avatar
Sylvain Gugger committed
352
    # Get the models in the submodule `transformers.models`
353
354
    models = [model for model in dir(transformers.models) if not model.startswith("__")]

355
    missing_models = sorted(set(_models).difference(models))
356
357
358
359
360
361
    if missing_models:
        raise Exception(
            f"The following models should be included in {models_dir}/__init__.py: {','.join(missing_models)}."
        )


362
363
# If some modeling modules should be ignored for all checks, they should be added in the nested list
# _ignore_modules of this function.
Sylvain Gugger's avatar
Sylvain Gugger committed
364
365
def get_model_modules() -> List[str]:
    """Get all the model modules inside the transformers library (except deprecated models)."""
366
367
368
369
370
371
372
373
    _ignore_modules = [
        "modeling_auto",
        "modeling_encoder_decoder",
        "modeling_marian",
        "modeling_mmbt",
        "modeling_outputs",
        "modeling_retribert",
        "modeling_utils",
Sylvain Gugger's avatar
Sylvain Gugger committed
374
        "modeling_flax_auto",
375
        "modeling_flax_encoder_decoder",
Stas Bekman's avatar
Stas Bekman committed
376
        "modeling_flax_utils",
377
        "modeling_speech_encoder_decoder",
378
        "modeling_flax_speech_encoder_decoder",
379
        "modeling_flax_vision_encoder_decoder",
amyeroberts's avatar
amyeroberts committed
380
        "modeling_timm_backbone",
381
382
        "modeling_transfo_xl_utilities",
        "modeling_tf_auto",
383
        "modeling_tf_encoder_decoder",
384
385
386
387
        "modeling_tf_outputs",
        "modeling_tf_pytorch_utils",
        "modeling_tf_utils",
        "modeling_tf_transfo_xl_utilities",
388
        "modeling_tf_vision_encoder_decoder",
389
        "modeling_vision_encoder_decoder",
390
391
    ]
    modules = []
Sylvain Gugger's avatar
Sylvain Gugger committed
392
393
    for model in dir(transformers.models):
        # There are some magic dunder attributes in the dir, we ignore them
Sylvain Gugger's avatar
Sylvain Gugger committed
394
395
396
397
398
399
400
401
402
        if model == "deprecated" or model.startswith("__"):
            continue

        model_module = getattr(transformers.models, model)
        for submodule in dir(model_module):
            if submodule.startswith("modeling") and submodule not in _ignore_modules:
                modeling_module = getattr(model_module, submodule)
                if inspect.ismodule(modeling_module):
                    modules.append(modeling_module)
403
404
405
    return modules


Sylvain Gugger's avatar
Sylvain Gugger committed
406
407
408
409
410
411
412
413
414
415
416
417
418
def get_models(module: types.ModuleType, include_pretrained: bool = False) -> List[Tuple[str, type]]:
    """
    Get the objects in a module that are models.

    Args:
        module (`types.ModuleType`):
            The module from which we are extracting models.
        include_pretrained (`bool`, *optional*, defaults to `False`):
            Whether or not to include the `PreTrainedModel` subclass (like `BertPreTrainedModel`) or not.

    Returns:
        List[Tuple[str, type]]: List of models as tuples (class name, actual class).
    """
419
    models = []
420
    model_classes = (transformers.PreTrainedModel, transformers.TFPreTrainedModel, transformers.FlaxPreTrainedModel)
421
    for attr_name in dir(module):
422
        if not include_pretrained and ("Pretrained" in attr_name or "PreTrained" in attr_name):
423
424
425
426
427
428
429
            continue
        attr = getattr(module, attr_name)
        if isinstance(attr, type) and issubclass(attr, model_classes) and attr.__module__ == module.__name__:
            models.append((attr_name, attr))
    return models


Sylvain Gugger's avatar
Sylvain Gugger committed
430
431
432
433
def is_building_block(model: str) -> bool:
    """
    Returns `True` if a model is a building block part of a bigger model.
    """
434
435
436
437
438
439
    if model.endswith("Wrapper"):
        return True
    if model.endswith("Encoder"):
        return True
    if model.endswith("Decoder"):
        return True
440
441
    if model.endswith("Prenet"):
        return True
Sylvain Gugger's avatar
Sylvain Gugger committed
442
443
444
445
446
447
448


def is_a_private_model(model: str) -> bool:
    """Returns `True` if the model should not be in the main init."""
    if model in PRIVATE_MODELS:
        return True
    return is_building_block(model)
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465


def check_models_are_in_init():
    """Checks all models defined in the library are in the main init."""
    models_not_in_init = []
    dir_transformers = dir(transformers)
    for module in get_model_modules():
        models_not_in_init += [
            model[0] for model in get_models(module, include_pretrained=True) if model[0] not in dir_transformers
        ]

    # Remove private models
    models_not_in_init = [model for model in models_not_in_init if not is_a_private_model(model)]
    if len(models_not_in_init) > 0:
        raise Exception(f"The following models should be in the main init: {','.join(models_not_in_init)}.")


466
467
# If some test_modeling files should be ignored when checking models are all tested, they should be added in the
# nested list _ignore_files of this function.
Sylvain Gugger's avatar
Sylvain Gugger committed
468
469
470
def get_model_test_files() -> List[str]:
    """
    Get the model test files.
Yih-Dar's avatar
Yih-Dar committed
471

Sylvain Gugger's avatar
Sylvain Gugger committed
472
473
474
475
    Returns:
        `List[str]`: The list of test files. The returned files will NOT contain the `tests` (i.e. `PATH_TO_TESTS`
        defined in this script). They will be considered as paths relative to `tests`. A caller has to use
        `os.path.join(PATH_TO_TESTS, ...)` to access the files.
Yih-Dar's avatar
Yih-Dar committed
476
477
    """

478
479
480
    _ignore_files = [
        "test_modeling_common",
        "test_modeling_encoder_decoder",
481
        "test_modeling_flax_encoder_decoder",
482
        "test_modeling_flax_speech_encoder_decoder",
483
484
        "test_modeling_marian",
        "test_modeling_tf_common",
485
        "test_modeling_tf_encoder_decoder",
486
487
    ]
    test_files = []
Yih-Dar's avatar
Yih-Dar committed
488
489
490
491
492
493
494
495
496
497
498
499
    model_test_root = os.path.join(PATH_TO_TESTS, "models")
    model_test_dirs = []
    for x in os.listdir(model_test_root):
        x = os.path.join(model_test_root, x)
        if os.path.isdir(x):
            model_test_dirs.append(x)

    for target_dir in [PATH_TO_TESTS] + model_test_dirs:
        for file_or_dir in os.listdir(target_dir):
            path = os.path.join(target_dir, file_or_dir)
            if os.path.isfile(path):
                filename = os.path.split(path)[-1]
500
                if "test_modeling" in filename and os.path.splitext(filename)[0] not in _ignore_files:
Yih-Dar's avatar
Yih-Dar committed
501
502
503
                    file = os.path.join(*path.split(os.sep)[1:])
                    test_files.append(file)

504
505
506
507
508
    return test_files


# This is a bit hacky but I didn't find a way to import the test_file as a module and read inside the tester class
# for the all_model_classes variable.
Sylvain Gugger's avatar
Sylvain Gugger committed
509
510
511
512
513
514
515
516
517
518
519
def find_tested_models(test_file: str) -> List[str]:
    """
    Parse the content of test_file to detect what's in `all_model_classes`. This detects the models that inherit from
    the common test class.

    Args:
        test_file (`str`): The path to the test file to check

    Returns:
        `List[str]`: The list of models tested in that file.
    """
520
    with open(os.path.join(PATH_TO_TESTS, test_file), "r", encoding="utf-8", newline="\n") as f:
521
        content = f.read()
Sylvain Gugger's avatar
Sylvain Gugger committed
522
    all_models = re.findall(r"all_model_classes\s+=\s+\(\s*\(([^\)]*)\)", content)
523
524
    # Check with one less parenthesis as well
    all_models += re.findall(r"all_model_classes\s+=\s+\(([^\)]*)\)", content)
Sylvain Gugger's avatar
Sylvain Gugger committed
525
    if len(all_models) > 0:
526
        model_tested = []
Sylvain Gugger's avatar
Sylvain Gugger committed
527
528
529
530
531
        for entry in all_models:
            for line in entry.split(","):
                name = line.strip()
                if len(name) > 0:
                    model_tested.append(name)
532
533
534
        return model_tested


Sylvain Gugger's avatar
Sylvain Gugger committed
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
def should_be_tested(model_name: str) -> bool:
    """
    Whether or not a model should be tested.
    """
    if model_name in IGNORE_NON_TESTED:
        return False
    return not is_building_block(model_name)


def check_models_are_tested(module: types.ModuleType, test_file: str) -> List[str]:
    """Check models defined in a module are all tested in a given file.

    Args:
        module (`types.ModuleType`): The module in which we get the models.
        test_file (`str`): The path to the file where the module is tested.

    Returns:
        `List[str]`: The list of error messages corresponding to models not tested.
    """
554
    # XxxPreTrainedModel are not tested
555
556
557
    defined_models = get_models(module)
    tested_models = find_tested_models(test_file)
    if tested_models is None:
558
        if test_file.replace(os.path.sep, "/") in TEST_FILES_WITH_NO_COMMON_TESTS:
559
560
561
562
563
564
565
566
            return
        return [
            f"{test_file} should define `all_model_classes` to apply common tests to the models it tests. "
            + "If this intentional, add the test filename to `TEST_FILES_WITH_NO_COMMON_TESTS` in the file "
            + "`utils/check_repo.py`."
        ]
    failures = []
    for model_name, _ in defined_models:
Sylvain Gugger's avatar
Sylvain Gugger committed
567
        if model_name not in tested_models and should_be_tested(model_name):
568
569
570
571
572
573
574
575
576
577
            failures.append(
                f"{model_name} is defined in {module.__name__} but is not tested in "
                + f"{os.path.join(PATH_TO_TESTS, test_file)}. Add it to the all_model_classes in that file."
                + "If common tests should not applied to that model, add its name to `IGNORE_NON_TESTED`"
                + "in the file `utils/check_repo.py`."
            )
    return failures


def check_all_models_are_tested():
Patrick von Platen's avatar
Patrick von Platen committed
578
    """Check all models are properly tested."""
579
580
581
582
    modules = get_model_modules()
    test_files = get_model_test_files()
    failures = []
    for module in modules:
Sylvain Gugger's avatar
Sylvain Gugger committed
583
        # Matches a module to its test file.
584
585
        test_file = [file for file in test_files if f"test_{module.__name__.split('.')[-1]}.py" in file]
        if len(test_file) == 0:
586
            failures.append(f"{module.__name__} does not have its corresponding test file {test_file}.")
587
588
589
590
        elif len(test_file) > 1:
            failures.append(f"{module.__name__} has several test files: {test_file}.")
        else:
            test_file = test_file[0]
591
592
593
            new_failures = check_models_are_tested(module, test_file)
            if new_failures is not None:
                failures += new_failures
594
595
596
597
    if len(failures) > 0:
        raise Exception(f"There were {len(failures)} failures:\n" + "\n".join(failures))


Sylvain Gugger's avatar
Sylvain Gugger committed
598
def get_all_auto_configured_models() -> List[str]:
Patrick von Platen's avatar
Patrick von Platen committed
599
    """Return the list of all models in at least one auto class."""
600
    result = set()  # To avoid duplicates we concatenate all model classes in a set.
601
602
    if is_torch_available():
        for attr_name in dir(transformers.models.auto.modeling_auto):
603
            if attr_name.startswith("MODEL_") and attr_name.endswith("MAPPING_NAMES"):
604
605
606
                result = result | set(get_values(getattr(transformers.models.auto.modeling_auto, attr_name)))
    if is_tf_available():
        for attr_name in dir(transformers.models.auto.modeling_tf_auto):
607
            if attr_name.startswith("TF_MODEL_") and attr_name.endswith("MAPPING_NAMES"):
608
609
610
                result = result | set(get_values(getattr(transformers.models.auto.modeling_tf_auto, attr_name)))
    if is_flax_available():
        for attr_name in dir(transformers.models.auto.modeling_flax_auto):
611
            if attr_name.startswith("FLAX_MODEL_") and attr_name.endswith("MAPPING_NAMES"):
612
                result = result | set(get_values(getattr(transformers.models.auto.modeling_flax_auto, attr_name)))
613
    return list(result)
614
615


Sylvain Gugger's avatar
Sylvain Gugger committed
616
617
def ignore_unautoclassed(model_name: str) -> bool:
    """Rules to determine if a model should be in an auto class."""
618
619
620
621
622
623
624
625
626
    # Special white list
    if model_name in IGNORE_NON_AUTO_CONFIGURED:
        return True
    # Encoder and Decoder should be ignored
    if "Encoder" in model_name or "Decoder" in model_name:
        return True
    return False


Sylvain Gugger's avatar
Sylvain Gugger committed
627
628
629
630
631
632
633
634
635
636
637
638
639
def check_models_are_auto_configured(module: types.ModuleType, all_auto_models: List[str]) -> List[str]:
    """
    Check models defined in module are each in an auto class.

    Args:
        module (`types.ModuleType`):
            The module in which we get the models.
        all_auto_models (`List[str]`):
            The list of all models in an auto class (as obtained with `get_all_auto_configured_models()`).

    Returns:
        `List[str]`: The list of error messages corresponding to models not tested.
    """
640
641
642
    defined_models = get_models(module)
    failures = []
    for model_name, _ in defined_models:
643
        if model_name not in all_auto_models and not ignore_unautoclassed(model_name):
644
645
646
647
648
649
650
651
652
            failures.append(
                f"{model_name} is defined in {module.__name__} but is not present in any of the auto mapping. "
                "If that is intended behavior, add its name to `IGNORE_NON_AUTO_CONFIGURED` in the file "
                "`utils/check_repo.py`."
            )
    return failures


def check_all_models_are_auto_configured():
Patrick von Platen's avatar
Patrick von Platen committed
653
    """Check all models are each in an auto class."""
Sylvain Gugger's avatar
Sylvain Gugger committed
654
    # This is where we need to check we have all backends or the check is incomplete.
655
    check_missing_backends()
656
657
658
659
660
661
662
663
664
665
666
    modules = get_model_modules()
    all_auto_models = get_all_auto_configured_models()
    failures = []
    for module in modules:
        new_failures = check_models_are_auto_configured(module, all_auto_models)
        if new_failures is not None:
            failures += new_failures
    if len(failures) > 0:
        raise Exception(f"There were {len(failures)} failures:\n" + "\n".join(failures))


667
668
def check_all_auto_object_names_being_defined():
    """Check all names defined in auto (name) mappings exist in the library."""
Sylvain Gugger's avatar
Sylvain Gugger committed
669
    # This is where we need to check we have all backends or the check is incomplete.
670
    check_missing_backends()
671

672
    failures = []
673
    mappings_to_check = {
674
675
676
677
678
679
        "TOKENIZER_MAPPING_NAMES": TOKENIZER_MAPPING_NAMES,
        "IMAGE_PROCESSOR_MAPPING_NAMES": IMAGE_PROCESSOR_MAPPING_NAMES,
        "FEATURE_EXTRACTOR_MAPPING_NAMES": FEATURE_EXTRACTOR_MAPPING_NAMES,
        "PROCESSOR_MAPPING_NAMES": PROCESSOR_MAPPING_NAMES,
    }

680
681
    # Each auto modeling files contains multiple mappings. Let's get them in a dynamic way.
    for module_name in ["modeling_auto", "modeling_tf_auto", "modeling_flax_auto"]:
682
683
684
        module = getattr(transformers.models.auto, module_name, None)
        if module is None:
            continue
685
686
687
688
689
        # all mappings in a single auto modeling file
        mapping_names = [x for x in dir(module) if x.endswith("_MAPPING_NAMES")]
        mappings_to_check.update({name: getattr(module, name) for name in mapping_names})

    for name, mapping in mappings_to_check.items():
Sylvain Gugger's avatar
Sylvain Gugger committed
690
        for _, class_names in mapping.items():
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
            if not isinstance(class_names, tuple):
                class_names = (class_names,)
                for class_name in class_names:
                    if class_name is None:
                        continue
                    # dummy object is accepted
                    if not hasattr(transformers, class_name):
                        # If the class name is in a model name mapping, let's not check if there is a definition in any modeling
                        # module, if it's a private model defined in this file.
                        if name.endswith("MODEL_MAPPING_NAMES") and is_a_private_model(class_name):
                            continue
                        failures.append(
                            f"`{class_name}` appears in the mapping `{name}` but it is not defined in the library."
                        )
    if len(failures) > 0:
        raise Exception(f"There were {len(failures)} failures:\n" + "\n".join(failures))


Yih-Dar's avatar
Yih-Dar committed
709
710
def check_all_auto_mapping_names_in_config_mapping_names():
    """Check all keys defined in auto mappings (mappings of names) appear in `CONFIG_MAPPING_NAMES`."""
Sylvain Gugger's avatar
Sylvain Gugger committed
711
    # This is where we need to check we have all backends or the check is incomplete.
712
    check_missing_backends()
Yih-Dar's avatar
Yih-Dar committed
713

714
    failures = []
Yih-Dar's avatar
Yih-Dar committed
715
    # `TOKENIZER_PROCESSOR_MAPPING_NAMES` and `AutoTokenizer` is special, and don't need to follow the rule.
716
    mappings_to_check = {
Yih-Dar's avatar
Yih-Dar committed
717
718
719
720
721
        "IMAGE_PROCESSOR_MAPPING_NAMES": IMAGE_PROCESSOR_MAPPING_NAMES,
        "FEATURE_EXTRACTOR_MAPPING_NAMES": FEATURE_EXTRACTOR_MAPPING_NAMES,
        "PROCESSOR_MAPPING_NAMES": PROCESSOR_MAPPING_NAMES,
    }

722
723
    # Each auto modeling files contains multiple mappings. Let's get them in a dynamic way.
    for module_name in ["modeling_auto", "modeling_tf_auto", "modeling_flax_auto"]:
724
725
726
        module = getattr(transformers.models.auto, module_name, None)
        if module is None:
            continue
727
728
729
730
731
        # all mappings in a single auto modeling file
        mapping_names = [x for x in dir(module) if x.endswith("_MAPPING_NAMES")]
        mappings_to_check.update({name: getattr(module, name) for name in mapping_names})

    for name, mapping in mappings_to_check.items():
Sylvain Gugger's avatar
Sylvain Gugger committed
732
        for model_type in mapping:
Yih-Dar's avatar
Yih-Dar committed
733
734
735
736
737
738
739
740
741
            if model_type not in CONFIG_MAPPING_NAMES:
                failures.append(
                    f"`{model_type}` appears in the mapping `{name}` but it is not defined in the keys of "
                    "`CONFIG_MAPPING_NAMES`."
                )
    if len(failures) > 0:
        raise Exception(f"There were {len(failures)} failures:\n" + "\n".join(failures))


742
def check_all_auto_mappings_importable():
Sylvain Gugger's avatar
Sylvain Gugger committed
743
744
    """Check all auto mappings can be imported."""
    # This is where we need to check we have all backends or the check is incomplete.
745
746
747
748
749
750
751
752
753
754
755
756
757
    check_missing_backends()

    failures = []
    mappings_to_check = {}
    # Each auto modeling files contains multiple mappings. Let's get them in a dynamic way.
    for module_name in ["modeling_auto", "modeling_tf_auto", "modeling_flax_auto"]:
        module = getattr(transformers.models.auto, module_name, None)
        if module is None:
            continue
        # all mappings in a single auto modeling file
        mapping_names = [x for x in dir(module) if x.endswith("_MAPPING_NAMES")]
        mappings_to_check.update({name: getattr(module, name) for name in mapping_names})

Sylvain Gugger's avatar
Sylvain Gugger committed
758
    for name in mappings_to_check:
759
760
        name = name.replace("_MAPPING_NAMES", "_MAPPING")
        if not hasattr(transformers, name):
761
762
763
764
765
766
            failures.append(f"`{name}`")
    if len(failures) > 0:
        raise Exception(f"There were {len(failures)} failures:\n" + "\n".join(failures))


def check_objects_being_equally_in_main_init():
Sylvain Gugger's avatar
Sylvain Gugger committed
767
768
769
    """
    Check if a (TensorFlow or Flax) object is in the main __init__ iif its counterpart in PyTorch is.
    """
770
771
772
773
774
    attrs = dir(transformers)

    failures = []
    for attr in attrs:
        obj = getattr(transformers, attr)
Sylvain Gugger's avatar
Sylvain Gugger committed
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
        if not hasattr(obj, "__module__") or "models.deprecated" in obj.__module__:
            continue

        module_path = obj.__module__
        module_name = module_path.split(".")[-1]
        module_dir = ".".join(module_path.split(".")[:-1])
        if (
            module_name.startswith("modeling_")
            and not module_name.startswith("modeling_tf_")
            and not module_name.startswith("modeling_flax_")
        ):
            parent_module = sys.modules[module_dir]

            frameworks = []
            if is_tf_available():
                frameworks.append("TF")
            if is_flax_available():
                frameworks.append("Flax")

            for framework in frameworks:
                other_module_path = module_path.replace("modeling_", f"modeling_{framework.lower()}_")
                if os.path.isfile("src/" + other_module_path.replace(".", "/") + ".py"):
                    other_module_name = module_name.replace("modeling_", f"modeling_{framework.lower()}_")
                    other_module = getattr(parent_module, other_module_name)
                    if hasattr(other_module, f"{framework}{attr}"):
                        if not hasattr(transformers, f"{framework}{attr}"):
                            if f"{framework}{attr}" not in OBJECT_TO_SKIP_IN_MAIN_INIT_CHECK:
                                failures.append(f"{framework}{attr}")
                    if hasattr(other_module, f"{framework}_{attr}"):
                        if not hasattr(transformers, f"{framework}_{attr}"):
                            if f"{framework}_{attr}" not in OBJECT_TO_SKIP_IN_MAIN_INIT_CHECK:
                                failures.append(f"{framework}_{attr}")
807
808
809
810
    if len(failures) > 0:
        raise Exception(f"There were {len(failures)} failures:\n" + "\n".join(failures))


Sylvain Gugger's avatar
Sylvain Gugger committed
811
812
813
_re_decorator = re.compile(r"^\s*@(\S+)\s+$")


Sylvain Gugger's avatar
Sylvain Gugger committed
814
815
816
817
818
819
820
821
822
823
def check_decorator_order(filename: str) -> List[int]:
    """
    Check that in a given test file, the slow decorator is always last.

    Args:
        filename (`str`): The path to a test file to check.

    Returns:
        `List[int]`: The list of failures as a list of indices where there are problems.
    """
824
    with open(filename, "r", encoding="utf-8", newline="\n") as f:
Sylvain Gugger's avatar
Sylvain Gugger committed
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
        lines = f.readlines()
    decorator_before = None
    errors = []
    for i, line in enumerate(lines):
        search = _re_decorator.search(line)
        if search is not None:
            decorator_name = search.groups()[0]
            if decorator_before is not None and decorator_name.startswith("parameterized"):
                errors.append(i)
            decorator_before = decorator_name
        elif decorator_before is not None:
            decorator_before = None
    return errors


def check_all_decorator_order():
Patrick von Platen's avatar
Patrick von Platen committed
841
    """Check that in all test files, the slow decorator is always last."""
Sylvain Gugger's avatar
Sylvain Gugger committed
842
843
844
845
846
847
848
849
850
    errors = []
    for fname in os.listdir(PATH_TO_TESTS):
        if fname.endswith(".py"):
            filename = os.path.join(PATH_TO_TESTS, fname)
            new_errors = check_decorator_order(filename)
            errors += [f"- {filename}, line {i}" for i in new_errors]
    if len(errors) > 0:
        msg = "\n".join(errors)
        raise ValueError(
Sylvain Gugger's avatar
Sylvain Gugger committed
851
852
            "The parameterized decorator (and its variants) should always be first, but this is not the case in the"
            f" following files:\n{msg}"
Sylvain Gugger's avatar
Sylvain Gugger committed
853
854
855
        )


Sylvain Gugger's avatar
Sylvain Gugger committed
856
857
858
859
860
861
862
def find_all_documented_objects() -> List[str]:
    """
    Parse the content of all doc files to detect which classes and functions it documents.

    Returns:
        `List[str]`: The list of all object names being documented.
    """
863
864
    documented_obj = []
    for doc_file in Path(PATH_TO_DOC).glob("**/*.rst"):
Julien Plu's avatar
Julien Plu committed
865
        with open(doc_file, "r", encoding="utf-8", newline="\n") as f:
866
867
868
            content = f.read()
        raw_doc_objs = re.findall(r"(?:autoclass|autofunction):: transformers.(\S+)\s+", content)
        documented_obj += [obj.split(".")[-1] for obj in raw_doc_objs]
869
    for doc_file in Path(PATH_TO_DOC).glob("**/*.md"):
Sylvain Gugger's avatar
Sylvain Gugger committed
870
871
        with open(doc_file, "r", encoding="utf-8", newline="\n") as f:
            content = f.read()
872
        raw_doc_objs = re.findall(r"\[\[autodoc\]\]\s+(\S+)\s+", content)
Sylvain Gugger's avatar
Sylvain Gugger committed
873
        documented_obj += [obj.split(".")[-1] for obj in raw_doc_objs]
874
875
876
877
878
879
    return documented_obj


# One good reason for not being documented is to be deprecated. Put in this list deprecated objects.
DEPRECATED_OBJECTS = [
    "AutoModelWithLMHead",
880
    "BartPretrainedModel",
881
882
    "DataCollator",
    "DataCollatorForSOP",
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
    "GlueDataset",
    "GlueDataTrainingArguments",
    "LineByLineTextDataset",
    "LineByLineWithRefDataset",
    "LineByLineWithSOPTextDataset",
    "PretrainedBartModel",
    "PretrainedFSMTModel",
    "SingleSentenceClassificationProcessor",
    "SquadDataTrainingArguments",
    "SquadDataset",
    "SquadExample",
    "SquadFeatures",
    "SquadV1Processor",
    "SquadV2Processor",
    "TFAutoModelWithLMHead",
898
    "TFBartPretrainedModel",
899
900
    "TextDataset",
    "TextDatasetForNextSentencePrediction",
901
    "Wav2Vec2ForMaskedLM",
902
    "Wav2Vec2Tokenizer",
903
904
905
906
907
908
909
910
911
912
    "glue_compute_metrics",
    "glue_convert_examples_to_features",
    "glue_output_modes",
    "glue_processors",
    "glue_tasks_num_labels",
    "squad_convert_examples_to_features",
    "xnli_compute_metrics",
    "xnli_output_modes",
    "xnli_processors",
    "xnli_tasks_num_labels",
913
914
    "TFTrainer",
    "TFTrainingArguments",
915
916
917
918
919
920
921
]

# Exceptionally, some objects should not be documented after all rules passed.
# ONLY PUT SOMETHING IN THIS LIST AS A LAST RESORT!
UNDOCUMENTED_OBJECTS = [
    "AddedToken",  # This is a tokenizers class.
    "BasicTokenizer",  # Internal, should never have been in the main init.
922
    "CharacterTokenizer",  # Internal, should never have been in the main init.
923
    "DPRPretrainedReader",  # Like an Encoder.
Sylvain Gugger's avatar
Sylvain Gugger committed
924
    "DummyObject",  # Just picked by mistake sometimes.
925
    "MecabTokenizer",  # Internal, should never have been in the main init.
926
927
928
929
930
931
932
933
934
935
936
    "ModelCard",  # Internal type.
    "SqueezeBertModule",  # Internal building block (should have been called SqueezeBertLayer)
    "TFDPRPretrainedReader",  # Like an Encoder.
    "TransfoXLCorpus",  # Internal type.
    "WordpieceTokenizer",  # Internal, should never have been in the main init.
    "absl",  # External module
    "add_end_docstrings",  # Internal, should never have been in the main init.
    "add_start_docstrings",  # Internal, should never have been in the main init.
    "convert_tf_weight_name_to_pt_weight_name",  # Internal used to convert model weights
    "logger",  # Internal logger
    "logging",  # External module
937
    "requires_backends",  # Internal function
Jongjyh's avatar
Jongjyh committed
938
    "AltRobertaModel",  # Internal module
939
940
941
942
943
944
    "FalconConfig",  # TODO Matt Remove this and re-add the docs once TGI is ready
    "FalconForCausalLM",
    "FalconForQuestionAnswering",
    "FalconForSequenceClassification",
    "FalconForTokenClassification",
    "FalconModel",
945
946
947
948
949
950
951
952
953
]

# This list should be empty. Objects in it should get their own doc page.
SHOULD_HAVE_THEIR_OWN_PAGE = [
    # Benchmarks
    "PyTorchBenchmark",
    "PyTorchBenchmarkArguments",
    "TensorFlowBenchmark",
    "TensorFlowBenchmarkArguments",
954
    "AutoBackbone",
NielsRogge's avatar
NielsRogge committed
955
956
    "BitBackbone",
    "ConvNextBackbone",
Alara Dirik's avatar
Alara Dirik committed
957
    "ConvNextV2Backbone",
958
    "DinatBackbone",
Alara Dirik's avatar
Alara Dirik committed
959
    "FocalNetBackbone",
NielsRogge's avatar
NielsRogge committed
960
    "MaskFormerSwinBackbone",
961
962
    "MaskFormerSwinConfig",
    "MaskFormerSwinModel",
NielsRogge's avatar
NielsRogge committed
963
964
    "NatBackbone",
    "ResNetBackbone",
NielsRogge's avatar
NielsRogge committed
965
    "SwinBackbone",
amyeroberts's avatar
amyeroberts committed
966
967
    "TimmBackbone",
    "TimmBackboneConfig",
968
969
970
]


Sylvain Gugger's avatar
Sylvain Gugger committed
971
972
def ignore_undocumented(name: str) -> bool:
    """Rules to determine if `name` should be undocumented (returns `True` if it should not be documented)."""
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
    # NOT DOCUMENTED ON PURPOSE.
    # Constants uppercase are not documented.
    if name.isupper():
        return True
    # PreTrainedModels / Encoders / Decoders / Layers / Embeddings / Attention are not documented.
    if (
        name.endswith("PreTrainedModel")
        or name.endswith("Decoder")
        or name.endswith("Encoder")
        or name.endswith("Layer")
        or name.endswith("Embeddings")
        or name.endswith("Attention")
    ):
        return True
    # Submodules are not documented.
    if os.path.isdir(os.path.join(PATH_TO_TRANSFORMERS, name)) or os.path.isfile(
        os.path.join(PATH_TO_TRANSFORMERS, f"{name}.py")
    ):
        return True
    # All load functions are not documented.
    if name.startswith("load_tf") or name.startswith("load_pytorch"):
        return True
    # is_xxx_available functions are not documented.
    if name.startswith("is_") and name.endswith("_available"):
        return True
    # Deprecated objects are not documented.
    if name in DEPRECATED_OBJECTS or name in UNDOCUMENTED_OBJECTS:
        return True
    # MMBT model does not really work.
    if name.startswith("MMBT"):
        return True
    if name in SHOULD_HAVE_THEIR_OWN_PAGE:
        return True
    return False


def check_all_objects_are_documented():
Patrick von Platen's avatar
Patrick von Platen committed
1010
    """Check all models are properly documented."""
1011
    documented_objs = find_all_documented_objects()
1012
1013
1014
    modules = transformers._modules
    objects = [c for c in dir(transformers) if c not in modules and not c.startswith("_")]
    undocumented_objs = [c for c in objects if c not in documented_objs and not ignore_undocumented(c)]
1015
1016
1017
1018
1019
    if len(undocumented_objs) > 0:
        raise Exception(
            "The following objects are in the public init so should be documented:\n - "
            + "\n - ".join(undocumented_objs)
        )
1020
    check_docstrings_are_in_md()
1021
1022
1023
1024
1025
1026
    check_model_type_doc_match()


def check_model_type_doc_match():
    """Check all doc pages have a corresponding model type."""
    model_doc_folder = Path(PATH_TO_DOC) / "model_doc"
1027
    model_docs = [m.stem for m in model_doc_folder.glob("*.md")]
1028
1029

    model_types = list(transformers.models.auto.configuration_auto.MODEL_NAMES_MAPPING.keys())
1030
    model_types = [MODEL_TYPE_TO_DOC_MAPPING[m] if m in MODEL_TYPE_TO_DOC_MAPPING else m for m in model_types]
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048

    errors = []
    for m in model_docs:
        if m not in model_types and m != "auto":
            close_matches = get_close_matches(m, model_types)
            error_message = f"{m} is not a proper model identifier."
            if len(close_matches) > 0:
                close_matches = "/".join(close_matches)
                error_message += f" Did you mean {close_matches}?"
            errors.append(error_message)

    if len(errors) > 0:
        raise ValueError(
            "Some model doc pages do not match any existing model type:\n"
            + "\n".join(errors)
            + "\nYou can add any missing model type to the `MODEL_NAMES_MAPPING` constant in "
            "models/auto/configuration_auto.py."
        )
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058


# Re pattern to catch :obj:`xx`, :class:`xx`, :func:`xx` or :meth:`xx`.
_re_rst_special_words = re.compile(r":(?:obj|func|class|meth):`([^`]+)`")
# Re pattern to catch things between double backquotes.
_re_double_backquotes = re.compile(r"(^|[^`])``([^`]+)``([^`]|$)")
# Re pattern to catch example introduction.
_re_rst_example = re.compile(r"^\s*Example.*::\s*$", flags=re.MULTILINE)


Sylvain Gugger's avatar
Sylvain Gugger committed
1059
def is_rst_docstring(docstring: str) -> True:
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
    """
    Returns `True` if `docstring` is written in rst.
    """
    if _re_rst_special_words.search(docstring) is not None:
        return True
    if _re_double_backquotes.search(docstring) is not None:
        return True
    if _re_rst_example.search(docstring) is not None:
        return True
    return False


def check_docstrings_are_in_md():
Sylvain Gugger's avatar
Sylvain Gugger committed
1073
    """Check all docstrings are written in md and nor rst."""
1074
1075
    files_with_rst = []
    for file in Path(PATH_TO_TRANSFORMERS).glob("**/*.py"):
1076
        with open(file, encoding="utf-8") as f:
1077
1078
1079
1080
1081
1082
1083
1084
1085
1086
1087
1088
1089
            code = f.read()
        docstrings = code.split('"""')

        for idx, docstring in enumerate(docstrings):
            if idx % 2 == 0 or not is_rst_docstring(docstring):
                continue
            files_with_rst.append(file)
            break

    if len(files_with_rst) > 0:
        raise ValueError(
            "The following files have docstrings written in rst:\n"
            + "\n".join([f"- {f}" for f in files_with_rst])
Kamal Raj's avatar
Kamal Raj committed
1090
            + "\nTo fix this run `doc-builder convert path_to_py_file` after installing `doc-builder`\n"
1091
1092
            "(`pip install git+https://github.com/huggingface/doc-builder`)"
        )
1093
1094


1095
def check_deprecated_constant_is_up_to_date():
Sylvain Gugger's avatar
Sylvain Gugger committed
1096
1097
1098
    """
    Check if the constant `DEPRECATED_MODELS` in `models/auto/configuration_auto.py` is up to date.
    """
1099
1100
1101
1102
1103
1104
1105
1106
1107
    deprecated_folder = os.path.join(PATH_TO_TRANSFORMERS, "models", "deprecated")
    deprecated_models = [m for m in os.listdir(deprecated_folder) if not m.startswith("_")]

    constant_to_check = transformers.models.auto.configuration_auto.DEPRECATED_MODELS
    message = []
    missing_models = sorted(set(deprecated_models) - set(constant_to_check))
    if len(missing_models) != 0:
        missing_models = ", ".join(missing_models)
        message.append(
1108
            "The following models are in the deprecated folder, make sure to add them to `DEPRECATED_MODELS` in "
1109
1110
1111
1112
1113
1114
1115
1116
1117
1118
1119
1120
1121
1122
1123
            f"`models/auto/configuration_auto.py`: {missing_models}."
        )

    extra_models = sorted(set(constant_to_check) - set(deprecated_models))
    if len(extra_models) != 0:
        extra_models = ", ".join(extra_models)
        message.append(
            "The following models are in the `DEPRECATED_MODELS` constant but not in the deprecated folder. Either "
            f"remove them from the constant or move to the deprecated folder: {extra_models}."
        )

    if len(message) > 0:
        raise Exception("\n".join(message))


1124
def check_repo_quality():
Patrick von Platen's avatar
Patrick von Platen committed
1125
    """Check all models are properly tested and documented."""
1126
1127
    print("Checking all models are included.")
    check_model_list()
1128
1129
    print("Checking all models are public.")
    check_models_are_in_init()
1130
    print("Checking all models are properly tested.")
Sylvain Gugger's avatar
Sylvain Gugger committed
1131
    check_all_decorator_order()
1132
    check_all_models_are_tested()
1133
    print("Checking all objects are properly documented.")
1134
    check_all_objects_are_documented()
1135
1136
    print("Checking all models are in at least one auto class.")
    check_all_models_are_auto_configured()
1137
1138
    print("Checking all names in auto name mappings are defined.")
    check_all_auto_object_names_being_defined()
Yih-Dar's avatar
Yih-Dar committed
1139
1140
    print("Checking all keys in auto name mappings are defined in `CONFIG_MAPPING_NAMES`.")
    check_all_auto_mapping_names_in_config_mapping_names()
1141
1142
    print("Checking all auto mappings could be imported.")
    check_all_auto_mappings_importable()
1143
1144
    print("Checking all objects are equally (across frameworks) in the main __init__.")
    check_objects_being_equally_in_main_init()
1145
1146
    print("Checking the DEPRECATED_MODELS constant is up to date.")
    check_deprecated_constant_is_up_to_date()
1147
1148
1149
1150


if __name__ == "__main__":
    check_repo_quality()