check_repo.py 40.4 KB
Newer Older
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
# coding=utf-8
# Copyright 2020 The HuggingFace Inc. team.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
#     http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.

16
17
18
import inspect
import os
import re
19
import warnings
20
from collections import OrderedDict
21
from difflib import get_close_matches
22
from pathlib import Path
23

24
from transformers import is_flax_available, is_tf_available, is_torch_available
25
from transformers.models.auto import get_values
Yih-Dar's avatar
Yih-Dar committed
26
from transformers.models.auto.configuration_auto import CONFIG_MAPPING_NAMES
27
28
29
30
from transformers.models.auto.feature_extraction_auto import FEATURE_EXTRACTOR_MAPPING_NAMES
from transformers.models.auto.image_processing_auto import IMAGE_PROCESSOR_MAPPING_NAMES
from transformers.models.auto.processing_auto import PROCESSOR_MAPPING_NAMES
from transformers.models.auto.tokenization_auto import TOKENIZER_MAPPING_NAMES
31
from transformers.utils import ENV_VARS_TRUE_VALUES, direct_transformers_import
32

33
34
35
36
37

# All paths are set with the intent you should run this script from the root of the repo with the command
# python utils/check_repo.py
PATH_TO_TRANSFORMERS = "src/transformers"
PATH_TO_TESTS = "tests"
38
PATH_TO_DOC = "docs/source/en"
39

40
41
# Update this list with models that are supposed to be private.
PRIVATE_MODELS = [
Jongjyh's avatar
Jongjyh committed
42
    "AltRobertaModel",
43
    "DPRSpanPredictor",
Daniel Stancl's avatar
Daniel Stancl committed
44
    "LongT5Stack",
Li-Huai (Allan) Lin's avatar
Li-Huai (Allan) Lin committed
45
    "RealmBertModel",
46
    "T5Stack",
47
    "MT5Stack",
48
    "SwitchTransformersStack",
49
    "TFDPRSpanPredictor",
50
51
    "MaskFormerSwinModel",
    "MaskFormerSwinPreTrainedModel",
52
53
    "BridgeTowerTextModel",
    "BridgeTowerVisionModel",
54
55
]

56
57
# Update this list for models that are not tested with a comment explaining the reason it should not be.
# Being in this list is an exception and should **not** be the rule.
58
IGNORE_NON_TESTED = PRIVATE_MODELS.copy() + [
59
    # models to ignore for not tested
NielsRogge's avatar
NielsRogge committed
60
    "Blip2QFormerModel",  # Building part of bigger (tested) model.
NielsRogge's avatar
NielsRogge committed
61
62
    "DetaEncoder",  # Building part of bigger (tested) model.
    "DetaDecoder",  # Building part of bigger (tested) model.
63
    "ErnieMForInformationExtraction",
64
65
    "GraphormerEncoder",  # Building part of bigger (tested) model.
    "GraphormerDecoderHead",  # Building part of bigger (tested) model.
NielsRogge's avatar
NielsRogge committed
66
    "CLIPSegDecoder",  # Building part of bigger (tested) model.
67
68
    "TableTransformerEncoder",  # Building part of bigger (tested) model.
    "TableTransformerDecoder",  # Building part of bigger (tested) model.
69
70
    "TimeSeriesTransformerEncoder",  # Building part of bigger (tested) model.
    "TimeSeriesTransformerDecoder",  # Building part of bigger (tested) model.
71
72
    "InformerEncoder",  # Building part of bigger (tested) model.
    "InformerDecoder",  # Building part of bigger (tested) model.
73
74
    "JukeboxVQVAE",  # Building part of bigger (tested) model.
    "JukeboxPrior",  # Building part of bigger (tested) model.
NielsRogge's avatar
NielsRogge committed
75
76
    "DeformableDetrEncoder",  # Building part of bigger (tested) model.
    "DeformableDetrDecoder",  # Building part of bigger (tested) model.
Younes Belkada's avatar
Younes Belkada committed
77
    "OPTDecoder",  # Building part of bigger (tested) model.
78
79
    "FlaxWhisperDecoder",  # Building part of bigger (tested) model.
    "FlaxWhisperEncoder",  # Building part of bigger (tested) model.
80
81
    "WhisperDecoder",  # Building part of bigger (tested) model.
    "WhisperEncoder",  # Building part of bigger (tested) model.
82
    "DecisionTransformerGPT2Model",  # Building part of bigger (tested) model.
NielsRogge's avatar
NielsRogge committed
83
    "SegformerDecodeHead",  # Building part of bigger (tested) model.
Gunjan Chhablani's avatar
Gunjan Chhablani committed
84
85
86
    "PLBartEncoder",  # Building part of bigger (tested) model.
    "PLBartDecoder",  # Building part of bigger (tested) model.
    "PLBartDecoderWrapper",  # Building part of bigger (tested) model.
Vasudev Gupta's avatar
Vasudev Gupta committed
87
88
89
    "BigBirdPegasusEncoder",  # Building part of bigger (tested) model.
    "BigBirdPegasusDecoder",  # Building part of bigger (tested) model.
    "BigBirdPegasusDecoderWrapper",  # Building part of bigger (tested) model.
NielsRogge's avatar
NielsRogge committed
90
91
92
    "DetrEncoder",  # Building part of bigger (tested) model.
    "DetrDecoder",  # Building part of bigger (tested) model.
    "DetrDecoderWrapper",  # Building part of bigger (tested) model.
93
94
    "ConditionalDetrEncoder",  # Building part of bigger (tested) model.
    "ConditionalDetrDecoder",  # Building part of bigger (tested) model.
Suraj Patil's avatar
Suraj Patil committed
95
96
    "M2M100Encoder",  # Building part of bigger (tested) model.
    "M2M100Decoder",  # Building part of bigger (tested) model.
Chan Woo Kim's avatar
Chan Woo Kim committed
97
    "MCTCTEncoder",  # Building part of bigger (tested) model.
Suraj Patil's avatar
Suraj Patil committed
98
99
    "Speech2TextEncoder",  # Building part of bigger (tested) model.
    "Speech2TextDecoder",  # Building part of bigger (tested) model.
Patrick von Platen's avatar
Patrick von Platen committed
100
101
    "LEDEncoder",  # Building part of bigger (tested) model.
    "LEDDecoder",  # Building part of bigger (tested) model.
102
    "BartDecoderWrapper",  # Building part of bigger (tested) model.
103
    "BartEncoder",  # Building part of bigger (tested) model.
104
    "BertLMHeadModel",  # Needs to be setup as decoder.
105
    "BlenderbotSmallEncoder",  # Building part of bigger (tested) model.
106
    "BlenderbotSmallDecoderWrapper",  # Building part of bigger (tested) model.
107
    "BlenderbotEncoder",  # Building part of bigger (tested) model.
108
    "BlenderbotDecoderWrapper",  # Building part of bigger (tested) model.
109
    "MBartEncoder",  # Building part of bigger (tested) model.
110
    "MBartDecoderWrapper",  # Building part of bigger (tested) model.
111
112
113
114
    "MegatronBertLMHeadModel",  # Building part of bigger (tested) model.
    "MegatronBertEncoder",  # Building part of bigger (tested) model.
    "MegatronBertDecoder",  # Building part of bigger (tested) model.
    "MegatronBertDecoderWrapper",  # Building part of bigger (tested) model.
StevenTang1998's avatar
StevenTang1998 committed
115
116
    "MvpDecoderWrapper",  # Building part of bigger (tested) model.
    "MvpEncoder",  # Building part of bigger (tested) model.
117
    "PegasusEncoder",  # Building part of bigger (tested) model.
118
    "PegasusDecoderWrapper",  # Building part of bigger (tested) model.
Jason Phang's avatar
Jason Phang committed
119
120
121
    "PegasusXEncoder",  # Building part of bigger (tested) model.
    "PegasusXDecoder",  # Building part of bigger (tested) model.
    "PegasusXDecoderWrapper",  # Building part of bigger (tested) model.
122
    "DPREncoder",  # Building part of bigger (tested) model.
123
    "ProphetNetDecoderWrapper",  # Building part of bigger (tested) model.
Li-Huai (Allan) Lin's avatar
Li-Huai (Allan) Lin committed
124
125
126
127
    "RealmBertModel",  # Building part of bigger (tested) model.
    "RealmReader",  # Not regular model.
    "RealmScorer",  # Not regular model.
    "RealmForOpenQA",  # Not regular model.
128
    "ReformerForMaskedLM",  # Needs to be setup as decoder.
129
    "Speech2Text2DecoderWrapper",  # Building part of bigger (tested) model.
Ratthachat (Jung)'s avatar
Ratthachat (Jung) committed
130
    "TFDPREncoder",  # Building part of bigger (tested) model.
131
132
    "TFElectraMainLayer",  # Building part of bigger (tested) model (should it be a TFPreTrainedModel ?)
    "TFRobertaForMultipleChoice",  # TODO: fix
133
    "TFRobertaPreLayerNormForMultipleChoice",  # TODO: fix
134
    "TrOCRDecoderWrapper",  # Building part of bigger (tested) model.
amyeroberts's avatar
amyeroberts committed
135
136
    "TFWhisperEncoder",  # Building part of bigger (tested) model.
    "TFWhisperDecoder",  # Building part of bigger (tested) model.
abhishek thakur's avatar
abhishek thakur committed
137
    "SeparableConv1D",  # Building part of bigger (tested) model.
138
    "FlaxBartForCausalLM",  # Building part of bigger (tested) model.
139
    "FlaxBertForCausalLM",  # Building part of bigger (tested) model. Tested implicitly through FlaxRobertaForCausalLM.
Younes Belkada's avatar
Younes Belkada committed
140
    "OPTDecoderWrapper",
141
    "TFSegformerDecodeHead",  # Not a regular model.
Jongjyh's avatar
Jongjyh committed
142
    "AltRobertaModel",  # Building part of bigger (tested) model.
Younes Belkada's avatar
Younes Belkada committed
143
    "BlipTextLMHeadModel",  # No need to test it as it is tested by BlipTextVision models
144
145
    "BridgeTowerTextModel",  # No need to test it as it is tested by BridgeTowerModel model.
    "BridgeTowerVisionModel",  # No need to test it as it is tested by BridgeTowerModel model.
146
147
148
149
150
151
152
153
154
155
156
157
    "SpeechT5Decoder",  # Building part of bigger (tested) model.
    "SpeechT5DecoderWithoutPrenet",  # Building part of bigger (tested) model.
    "SpeechT5DecoderWithSpeechPrenet",  # Building part of bigger (tested) model.
    "SpeechT5DecoderWithTextPrenet",  # Building part of bigger (tested) model.
    "SpeechT5Encoder",  # Building part of bigger (tested) model.
    "SpeechT5EncoderWithoutPrenet",  # Building part of bigger (tested) model.
    "SpeechT5EncoderWithSpeechPrenet",  # Building part of bigger (tested) model.
    "SpeechT5EncoderWithTextPrenet",  # Building part of bigger (tested) model.
    "SpeechT5SpeechDecoder",  # Building part of bigger (tested) model.
    "SpeechT5SpeechEncoder",  # Building part of bigger (tested) model.
    "SpeechT5TextDecoder",  # Building part of bigger (tested) model.
    "SpeechT5TextEncoder",  # Building part of bigger (tested) model.
158
159
160
161
162
]

# Update this list with test files that don't have a tester with a `all_model_classes` variable and which don't
# trigger the common tests.
TEST_FILES_WITH_NO_COMMON_TESTS = [
Yih-Dar's avatar
Yih-Dar committed
163
164
165
166
167
168
169
170
171
172
173
174
175
    "models/decision_transformer/test_modeling_decision_transformer.py",
    "models/camembert/test_modeling_camembert.py",
    "models/mt5/test_modeling_flax_mt5.py",
    "models/mbart/test_modeling_mbart.py",
    "models/mt5/test_modeling_mt5.py",
    "models/pegasus/test_modeling_pegasus.py",
    "models/camembert/test_modeling_tf_camembert.py",
    "models/mt5/test_modeling_tf_mt5.py",
    "models/xlm_roberta/test_modeling_tf_xlm_roberta.py",
    "models/xlm_roberta/test_modeling_flax_xlm_roberta.py",
    "models/xlm_prophetnet/test_modeling_xlm_prophetnet.py",
    "models/xlm_roberta/test_modeling_xlm_roberta.py",
    "models/vision_text_dual_encoder/test_modeling_vision_text_dual_encoder.py",
Matt's avatar
Matt committed
176
    "models/vision_text_dual_encoder/test_modeling_tf_vision_text_dual_encoder.py",
Yih-Dar's avatar
Yih-Dar committed
177
178
    "models/vision_text_dual_encoder/test_modeling_flax_vision_text_dual_encoder.py",
    "models/decision_transformer/test_modeling_decision_transformer.py",
179
180
]

181
182
# Update this list for models that are not in any of the auto MODEL_XXX_MAPPING. Being in this list is an exception and
# should **not** be the rule.
183
IGNORE_NON_AUTO_CONFIGURED = PRIVATE_MODELS.copy() + [
184
    # models to ignore for model xxx mapping
185
186
    "AlignTextModel",
    "AlignVisionModel",
187
188
189
190
    "ClapTextModel",
    "ClapTextModelWithProjection",
    "ClapAudioModel",
    "ClapAudioModelWithProjection",
NielsRogge's avatar
NielsRogge committed
191
192
193
    "Blip2ForConditionalGeneration",
    "Blip2QFormerModel",
    "Blip2VisionModel",
194
    "ErnieMForInformationExtraction",
195
    "GitVisionModel",
196
197
    "GraphormerModel",
    "GraphormerForGraphClassification",
Younes Belkada's avatar
Younes Belkada committed
198
199
200
201
202
203
    "BlipForConditionalGeneration",
    "BlipForImageTextRetrieval",
    "BlipForQuestionAnswering",
    "BlipVisionModel",
    "BlipTextLMHeadModel",
    "BlipTextModel",
NielsRogge's avatar
NielsRogge committed
204
    "Swin2SRForImageSuperResolution",
205
206
    "BridgeTowerForImageAndTextRetrieval",
    "BridgeTowerForMaskedLM",
NielsRogge's avatar
NielsRogge committed
207
208
209
    "CLIPSegForImageSegmentation",
    "CLIPSegVisionModel",
    "CLIPSegTextModel",
Matt's avatar
Matt committed
210
    "EsmForProteinFolding",
211
    "GPTSanJapaneseModel",
212
    "TimeSeriesTransformerForPrediction",
213
    "InformerForPrediction",
214
215
    "JukeboxVQVAE",
    "JukeboxPrior",
Jason Phang's avatar
Jason Phang committed
216
217
218
219
220
221
    "PegasusXEncoder",
    "PegasusXDecoder",
    "PegasusXDecoderWrapper",
    "PegasusXEncoder",
    "PegasusXDecoder",
    "PegasusXDecoderWrapper",
NielsRogge's avatar
NielsRogge committed
222
    "DPTForDepthEstimation",
223
    "DecisionTransformerGPT2Model",
NielsRogge's avatar
NielsRogge committed
224
    "GLPNForDepthEstimation",
NielsRogge's avatar
NielsRogge committed
225
226
    "ViltForImagesAndTextClassification",
    "ViltForImageAndTextRetrieval",
227
    "ViltForTokenClassification",
NielsRogge's avatar
NielsRogge committed
228
    "ViltForMaskedLM",
Suraj Patil's avatar
Suraj Patil committed
229
230
231
    "XGLMEncoder",
    "XGLMDecoder",
    "XGLMDecoderWrapper",
NielsRogge's avatar
NielsRogge committed
232
233
    "PerceiverForMultimodalAutoencoding",
    "PerceiverForOpticalFlow",
NielsRogge's avatar
NielsRogge committed
234
    "SegformerDecodeHead",
235
    "TFSegformerDecodeHead",
Kamal Raj's avatar
Kamal Raj committed
236
    "FlaxBeitForMaskedImageModeling",
Gunjan Chhablani's avatar
Gunjan Chhablani committed
237
238
239
    "PLBartEncoder",
    "PLBartDecoder",
    "PLBartDecoderWrapper",
NielsRogge's avatar
NielsRogge committed
240
    "BeitForMaskedImageModeling",
241
242
    "ChineseCLIPTextModel",
    "ChineseCLIPVisionModel",
Suraj Patil's avatar
Suraj Patil committed
243
    "CLIPTextModel",
244
    "CLIPTextModelWithProjection",
Suraj Patil's avatar
Suraj Patil committed
245
    "CLIPVisionModel",
246
    "CLIPVisionModelWithProjection",
247
248
    "GroupViTTextModel",
    "GroupViTVisionModel",
Yih-Dar's avatar
Yih-Dar committed
249
250
    "TFCLIPTextModel",
    "TFCLIPVisionModel",
251
252
    "TFGroupViTTextModel",
    "TFGroupViTVisionModel",
Suraj Patil's avatar
Suraj Patil committed
253
254
    "FlaxCLIPTextModel",
    "FlaxCLIPVisionModel",
255
    "FlaxWav2Vec2ForCTC",
NielsRogge's avatar
NielsRogge committed
256
    "DetrForSegmentation",
257
    "ConditionalDetrForSegmentation",
258
259
    "DPRReader",
    "FlaubertForQuestionAnswering",
260
261
262
263
    "FlavaImageCodebook",
    "FlavaTextModel",
    "FlavaImageModel",
    "FlavaMultimodalModel",
264
    "GPT2DoubleHeadsModel",
265
    "GPTSw3DoubleHeadsModel",
266
    "LayoutLMForQuestionAnswering",
Ryokan RI's avatar
Ryokan RI committed
267
    "LukeForMaskedLM",
NielsRogge's avatar
NielsRogge committed
268
269
270
    "LukeForEntityClassification",
    "LukeForEntityPairClassification",
    "LukeForEntitySpanClassification",
271
    "OpenAIGPTDoubleHeadsModel",
272
273
274
    "OwlViTTextModel",
    "OwlViTVisionModel",
    "OwlViTForObjectDetection",
275
276
277
    "RagModel",
    "RagSequenceForGeneration",
    "RagTokenForGeneration",
Li-Huai (Allan) Lin's avatar
Li-Huai (Allan) Lin committed
278
279
280
281
    "RealmEmbedder",
    "RealmForOpenQA",
    "RealmScorer",
    "RealmReader",
Ratthachat (Jung)'s avatar
Ratthachat (Jung) committed
282
    "TFDPRReader",
283
    "TFGPT2DoubleHeadsModel",
284
    "TFLayoutLMForQuestionAnswering",
285
    "TFOpenAIGPTDoubleHeadsModel",
Ratthachat (Jung)'s avatar
Ratthachat (Jung) committed
286
287
288
    "TFRagModel",
    "TFRagSequenceForGeneration",
    "TFRagTokenForGeneration",
289
    "Wav2Vec2ForCTC",
Patrick von Platen's avatar
Patrick von Platen committed
290
    "HubertForCTC",
291
292
    "SEWForCTC",
    "SEWDForCTC",
293
294
    "XLMForQuestionAnswering",
    "XLNetForQuestionAnswering",
abhishek thakur's avatar
abhishek thakur committed
295
    "SeparableConv1D",
Gunjan Chhablani's avatar
Gunjan Chhablani committed
296
297
298
299
    "VisualBertForRegionToPhraseAlignment",
    "VisualBertForVisualReasoning",
    "VisualBertForQuestionAnswering",
    "VisualBertForMultipleChoice",
Will Rice's avatar
Will Rice committed
300
    "TFWav2Vec2ForCTC",
Will Rice's avatar
Will Rice committed
301
    "TFHubertForCTC",
NielsRogge's avatar
NielsRogge committed
302
303
    "XCLIPVisionModel",
    "XCLIPTextModel",
Jongjyh's avatar
Jongjyh committed
304
305
306
    "AltCLIPTextModel",
    "AltCLIPVisionModel",
    "AltRobertaModel",
Zineng Tang's avatar
Zineng Tang committed
307
    "TvltForAudioVisualClassification",
308
309
310
    "SpeechT5ForSpeechToSpeech",
    "SpeechT5ForTextToSpeech",
    "SpeechT5HifiGan",
311
312
]

313
314
315
316
317
318
# Update this list for models that have multiple model types for the same
# model doc
MODEL_TYPE_TO_DOC_MAPPING = OrderedDict(
    [
        ("data2vec-text", "data2vec"),
        ("data2vec-audio", "data2vec"),
319
        ("data2vec-vision", "data2vec"),
NielsRogge's avatar
NielsRogge committed
320
        ("donut-swin", "donut"),
321
322
323
324
    ]
)


325
# This is to make sure the transformers module imported is the one in the repo.
326
transformers = direct_transformers_import(PATH_TO_TRANSFORMERS)
327
328


329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
def check_missing_backends():
    missing_backends = []
    if not is_torch_available():
        missing_backends.append("PyTorch")
    if not is_tf_available():
        missing_backends.append("TensorFlow")
    if not is_flax_available():
        missing_backends.append("Flax")
    if len(missing_backends) > 0:
        missing = ", ".join(missing_backends)
        if os.getenv("TRANSFORMERS_IS_CI", "").upper() in ENV_VARS_TRUE_VALUES:
            raise Exception(
                "Full repo consistency checks require all backends to be installed (with `pip install -e .[dev]` in the "
                f"Transformers repo, the following are missing: {missing}."
            )
        else:
            warnings.warn(
                "Full repo consistency checks require all backends to be installed (with `pip install -e .[dev]` in the "
                f"Transformers repo, the following are missing: {missing}. While it's probably fine as long as you "
                "didn't make any change in one of those backends modeling files, you should probably execute the "
                "command above to be on the safe side."
            )


353
354
355
356
357
358
359
360
361
362
363
364
365
def check_model_list():
    """Check the model list inside the transformers library."""
    # Get the models from the directory structure of `src/transformers/models/`
    models_dir = os.path.join(PATH_TO_TRANSFORMERS, "models")
    _models = []
    for model in os.listdir(models_dir):
        model_dir = os.path.join(models_dir, model)
        if os.path.isdir(model_dir) and "__init__.py" in os.listdir(model_dir):
            _models.append(model)

    # Get the models from the directory structure of `src/transformers/models/`
    models = [model for model in dir(transformers.models) if not model.startswith("__")]

366
    missing_models = sorted(set(_models).difference(models))
367
368
369
370
371
372
    if missing_models:
        raise Exception(
            f"The following models should be included in {models_dir}/__init__.py: {','.join(missing_models)}."
        )


373
374
375
# If some modeling modules should be ignored for all checks, they should be added in the nested list
# _ignore_modules of this function.
def get_model_modules():
Patrick von Platen's avatar
Patrick von Platen committed
376
    """Get the model modules inside the transformers library."""
377
378
379
380
381
382
383
384
    _ignore_modules = [
        "modeling_auto",
        "modeling_encoder_decoder",
        "modeling_marian",
        "modeling_mmbt",
        "modeling_outputs",
        "modeling_retribert",
        "modeling_utils",
Sylvain Gugger's avatar
Sylvain Gugger committed
385
        "modeling_flax_auto",
386
        "modeling_flax_encoder_decoder",
Stas Bekman's avatar
Stas Bekman committed
387
        "modeling_flax_utils",
388
        "modeling_speech_encoder_decoder",
389
        "modeling_flax_speech_encoder_decoder",
390
        "modeling_flax_vision_encoder_decoder",
391
392
        "modeling_transfo_xl_utilities",
        "modeling_tf_auto",
393
        "modeling_tf_encoder_decoder",
394
395
396
397
        "modeling_tf_outputs",
        "modeling_tf_pytorch_utils",
        "modeling_tf_utils",
        "modeling_tf_transfo_xl_utilities",
398
        "modeling_tf_vision_encoder_decoder",
399
        "modeling_vision_encoder_decoder",
400
401
    ]
    modules = []
Sylvain Gugger's avatar
Sylvain Gugger committed
402
403
404
405
406
407
408
409
410
    for model in dir(transformers.models):
        # There are some magic dunder attributes in the dir, we ignore them
        if not model.startswith("__"):
            model_module = getattr(transformers.models, model)
            for submodule in dir(model_module):
                if submodule.startswith("modeling") and submodule not in _ignore_modules:
                    modeling_module = getattr(model_module, submodule)
                    if inspect.ismodule(modeling_module):
                        modules.append(modeling_module)
411
412
413
    return modules


414
def get_models(module, include_pretrained=False):
Patrick von Platen's avatar
Patrick von Platen committed
415
    """Get the objects in module that are models."""
416
    models = []
417
    model_classes = (transformers.PreTrainedModel, transformers.TFPreTrainedModel, transformers.FlaxPreTrainedModel)
418
    for attr_name in dir(module):
419
        if not include_pretrained and ("Pretrained" in attr_name or "PreTrained" in attr_name):
420
421
422
423
424
425
426
            continue
        attr = getattr(module, attr_name)
        if isinstance(attr, type) and issubclass(attr, model_classes) and attr.__module__ == module.__name__:
            models.append((attr_name, attr))
    return models


427
428
429
430
431
432
433
434
435
436
437
438
def is_a_private_model(model):
    """Returns True if the model should not be in the main init."""
    if model in PRIVATE_MODELS:
        return True

    # Wrapper, Encoder and Decoder are all privates
    if model.endswith("Wrapper"):
        return True
    if model.endswith("Encoder"):
        return True
    if model.endswith("Decoder"):
        return True
439
440
    if model.endswith("Prenet"):
        return True
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
    return False


def check_models_are_in_init():
    """Checks all models defined in the library are in the main init."""
    models_not_in_init = []
    dir_transformers = dir(transformers)
    for module in get_model_modules():
        models_not_in_init += [
            model[0] for model in get_models(module, include_pretrained=True) if model[0] not in dir_transformers
        ]

    # Remove private models
    models_not_in_init = [model for model in models_not_in_init if not is_a_private_model(model)]
    if len(models_not_in_init) > 0:
        raise Exception(f"The following models should be in the main init: {','.join(models_not_in_init)}.")


459
460
461
# If some test_modeling files should be ignored when checking models are all tested, they should be added in the
# nested list _ignore_files of this function.
def get_model_test_files():
Yih-Dar's avatar
Yih-Dar committed
462
463
464
465
466
467
    """Get the model test files.

    The returned files should NOT contain the `tests` (i.e. `PATH_TO_TESTS` defined in this script). They will be
    considered as paths relative to `tests`. A caller has to use `os.path.join(PATH_TO_TESTS, ...)` to access the files.
    """

468
469
470
    _ignore_files = [
        "test_modeling_common",
        "test_modeling_encoder_decoder",
471
        "test_modeling_flax_encoder_decoder",
472
        "test_modeling_flax_speech_encoder_decoder",
473
474
        "test_modeling_marian",
        "test_modeling_tf_common",
475
        "test_modeling_tf_encoder_decoder",
476
477
    ]
    test_files = []
Yih-Dar's avatar
Yih-Dar committed
478
479
480
481
482
483
484
485
486
487
488
489
490
    # Check both `PATH_TO_TESTS` and `PATH_TO_TESTS/models`
    model_test_root = os.path.join(PATH_TO_TESTS, "models")
    model_test_dirs = []
    for x in os.listdir(model_test_root):
        x = os.path.join(model_test_root, x)
        if os.path.isdir(x):
            model_test_dirs.append(x)

    for target_dir in [PATH_TO_TESTS] + model_test_dirs:
        for file_or_dir in os.listdir(target_dir):
            path = os.path.join(target_dir, file_or_dir)
            if os.path.isfile(path):
                filename = os.path.split(path)[-1]
491
                if "test_modeling" in filename and os.path.splitext(filename)[0] not in _ignore_files:
Yih-Dar's avatar
Yih-Dar committed
492
493
494
                    file = os.path.join(*path.split(os.sep)[1:])
                    test_files.append(file)

495
496
497
498
499
500
    return test_files


# This is a bit hacky but I didn't find a way to import the test_file as a module and read inside the tester class
# for the all_model_classes variable.
def find_tested_models(test_file):
Patrick von Platen's avatar
Patrick von Platen committed
501
    """Parse the content of test_file to detect what's in all_model_classes"""
Sylvain Gugger's avatar
Sylvain Gugger committed
502
    # This is a bit hacky but I didn't find a way to import the test_file as a module and read inside the class
503
    with open(os.path.join(PATH_TO_TESTS, test_file), "r", encoding="utf-8", newline="\n") as f:
504
        content = f.read()
Sylvain Gugger's avatar
Sylvain Gugger committed
505
    all_models = re.findall(r"all_model_classes\s+=\s+\(\s*\(([^\)]*)\)", content)
506
507
    # Check with one less parenthesis as well
    all_models += re.findall(r"all_model_classes\s+=\s+\(([^\)]*)\)", content)
Sylvain Gugger's avatar
Sylvain Gugger committed
508
    if len(all_models) > 0:
509
        model_tested = []
Sylvain Gugger's avatar
Sylvain Gugger committed
510
511
512
513
514
        for entry in all_models:
            for line in entry.split(","):
                name = line.strip()
                if len(name) > 0:
                    model_tested.append(name)
515
516
517
518
        return model_tested


def check_models_are_tested(module, test_file):
Patrick von Platen's avatar
Patrick von Platen committed
519
    """Check models defined in module are tested in test_file."""
520
    # XxxPreTrainedModel are not tested
521
522
523
    defined_models = get_models(module)
    tested_models = find_tested_models(test_file)
    if tested_models is None:
524
        if test_file.replace(os.path.sep, "/") in TEST_FILES_WITH_NO_COMMON_TESTS:
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
            return
        return [
            f"{test_file} should define `all_model_classes` to apply common tests to the models it tests. "
            + "If this intentional, add the test filename to `TEST_FILES_WITH_NO_COMMON_TESTS` in the file "
            + "`utils/check_repo.py`."
        ]
    failures = []
    for model_name, _ in defined_models:
        if model_name not in tested_models and model_name not in IGNORE_NON_TESTED:
            failures.append(
                f"{model_name} is defined in {module.__name__} but is not tested in "
                + f"{os.path.join(PATH_TO_TESTS, test_file)}. Add it to the all_model_classes in that file."
                + "If common tests should not applied to that model, add its name to `IGNORE_NON_TESTED`"
                + "in the file `utils/check_repo.py`."
            )
    return failures


def check_all_models_are_tested():
Patrick von Platen's avatar
Patrick von Platen committed
544
    """Check all models are properly tested."""
545
546
547
548
    modules = get_model_modules()
    test_files = get_model_test_files()
    failures = []
    for module in modules:
549
550
        test_file = [file for file in test_files if f"test_{module.__name__.split('.')[-1]}.py" in file]
        if len(test_file) == 0:
551
            failures.append(f"{module.__name__} does not have its corresponding test file {test_file}.")
552
553
554
555
        elif len(test_file) > 1:
            failures.append(f"{module.__name__} has several test files: {test_file}.")
        else:
            test_file = test_file[0]
556
557
558
            new_failures = check_models_are_tested(module, test_file)
            if new_failures is not None:
                failures += new_failures
559
560
561
562
    if len(failures) > 0:
        raise Exception(f"There were {len(failures)} failures:\n" + "\n".join(failures))


563
def get_all_auto_configured_models():
Patrick von Platen's avatar
Patrick von Platen committed
564
    """Return the list of all models in at least one auto class."""
565
    result = set()  # To avoid duplicates we concatenate all model classes in a set.
566
567
    if is_torch_available():
        for attr_name in dir(transformers.models.auto.modeling_auto):
568
            if attr_name.startswith("MODEL_") and attr_name.endswith("MAPPING_NAMES"):
569
570
571
                result = result | set(get_values(getattr(transformers.models.auto.modeling_auto, attr_name)))
    if is_tf_available():
        for attr_name in dir(transformers.models.auto.modeling_tf_auto):
572
            if attr_name.startswith("TF_MODEL_") and attr_name.endswith("MAPPING_NAMES"):
573
574
575
                result = result | set(get_values(getattr(transformers.models.auto.modeling_tf_auto, attr_name)))
    if is_flax_available():
        for attr_name in dir(transformers.models.auto.modeling_flax_auto):
576
            if attr_name.startswith("FLAX_MODEL_") and attr_name.endswith("MAPPING_NAMES"):
577
                result = result | set(get_values(getattr(transformers.models.auto.modeling_flax_auto, attr_name)))
578
    return list(result)
579
580


581
582
583
584
585
586
587
588
589
590
591
def ignore_unautoclassed(model_name):
    """Rules to determine if `name` should be in an auto class."""
    # Special white list
    if model_name in IGNORE_NON_AUTO_CONFIGURED:
        return True
    # Encoder and Decoder should be ignored
    if "Encoder" in model_name or "Decoder" in model_name:
        return True
    return False


592
def check_models_are_auto_configured(module, all_auto_models):
Patrick von Platen's avatar
Patrick von Platen committed
593
    """Check models defined in module are each in an auto class."""
594
595
596
    defined_models = get_models(module)
    failures = []
    for model_name, _ in defined_models:
597
        if model_name not in all_auto_models and not ignore_unautoclassed(model_name):
598
599
600
601
602
603
604
605
606
            failures.append(
                f"{model_name} is defined in {module.__name__} but is not present in any of the auto mapping. "
                "If that is intended behavior, add its name to `IGNORE_NON_AUTO_CONFIGURED` in the file "
                "`utils/check_repo.py`."
            )
    return failures


def check_all_models_are_auto_configured():
Patrick von Platen's avatar
Patrick von Platen committed
607
    """Check all models are each in an auto class."""
608
    check_missing_backends()
609
610
611
612
613
614
615
616
617
618
619
    modules = get_model_modules()
    all_auto_models = get_all_auto_configured_models()
    failures = []
    for module in modules:
        new_failures = check_models_are_auto_configured(module, all_auto_models)
        if new_failures is not None:
            failures += new_failures
    if len(failures) > 0:
        raise Exception(f"There were {len(failures)} failures:\n" + "\n".join(failures))


620
621
def check_all_auto_object_names_being_defined():
    """Check all names defined in auto (name) mappings exist in the library."""
622
    check_missing_backends()
623

624
    failures = []
625
    mappings_to_check = {
626
627
628
629
630
631
        "TOKENIZER_MAPPING_NAMES": TOKENIZER_MAPPING_NAMES,
        "IMAGE_PROCESSOR_MAPPING_NAMES": IMAGE_PROCESSOR_MAPPING_NAMES,
        "FEATURE_EXTRACTOR_MAPPING_NAMES": FEATURE_EXTRACTOR_MAPPING_NAMES,
        "PROCESSOR_MAPPING_NAMES": PROCESSOR_MAPPING_NAMES,
    }

632
633
    # Each auto modeling files contains multiple mappings. Let's get them in a dynamic way.
    for module_name in ["modeling_auto", "modeling_tf_auto", "modeling_flax_auto"]:
634
635
636
        module = getattr(transformers.models.auto, module_name, None)
        if module is None:
            continue
637
638
639
640
641
        # all mappings in a single auto modeling file
        mapping_names = [x for x in dir(module) if x.endswith("_MAPPING_NAMES")]
        mappings_to_check.update({name: getattr(module, name) for name in mapping_names})

    for name, mapping in mappings_to_check.items():
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
        for model_type, class_names in mapping.items():
            if not isinstance(class_names, tuple):
                class_names = (class_names,)
                for class_name in class_names:
                    if class_name is None:
                        continue
                    # dummy object is accepted
                    if not hasattr(transformers, class_name):
                        # If the class name is in a model name mapping, let's not check if there is a definition in any modeling
                        # module, if it's a private model defined in this file.
                        if name.endswith("MODEL_MAPPING_NAMES") and is_a_private_model(class_name):
                            continue
                        failures.append(
                            f"`{class_name}` appears in the mapping `{name}` but it is not defined in the library."
                        )
    if len(failures) > 0:
        raise Exception(f"There were {len(failures)} failures:\n" + "\n".join(failures))


Yih-Dar's avatar
Yih-Dar committed
661
662
def check_all_auto_mapping_names_in_config_mapping_names():
    """Check all keys defined in auto mappings (mappings of names) appear in `CONFIG_MAPPING_NAMES`."""
663
    check_missing_backends()
Yih-Dar's avatar
Yih-Dar committed
664

665
    failures = []
Yih-Dar's avatar
Yih-Dar committed
666
    # `TOKENIZER_PROCESSOR_MAPPING_NAMES` and `AutoTokenizer` is special, and don't need to follow the rule.
667
    mappings_to_check = {
Yih-Dar's avatar
Yih-Dar committed
668
669
670
671
672
        "IMAGE_PROCESSOR_MAPPING_NAMES": IMAGE_PROCESSOR_MAPPING_NAMES,
        "FEATURE_EXTRACTOR_MAPPING_NAMES": FEATURE_EXTRACTOR_MAPPING_NAMES,
        "PROCESSOR_MAPPING_NAMES": PROCESSOR_MAPPING_NAMES,
    }

673
674
    # Each auto modeling files contains multiple mappings. Let's get them in a dynamic way.
    for module_name in ["modeling_auto", "modeling_tf_auto", "modeling_flax_auto"]:
675
676
677
        module = getattr(transformers.models.auto, module_name, None)
        if module is None:
            continue
678
679
680
681
682
        # all mappings in a single auto modeling file
        mapping_names = [x for x in dir(module) if x.endswith("_MAPPING_NAMES")]
        mappings_to_check.update({name: getattr(module, name) for name in mapping_names})

    for name, mapping in mappings_to_check.items():
Yih-Dar's avatar
Yih-Dar committed
683
684
685
686
687
688
689
690
691
692
        for model_type, class_names in mapping.items():
            if model_type not in CONFIG_MAPPING_NAMES:
                failures.append(
                    f"`{model_type}` appears in the mapping `{name}` but it is not defined in the keys of "
                    "`CONFIG_MAPPING_NAMES`."
                )
    if len(failures) > 0:
        raise Exception(f"There were {len(failures)} failures:\n" + "\n".join(failures))


Sylvain Gugger's avatar
Sylvain Gugger committed
693
694
695
696
_re_decorator = re.compile(r"^\s*@(\S+)\s+$")


def check_decorator_order(filename):
Patrick von Platen's avatar
Patrick von Platen committed
697
    """Check that in the test file `filename` the slow decorator is always last."""
698
    with open(filename, "r", encoding="utf-8", newline="\n") as f:
Sylvain Gugger's avatar
Sylvain Gugger committed
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
        lines = f.readlines()
    decorator_before = None
    errors = []
    for i, line in enumerate(lines):
        search = _re_decorator.search(line)
        if search is not None:
            decorator_name = search.groups()[0]
            if decorator_before is not None and decorator_name.startswith("parameterized"):
                errors.append(i)
            decorator_before = decorator_name
        elif decorator_before is not None:
            decorator_before = None
    return errors


def check_all_decorator_order():
Patrick von Platen's avatar
Patrick von Platen committed
715
    """Check that in all test files, the slow decorator is always last."""
Sylvain Gugger's avatar
Sylvain Gugger committed
716
717
718
719
720
721
722
723
724
    errors = []
    for fname in os.listdir(PATH_TO_TESTS):
        if fname.endswith(".py"):
            filename = os.path.join(PATH_TO_TESTS, fname)
            new_errors = check_decorator_order(filename)
            errors += [f"- {filename}, line {i}" for i in new_errors]
    if len(errors) > 0:
        msg = "\n".join(errors)
        raise ValueError(
Sylvain Gugger's avatar
Sylvain Gugger committed
725
726
            "The parameterized decorator (and its variants) should always be first, but this is not the case in the"
            f" following files:\n{msg}"
Sylvain Gugger's avatar
Sylvain Gugger committed
727
728
729
        )


730
def find_all_documented_objects():
Patrick von Platen's avatar
Patrick von Platen committed
731
    """Parse the content of all doc files to detect which classes and functions it documents"""
732
733
    documented_obj = []
    for doc_file in Path(PATH_TO_DOC).glob("**/*.rst"):
Julien Plu's avatar
Julien Plu committed
734
        with open(doc_file, "r", encoding="utf-8", newline="\n") as f:
735
736
737
            content = f.read()
        raw_doc_objs = re.findall(r"(?:autoclass|autofunction):: transformers.(\S+)\s+", content)
        documented_obj += [obj.split(".")[-1] for obj in raw_doc_objs]
Sylvain Gugger's avatar
Sylvain Gugger committed
738
739
740
741
742
    for doc_file in Path(PATH_TO_DOC).glob("**/*.mdx"):
        with open(doc_file, "r", encoding="utf-8", newline="\n") as f:
            content = f.read()
        raw_doc_objs = re.findall("\[\[autodoc\]\]\s+(\S+)\s+", content)
        documented_obj += [obj.split(".")[-1] for obj in raw_doc_objs]
743
744
745
746
747
748
    return documented_obj


# One good reason for not being documented is to be deprecated. Put in this list deprecated objects.
DEPRECATED_OBJECTS = [
    "AutoModelWithLMHead",
749
    "BartPretrainedModel",
750
751
    "DataCollator",
    "DataCollatorForSOP",
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
    "GlueDataset",
    "GlueDataTrainingArguments",
    "LineByLineTextDataset",
    "LineByLineWithRefDataset",
    "LineByLineWithSOPTextDataset",
    "PretrainedBartModel",
    "PretrainedFSMTModel",
    "SingleSentenceClassificationProcessor",
    "SquadDataTrainingArguments",
    "SquadDataset",
    "SquadExample",
    "SquadFeatures",
    "SquadV1Processor",
    "SquadV2Processor",
    "TFAutoModelWithLMHead",
767
    "TFBartPretrainedModel",
768
769
    "TextDataset",
    "TextDatasetForNextSentencePrediction",
770
    "Wav2Vec2ForMaskedLM",
771
    "Wav2Vec2Tokenizer",
772
773
774
775
776
777
778
779
780
781
    "glue_compute_metrics",
    "glue_convert_examples_to_features",
    "glue_output_modes",
    "glue_processors",
    "glue_tasks_num_labels",
    "squad_convert_examples_to_features",
    "xnli_compute_metrics",
    "xnli_output_modes",
    "xnli_processors",
    "xnli_tasks_num_labels",
782
783
    "TFTrainer",
    "TFTrainingArguments",
784
785
786
787
788
789
790
]

# Exceptionally, some objects should not be documented after all rules passed.
# ONLY PUT SOMETHING IN THIS LIST AS A LAST RESORT!
UNDOCUMENTED_OBJECTS = [
    "AddedToken",  # This is a tokenizers class.
    "BasicTokenizer",  # Internal, should never have been in the main init.
791
    "CharacterTokenizer",  # Internal, should never have been in the main init.
792
    "DPRPretrainedReader",  # Like an Encoder.
Sylvain Gugger's avatar
Sylvain Gugger committed
793
    "DummyObject",  # Just picked by mistake sometimes.
794
    "MecabTokenizer",  # Internal, should never have been in the main init.
795
796
797
798
799
800
801
802
803
804
805
    "ModelCard",  # Internal type.
    "SqueezeBertModule",  # Internal building block (should have been called SqueezeBertLayer)
    "TFDPRPretrainedReader",  # Like an Encoder.
    "TransfoXLCorpus",  # Internal type.
    "WordpieceTokenizer",  # Internal, should never have been in the main init.
    "absl",  # External module
    "add_end_docstrings",  # Internal, should never have been in the main init.
    "add_start_docstrings",  # Internal, should never have been in the main init.
    "convert_tf_weight_name_to_pt_weight_name",  # Internal used to convert model weights
    "logger",  # Internal logger
    "logging",  # External module
806
    "requires_backends",  # Internal function
Jongjyh's avatar
Jongjyh committed
807
    "AltRobertaModel",  # Internal module
808
809
810
811
812
813
814
815
816
]

# This list should be empty. Objects in it should get their own doc page.
SHOULD_HAVE_THEIR_OWN_PAGE = [
    # Benchmarks
    "PyTorchBenchmark",
    "PyTorchBenchmarkArguments",
    "TensorFlowBenchmark",
    "TensorFlowBenchmarkArguments",
817
    "AutoBackbone",
NielsRogge's avatar
NielsRogge committed
818
819
    "BitBackbone",
    "ConvNextBackbone",
820
    "DinatBackbone",
NielsRogge's avatar
NielsRogge committed
821
    "MaskFormerSwinBackbone",
822
823
    "MaskFormerSwinConfig",
    "MaskFormerSwinModel",
NielsRogge's avatar
NielsRogge committed
824
825
    "NatBackbone",
    "ResNetBackbone",
NielsRogge's avatar
NielsRogge committed
826
    "SwinBackbone",
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
]


def ignore_undocumented(name):
    """Rules to determine if `name` should be undocumented."""
    # NOT DOCUMENTED ON PURPOSE.
    # Constants uppercase are not documented.
    if name.isupper():
        return True
    # PreTrainedModels / Encoders / Decoders / Layers / Embeddings / Attention are not documented.
    if (
        name.endswith("PreTrainedModel")
        or name.endswith("Decoder")
        or name.endswith("Encoder")
        or name.endswith("Layer")
        or name.endswith("Embeddings")
        or name.endswith("Attention")
    ):
        return True
    # Submodules are not documented.
    if os.path.isdir(os.path.join(PATH_TO_TRANSFORMERS, name)) or os.path.isfile(
        os.path.join(PATH_TO_TRANSFORMERS, f"{name}.py")
    ):
        return True
    # All load functions are not documented.
    if name.startswith("load_tf") or name.startswith("load_pytorch"):
        return True
    # is_xxx_available functions are not documented.
    if name.startswith("is_") and name.endswith("_available"):
        return True
    # Deprecated objects are not documented.
    if name in DEPRECATED_OBJECTS or name in UNDOCUMENTED_OBJECTS:
        return True
    # MMBT model does not really work.
    if name.startswith("MMBT"):
        return True
    if name in SHOULD_HAVE_THEIR_OWN_PAGE:
        return True
    return False


def check_all_objects_are_documented():
Patrick von Platen's avatar
Patrick von Platen committed
869
    """Check all models are properly documented."""
870
    documented_objs = find_all_documented_objects()
871
872
873
    modules = transformers._modules
    objects = [c for c in dir(transformers) if c not in modules and not c.startswith("_")]
    undocumented_objs = [c for c in objects if c not in documented_objs and not ignore_undocumented(c)]
874
875
876
877
878
    if len(undocumented_objs) > 0:
        raise Exception(
            "The following objects are in the public init so should be documented:\n - "
            + "\n - ".join(undocumented_objs)
        )
879
    check_docstrings_are_in_md()
880
881
882
883
884
885
886
887
888
    check_model_type_doc_match()


def check_model_type_doc_match():
    """Check all doc pages have a corresponding model type."""
    model_doc_folder = Path(PATH_TO_DOC) / "model_doc"
    model_docs = [m.stem for m in model_doc_folder.glob("*.mdx")]

    model_types = list(transformers.models.auto.configuration_auto.MODEL_NAMES_MAPPING.keys())
889
    model_types = [MODEL_TYPE_TO_DOC_MAPPING[m] if m in MODEL_TYPE_TO_DOC_MAPPING else m for m in model_types]
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907

    errors = []
    for m in model_docs:
        if m not in model_types and m != "auto":
            close_matches = get_close_matches(m, model_types)
            error_message = f"{m} is not a proper model identifier."
            if len(close_matches) > 0:
                close_matches = "/".join(close_matches)
                error_message += f" Did you mean {close_matches}?"
            errors.append(error_message)

    if len(errors) > 0:
        raise ValueError(
            "Some model doc pages do not match any existing model type:\n"
            + "\n".join(errors)
            + "\nYou can add any missing model type to the `MODEL_NAMES_MAPPING` constant in "
            "models/auto/configuration_auto.py."
        )
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934


# Re pattern to catch :obj:`xx`, :class:`xx`, :func:`xx` or :meth:`xx`.
_re_rst_special_words = re.compile(r":(?:obj|func|class|meth):`([^`]+)`")
# Re pattern to catch things between double backquotes.
_re_double_backquotes = re.compile(r"(^|[^`])``([^`]+)``([^`]|$)")
# Re pattern to catch example introduction.
_re_rst_example = re.compile(r"^\s*Example.*::\s*$", flags=re.MULTILINE)


def is_rst_docstring(docstring):
    """
    Returns `True` if `docstring` is written in rst.
    """
    if _re_rst_special_words.search(docstring) is not None:
        return True
    if _re_double_backquotes.search(docstring) is not None:
        return True
    if _re_rst_example.search(docstring) is not None:
        return True
    return False


def check_docstrings_are_in_md():
    """Check all docstrings are in md"""
    files_with_rst = []
    for file in Path(PATH_TO_TRANSFORMERS).glob("**/*.py"):
935
        with open(file, encoding="utf-8") as f:
936
937
938
939
940
941
942
943
944
945
946
947
948
            code = f.read()
        docstrings = code.split('"""')

        for idx, docstring in enumerate(docstrings):
            if idx % 2 == 0 or not is_rst_docstring(docstring):
                continue
            files_with_rst.append(file)
            break

    if len(files_with_rst) > 0:
        raise ValueError(
            "The following files have docstrings written in rst:\n"
            + "\n".join([f"- {f}" for f in files_with_rst])
Kamal Raj's avatar
Kamal Raj committed
949
            + "\nTo fix this run `doc-builder convert path_to_py_file` after installing `doc-builder`\n"
950
951
            "(`pip install git+https://github.com/huggingface/doc-builder`)"
        )
952
953


954
def check_repo_quality():
Patrick von Platen's avatar
Patrick von Platen committed
955
    """Check all models are properly tested and documented."""
956
957
    print("Checking all models are included.")
    check_model_list()
958
959
    print("Checking all models are public.")
    check_models_are_in_init()
960
    print("Checking all models are properly tested.")
Sylvain Gugger's avatar
Sylvain Gugger committed
961
    check_all_decorator_order()
962
    check_all_models_are_tested()
963
    print("Checking all objects are properly documented.")
964
    check_all_objects_are_documented()
965
966
    print("Checking all models are in at least one auto class.")
    check_all_models_are_auto_configured()
967
968
    print("Checking all names in auto name mappings are defined.")
    check_all_auto_object_names_being_defined()
Yih-Dar's avatar
Yih-Dar committed
969
970
    print("Checking all keys in auto name mappings are defined in `CONFIG_MAPPING_NAMES`.")
    check_all_auto_mapping_names_in_config_mapping_names()
971
972
973
974


if __name__ == "__main__":
    check_repo_quality()