test_modeling_common.py 162 KB
Newer Older
thomwolf's avatar
thomwolf committed
1
2
3
4
5
6
7
8
9
10
11
12
13
14
# coding=utf-8
# Copyright 2019 HuggingFace Inc.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
#     http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
Aymeric Augustin's avatar
Aymeric Augustin committed
15

Sylvain Gugger's avatar
Sylvain Gugger committed
16
import collections
17
import copy
18
import gc
19
import glob
20
import inspect
21
import json
22
import os
23
import os.path
24
import pickle
Aymeric Augustin's avatar
Aymeric Augustin committed
25
import random
Sylvain Gugger's avatar
Sylvain Gugger committed
26
import re
27
import sys
28
import tempfile
thomwolf's avatar
thomwolf committed
29
import unittest
30
import unittest.mock as mock
31
import warnings
32
from collections import defaultdict
33
from pathlib import Path
NielsRogge's avatar
NielsRogge committed
34
from typing import Dict, List, Tuple
thomwolf's avatar
thomwolf committed
35

36
import numpy as np
37
from huggingface_hub import HfFolder, delete_repo
38
from huggingface_hub.file_download import http_get
39
from pytest import mark
Sylvain Gugger's avatar
Sylvain Gugger committed
40
from requests.exceptions import HTTPError
41
42

import transformers
43
44
45
46
47
48
49
50
from transformers import (
    AutoConfig,
    AutoModel,
    AutoModelForSequenceClassification,
    PretrainedConfig,
    is_torch_available,
    logging,
)
51
from transformers.models.auto import get_values
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
from transformers.models.auto.modeling_auto import (
    MODEL_FOR_AUDIO_CLASSIFICATION_MAPPING_NAMES,
    MODEL_FOR_AUDIO_XVECTOR_MAPPING_NAMES,
    MODEL_FOR_BACKBONE_MAPPING_NAMES,
    MODEL_FOR_CAUSAL_IMAGE_MODELING_MAPPING_NAMES,
    MODEL_FOR_CAUSAL_LM_MAPPING_NAMES,
    MODEL_FOR_DOCUMENT_QUESTION_ANSWERING_MAPPING_NAMES,
    MODEL_FOR_IMAGE_CLASSIFICATION_MAPPING_NAMES,
    MODEL_FOR_MASKED_IMAGE_MODELING_MAPPING_NAMES,
    MODEL_FOR_MASKED_LM_MAPPING_NAMES,
    MODEL_FOR_MULTIPLE_CHOICE_MAPPING_NAMES,
    MODEL_FOR_NEXT_SENTENCE_PREDICTION_MAPPING_NAMES,
    MODEL_FOR_QUESTION_ANSWERING_MAPPING_NAMES,
    MODEL_FOR_SEMANTIC_SEGMENTATION_MAPPING_NAMES,
    MODEL_FOR_SEQ_TO_SEQ_CAUSAL_LM_MAPPING_NAMES,
    MODEL_FOR_SEQUENCE_CLASSIFICATION_MAPPING_NAMES,
    MODEL_FOR_TOKEN_CLASSIFICATION_MAPPING_NAMES,
    MODEL_FOR_VIDEO_CLASSIFICATION_MAPPING_NAMES,
    MODEL_MAPPING_NAMES,
)
Sylvain Gugger's avatar
Sylvain Gugger committed
72
from transformers.testing_utils import (
73
    TOKEN,
Sylvain Gugger's avatar
Sylvain Gugger committed
74
75
    USER,
    CaptureLogger,
76
    TestCasePlus,
77
78
    is_pt_flax_cross_test,
    is_pt_tf_cross_test,
Sylvain Gugger's avatar
Sylvain Gugger committed
79
    is_staging_test,
80
    require_accelerate,
81
    require_safetensors,
Sylvain Gugger's avatar
Sylvain Gugger committed
82
    require_torch,
83
    require_torch_gpu,
Sylvain Gugger's avatar
Sylvain Gugger committed
84
    require_torch_multi_gpu,
85
    require_usr_bin_time,
Sylvain Gugger's avatar
Sylvain Gugger committed
86
87
88
    slow,
    torch_device,
)
89
from transformers.utils import (
90
91
    CONFIG_NAME,
    GENERATION_CONFIG_NAME,
92
93
    SAFE_WEIGHTS_INDEX_NAME,
    SAFE_WEIGHTS_NAME,
94
95
    WEIGHTS_INDEX_NAME,
    WEIGHTS_NAME,
96
    is_accelerate_available,
97
98
99
100
101
    is_flax_available,
    is_tf_available,
    is_torch_fx_available,
)
from transformers.utils.generic import ModelOutput
102

Aymeric Augustin's avatar
Aymeric Augustin committed
103

104
105
sys.path.append(str(Path(__file__).parent.parent / "utils"))

106
from test_module.custom_configuration import CustomConfig, NoSuperInitConfig  # noqa E402
107
108


109
110
111
112
if is_accelerate_available():
    from accelerate.utils import compute_module_sizes


113
if is_torch_available():
114
    import torch
115
    from test_module.custom_modeling import CustomModel, NoSuperInitModel
116
    from torch import nn
thomwolf's avatar
thomwolf committed
117

118
    from transformers import (
119
        BERT_PRETRAINED_MODEL_ARCHIVE_LIST,
120
        MODEL_MAPPING,
121
        AdaptiveEmbedding,
122
123
        AutoModelForCausalLM,
        AutoTokenizer,
124
125
        BertConfig,
        BertModel,
126
        CLIPTextModel,
127
        PreTrainedModel,
128
        T5Config,
129
        T5ForConditionalGeneration,
130
    )
Sylvain Gugger's avatar
Sylvain Gugger committed
131
    from transformers.modeling_utils import shard_checkpoint
Sylvain Gugger's avatar
Sylvain Gugger committed
132
    from transformers.pytorch_utils import id_tensor_storage
thomwolf's avatar
thomwolf committed
133

Sylvain Gugger's avatar
Sylvain Gugger committed
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
    # Fake pretrained models for tests
    class BaseModel(PreTrainedModel):
        config_class = PretrainedConfig

        def __init__(self, config):
            super().__init__(config)
            self.linear = nn.Linear(4, 5)
            self.linear_2 = nn.Linear(5, 6)

        def forward(self, x):
            return self.linear_2(self.linear(x))

    class ModelWithHead(PreTrainedModel):
        base_model_prefix = "base"
        config_class = PretrainedConfig

        def _init_weights(self, module):
            pass

        def __init__(self, config):
            super().__init__(config)
            self.base = BaseModel(config)
            # linear is a common name between Base and Head on purpose.
            self.linear = nn.Linear(6, 3)
            self.linear2 = nn.Linear(3, 5)

        def forward(self, x):
            return self.linear2(self.linear(self.base(x)))


164
165
166
if is_tf_available():
    import tensorflow as tf

167
168
if is_flax_available():
    import jax.numpy as jnp
169

170
171
172
173
174
    from transformers.modeling_flax_pytorch_utils import (
        convert_pytorch_state_dict_to_flax,
        load_flax_weights_in_pytorch_model,
    )

175
if is_torch_fx_available():
176
    from transformers.utils.fx import symbolic_trace
177

178

179
180
181
def _config_zero_init(config):
    configs_no_init = copy.deepcopy(config)
    for key in configs_no_init.__dict__.keys():
182
        if "_range" in key or "_std" in key or "initializer_factor" in key or "layer_scale" in key:
Lysandre Debut's avatar
Lysandre Debut committed
183
            setattr(configs_no_init, key, 1e-10)
184
185
186
        if isinstance(getattr(configs_no_init, key, None), PretrainedConfig):
            no_init_subconfig = _config_zero_init(getattr(configs_no_init, key))
            setattr(configs_no_init, key, no_init_subconfig)
187
188
    return configs_no_init

thomwolf's avatar
thomwolf committed
189

190
TINY_T5 = "patrickvonplaten/t5-tiny-random"
191
TINY_BERT_FOR_TOKEN_CLASSIFICATION = "hf-internal-testing/tiny-bert-for-token-classification"
192
193


194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
def _mock_init_weights(self, module):
    for name, param in module.named_parameters(recurse=False):
        # Use the first letter of the name to get a value and go from a <> -13 to z <> 12
        value = ord(name[0].lower()) - 110
        param.data.fill_(value)


def _mock_all_init_weights(self):
    # Prune heads if needed
    if self.config.pruned_heads:
        self.prune_heads(self.config.pruned_heads)

    import transformers.modeling_utils

    if transformers.modeling_utils._init_weights:
        for module in self.modules():
            module._is_hf_initialized = False
        # Initialize weights
        self.apply(self._initialize_weights)

        # Tie weights should be skipped when not initializing all weights
        # since from_pretrained(...) calls tie weights anyways
        self.tie_weights()


219
220
221
222
@require_torch
class ModelTesterMixin:
    model_tester = None
    all_model_classes = ()
223
    all_generative_model_classes = ()
224
    fx_compatible = False
Patrick von Platen's avatar
Patrick von Platen committed
225
226
227
    test_torchscript = True
    test_pruning = True
    test_resize_embeddings = True
228
    test_resize_position_embeddings = False
Patrick von Platen's avatar
Patrick von Platen committed
229
    test_head_masking = True
230
    test_mismatched_shapes = True
231
    test_missing_keys = True
232
    test_model_parallel = False
233
    is_encoder_decoder = False
234
    has_attentions = True
235
    model_split_percents = [0.5, 0.7, 0.9]
236

237
238
    def _prepare_for_class(self, inputs_dict, model_class, return_labels=False):
        inputs_dict = copy.deepcopy(inputs_dict)
239
        if model_class.__name__ in get_values(MODEL_FOR_MULTIPLE_CHOICE_MAPPING_NAMES):
240
            inputs_dict = {
241
                k: v.unsqueeze(1).expand(-1, self.model_tester.num_choices, -1).contiguous()
242
                if isinstance(v, torch.Tensor) and v.ndim > 1
Sylvain Gugger's avatar
Sylvain Gugger committed
243
                else v
244
245
                for k, v in inputs_dict.items()
            }
246
        elif model_class.__name__ in get_values(MODEL_FOR_AUDIO_XVECTOR_MAPPING_NAMES):
247
            inputs_dict.pop("attention_mask")
248
249

        if return_labels:
250
            if model_class.__name__ in get_values(MODEL_FOR_MULTIPLE_CHOICE_MAPPING_NAMES):
251
                inputs_dict["labels"] = torch.ones(self.model_tester.batch_size, dtype=torch.long, device=torch_device)
252
253
254
            elif model_class.__name__ in [
                *get_values(MODEL_FOR_QUESTION_ANSWERING_MAPPING_NAMES),
                *get_values(MODEL_FOR_DOCUMENT_QUESTION_ANSWERING_MAPPING_NAMES),
255
            ]:
256
257
258
259
260
261
                inputs_dict["start_positions"] = torch.zeros(
                    self.model_tester.batch_size, dtype=torch.long, device=torch_device
                )
                inputs_dict["end_positions"] = torch.zeros(
                    self.model_tester.batch_size, dtype=torch.long, device=torch_device
                )
262
263
264
265
266
267
            elif model_class.__name__ in [
                *get_values(MODEL_FOR_SEQUENCE_CLASSIFICATION_MAPPING_NAMES),
                *get_values(MODEL_FOR_NEXT_SENTENCE_PREDICTION_MAPPING_NAMES),
                *get_values(MODEL_FOR_IMAGE_CLASSIFICATION_MAPPING_NAMES),
                *get_values(MODEL_FOR_VIDEO_CLASSIFICATION_MAPPING_NAMES),
                *get_values(MODEL_FOR_AUDIO_CLASSIFICATION_MAPPING_NAMES),
268
            ]:
269
270
271
                inputs_dict["labels"] = torch.zeros(
                    self.model_tester.batch_size, dtype=torch.long, device=torch_device
                )
272
273
274
275
276
277
            elif model_class.__name__ in [
                *get_values(MODEL_FOR_TOKEN_CLASSIFICATION_MAPPING_NAMES),
                *get_values(MODEL_FOR_CAUSAL_LM_MAPPING_NAMES),
                *get_values(MODEL_FOR_CAUSAL_IMAGE_MODELING_MAPPING_NAMES),
                *get_values(MODEL_FOR_MASKED_LM_MAPPING_NAMES),
                *get_values(MODEL_FOR_SEQ_TO_SEQ_CAUSAL_LM_MAPPING_NAMES),
278
279
280
281
            ]:
                inputs_dict["labels"] = torch.zeros(
                    (self.model_tester.batch_size, self.model_tester.seq_length), dtype=torch.long, device=torch_device
                )
282
            elif model_class.__name__ in get_values(MODEL_FOR_MASKED_IMAGE_MODELING_MAPPING_NAMES):
NielsRogge's avatar
NielsRogge committed
283
284
285
286
                num_patches = self.model_tester.image_size // self.model_tester.patch_size
                inputs_dict["bool_masked_pos"] = torch.zeros(
                    (self.model_tester.batch_size, num_patches**2), dtype=torch.long, device=torch_device
                )
287
            elif model_class.__name__ in get_values(MODEL_FOR_SEMANTIC_SEGMENTATION_MAPPING_NAMES):
NielsRogge's avatar
NielsRogge committed
288
289
290
291
                batch_size, num_channels, height, width = inputs_dict["pixel_values"].shape
                inputs_dict["labels"] = torch.zeros(
                    [self.model_tester.batch_size, height, width], device=torch_device
                ).long()
292

293
294
        return inputs_dict

Patrick von Platen's avatar
Patrick von Platen committed
295
    def test_save_load(self):
296
297
        config, inputs_dict = self.model_tester.prepare_config_and_inputs_for_common()

298
299
300
301
302
303
304
305
306
307
        def check_save_load(out1, out2):
            # make sure we don't have nans
            out_2 = out2.cpu().numpy()
            out_2[np.isnan(out_2)] = 0

            out_1 = out1.cpu().numpy()
            out_1[np.isnan(out_1)] = 0
            max_diff = np.amax(np.abs(out_1 - out_2))
            self.assertLessEqual(max_diff, 1e-5)

308
309
310
311
312
        for model_class in self.all_model_classes:
            model = model_class(config)
            model.to(torch_device)
            model.eval()
            with torch.no_grad():
313
                first = model(**self._prepare_for_class(inputs_dict, model_class))[0]
314

315
            with tempfile.TemporaryDirectory() as tmpdirname:
316
                model.save_pretrained(tmpdirname)
317
318
319
320
321
322
323

                # the config file (and the generation config file, if it can generate) should be saved
                self.assertTrue(os.path.exists(os.path.join(tmpdirname, CONFIG_NAME)))
                self.assertEqual(
                    model.can_generate(), os.path.exists(os.path.join(tmpdirname, GENERATION_CONFIG_NAME))
                )

324
                model = model_class.from_pretrained(tmpdirname)
325
                model.to(torch_device)
326
                with torch.no_grad():
327
                    second = model(**self._prepare_for_class(inputs_dict, model_class))[0]
thomwolf's avatar
thomwolf committed
328

329
330
331
332
333
            if isinstance(first, tuple) and isinstance(second, tuple):
                for tensor1, tensor2 in zip(first, second):
                    check_save_load(tensor1, tensor2)
            else:
                check_save_load(first, second)
334

335
336
337
338
339
340
341
342
343
344
345
346
    def test_from_pretrained_no_checkpoint(self):
        config, _ = self.model_tester.prepare_config_and_inputs_for_common()
        for model_class in self.all_model_classes:
            model = model_class(config)
            state_dict = model.state_dict()

            new_model = model_class.from_pretrained(
                pretrained_model_name_or_path=None, config=config, state_dict=state_dict
            )
            for p1, p2 in zip(model.parameters(), new_model.parameters()):
                self.assertTrue(torch.equal(p1, p2))

347
    def test_save_load_keys_to_ignore_on_save(self):
348
349
350
351
        config, inputs_dict = self.model_tester.prepare_config_and_inputs_for_common()

        for model_class in self.all_model_classes:
            model = model_class(config)
352
353
            _keys_to_ignore_on_save = getattr(model, "_keys_to_ignore_on_save", None)
            if _keys_to_ignore_on_save is None:
354
355
356
                continue

            # check the keys are in the original state_dict
357
            for k in _keys_to_ignore_on_save:
358
                self.assertIn(k, model.state_dict().keys(), "\n".join(model.state_dict().keys()))
359
360
361
362
363
364

            # check that certain keys didn't get saved with the model
            with tempfile.TemporaryDirectory() as tmpdirname:
                model.save_pretrained(tmpdirname)
                output_model_file = os.path.join(tmpdirname, WEIGHTS_NAME)
                state_dict_saved = torch.load(output_model_file)
365
                for k in _keys_to_ignore_on_save:
366
                    self.assertNotIn(k, state_dict_saved.keys(), "\n".join(state_dict_saved.keys()))
367

Sylvain Gugger's avatar
Sylvain Gugger committed
368
369
370
                # Test we can load the state dict in the model, necessary for the checkpointing API in Trainer.
                load_result = model.load_state_dict(state_dict_saved, strict=False)
                self.assertTrue(
371
372
                    len(load_result.missing_keys) == 0
                    or set(load_result.missing_keys) == set(model._keys_to_ignore_on_save)
Sylvain Gugger's avatar
Sylvain Gugger committed
373
374
375
                )
                self.assertTrue(len(load_result.unexpected_keys) == 0)

376
377
378
379
380
381
382
383
384
385
386
    def test_gradient_checkpointing_backward_compatibility(self):
        config, inputs_dict = self.model_tester.prepare_config_and_inputs_for_common()

        for model_class in self.all_model_classes:
            if not model_class.supports_gradient_checkpointing:
                continue

            config.gradient_checkpointing = True
            model = model_class(config)
            self.assertTrue(model.is_gradient_checkpointing)

387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
    def test_gradient_checkpointing_enable_disable(self):
        config, inputs_dict = self.model_tester.prepare_config_and_inputs_for_common()

        for model_class in self.all_model_classes:
            if not model_class.supports_gradient_checkpointing:
                continue

            # at init model should have gradient checkpointing disabled
            model = model_class(config)
            self.assertFalse(model.is_gradient_checkpointing)

            # check enable works
            model.gradient_checkpointing_enable()
            self.assertTrue(model.is_gradient_checkpointing)

            # check disable works
            model.gradient_checkpointing_disable()
            self.assertFalse(model.is_gradient_checkpointing)

406
407
    def test_save_load_fast_init_from_base(self):
        config, inputs_dict = self.model_tester.prepare_config_and_inputs_for_common()
408
409
        if config.__class__ not in MODEL_MAPPING:
            return
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
        base_class = MODEL_MAPPING[config.__class__]

        if isinstance(base_class, tuple):
            base_class = base_class[0]

        for model_class in self.all_model_classes:
            if model_class == base_class:
                continue

            # make a copy of model class to not break future tests
            # from https://stackoverflow.com/questions/9541025/how-to-copy-a-python-class
            class CopyClass(model_class):
                pass

            model_class_copy = CopyClass

            # make sure that all keys are expected for test
            model_class_copy._keys_to_ignore_on_load_missing = []

            # make init deterministic, but make sure that
            # non-initialized weights throw errors nevertheless
431
432
            model_class_copy._init_weights = _mock_init_weights
            model_class_copy.init_weights = _mock_all_init_weights
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448

            model = base_class(config)
            state_dict = model.state_dict()

            # this will often delete a single weight of a multi-weight module
            # to test an edge case
            random_key_to_del = random.choice(list(state_dict.keys()))
            del state_dict[random_key_to_del]

            # check that certain keys didn't get saved with the model
            with tempfile.TemporaryDirectory() as tmpdirname:
                model.save_pretrained(tmpdirname)
                torch.save(state_dict, os.path.join(tmpdirname, "pytorch_model.bin"))

                model_fast_init = model_class_copy.from_pretrained(tmpdirname)
                model_slow_init = model_class_copy.from_pretrained(tmpdirname, _fast_init=False)
449
                # Before we test anything
450
451

                for key in model_fast_init.state_dict().keys():
452
453
454
455
456
                    if isinstance(model_slow_init.state_dict()[key], torch.BoolTensor):
                        max_diff = (model_slow_init.state_dict()[key] ^ model_fast_init.state_dict()[key]).sum().item()
                    else:
                        max_diff = (model_slow_init.state_dict()[key] - model_fast_init.state_dict()[key]).sum().item()
                    self.assertLessEqual(max_diff, 1e-3, msg=f"{key} not identical")
457
458
459

    def test_save_load_fast_init_to_base(self):
        config, inputs_dict = self.model_tester.prepare_config_and_inputs_for_common()
460
461
        if config.__class__ not in MODEL_MAPPING:
            return
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
        base_class = MODEL_MAPPING[config.__class__]

        if isinstance(base_class, tuple):
            base_class = base_class[0]

        for model_class in self.all_model_classes:
            if model_class == base_class:
                continue

            # make a copy of model class to not break future tests
            # from https://stackoverflow.com/questions/9541025/how-to-copy-a-python-class
            class CopyClass(base_class):
                pass

            base_class_copy = CopyClass

            # make sure that all keys are expected for test
            base_class_copy._keys_to_ignore_on_load_missing = []

            # make init deterministic, but make sure that
            # non-initialized weights throw errors nevertheless
483
484
            base_class_copy._init_weights = _mock_init_weights
            base_class_copy.init_weights = _mock_all_init_weights
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502

            model = model_class(config)
            state_dict = model.state_dict()

            # this will often delete a single weight of a multi-weight module
            # to test an edge case
            random_key_to_del = random.choice(list(state_dict.keys()))
            del state_dict[random_key_to_del]

            # check that certain keys didn't get saved with the model
            with tempfile.TemporaryDirectory() as tmpdirname:
                model.config.save_pretrained(tmpdirname)
                torch.save(state_dict, os.path.join(tmpdirname, "pytorch_model.bin"))

                model_fast_init = base_class_copy.from_pretrained(tmpdirname)
                model_slow_init = base_class_copy.from_pretrained(tmpdirname, _fast_init=False)

                for key in model_fast_init.state_dict().keys():
503
504
505
506
507
508
509
510
511
                    if isinstance(model_slow_init.state_dict()[key], torch.BoolTensor):
                        max_diff = torch.max(
                            model_slow_init.state_dict()[key] ^ model_fast_init.state_dict()[key]
                        ).item()
                    else:
                        max_diff = torch.max(
                            torch.abs(model_slow_init.state_dict()[key] - model_fast_init.state_dict()[key])
                        ).item()
                    self.assertLessEqual(max_diff, 1e-3, msg=f"{key} not identical")
512

Patrick von Platen's avatar
Patrick von Platen committed
513
    def test_initialization(self):
514
515
516
517
518
519
520
521
        config, inputs_dict = self.model_tester.prepare_config_and_inputs_for_common()

        configs_no_init = _config_zero_init(config)
        for model_class in self.all_model_classes:
            model = model_class(config=configs_no_init)
            for name, param in model.named_parameters():
                if param.requires_grad:
                    self.assertIn(
Lysandre Debut's avatar
Lysandre Debut committed
522
                        ((param.data.mean() * 1e9).round() / 1e9).item(),
523
                        [0.0, 1.0],
524
                        msg=f"Parameter {name} of model {model_class} seems not properly initialized",
525
                    )
thomwolf's avatar
thomwolf committed
526

Patrick von Platen's avatar
Patrick von Platen committed
527
    def test_determinism(self):
528
        config, inputs_dict = self.model_tester.prepare_config_and_inputs_for_common()
529
530
531
532
533
534
535
536
537

        def check_determinism(first, second):
            out_1 = first.cpu().numpy()
            out_2 = second.cpu().numpy()
            out_1 = out_1[~np.isnan(out_1)]
            out_2 = out_2[~np.isnan(out_2)]
            max_diff = np.amax(np.abs(out_1 - out_2))
            self.assertLessEqual(max_diff, 1e-5)

538
539
540
541
542
        for model_class in self.all_model_classes:
            model = model_class(config)
            model.to(torch_device)
            model.eval()
            with torch.no_grad():
543
544
                first = model(**self._prepare_for_class(inputs_dict, model_class))[0]
                second = model(**self._prepare_for_class(inputs_dict, model_class))[0]
Weizhen's avatar
Weizhen committed
545

546
547
548
549
550
            if isinstance(first, tuple) and isinstance(second, tuple):
                for tensor1, tensor2 in zip(first, second):
                    check_determinism(tensor1, tensor2)
            else:
                check_determinism(first, second)
551

552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
    def test_forward_signature(self):
        config, _ = self.model_tester.prepare_config_and_inputs_for_common()

        for model_class in self.all_model_classes:
            model = model_class(config)
            signature = inspect.signature(model.forward)
            # signature.parameters is an OrderedDict => so arg_names order is deterministic
            arg_names = [*signature.parameters.keys()]

            if model.config.is_encoder_decoder:
                expected_arg_names = [
                    "input_ids",
                    "attention_mask",
                    "decoder_input_ids",
                    "decoder_attention_mask",
                ]
568
                expected_arg_names.extend(
569
570
                    ["head_mask", "decoder_head_mask", "cross_attn_head_mask", "encoder_outputs"]
                    if "head_mask" and "decoder_head_mask" and "cross_attn_head_mask" in arg_names
571
572
573
                    else ["encoder_outputs"]
                )
                self.assertListEqual(arg_names[: len(expected_arg_names)], expected_arg_names)
574
575
576
577
            else:
                expected_arg_names = ["input_ids"]
                self.assertListEqual(arg_names[:1], expected_arg_names)

578
579
580
581
582
    def test_training(self):
        if not self.model_tester.is_training:
            return

        for model_class in self.all_model_classes:
583
584
585
            config, inputs_dict = self.model_tester.prepare_config_and_inputs_for_common()
            config.return_dict = True

586
587
588
            if model_class.__name__ in [
                *get_values(MODEL_MAPPING_NAMES),
                *get_values(MODEL_FOR_BACKBONE_MAPPING_NAMES),
589
            ]:
590
                continue
591

592
593
594
595
596
597
598
599
            model = model_class(config)
            model.to(torch_device)
            model.train()
            inputs = self._prepare_for_class(inputs_dict, model_class, return_labels=True)
            loss = model(**inputs).loss
            loss.backward()

    def test_training_gradient_checkpointing(self):
600
        if not self.model_tester.is_training:
601
602
603
            return

        for model_class in self.all_model_classes:
604
605
606
607
            config, inputs_dict = self.model_tester.prepare_config_and_inputs_for_common()
            config.use_cache = False
            config.return_dict = True

608
            if (
609
610
                model_class.__name__
                in [*get_values(MODEL_MAPPING_NAMES), *get_values(MODEL_FOR_BACKBONE_MAPPING_NAMES)]
611
612
                or not model_class.supports_gradient_checkpointing
            ):
613
614
615
                continue
            model = model_class(config)
            model.to(torch_device)
616
            model.gradient_checkpointing_enable()
617
618
619
620
621
            model.train()
            inputs = self._prepare_for_class(inputs_dict, model_class, return_labels=True)
            loss = model(**inputs).loss
            loss.backward()

Patrick von Platen's avatar
Patrick von Platen committed
622
    def test_attention_outputs(self):
623
624
625
        if not self.has_attentions:
            self.skipTest(reason="Model does not output attentions")

626
627
        config, inputs_dict = self.model_tester.prepare_config_and_inputs_for_common()
        config.return_dict = True
628

629
630
631
632
633
634
635
636
637
638
639
640
        seq_len = getattr(self.model_tester, "seq_length", None)
        decoder_seq_length = getattr(self.model_tester, "decoder_seq_length", seq_len)
        encoder_seq_length = getattr(self.model_tester, "encoder_seq_length", seq_len)
        decoder_key_length = getattr(self.model_tester, "decoder_key_length", decoder_seq_length)
        encoder_key_length = getattr(self.model_tester, "key_length", encoder_seq_length)
        chunk_length = getattr(self.model_tester, "chunk_length", None)
        if chunk_length is not None and hasattr(self.model_tester, "num_hashes"):
            encoder_seq_length = encoder_seq_length * self.model_tester.num_hashes

        for model_class in self.all_model_classes:
            inputs_dict["output_attentions"] = True
            inputs_dict["output_hidden_states"] = False
641
            config.return_dict = True
642
643
644
645
646
647
648
            model = model_class(config)
            model.to(torch_device)
            model.eval()
            with torch.no_grad():
                outputs = model(**self._prepare_for_class(inputs_dict, model_class))
            attentions = outputs.encoder_attentions if config.is_encoder_decoder else outputs.attentions
            self.assertEqual(len(attentions), self.model_tester.num_hidden_layers)
649

650
651
652
653
654
655
656
657
658
659
            # check that output_attentions also work using config
            del inputs_dict["output_attentions"]
            config.output_attentions = True
            model = model_class(config)
            model.to(torch_device)
            model.eval()
            with torch.no_grad():
                outputs = model(**self._prepare_for_class(inputs_dict, model_class))
            attentions = outputs.encoder_attentions if config.is_encoder_decoder else outputs.attentions
            self.assertEqual(len(attentions), self.model_tester.num_hidden_layers)
thomwolf's avatar
thomwolf committed
660

661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
            if chunk_length is not None:
                self.assertListEqual(
                    list(attentions[0].shape[-4:]),
                    [self.model_tester.num_attention_heads, encoder_seq_length, chunk_length, encoder_key_length],
                )
            else:
                self.assertListEqual(
                    list(attentions[0].shape[-3:]),
                    [self.model_tester.num_attention_heads, encoder_seq_length, encoder_key_length],
                )
            out_len = len(outputs)

            if self.is_encoder_decoder:
                correct_outlen = 5

                # loss is at first position
                if "labels" in inputs_dict:
                    correct_outlen += 1  # loss is added to beginning
                # Question Answering model returns start_logits and end_logits
680
681
682
                if model_class.__name__ in [
                    *get_values(MODEL_FOR_QUESTION_ANSWERING_MAPPING_NAMES),
                    *get_values(MODEL_FOR_DOCUMENT_QUESTION_ANSWERING_MAPPING_NAMES),
683
                ]:
684
685
686
687
688
689
690
691
692
693
694
695
696
697
                    correct_outlen += 1  # start_logits and end_logits instead of only 1 output
                if "past_key_values" in outputs:
                    correct_outlen += 1  # past_key_values have been returned

                self.assertEqual(out_len, correct_outlen)

                # decoder attentions
                decoder_attentions = outputs.decoder_attentions
                self.assertIsInstance(decoder_attentions, (list, tuple))
                self.assertEqual(len(decoder_attentions), self.model_tester.num_hidden_layers)
                self.assertListEqual(
                    list(decoder_attentions[0].shape[-3:]),
                    [self.model_tester.num_attention_heads, decoder_seq_length, decoder_key_length],
                )
698

699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
                # cross attentions
                cross_attentions = outputs.cross_attentions
                self.assertIsInstance(cross_attentions, (list, tuple))
                self.assertEqual(len(cross_attentions), self.model_tester.num_hidden_layers)
                self.assertListEqual(
                    list(cross_attentions[0].shape[-3:]),
                    [
                        self.model_tester.num_attention_heads,
                        decoder_seq_length,
                        encoder_key_length,
                    ],
                )

            # Check attention is always last and order is fine
            inputs_dict["output_attentions"] = True
            inputs_dict["output_hidden_states"] = True
            model = model_class(config)
            model.to(torch_device)
            model.eval()
            with torch.no_grad():
                outputs = model(**self._prepare_for_class(inputs_dict, model_class))

            if hasattr(self.model_tester, "num_hidden_states_types"):
                added_hidden_states = self.model_tester.num_hidden_states_types
            elif self.is_encoder_decoder:
                added_hidden_states = 2
            else:
                added_hidden_states = 1
            self.assertEqual(out_len + added_hidden_states, len(outputs))

            self_attentions = outputs.encoder_attentions if config.is_encoder_decoder else outputs.attentions

            self.assertEqual(len(self_attentions), self.model_tester.num_hidden_layers)
            if chunk_length is not None:
                self.assertListEqual(
                    list(self_attentions[0].shape[-4:]),
                    [self.model_tester.num_attention_heads, encoder_seq_length, chunk_length, encoder_key_length],
                )
            else:
                self.assertListEqual(
                    list(self_attentions[0].shape[-3:]),
                    [self.model_tester.num_attention_heads, encoder_seq_length, encoder_key_length],
                )
thomwolf's avatar
thomwolf committed
742

743
    @slow
744
    def test_torchscript_simple(self):
745
746
        config, inputs_dict = self.model_tester.prepare_config_and_inputs_for_common()
        self._create_and_check_torchscript(config, inputs_dict)
thomwolf's avatar
thomwolf committed
747

748
    @slow
Patrick von Platen's avatar
Patrick von Platen committed
749
    def test_torchscript_output_attentions(self):
750
751
752
        config, inputs_dict = self.model_tester.prepare_config_and_inputs_for_common()
        config.output_attentions = True
        self._create_and_check_torchscript(config, inputs_dict)
thomwolf's avatar
thomwolf committed
753

754
    @slow
Patrick von Platen's avatar
Patrick von Platen committed
755
    def test_torchscript_output_hidden_state(self):
756
757
758
        config, inputs_dict = self.model_tester.prepare_config_and_inputs_for_common()
        config.output_hidden_states = True
        self._create_and_check_torchscript(config, inputs_dict)
thomwolf's avatar
thomwolf committed
759

760
761
762
763
    # This is copied from `torch/testing/_internal/jit_utils.py::clear_class_registry`
    def clear_torch_jit_class_registry(self):
        torch._C._jit_clear_class_registry()
        torch.jit._recursive.concrete_type_store = torch.jit._recursive.ConcreteTypeStore()
764
765
766
        # torch 1.8 has no `_clear_class_state` in `torch.jit._state`
        if hasattr(torch.jit._state, "_clear_class_state"):
            torch.jit._state._clear_class_state()
767

768
    def _create_and_check_torchscript(self, config, inputs_dict):
Patrick von Platen's avatar
Patrick von Platen committed
769
        if not self.test_torchscript:
770
            return
771

772
773
774
775
776
777
        configs_no_init = _config_zero_init(config)  # To be sure we have no Nan
        configs_no_init.torchscript = True
        for model_class in self.all_model_classes:
            model = model_class(config=configs_no_init)
            model.to(torch_device)
            model.eval()
778
            inputs = self._prepare_for_class(inputs_dict, model_class)
thomwolf's avatar
thomwolf committed
779

780
781
            main_input_name = model_class.main_input_name

782
            try:
783
                if model.config.is_encoder_decoder:
784
                    model.config.use_cache = False  # FSTM still requires this hack -> FSTM should probably be refactored similar to BART afterward
785
                    main_input = inputs[main_input_name]
786
787
788
                    attention_mask = inputs["attention_mask"]
                    decoder_input_ids = inputs["decoder_input_ids"]
                    decoder_attention_mask = inputs["decoder_attention_mask"]
789
                    model(main_input, attention_mask, decoder_input_ids, decoder_attention_mask)
790
                    traced_model = torch.jit.trace(
791
                        model, (main_input, attention_mask, decoder_input_ids, decoder_attention_mask)
792
                    )
793
794
795
796
                elif "bbox" in inputs and "image" in inputs:  # LayoutLMv2 requires additional inputs
                    input_ids = inputs["input_ids"]
                    bbox = inputs["bbox"]
                    image = inputs["image"].tensor
797
                    model(input_ids, bbox, image)
798
799
800
                    traced_model = torch.jit.trace(
                        model, (input_ids, bbox, image), check_trace=False
                    )  # when traced model is checked, an error is produced due to name mangling
801
                else:
802
                    main_input = inputs[main_input_name]
803
                    model(main_input)
804
                    traced_model = torch.jit.trace(model, main_input)
805
806
            except RuntimeError:
                self.fail("Couldn't trace module.")
thomwolf's avatar
thomwolf committed
807

808
            with tempfile.TemporaryDirectory() as tmp_dir_name:
809
                pt_file_name = os.path.join(tmp_dir_name, "traced_model.pt")
thomwolf's avatar
thomwolf committed
810

811
                try:
812
                    torch.jit.save(traced_model, pt_file_name)
813
814
                except Exception:
                    self.fail("Couldn't save module.")
thomwolf's avatar
thomwolf committed
815

816
817
818
819
                try:
                    loaded_model = torch.jit.load(pt_file_name)
                except Exception:
                    self.fail("Couldn't load module.")
LysandreJik's avatar
LysandreJik committed
820

821
822
            model.to(torch_device)
            model.eval()
thomwolf's avatar
thomwolf committed
823

824
825
            loaded_model.to(torch_device)
            loaded_model.eval()
thomwolf's avatar
thomwolf committed
826

827
828
829
            model_state_dict = model.state_dict()
            loaded_model_state_dict = loaded_model.state_dict()

830
831
832
833
834
835
836
837
838
            non_persistent_buffers = {}
            for key in loaded_model_state_dict.keys():
                if key not in model_state_dict.keys():
                    non_persistent_buffers[key] = loaded_model_state_dict[key]

            loaded_model_state_dict = {
                key: value for key, value in loaded_model_state_dict.items() if key not in non_persistent_buffers
            }

839
            self.assertEqual(set(model_state_dict.keys()), set(loaded_model_state_dict.keys()))
thomwolf's avatar
thomwolf committed
840

841
842
843
844
845
846
847
848
849
850
851
            model_buffers = list(model.buffers())
            for non_persistent_buffer in non_persistent_buffers.values():
                found_buffer = False
                for i, model_buffer in enumerate(model_buffers):
                    if torch.equal(non_persistent_buffer, model_buffer):
                        found_buffer = True
                        break

                self.assertTrue(found_buffer)
                model_buffers.pop(i)

852
            models_equal = True
853
            for layer_name, p1 in model_state_dict.items():
854
855
856
857
                if layer_name in loaded_model_state_dict:
                    p2 = loaded_model_state_dict[layer_name]
                    if p1.data.ne(p2.data).sum() > 0:
                        models_equal = False
thomwolf's avatar
thomwolf committed
858

859
            self.assertTrue(models_equal)
thomwolf's avatar
thomwolf committed
860

861
862
863
864
            # Avoid memory leak. Without this, each call increase RAM usage by ~20MB.
            # (Even with this call, there are still memory leak by ~0.04MB)
            self.clear_torch_jit_class_registry()

865
866
867
868
869
870
871
872
    def test_torch_fx(self):
        config, inputs_dict = self.model_tester.prepare_config_and_inputs_for_common()
        self._create_and_check_torch_fx_tracing(config, inputs_dict)

    def test_torch_fx_output_loss(self):
        config, inputs_dict = self.model_tester.prepare_config_and_inputs_for_common()
        self._create_and_check_torch_fx_tracing(config, inputs_dict, output_loss=True)

873
874
    def _create_and_check_torch_fx_tracing(self, config, inputs_dict, output_loss=False):
        if not is_torch_fx_available() or not self.fx_compatible:
875
876
877
878
879
            return

        configs_no_init = _config_zero_init(config)  # To be sure we have no Nan
        configs_no_init.return_dict = False

880
        for model_class in self.all_model_classes:
881
882
883
884
885
886
887
888
889
            model = model_class(config=configs_no_init)
            model.to(torch_device)
            model.eval()
            inputs = self._prepare_for_class(inputs_dict, model_class, return_labels=output_loss)

            try:
                if model.config.is_encoder_decoder:
                    model.config.use_cache = False  # FSTM still requires this hack -> FSTM should probably be refactored similar to BART afterward
                    labels = inputs.get("labels", None)
890
891
892
                    input_names = [
                        "attention_mask",
                        "decoder_attention_mask",
893
                        "decoder_input_ids",
894
                        "input_features",
895
896
                        "input_ids",
                        "input_values",
897
                    ]
898
899
                    if labels is not None:
                        input_names.append("labels")
900

901
                    filtered_inputs = {k: v for (k, v) in inputs.items() if k in input_names}
902
                    input_names = list(filtered_inputs.keys())
903

904
                    model_output = model(**filtered_inputs)
905

906
                    traced_model = symbolic_trace(model, input_names)
907
                    traced_output = traced_model(**filtered_inputs)
908
                else:
909
910
911
912
                    input_names = [
                        "attention_mask",
                        "bbox",
                        "input_features",
913
914
915
916
917
918
                        "input_ids",
                        "input_values",
                        "pixel_values",
                        "token_type_ids",
                        "visual_feats",
                        "visual_pos",
919
                    ]
920

921
                    labels = inputs.get("labels", None)
922
923
                    start_positions = inputs.get("start_positions", None)
                    end_positions = inputs.get("end_positions", None)
924
925
                    if labels is not None:
                        input_names.append("labels")
926
927
928
929
                    if start_positions is not None:
                        input_names.append("start_positions")
                    if end_positions is not None:
                        input_names.append("end_positions")
930

931
                    filtered_inputs = {k: v for (k, v) in inputs.items() if k in input_names}
932
                    input_names = list(filtered_inputs.keys())
933

934
                    if model.__class__.__name__ in set(MODEL_FOR_SEQUENCE_CLASSIFICATION_MAPPING_NAMES.values()) and (
935
                        not hasattr(model.config, "problem_type") or model.config.problem_type is None
936
937
938
                    ):
                        model.config.problem_type = "single_label_classification"

939
                    traced_model = symbolic_trace(model, input_names)
940
                    traced_output = traced_model(**filtered_inputs)
941
                    model_output = model(**filtered_inputs)
942

943
            except Exception as e:
944
                self.fail(f"Couldn't trace module: {e}")
945

946
947
948
949
950
951
952
953
954
955
956
957
958
            def flatten_output(output):
                flatten = []
                for x in output:
                    if isinstance(x, (tuple, list)):
                        flatten += flatten_output(x)
                    elif not isinstance(x, torch.Tensor):
                        continue
                    else:
                        flatten.append(x)
                return flatten

            model_output = flatten_output(model_output)
            traced_output = flatten_output(traced_output)
959
            num_outputs = len(model_output)
960
961
962
963
964
965

            for i in range(num_outputs):
                self.assertTrue(
                    torch.allclose(model_output[i], traced_output[i]),
                    f"traced {i}th output doesn't match model {i}th output for {model_class}",
                )
966

967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
            # Test that the model can be serialized and restored properly
            with tempfile.TemporaryDirectory() as tmp_dir_name:
                pkl_file_name = os.path.join(tmp_dir_name, "model.pkl")
                try:
                    with open(pkl_file_name, "wb") as f:
                        pickle.dump(traced_model, f)
                    with open(pkl_file_name, "rb") as f:
                        loaded = pickle.load(f)
                except Exception as e:
                    self.fail(f"Couldn't serialize / deserialize the traced model: {e}")

                loaded_output = loaded(**filtered_inputs)
                loaded_output = flatten_output(loaded_output)

                for i in range(num_outputs):
                    self.assertTrue(
                        torch.allclose(model_output[i], loaded_output[i]),
                        f"serialized model {i}th output doesn't match model {i}th output for {model_class}",
                    )

987
988
989
990
            # Avoid memory leak. Without this, each call increase RAM usage by ~20MB.
            # (Even with this call, there are still memory leak by ~0.04MB)
            self.clear_torch_jit_class_registry()

Patrick von Platen's avatar
Patrick von Platen committed
991
992
    def test_headmasking(self):
        if not self.test_head_masking:
993
            return
994

995
996
997
        global_rng.seed(42)
        config, inputs_dict = self.model_tester.prepare_config_and_inputs_for_common()
        global_rng.seed()
LysandreJik's avatar
LysandreJik committed
998

999
        inputs_dict["output_attentions"] = True
1000
1001
1002
1003
1004
1005
        config.output_hidden_states = True
        configs_no_init = _config_zero_init(config)  # To be sure we have no Nan
        for model_class in self.all_model_classes:
            model = model_class(config=configs_no_init)
            model.to(torch_device)
            model.eval()
LysandreJik's avatar
LysandreJik committed
1006

1007
1008
1009
            # Prepare head_mask
            # Set require_grad after having prepared the tensor to avoid error (leaf variable has been moved into the graph interior)
            head_mask = torch.ones(
Lysandre's avatar
Lysandre committed
1010
1011
1012
                self.model_tester.num_hidden_layers,
                self.model_tester.num_attention_heads,
                device=torch_device,
1013
1014
1015
1016
            )
            head_mask[0, 0] = 0
            head_mask[-1, :-1] = 0
            head_mask.requires_grad_(requires_grad=True)
1017
            inputs = self._prepare_for_class(inputs_dict, model_class).copy()
1018
            inputs["head_mask"] = head_mask
1019
1020
1021
1022
1023
            if model.config.is_encoder_decoder:
                signature = inspect.signature(model.forward)
                arg_names = [*signature.parameters.keys()]
                if "decoder_head_mask" in arg_names:  # necessary diferentiation because of T5 model
                    inputs["decoder_head_mask"] = head_mask
1024
1025
                if "cross_attn_head_mask" in arg_names:
                    inputs["cross_attn_head_mask"] = head_mask
1026
            outputs = model(**inputs, return_dict=True)
1027
1028
1029
1030
1031
1032
1033
1034
1035

            # Test that we can get a gradient back for importance score computation
            output = sum(t.sum() for t in outputs[0])
            output = output.sum()
            output.backward()
            multihead_outputs = head_mask.grad

            self.assertIsNotNone(multihead_outputs)
            self.assertEqual(len(multihead_outputs), self.model_tester.num_hidden_layers)
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056

            def check_attentions_validity(attentions):
                # Remove Nan
                for t in attentions:
                    self.assertLess(
                        torch.sum(torch.isnan(t)), t.numel() / 4
                    )  # Check we don't have more than 25% nans (arbitrary)
                attentions = [
                    t.masked_fill(torch.isnan(t), 0.0) for t in attentions
                ]  # remove them (the test is less complete)

                self.assertAlmostEqual(attentions[0][..., 0, :, :].flatten().sum().item(), 0.0)
                self.assertNotEqual(attentions[0][..., -1, :, :].flatten().sum().item(), 0.0)
                if len(attentions) > 2:  # encoder-decoder models have only 2 layers in each module
                    self.assertNotEqual(attentions[1][..., 0, :, :].flatten().sum().item(), 0.0)
                self.assertAlmostEqual(attentions[-1][..., -2, :, :].flatten().sum().item(), 0.0)
                self.assertNotEqual(attentions[-1][..., -1, :, :].flatten().sum().item(), 0.0)

            if model.config.is_encoder_decoder:
                check_attentions_validity(outputs.encoder_attentions)
                check_attentions_validity(outputs.decoder_attentions)
1057
                check_attentions_validity(outputs.cross_attentions)
1058
1059
            else:
                check_attentions_validity(outputs.attentions)
1060

Patrick von Platen's avatar
Patrick von Platen committed
1061
1062
    def test_head_pruning(self):
        if not self.test_pruning:
1063
1064
1065
            return

        for model_class in self.all_model_classes:
Lysandre's avatar
Lysandre committed
1066
1067
1068
1069
            (
                config,
                inputs_dict,
            ) = self.model_tester.prepare_config_and_inputs_for_common()
1070

1071
1072
            if "head_mask" in inputs_dict:
                del inputs_dict["head_mask"]
1073

1074
            inputs_dict["output_attentions"] = True
1075
1076
1077
1078
            config.output_hidden_states = False
            model = model_class(config=config)
            model.to(torch_device)
            model.eval()
1079
1080
1081
1082
            heads_to_prune = {
                0: list(range(1, self.model_tester.num_attention_heads)),
                -1: [0],
            }
1083
1084
            model.prune_heads(heads_to_prune)
            with torch.no_grad():
1085
                outputs = model(**self._prepare_for_class(inputs_dict, model_class))
1086

1087
            attentions = outputs[-1]
1088

1089
1090
1091
            self.assertEqual(attentions[0].shape[-3], 1)
            self.assertEqual(attentions[1].shape[-3], self.model_tester.num_attention_heads)
            self.assertEqual(attentions[-1].shape[-3], self.model_tester.num_attention_heads - 1)
LysandreJik's avatar
LysandreJik committed
1092

Patrick von Platen's avatar
Patrick von Platen committed
1093
1094
    def test_head_pruning_save_load_from_pretrained(self):
        if not self.test_pruning:
1095
            return
LysandreJik's avatar
LysandreJik committed
1096

1097
        for model_class in self.all_model_classes:
Lysandre's avatar
Lysandre committed
1098
1099
1100
1101
            (
                config,
                inputs_dict,
            ) = self.model_tester.prepare_config_and_inputs_for_common()
1102
1103
1104

            if "head_mask" in inputs_dict:
                del inputs_dict["head_mask"]
1105

1106
            inputs_dict["output_attentions"] = True
1107
1108
1109
1110
            config.output_hidden_states = False
            model = model_class(config=config)
            model.to(torch_device)
            model.eval()
1111
1112
1113
1114
            heads_to_prune = {
                0: list(range(1, self.model_tester.num_attention_heads)),
                -1: [0],
            }
1115
            model.prune_heads(heads_to_prune)
1116

1117
            with tempfile.TemporaryDirectory() as temp_dir_name:
1118
1119
                model.save_pretrained(temp_dir_name)
                model = model_class.from_pretrained(temp_dir_name)
1120
                model.to(torch_device)
1121

1122
            with torch.no_grad():
1123
                outputs = model(**self._prepare_for_class(inputs_dict, model_class))
1124
1125
1126
1127
            attentions = outputs[-1]
            self.assertEqual(attentions[0].shape[-3], 1)
            self.assertEqual(attentions[1].shape[-3], self.model_tester.num_attention_heads)
            self.assertEqual(attentions[-1].shape[-3], self.model_tester.num_attention_heads - 1)
1128

Patrick von Platen's avatar
Patrick von Platen committed
1129
1130
    def test_head_pruning_save_load_from_config_init(self):
        if not self.test_pruning:
1131
            return
1132

1133
        for model_class in self.all_model_classes:
Lysandre's avatar
Lysandre committed
1134
1135
1136
1137
            (
                config,
                inputs_dict,
            ) = self.model_tester.prepare_config_and_inputs_for_common()
1138

1139
1140
            if "head_mask" in inputs_dict:
                del inputs_dict["head_mask"]
1141

1142
            inputs_dict["output_attentions"] = True
1143
            config.output_hidden_states = False
1144

1145
1146
1147
1148
            heads_to_prune = {
                0: list(range(1, self.model_tester.num_attention_heads)),
                -1: [0],
            }
1149
            config.pruned_heads = heads_to_prune
1150

1151
1152
1153
            model = model_class(config=config)
            model.to(torch_device)
            model.eval()
1154

1155
            with torch.no_grad():
1156
                outputs = model(**self._prepare_for_class(inputs_dict, model_class))
1157
            attentions = outputs[-1]
1158

1159
1160
1161
            self.assertEqual(attentions[0].shape[-3], 1)
            self.assertEqual(attentions[1].shape[-3], self.model_tester.num_attention_heads)
            self.assertEqual(attentions[-1].shape[-3], self.model_tester.num_attention_heads - 1)
1162

Patrick von Platen's avatar
Patrick von Platen committed
1163
1164
    def test_head_pruning_integration(self):
        if not self.test_pruning:
1165
            return
1166

1167
        for model_class in self.all_model_classes:
Lysandre's avatar
Lysandre committed
1168
1169
1170
1171
            (
                config,
                inputs_dict,
            ) = self.model_tester.prepare_config_and_inputs_for_common()
1172

1173
1174
            if "head_mask" in inputs_dict:
                del inputs_dict["head_mask"]
1175

1176
            inputs_dict["output_attentions"] = True
1177
            config.output_hidden_states = False
1178

1179
1180
            heads_to_prune = {0: [0], 1: [1, 2]}
            config.pruned_heads = heads_to_prune
1181

1182
1183
1184
            model = model_class(config=config)
            model.to(torch_device)
            model.eval()
1185

1186
            with torch.no_grad():
1187
                outputs = model(**self._prepare_for_class(inputs_dict, model_class))
1188
            attentions = outputs[-1]
1189

1190
1191
1192
1193
            self.assertEqual(attentions[0].shape[-3], self.model_tester.num_attention_heads - 1)
            self.assertEqual(attentions[1].shape[-3], self.model_tester.num_attention_heads - 2)
            self.assertEqual(attentions[2].shape[-3], self.model_tester.num_attention_heads)
            self.assertEqual(attentions[3].shape[-3], self.model_tester.num_attention_heads)
thomwolf's avatar
thomwolf committed
1194

1195
            with tempfile.TemporaryDirectory() as temp_dir_name:
1196
1197
                model.save_pretrained(temp_dir_name)
                model = model_class.from_pretrained(temp_dir_name)
1198
                model.to(torch_device)
thomwolf's avatar
thomwolf committed
1199

1200
            with torch.no_grad():
1201
                outputs = model(**self._prepare_for_class(inputs_dict, model_class))
1202
            attentions = outputs[-1]
LysandreJik's avatar
LysandreJik committed
1203

1204
1205
1206
1207
            self.assertEqual(attentions[0].shape[-3], self.model_tester.num_attention_heads - 1)
            self.assertEqual(attentions[1].shape[-3], self.model_tester.num_attention_heads - 2)
            self.assertEqual(attentions[2].shape[-3], self.model_tester.num_attention_heads)
            self.assertEqual(attentions[3].shape[-3], self.model_tester.num_attention_heads)
thomwolf's avatar
thomwolf committed
1208

1209
1210
            heads_to_prune = {0: [0], 2: [1, 2]}
            model.prune_heads(heads_to_prune)
1211

1212
            with torch.no_grad():
1213
                outputs = model(**self._prepare_for_class(inputs_dict, model_class))
1214
            attentions = outputs[-1]
1215

1216
1217
1218
1219
            self.assertEqual(attentions[0].shape[-3], self.model_tester.num_attention_heads - 1)
            self.assertEqual(attentions[1].shape[-3], self.model_tester.num_attention_heads - 2)
            self.assertEqual(attentions[2].shape[-3], self.model_tester.num_attention_heads - 2)
            self.assertEqual(attentions[3].shape[-3], self.model_tester.num_attention_heads)
1220

1221
            self.assertDictEqual(model.config.pruned_heads, {0: [0], 1: [1, 2], 2: [1, 2]})
thomwolf's avatar
thomwolf committed
1222

Patrick von Platen's avatar
Patrick von Platen committed
1223
    def test_hidden_states_output(self):
Joseph Liu's avatar
Joseph Liu committed
1224
        def check_hidden_states_output(inputs_dict, config, model_class):
1225
            model = model_class(config)
1226
            model.to(torch_device)
thomwolf's avatar
thomwolf committed
1227
            model.eval()
Joseph Liu's avatar
Joseph Liu committed
1228

thomwolf's avatar
thomwolf committed
1229
            with torch.no_grad():
1230
                outputs = model(**self._prepare_for_class(inputs_dict, model_class))
1231
1232

            hidden_states = outputs.encoder_hidden_states if config.is_encoder_decoder else outputs.hidden_states
Patrick von Platen's avatar
Patrick von Platen committed
1233

Sylvain Gugger's avatar
Sylvain Gugger committed
1234
1235
1236
1237
            expected_num_layers = getattr(
                self.model_tester, "expected_num_hidden_layers", self.model_tester.num_hidden_layers + 1
            )
            self.assertEqual(len(hidden_states), expected_num_layers)
1238

Patrick von Platen's avatar
Patrick von Platen committed
1239
1240
1241
1242
1243
1244
1245
            if hasattr(self.model_tester, "encoder_seq_length"):
                seq_length = self.model_tester.encoder_seq_length
                if hasattr(self.model_tester, "chunk_length") and self.model_tester.chunk_length > 1:
                    seq_length = seq_length * self.model_tester.chunk_length
            else:
                seq_length = self.model_tester.seq_length

1246
            self.assertListEqual(
Lysandre's avatar
Lysandre committed
1247
1248
                list(hidden_states[0].shape[-2:]),
                [seq_length, self.model_tester.hidden_size],
1249
            )
thomwolf's avatar
thomwolf committed
1250

1251
1252
1253
1254
1255
1256
1257
1258
1259
1260
1261
1262
1263
            if config.is_encoder_decoder:
                hidden_states = outputs.decoder_hidden_states

                self.assertIsInstance(hidden_states, (list, tuple))
                self.assertEqual(len(hidden_states), expected_num_layers)
                seq_len = getattr(self.model_tester, "seq_length", None)
                decoder_seq_length = getattr(self.model_tester, "decoder_seq_length", seq_len)

                self.assertListEqual(
                    list(hidden_states[0].shape[-2:]),
                    [decoder_seq_length, self.model_tester.hidden_size],
                )

Joseph Liu's avatar
Joseph Liu committed
1264
1265
1266
1267
1268
1269
1270
1271
1272
1273
1274
1275
        config, inputs_dict = self.model_tester.prepare_config_and_inputs_for_common()

        for model_class in self.all_model_classes:
            inputs_dict["output_hidden_states"] = True
            check_hidden_states_output(inputs_dict, config, model_class)

            # check that output_hidden_states also work using config
            del inputs_dict["output_hidden_states"]
            config.output_hidden_states = True

            check_hidden_states_output(inputs_dict, config, model_class)

1276
1277
1278
    def test_retain_grad_hidden_states_attentions(self):
        config, inputs_dict = self.model_tester.prepare_config_and_inputs_for_common()
        config.output_hidden_states = True
1279
        config.output_attentions = self.has_attentions
1280
1281
1282
1283
1284
1285
1286
1287
1288

        # no need to test all models as different heads yield the same functionality
        model_class = self.all_model_classes[0]
        model = model_class(config)
        model.to(torch_device)

        inputs = self._prepare_for_class(inputs_dict, model_class)

        outputs = model(**inputs)
1289

1290
1291
1292
1293
1294
1295
1296
1297
1298
1299
        output = outputs[0]

        if config.is_encoder_decoder:
            # Seq2Seq models
            encoder_hidden_states = outputs.encoder_hidden_states[0]
            encoder_hidden_states.retain_grad()

            decoder_hidden_states = outputs.decoder_hidden_states[0]
            decoder_hidden_states.retain_grad()

1300
1301
1302
1303
1304
1305
1306
1307
1308
            if self.has_attentions:
                encoder_attentions = outputs.encoder_attentions[0]
                encoder_attentions.retain_grad()

                decoder_attentions = outputs.decoder_attentions[0]
                decoder_attentions.retain_grad()

                cross_attentions = outputs.cross_attentions[0]
                cross_attentions.retain_grad()
1309
1310
1311
1312
1313

            output.flatten()[0].backward(retain_graph=True)

            self.assertIsNotNone(encoder_hidden_states.grad)
            self.assertIsNotNone(decoder_hidden_states.grad)
1314
1315
1316
1317
1318

            if self.has_attentions:
                self.assertIsNotNone(encoder_attentions.grad)
                self.assertIsNotNone(decoder_attentions.grad)
                self.assertIsNotNone(cross_attentions.grad)
1319
1320
1321
1322
        else:
            # Encoder-/Decoder-only models
            hidden_states = outputs.hidden_states[0]
            hidden_states.retain_grad()
1323
1324
1325
1326

            if self.has_attentions:
                attentions = outputs.attentions[0]
                attentions.retain_grad()
1327
1328
1329
1330

            output.flatten()[0].backward(retain_graph=True)

            self.assertIsNotNone(hidden_states.grad)
1331
1332
1333

            if self.has_attentions:
                self.assertIsNotNone(attentions.grad)
1334

Pradhy729's avatar
Pradhy729 committed
1335
    def test_feed_forward_chunking(self):
Lysandre's avatar
Lysandre committed
1336
1337
1338
1339
        (
            original_config,
            inputs_dict,
        ) = self.model_tester.prepare_config_and_inputs_for_common()
Pradhy729's avatar
Pradhy729 committed
1340
1341
1342
1343
1344
1345
1346
1347
1348
1349
1350
1351
1352
1353
1354
1355
1356
1357
        for model_class in self.all_model_classes:
            torch.manual_seed(0)
            config = copy.deepcopy(original_config)
            model = model_class(config)
            model.to(torch_device)
            model.eval()

            hidden_states_no_chunk = model(**self._prepare_for_class(inputs_dict, model_class))[0]

            torch.manual_seed(0)
            config.chunk_size_feed_forward = 1
            model = model_class(config)
            model.to(torch_device)
            model.eval()

            hidden_states_with_chunk = model(**self._prepare_for_class(inputs_dict, model_class))[0]
            self.assertTrue(torch.allclose(hidden_states_no_chunk, hidden_states_with_chunk, atol=1e-3))

1358
1359
1360
1361
1362
1363
1364
1365
1366
1367
1368
1369
1370
1371
1372
1373
1374
1375
1376
1377
1378
1379
1380
1381
1382
1383
1384
1385
1386
1387
1388
1389
1390
1391
1392
1393
1394
1395
1396
1397
1398
1399
1400
1401
1402
1403
1404
1405
1406
1407
1408
1409
1410
1411
1412
1413
1414
1415
1416
1417
1418
1419
1420
1421
1422
1423
1424
1425
1426
1427
1428
1429
1430
1431
1432
1433
1434
1435
1436
    def test_resize_position_vector_embeddings(self):
        if not self.test_resize_position_embeddings:
            return

        (
            original_config,
            inputs_dict,
        ) = self.model_tester.prepare_config_and_inputs_for_common()

        for model_class in self.all_model_classes:
            config = copy.deepcopy(original_config)
            model = model_class(config)
            model.to(torch_device)

            if self.model_tester.is_training is False:
                model.eval()

            max_position_embeddings = config.max_position_embeddings

            # Retrieve the embeddings and clone theme
            if model.config.is_encoder_decoder:
                encoder_model_embed, decoder_model_embed = model.get_position_embeddings()
                encoder_cloned_embeddings = encoder_model_embed.weight.clone()
                decoder_cloned_embeddings = decoder_model_embed.weight.clone()
            else:
                model_embed = model.get_position_embeddings()
                cloned_embeddings = model_embed.weight.clone()

            # Check that resizing the position embeddings with a larger max_position_embeddings increases
            # the model's postion embeddings size
            model.resize_position_embeddings(max_position_embeddings + 10)
            self.assertEqual(model.config.max_position_embeddings, max_position_embeddings + 10)

            # Check that it actually resizes the embeddings matrix
            if model.config.is_encoder_decoder:
                encoder_model_embed, decoder_model_embed = model.get_position_embeddings()
                self.assertEqual(encoder_model_embed.weight.shape[0], encoder_cloned_embeddings.shape[0] + 10)
                self.assertEqual(decoder_model_embed.weight.shape[0], decoder_cloned_embeddings.shape[0] + 10)
            else:
                model_embed = model.get_position_embeddings()
                self.assertEqual(model_embed.weight.shape[0], cloned_embeddings.shape[0] + 10)

            # Check that the model can still do a forward pass successfully (every parameter should be resized)
            model(**self._prepare_for_class(inputs_dict, model_class))

            # Check that resizing the position embeddings with a smaller max_position_embeddings decreases
            # the model's max_position_embeddings
            model.resize_position_embeddings(max_position_embeddings - 5)
            self.assertEqual(model.config.max_position_embeddings, max_position_embeddings - 5)

            # Check that it actually resizes the embeddings matrix
            if model.config.is_encoder_decoder:
                encoder_model_embed, decoder_model_embed = model.get_position_embeddings()
                self.assertEqual(encoder_model_embed.weight.shape[0], encoder_cloned_embeddings.shape[0] - 5)
                self.assertEqual(decoder_model_embed.weight.shape[0], decoder_cloned_embeddings.shape[0] - 5)
            else:
                model_embed = model.get_position_embeddings()
                self.assertEqual(model_embed.weight.shape[0], cloned_embeddings.shape[0] - 5)

            # Check that the model can still do a forward pass successfully (every parameter should be resized)
            model(**self._prepare_for_class(inputs_dict, model_class))

            # Check that adding and removing tokens has not modified the first part of the embedding matrix.
            models_equal = True

            if model.config.is_encoder_decoder:
                for p1, p2 in zip(encoder_cloned_embeddings, encoder_model_embed.weight):
                    if p1.data.ne(p2.data).sum() > 0:
                        models_equal = False
                for p1, p2 in zip(decoder_cloned_embeddings, decoder_model_embed.weight):
                    if p1.data.ne(p2.data).sum() > 0:
                        models_equal = False
            else:
                for p1, p2 in zip(cloned_embeddings, model_embed.weight):
                    if p1.data.ne(p2.data).sum() > 0:
                        models_equal = False

            self.assertTrue(models_equal)

Patrick von Platen's avatar
Patrick von Platen committed
1437
    def test_resize_tokens_embeddings(self):
Lysandre's avatar
Lysandre committed
1438
1439
1440
1441
        (
            original_config,
            inputs_dict,
        ) = self.model_tester.prepare_config_and_inputs_for_common()
Patrick von Platen's avatar
Patrick von Platen committed
1442
        if not self.test_resize_embeddings:
1443
1444
1445
1446
1447
            return

        for model_class in self.all_model_classes:
            config = copy.deepcopy(original_config)
            model = model_class(config)
1448
            model.to(torch_device)
1449

Patrick von Platen's avatar
Patrick von Platen committed
1450
1451
1452
            if self.model_tester.is_training is False:
                model.eval()

1453
1454
1455
1456
1457
1458
1459
1460
1461
1462
            model_vocab_size = config.vocab_size
            # Retrieve the embeddings and clone theme
            model_embed = model.resize_token_embeddings(model_vocab_size)
            cloned_embeddings = model_embed.weight.clone()

            # Check that resizing the token embeddings with a larger vocab size increases the model's vocab size
            model_embed = model.resize_token_embeddings(model_vocab_size + 10)
            self.assertEqual(model.config.vocab_size, model_vocab_size + 10)
            # Check that it actually resizes the embeddings matrix
            self.assertEqual(model_embed.weight.shape[0], cloned_embeddings.shape[0] + 10)
1463
            # Check that the model can still do a forward pass successfully (every parameter should be resized)
1464
            model(**self._prepare_for_class(inputs_dict, model_class))
1465
1466
1467
1468
1469
1470
1471

            # Check that resizing the token embeddings with a smaller vocab size decreases the model's vocab size
            model_embed = model.resize_token_embeddings(model_vocab_size - 15)
            self.assertEqual(model.config.vocab_size, model_vocab_size - 15)
            # Check that it actually resizes the embeddings matrix
            self.assertEqual(model_embed.weight.shape[0], cloned_embeddings.shape[0] - 15)

1472
1473
1474
            # Check that the model can still do a forward pass successfully (every parameter should be resized)
            # Input ids should be clamped to the maximum size of the vocabulary
            inputs_dict["input_ids"].clamp_(max=model_vocab_size - 15 - 1)
1475
1476
1477
1478

            # make sure that decoder_input_ids are resized as well
            if "decoder_input_ids" in inputs_dict:
                inputs_dict["decoder_input_ids"].clamp_(max=model_vocab_size - 15 - 1)
1479
            model(**self._prepare_for_class(inputs_dict, model_class))
1480

1481
1482
1483
1484
1485
1486
1487
1488
            # Check that adding and removing tokens has not modified the first part of the embedding matrix.
            models_equal = True
            for p1, p2 in zip(cloned_embeddings, model_embed.weight):
                if p1.data.ne(p2.data).sum() > 0:
                    models_equal = False

            self.assertTrue(models_equal)

1489
1490
1491
1492
1493
1494
1495
1496
1497
1498
1499
1500
1501
1502
1503
1504
1505
1506
1507
1508
1509
1510
1511
1512
1513
1514
1515
1516
1517
1518
1519
1520
1521
1522
1523
1524
1525
1526
1527
1528
1529
1530
1531
1532
1533
1534
1535
1536
1537
1538
1539
    def test_resize_embeddings_untied(self):
        (
            original_config,
            inputs_dict,
        ) = self.model_tester.prepare_config_and_inputs_for_common()
        if not self.test_resize_embeddings:
            return

        original_config.tie_word_embeddings = False

        # if model cannot untied embeddings -> leave test
        if original_config.tie_word_embeddings:
            return

        for model_class in self.all_model_classes:
            config = copy.deepcopy(original_config)
            model = model_class(config).to(torch_device)

            # if no output embeddings -> leave test
            if model.get_output_embeddings() is None:
                continue

            # Check that resizing the token embeddings with a larger vocab size increases the model's vocab size
            model_vocab_size = config.vocab_size
            model.resize_token_embeddings(model_vocab_size + 10)
            self.assertEqual(model.config.vocab_size, model_vocab_size + 10)
            output_embeds = model.get_output_embeddings()
            self.assertEqual(output_embeds.weight.shape[0], model_vocab_size + 10)
            # Check bias if present
            if output_embeds.bias is not None:
                self.assertEqual(output_embeds.bias.shape[0], model_vocab_size + 10)
            # Check that the model can still do a forward pass successfully (every parameter should be resized)
            model(**self._prepare_for_class(inputs_dict, model_class))

            # Check that resizing the token embeddings with a smaller vocab size decreases the model's vocab size
            model.resize_token_embeddings(model_vocab_size - 15)
            self.assertEqual(model.config.vocab_size, model_vocab_size - 15)
            # Check that it actually resizes the embeddings matrix
            output_embeds = model.get_output_embeddings()
            self.assertEqual(output_embeds.weight.shape[0], model_vocab_size - 15)
            # Check bias if present
            if output_embeds.bias is not None:
                self.assertEqual(output_embeds.bias.shape[0], model_vocab_size - 15)
            # Check that the model can still do a forward pass successfully (every parameter should be resized)
            # Input ids should be clamped to the maximum size of the vocabulary
            inputs_dict["input_ids"].clamp_(max=model_vocab_size - 15 - 1)
            if "decoder_input_ids" in inputs_dict:
                inputs_dict["decoder_input_ids"].clamp_(max=model_vocab_size - 15 - 1)
            # Check that the model can still do a forward pass successfully (every parameter should be resized)
            model(**self._prepare_for_class(inputs_dict, model_class))

Patrick von Platen's avatar
Patrick von Platen committed
1540
    def test_model_common_attributes(self):
1541
1542
1543
1544
        config, inputs_dict = self.model_tester.prepare_config_and_inputs_for_common()

        for model_class in self.all_model_classes:
            model = model_class(config)
1545
1546
            self.assertIsInstance(model.get_input_embeddings(), (nn.Embedding, AdaptiveEmbedding))
            model.set_input_embeddings(nn.Embedding(10, 10))
1547
            x = model.get_output_embeddings()
1548
            self.assertTrue(x is None or isinstance(x, nn.Linear))
1549

1550
1551
1552
1553
1554
1555
1556
    def test_model_main_input_name(self):
        for model_class in self.all_model_classes:
            model_signature = inspect.signature(getattr(model_class, "forward"))
            # The main input is the name of the argument after `self`
            observed_main_input_name = list(model_signature.parameters.keys())[1]
            self.assertEqual(model_class.main_input_name, observed_main_input_name)

1557
    def test_correct_missing_keys(self):
1558
1559
        if not self.test_missing_keys:
            return
1560
1561
1562
1563
1564
1565
1566
        config, _ = self.model_tester.prepare_config_and_inputs_for_common()

        for model_class in self.all_model_classes:
            model = model_class(config)
            base_model_prefix = model.base_model_prefix

            if hasattr(model, base_model_prefix):
1567
1568
1569
1570
1571
1572
1573
1574
1575
1576
1577
1578
1579
                extra_params = {k: v for k, v in model.named_parameters() if not k.startswith(base_model_prefix)}
                extra_params.update({k: v for k, v in model.named_buffers() if not k.startswith(base_model_prefix)})
                # Some models define this as None
                if model._keys_to_ignore_on_load_missing:
                    for key in model._keys_to_ignore_on_load_missing:
                        extra_params.pop(key, None)

                if not extra_params:
                    # In that case, we *are* on a head model, but every
                    # single key is not actual parameters and this is
                    # tested in `test_tied_model_weights_key_ignore` test.
                    continue

1580
1581
1582
                with tempfile.TemporaryDirectory() as temp_dir_name:
                    model.base_model.save_pretrained(temp_dir_name)
                    model, loading_info = model_class.from_pretrained(temp_dir_name, output_loading_info=True)
1583
                    self.assertGreater(len(loading_info["missing_keys"]), 0, model.__class__.__name__)
1584

1585
1586
1587
1588
1589
1590
1591
1592
1593
1594
1595
1596
1597
1598
1599
1600
1601
1602
1603
1604
1605
1606
1607
1608
1609
1610
1611
1612
1613
1614
1615
1616
1617
1618
1619
1620
1621
1622
1623
1624
1625
1626
1627
1628
1629
1630
1631
1632
    def test_tie_model_weights(self):
        if not self.test_torchscript:
            return

        config, inputs_dict = self.model_tester.prepare_config_and_inputs_for_common()

        def check_same_values(layer_1, layer_2):
            equal = True
            for p1, p2 in zip(layer_1.weight, layer_2.weight):
                if p1.data.ne(p2.data).sum() > 0:
                    equal = False
            return equal

        for model_class in self.all_model_classes:
            config.torchscript = True
            model_not_tied = model_class(config)
            if model_not_tied.get_output_embeddings() is None:
                continue

            config_tied = copy.deepcopy(config)
            config_tied.torchscript = False
            model_tied = model_class(config_tied)
            params_tied = list(model_tied.parameters())
            # Check that the embedding layer and decoding layer are the same in size and in value
            # self.assertTrue(check_same_values(embeddings, decoding))

            # # Check that after modification, they remain the same.
            # embeddings.weight.data.div_(2)
            # # Check that the embedding layer and decoding layer are the same in size and in value
            # self.assertTrue(embeddings.weight.shape, decoding.weight.shape)
            # self.assertTrue(check_same_values(embeddings, decoding))

            # # Check that after modification, they remain the same.
            # decoding.weight.data.div_(4)
            # # Check that the embedding layer and decoding layer are the same in size and in value
            # self.assertTrue(embeddings.weight.shape, decoding.weight.shape)
            # self.assertTrue(check_same_values(embeddings, decoding))

            # Check that after resize they remain tied.
            model_tied.resize_token_embeddings(config.vocab_size + 10)
            params_tied_2 = list(model_tied.parameters())
            self.assertEqual(len(params_tied_2), len(params_tied))

            # decoding.weight.data.mul_(20)
            # # Check that the embedding layer and decoding layer are the same in size and in value
            # self.assertTrue(model.transformer.wte.weight.shape, model.lm_head.weight.shape)
            # self.assertTrue(check_same_values(model.transformer.wte, model.lm_head))

1633
1634
1635
1636
1637
1638
1639
1640
1641
1642
1643
1644
1645
1646
1647
1648
1649
1650
1651
1652
1653
1654
1655
1656
1657
1658
1659
1660
1661
1662
1663
1664
1665
1666
1667
    @require_safetensors
    def test_can_use_safetensors(self):
        config, inputs_dict = self.model_tester.prepare_config_and_inputs_for_common()
        for model_class in self.all_model_classes:
            model_tied = model_class(config)
            with tempfile.TemporaryDirectory() as d:
                try:
                    model_tied.save_pretrained(d, safe_serialization=True)
                except Exception as e:
                    raise Exception(f"Class {model_class.__name__} cannot be saved using safetensors: {e}")

                model_reloaded, infos = model_class.from_pretrained(d, output_loading_info=True)
                # Checking the state dicts are correct
                reloaded_state = model_reloaded.state_dict()
                for k, v in model_tied.state_dict().items():
                    self.assertIn(k, reloaded_state, f"Key {k} is missing from reloaded")
                    torch.testing.assert_close(
                        v, reloaded_state[k], msg=lambda x: f"{model_class.__name__}: Tensor {k}: {x}"
                    )

                # Checking the tensor sharing are correct
                ptrs = defaultdict(list)
                for k, v in model_tied.state_dict().items():
                    ptrs[v.data_ptr()].append(k)

                shared_ptrs = {k: v for k, v in ptrs.items() if len(v) > 1}

                for _, shared_names in shared_ptrs.items():
                    reloaded_ptrs = {reloaded_state[k].data_ptr() for k in shared_names}
                    self.assertEqual(
                        len(reloaded_ptrs),
                        1,
                        f"The shared pointers are incorrect, found different pointers for keys {shared_names}",
                    )

Sylvain Gugger's avatar
Sylvain Gugger committed
1668
1669
1670
1671
1672
1673
1674
1675
1676
1677
1678
1679
1680
1681
1682
1683
1684
1685
1686
1687
1688
1689
1690
1691
1692
1693
1694
    def test_tied_weights_keys(self):
        config, _ = self.model_tester.prepare_config_and_inputs_for_common()
        config.tie_word_embeddings = True
        for model_class in self.all_model_classes:
            model_tied = model_class(config)

            ptrs = collections.defaultdict(list)
            for name, tensor in model_tied.state_dict().items():
                ptrs[id_tensor_storage(tensor)].append(name)

            # These are all the pointers of shared tensors.
            tied_params = [names for _, names in ptrs.items() if len(names) > 1]

            tied_weight_keys = model_tied._tied_weights_keys if model_tied._tied_weights_keys is not None else []
            # Detect we get a hit for each key
            for key in tied_weight_keys:
                if not any(re.search(key, p) for group in tied_params for p in group):
                    raise ValueError(f"{key} is not a tied weight key for {model_class}.")

            # Removed tied weights found from tied params -> there should only be one left after
            for key in tied_weight_keys:
                for i in range(len(tied_params)):
                    tied_params[i] = [p for p in tied_params[i] if re.search(key, p) is None]

            tied_params = [group for group in tied_params if len(group) > 1]
            self.assertListEqual(tied_params, [])

1695
1696
1697
1698
1699
1700
1701
1702
1703
1704
1705
1706
1707
1708
1709
1710
1711
1712
1713
1714
1715
1716
1717
1718
1719
1720
1721
1722
    def test_tied_model_weights_key_ignore(self):
        config, inputs_dict = self.model_tester.prepare_config_and_inputs_for_common()
        for model_class in self.all_model_classes:
            model_tied = model_class(config)
            with tempfile.TemporaryDirectory() as d:
                model_tied.save_pretrained(d)

                # We are nuking ALL weights on file, so every parameter should
                # yell on load. We're going to detect if we yell too much, or too little.
                with open(os.path.join(d, "pytorch_model.bin"), "wb") as f:
                    torch.save({}, f)
                model_reloaded, infos = model_class.from_pretrained(d, output_loading_info=True)

                # ! Actually we could use `state_dict()` and check iteratively the tensors which are the same (for instance using `tensor.data_ptr()`). to detect the duplicates.
                # ```python
                # model = GPT2LMHeadModel.from_pretrained("gpt2")
                # "lm_head.weight" in model.state_dict().keys()  # True
                # "lm_head.weight" in model.named_parameters() # False
                # In [6]: model.lm_head.weight.data_ptr()
                # Out[6]: 139901378371648
                # In [9]: model.transformer.wte.weight.data_ptr()
                # Out[9]: 139901378371648  # Same PTR, it's the same DATA ! we would need to check for stride too to be 100% accurate.
                # ```

                prefix = f"{model_reloaded.base_model_prefix}."
                params = dict(model_reloaded.named_parameters())
                params.update(dict(model_reloaded.named_buffers()))
                # param_names = set(k[len(prefix) :] if k.startswith(prefix) else k for k in params.keys())
1723
                param_names = {k[len(prefix) :] if k.startswith(prefix) else k for k in params.keys()}
1724
1725
1726
1727
1728
1729
1730
1731
1732
1733
1734
1735
1736
1737
1738
1739
1740
1741
1742

                missing_keys = set(infos["missing_keys"])

                extra_missing = missing_keys - param_names
                # missed_missing = param_names - missing_keys

                self.assertEqual(
                    extra_missing,
                    set(),
                    f"This model {model_class.__name__} might be missing some `keys_to_ignore`: {extra_missing}",
                )

                # self.assertEqual(
                #     missed_missing,
                #     set(),
                #     f"This model {model_class.__name__} ignores keys {missed_missing} but they look like real"
                #     " parameters",
                # )

1743
1744
1745
    def test_model_outputs_equivalence(self):
        config, inputs_dict = self.model_tester.prepare_config_and_inputs_for_common()

Sam Shleifer's avatar
Sam Shleifer committed
1746
1747
1748
1749
        def set_nan_tensor_to_zero(t):
            t[t != t] = 0
            return t

1750
1751
1752
1753
1754
1755
1756
1757
1758
        def check_equivalence(model, tuple_inputs, dict_inputs, additional_kwargs={}):
            with torch.no_grad():
                tuple_output = model(**tuple_inputs, return_dict=False, **additional_kwargs)
                dict_output = model(**dict_inputs, return_dict=True, **additional_kwargs).to_tuple()

                def recursive_check(tuple_object, dict_object):
                    if isinstance(tuple_object, (List, Tuple)):
                        for tuple_iterable_value, dict_iterable_value in zip(tuple_object, dict_object):
                            recursive_check(tuple_iterable_value, dict_iterable_value)
NielsRogge's avatar
NielsRogge committed
1759
1760
1761
1762
1763
                    elif isinstance(tuple_object, Dict):
                        for tuple_iterable_value, dict_iterable_value in zip(
                            tuple_object.values(), dict_object.values()
                        ):
                            recursive_check(tuple_iterable_value, dict_iterable_value)
1764
1765
1766
1767
                    elif tuple_object is None:
                        return
                    else:
                        self.assertTrue(
Sam Shleifer's avatar
Sam Shleifer committed
1768
1769
1770
                            torch.allclose(
                                set_nan_tensor_to_zero(tuple_object), set_nan_tensor_to_zero(dict_object), atol=1e-5
                            ),
Sylvain Gugger's avatar
Sylvain Gugger committed
1771
1772
1773
1774
1775
1776
                            msg=(
                                "Tuple and dict output are not equal. Difference:"
                                f" {torch.max(torch.abs(tuple_object - dict_object))}. Tuple has `nan`:"
                                f" {torch.isnan(tuple_object).any()} and `inf`: {torch.isinf(tuple_object)}. Dict has"
                                f" `nan`: {torch.isnan(dict_object).any()} and `inf`: {torch.isinf(dict_object)}."
                            ),
1777
1778
1779
1780
1781
1782
1783
1784
1785
1786
1787
1788
1789
1790
1791
1792
1793
1794
1795
1796
1797
1798
1799
1800
1801
                        )

                recursive_check(tuple_output, dict_output)

        for model_class in self.all_model_classes:
            model = model_class(config)
            model.to(torch_device)
            model.eval()

            tuple_inputs = self._prepare_for_class(inputs_dict, model_class)
            dict_inputs = self._prepare_for_class(inputs_dict, model_class)
            check_equivalence(model, tuple_inputs, dict_inputs)

            tuple_inputs = self._prepare_for_class(inputs_dict, model_class, return_labels=True)
            dict_inputs = self._prepare_for_class(inputs_dict, model_class, return_labels=True)
            check_equivalence(model, tuple_inputs, dict_inputs)

            tuple_inputs = self._prepare_for_class(inputs_dict, model_class)
            dict_inputs = self._prepare_for_class(inputs_dict, model_class)
            check_equivalence(model, tuple_inputs, dict_inputs, {"output_hidden_states": True})

            tuple_inputs = self._prepare_for_class(inputs_dict, model_class, return_labels=True)
            dict_inputs = self._prepare_for_class(inputs_dict, model_class, return_labels=True)
            check_equivalence(model, tuple_inputs, dict_inputs, {"output_hidden_states": True})

1802
1803
1804
1805
            if self.has_attentions:
                tuple_inputs = self._prepare_for_class(inputs_dict, model_class)
                dict_inputs = self._prepare_for_class(inputs_dict, model_class)
                check_equivalence(model, tuple_inputs, dict_inputs, {"output_attentions": True})
1806

1807
1808
1809
1810
1811
1812
1813
1814
1815
                tuple_inputs = self._prepare_for_class(inputs_dict, model_class, return_labels=True)
                dict_inputs = self._prepare_for_class(inputs_dict, model_class, return_labels=True)
                check_equivalence(model, tuple_inputs, dict_inputs, {"output_attentions": True})

                tuple_inputs = self._prepare_for_class(inputs_dict, model_class, return_labels=True)
                dict_inputs = self._prepare_for_class(inputs_dict, model_class, return_labels=True)
                check_equivalence(
                    model, tuple_inputs, dict_inputs, {"output_hidden_states": True, "output_attentions": True}
                )
1816

1817
1818
1819
1820
    # Don't copy this method to model specific test file!
    # TODO: remove this method once the issues are all fixed!
    def _make_attention_mask_non_null(self, inputs_dict):
        """Make sure no sequence has all zeros as attention mask"""
1821

1822
1823
1824
        for k in ["attention_mask", "encoder_attention_mask", "decoder_attention_mask"]:
            if k in inputs_dict:
                attention_mask = inputs_dict[k]
1825

1826
1827
1828
1829
1830
1831
                # Make sure no all 0s attention masks - to avoid failure at this moment.
                # Put `1` at the beginning of sequences to make it still work when combining causal attention masks.
                # TODO: remove this line once a fix regarding large negative values for attention mask is done.
                attention_mask = torch.cat(
                    [torch.ones_like(attention_mask[:, :1], dtype=attention_mask.dtype), attention_mask[:, 1:]], dim=-1
                )
1832

1833
1834
1835
1836
1837
1838
1839
1840
1841
1842
1843
1844
1845
1846
1847
1848
1849
                # Here we make the first sequence with all 0s as attention mask.
                # Currently, this will fail for `TFWav2Vec2Model`. This is caused by the different large negative
                # values, like `1e-4`, `1e-9`, `1e-30` and `-inf` for attention mask across models/frameworks.
                # TODO: enable this block once the large negative values thing is cleaned up.
                # (see https://github.com/huggingface/transformers/issues/14859)
                # attention_mask = torch.cat(
                #     [torch.zeros_like(attention_mask[:1], dtype=attention_mask.dtype), attention_mask[1:]],
                #     dim=0
                # )

                inputs_dict[k] = attention_mask

    # Don't copy this method to model specific test file!
    # TODO: remove this method once the issues are all fixed!
    def _postprocessing_to_ignore_test_cases(self, tf_outputs, pt_outputs, model_class):
        """For temporarily ignoring some failed test cases (issues to be fixed)"""

1850
1851
        tf_keys = {k for k, v in tf_outputs.items() if v is not None}
        pt_keys = {k for k, v in pt_outputs.items() if v is not None}
1852
1853
1854
1855
1856
1857
1858
1859
1860
1861
1862
1863
1864
1865
1866
1867
1868
1869
1870
1871
1872
1873
1874
1875
1876
1877
1878

        key_differences = tf_keys.symmetric_difference(pt_keys)

        if model_class.__name__ in [
            "FlaubertWithLMHeadModel",
            "FunnelForPreTraining",
            "ElectraForPreTraining",
            "XLMWithLMHeadModel",
            "TransfoXLLMHeadModel",
        ]:
            for k in key_differences:
                if k in ["loss", "losses"]:
                    tf_keys.discard(k)
                    pt_keys.discard(k)
        elif model_class.__name__.startswith("GPT2"):
            # `TFGPT2` has `past_key_values` as a tensor while `GPT2` has it as a tuple.
            tf_keys.discard("past_key_values")
            pt_keys.discard("past_key_values")

        # create new outputs from the remaining fields
        new_tf_outputs = type(tf_outputs)(**{k: tf_outputs[k] for k in tf_keys})
        new_pt_outputs = type(pt_outputs)(**{k: pt_outputs[k] for k in pt_keys})

        return new_tf_outputs, new_pt_outputs

    # Copied from tests.test_modeling_tf_common.TFModelTesterMixin.check_pt_tf_outputs
    def check_pt_tf_outputs(self, tf_outputs, pt_outputs, model_class, tol=1e-5, name="outputs", attributes=None):
1879
        """Check the outputs from PyTorch and TensorFlow models are close enough. Checks are done in a recursive way.
1880

1881
1882
1883
1884
1885
1886
1887
1888
        Args:
            model_class: The class of the model that is currently testing. For example, `TFBertModel`,
                TFBertForMaskedLM`, `TFBertForSequenceClassification`, etc. Mainly used for providing more informative
                error messages.
            name (`str`): The name of the output. For example, `output.hidden_states`, `output.attentions`, etc.
            attributes (`Tuple[str]`): The names of the output's element if the output is a tuple/list with each element
                being a named field in the output.
        """
1889

1890
1891
1892
        self.assertEqual(type(name), str)
        if attributes is not None:
            self.assertEqual(type(attributes), tuple, f"{name}: The argument `attributes` should be a `tuple`")
1893

1894
1895
1896
1897
1898
1899
        # Allow `ModelOutput` (e.g. `CLIPOutput` has `text_model_output` and `vision_model_output`).
        if isinstance(tf_outputs, ModelOutput):
            self.assertTrue(
                isinstance(pt_outputs, ModelOutput),
                f"{name}: `pt_outputs` should an instance of `ModelOutput` when `tf_outputs` is",
            )
1900

1901
1902
1903
            # Don't copy this block to model specific test file!
            # TODO: remove this method and this line after issues are fixed
            tf_outputs, pt_outputs = self._postprocessing_to_ignore_test_cases(tf_outputs, pt_outputs, model_class)
1904

1905
1906
            tf_keys = [k for k, v in tf_outputs.items() if v is not None]
            pt_keys = [k for k, v in pt_outputs.items() if v is not None]
1907

1908
            self.assertEqual(tf_keys, pt_keys, f"{name}: Output keys differ between TF and PyTorch")
1909

1910
            # convert to the case of `tuple`
1911
            # appending each key to the current (string) `name`
1912
1913
1914
1915
            attributes = tuple([f"{name}.{k}" for k in tf_keys])
            self.check_pt_tf_outputs(
                tf_outputs.to_tuple(), pt_outputs.to_tuple(), model_class, tol=tol, name=name, attributes=attributes
            )
1916

1917
1918
1919
1920
1921
1922
1923
1924
1925
1926
        # Allow `list` (e.g. `TransfoXLModelOutput.mems` is a list of tensors.)
        elif type(tf_outputs) in [tuple, list]:
            self.assertEqual(type(tf_outputs), type(pt_outputs), f"{name}: Output types differ between TF and PyTorch")
            self.assertEqual(len(tf_outputs), len(pt_outputs), f"{name}: Output lengths differ between TF and PyTorch")

            if attributes is not None:
                # case 1: each output has assigned name (e.g. a tuple form of a `ModelOutput`)
                self.assertEqual(
                    len(attributes),
                    len(tf_outputs),
1927
                    f"{name}: The tuple `attributes` should have the same length as `tf_outputs`",
1928
                )
1929
            else:
1930
                # case 2: each output has no assigned name (e.g. hidden states of each layer) -> add an index to `name`
1931
                attributes = tuple([f"{name}_{idx}" for idx in range(len(tf_outputs))])
1932

1933
1934
            for tf_output, pt_output, attr in zip(tf_outputs, pt_outputs, attributes):
                self.check_pt_tf_outputs(tf_output, pt_output, model_class, tol=tol, name=attr)
1935

1936
1937
1938
1939
        elif isinstance(tf_outputs, tf.Tensor):
            self.assertTrue(
                isinstance(pt_outputs, torch.Tensor), f"{name}: `pt_outputs` should a tensor when `tf_outputs` is"
            )
1940

1941
1942
            tf_outputs = tf_outputs.numpy()
            pt_outputs = pt_outputs.detach().to("cpu").numpy()
1943

1944
1945
1946
            self.assertEqual(
                tf_outputs.shape, pt_outputs.shape, f"{name}: Output shapes differ between TF and PyTorch"
            )
1947

1948
1949
1950
1951
            # deal with NumPy's scalars to make replacing nan values by 0 work.
            if np.isscalar(tf_outputs):
                tf_outputs = np.array([tf_outputs])
                pt_outputs = np.array([pt_outputs])
1952

1953
1954
            tf_nans = np.isnan(tf_outputs)
            pt_nans = np.isnan(pt_outputs)
1955

1956
1957
1958
1959
            pt_outputs[tf_nans] = 0
            tf_outputs[tf_nans] = 0
            pt_outputs[pt_nans] = 0
            tf_outputs[pt_nans] = 0
1960

1961
            max_diff = np.amax(np.abs(tf_outputs - pt_outputs))
1962
            self.assertLessEqual(max_diff, tol, f"{name}: Difference between PyTorch and TF is {max_diff} (>= {tol}).")
1963
1964
        else:
            raise ValueError(
1965
                "`tf_outputs` should be an instance of `ModelOutput`, a `tuple`, or an instance of `tf.Tensor`. Got"
Sylvain Gugger's avatar
Sylvain Gugger committed
1966
                f" {type(tf_outputs)} instead."
1967
1968
            )

1969
1970
1971
1972
1973
1974
1975
1976
1977
1978
1979
1980
1981
1982
1983
1984
1985
    def prepare_tf_inputs_from_pt_inputs(self, pt_inputs_dict):
        tf_inputs_dict = {}
        for key, tensor in pt_inputs_dict.items():
            # skip key that does not exist in tf
            if type(tensor) == bool:
                tf_inputs_dict[key] = tensor
            elif key == "input_values":
                tf_inputs_dict[key] = tf.convert_to_tensor(tensor.cpu().numpy(), dtype=tf.float32)
            elif key == "pixel_values":
                tf_inputs_dict[key] = tf.convert_to_tensor(tensor.cpu().numpy(), dtype=tf.float32)
            elif key == "input_features":
                tf_inputs_dict[key] = tf.convert_to_tensor(tensor.cpu().numpy(), dtype=tf.float32)
            # other general float inputs
            elif tensor.is_floating_point():
                tf_inputs_dict[key] = tf.convert_to_tensor(tensor.cpu().numpy(), dtype=tf.float32)
            else:
                tf_inputs_dict[key] = tf.convert_to_tensor(tensor.cpu().numpy(), dtype=tf.int32)
1986

1987
        return tf_inputs_dict
1988

1989
1990
    def check_pt_tf_models(self, tf_model, pt_model, pt_inputs_dict):
        tf_inputs_dict = self.prepare_tf_inputs_from_pt_inputs(pt_inputs_dict)
1991

1992
1993
1994
1995
        # send pytorch inputs to the correct device
        pt_inputs_dict = {
            k: v.to(device=torch_device) if isinstance(v, torch.Tensor) else v for k, v in pt_inputs_dict.items()
        }
1996

1997
1998
        # send pytorch model to the correct device
        pt_model.to(torch_device)
1999

2000
2001
        # Check predictions on first output (logits/hidden-states) are close enough given low-level computational differences
        pt_model.eval()
2002

2003
2004
2005
2006
2007
2008
2009
2010
2011
2012
2013
2014
2015
2016
        with torch.no_grad():
            pt_outputs = pt_model(**pt_inputs_dict)
        tf_outputs = tf_model(tf_inputs_dict)

        # tf models returned loss is usually a tensor rather than a scalar.
        # (see `hf_compute_loss`: it uses `tf.keras.losses.Reduction.NONE`)
        # Change it here to a scalar to match PyTorch models' loss
        tf_loss = getattr(tf_outputs, "loss", None)
        if tf_loss is not None:
            tf_outputs.loss = tf.math.reduce_mean(tf_loss)

        self.check_pt_tf_outputs(tf_outputs, pt_outputs, type(pt_model))

    @is_pt_tf_cross_test
Matt's avatar
Matt committed
2017
    def test_pt_tf_model_equivalence(self, allow_missing_keys=False):
2018
        import transformers
2019
2020

        for model_class in self.all_model_classes:
2021
2022
2023
            config, inputs_dict = self.model_tester.prepare_config_and_inputs_for_common()

            tf_model_class_name = "TF" + model_class.__name__  # Add the "TF" at the beginning
2024
            if not hasattr(transformers, tf_model_class_name):
2025
                # transformers does not have this model in TF version yet
2026
2027
                return

2028
2029
2030
            # Output all for aggressive testing
            config.output_hidden_states = True
            config.output_attentions = self.has_attentions
2031

2032
2033
2034
2035
            # Make sure no sequence has all zeros as attention mask, otherwise some tests fail due to the inconsistency
            # of the usage `1e-4`, `1e-9`, `1e-30`, `-inf`.
            # TODO: Use a uniform value for all models, make sure all tests pass without this processing, and remove it.
            self._make_attention_mask_non_null(inputs_dict)
2036
2037

            tf_model_class = getattr(transformers, tf_model_class_name)
2038
2039

            pt_model = model_class(config)
2040
2041
2042
2043
2044
2045
2046
2047
2048
            tf_model = tf_model_class(config)

            pt_inputs_dict = self._prepare_for_class(inputs_dict, model_class)
            pt_inputs_dict_with_labels = self._prepare_for_class(
                inputs_dict,
                model_class,
                # Not all models accept "labels" in the forward pass (yet :) )
                return_labels=True if "labels" in inspect.signature(model_class.forward).parameters.keys() else False,
            )
2049
2050
2051
2052
2053
2054
2055
2056
2057

            # make sure only tf inputs are forward that actually exist in function args
            tf_input_keys = set(inspect.signature(tf_model.call).parameters.keys())

            # remove all head masks
            tf_input_keys.discard("head_mask")
            tf_input_keys.discard("cross_attn_head_mask")
            tf_input_keys.discard("decoder_head_mask")

2058
            pt_inputs_dict = {k: v for k, v in pt_inputs_dict.items() if k in tf_input_keys}
2059
2060
2061
2062
            pt_inputs_dict_with_labels = {k: v for k, v in pt_inputs_dict_with_labels.items() if k in tf_input_keys}

            # For some models (e.g. base models), there is no label returned.
            # Set the input dict to `None` to avoid check outputs twice for the same input dicts.
2063
            if not set(pt_inputs_dict_with_labels.keys()).symmetric_difference(pt_inputs_dict.keys()):
2064
                pt_inputs_dict_with_labels = None
2065
2066

            # Check we can load pt model in tf and vice-versa with model => model functions
2067
2068
            # Here requires `tf_inputs_dict` to build `tf_model`
            tf_inputs_dict = self.prepare_tf_inputs_from_pt_inputs(pt_inputs_dict)
Matt's avatar
Matt committed
2069
2070
2071
2072
2073
2074
            tf_model = transformers.load_pytorch_model_in_tf2_model(
                tf_model, pt_model, tf_inputs=tf_inputs_dict, allow_missing_keys=allow_missing_keys
            )
            pt_model = transformers.load_tf2_model_in_pytorch_model(
                pt_model, tf_model, allow_missing_keys=allow_missing_keys
            )
2075

2076
2077
2078
2079
2080
            # Original test: check without `labels`
            self.check_pt_tf_models(tf_model, pt_model, pt_inputs_dict)
            # check with `labels`
            if pt_inputs_dict_with_labels:
                self.check_pt_tf_models(tf_model, pt_model, pt_inputs_dict_with_labels)
2081
2082
2083
2084
2085

            # Check we can load pt model in tf and vice-versa with checkpoint => model functions
            with tempfile.TemporaryDirectory() as tmpdirname:
                pt_checkpoint_path = os.path.join(tmpdirname, "pt_model.bin")
                torch.save(pt_model.state_dict(), pt_checkpoint_path)
Matt's avatar
Matt committed
2086
2087
2088
                tf_model = transformers.load_pytorch_checkpoint_in_tf2_model(
                    tf_model, pt_checkpoint_path, allow_missing_keys=allow_missing_keys
                )
2089
2090
2091

                tf_checkpoint_path = os.path.join(tmpdirname, "tf_model.h5")
                tf_model.save_weights(tf_checkpoint_path)
Matt's avatar
Matt committed
2092
2093
2094
                pt_model = transformers.load_tf2_checkpoint_in_pytorch_model(
                    pt_model, tf_checkpoint_path, allow_missing_keys=allow_missing_keys
                )
2095

2096
2097
2098
2099
2100
            # Original test: check without `labels`
            self.check_pt_tf_models(tf_model, pt_model, pt_inputs_dict)
            # check with `labels`
            if pt_inputs_dict_with_labels:
                self.check_pt_tf_models(tf_model, pt_model, pt_inputs_dict_with_labels)
2101
2102
2103
2104
2105

    def assert_almost_equals(self, a: np.ndarray, b: np.ndarray, tol: float):
        diff = np.abs((a - b)).max()
        self.assertLessEqual(diff, tol, f"Difference between torch and flax is {diff} (>= {tol}).")

2106
    def check_pt_flax_outputs(self, fx_outputs, pt_outputs, model_class, tol=1e-5, name="outputs", attributes=None):
2107
2108
2109
2110
2111
2112
2113
2114
2115
        """
        Args:
            model_class: The class of the model that is currently testing. For example, ..., etc.
            Currently unused, but it could make debugging easier and faster.

            names: A string, or a list of strings. These specify what fx_outputs/pt_outputs represent in the model outputs.
                Currently unused, but in the future, we could use this information to make the error message clearer
                by giving the name(s) of the output tensor(s) with large difference(s) between PT and Flax.
        """
2116
2117
2118
2119
2120
2121
2122
2123
2124
2125
2126
2127
2128
2129
2130
2131
2132
2133
2134
2135
2136
2137
2138
2139
2140
2141
2142
2143
2144
2145
2146
2147
2148
2149
2150
2151
2152
2153
2154
2155

        self.assertEqual(type(name), str)
        if attributes is not None:
            self.assertEqual(type(attributes), tuple, f"{name}: The argument `attributes` should be a `tuple`")

        # Allow `ModelOutput` (e.g. `CLIPOutput` has `text_model_output` and `vision_model_output`).
        if isinstance(fx_outputs, ModelOutput):
            self.assertTrue(
                isinstance(pt_outputs, ModelOutput),
                f"{name}: `pt_outputs` should an instance of `ModelOutput` when `fx_outputs` is",
            )

            fx_keys = tuple([k for k, v in fx_outputs.items() if v is not None])
            pt_keys = tuple([k for k, v in pt_outputs.items() if v is not None])

            self.assertEqual(fx_keys, pt_keys, f"{name}: Output keys differ between Flax and PyTorch")

            # convert to the case of `tuple`
            # appending each key to the current (string) `name`
            attributes = tuple([f"{name}.{k}" for k in fx_keys])
            self.check_pt_flax_outputs(
                fx_outputs.to_tuple(), pt_outputs.to_tuple(), model_class, tol=tol, name=name, attributes=attributes
            )

        # Allow `list` (e.g. `TransfoXLModelOutput.mems` is a list of tensors.)
        elif type(fx_outputs) in [tuple, list]:
            self.assertEqual(
                type(fx_outputs), type(pt_outputs), f"{name}: Output types differ between Flax and PyTorch"
            )
            self.assertEqual(
                len(fx_outputs), len(pt_outputs), f"{name}: Output lengths differ between Flax and PyTorch"
            )

            if attributes is not None:
                # case 1: each output has assigned name (e.g. a tuple form of a `ModelOutput`)
                self.assertEqual(
                    len(attributes),
                    len(fx_outputs),
                    f"{name}: The tuple `attributes` should have the same length as `fx_outputs`",
                )
2156
            else:
2157
2158
2159
2160
2161
2162
                # case 2: each output has no assigned name (e.g. hidden states of each layer) -> add an index to `name`
                attributes = tuple([f"{name}_{idx}" for idx in range(len(fx_outputs))])

            for fx_output, pt_output, attr in zip(fx_outputs, pt_outputs, attributes):
                self.check_pt_flax_outputs(fx_output, pt_output, model_class, tol=tol, name=attr)

2163
        elif isinstance(fx_outputs, jnp.ndarray):
2164
2165
2166
            self.assertTrue(
                isinstance(pt_outputs, torch.Tensor), f"{name}: `pt_outputs` should a tensor when `fx_outputs` is"
            )
2167
2168
2169
2170
2171

            # Using `np.asarray` gives `ValueError: assignment destination is read-only` at the line `fx_outputs[fx_nans] = 0`.
            fx_outputs = np.array(fx_outputs)
            pt_outputs = pt_outputs.detach().to("cpu").numpy()

2172
2173
2174
2175
2176
2177
2178
2179
2180
            self.assertEqual(
                fx_outputs.shape, pt_outputs.shape, f"{name}: Output shapes differ between Flax and PyTorch"
            )

            # deal with NumPy's scalars to make replacing nan values by 0 work.
            if np.isscalar(fx_outputs):
                fx_outputs = np.array([fx_outputs])
                pt_outputs = np.array([pt_outputs])

2181
2182
2183
2184
2185
2186
2187
2188
            fx_nans = np.isnan(fx_outputs)
            pt_nans = np.isnan(pt_outputs)

            pt_outputs[fx_nans] = 0
            fx_outputs[fx_nans] = 0
            pt_outputs[pt_nans] = 0
            fx_outputs[pt_nans] = 0

2189
2190
2191
2192
            max_diff = np.amax(np.abs(fx_outputs - pt_outputs))
            self.assertLessEqual(
                max_diff, tol, f"{name}: Difference between PyTorch and Flax is {max_diff} (>= {tol})."
            )
2193
2194
        else:
            raise ValueError(
2195
2196
                "`fx_outputs` should be an instance of `ModelOutput`, a `tuple`, or an instance of `jnp.ndarray`. Got"
                f" {type(fx_outputs)} instead."
2197
2198
            )

2199
2200
2201
2202
2203
2204
2205
2206
2207
    @is_pt_flax_cross_test
    def test_equivalence_pt_to_flax(self):
        config, inputs_dict = self.model_tester.prepare_config_and_inputs_for_common()

        for model_class in self.all_model_classes:
            with self.subTest(model_class.__name__):
                fx_model_class_name = "Flax" + model_class.__name__

                if not hasattr(transformers, fx_model_class_name):
2208
                    # no flax model exists for this class
2209
2210
                    return

2211
2212
2213
2214
                # Output all for aggressive testing
                config.output_hidden_states = True
                config.output_attentions = self.has_attentions

2215
2216
                fx_model_class = getattr(transformers, fx_model_class_name)

2217
2218
2219
2220
2221
2222
                # load PyTorch class
                pt_model = model_class(config).eval()
                # Flax models don't use the `use_cache` option and cache is not returned as a default.
                # So we disable `use_cache` here for PyTorch model.
                pt_model.config.use_cache = False

2223
2224
                # load Flax class
                fx_model = fx_model_class(config, dtype=jnp.float32)
2225

2226
2227
2228
2229
2230
2231
2232
2233
2234
                # make sure only flax inputs are forward that actually exist in function args
                fx_input_keys = inspect.signature(fx_model.__call__).parameters.keys()

                # prepare inputs
                pt_inputs = self._prepare_for_class(inputs_dict, model_class)

                # remove function args that don't exist in Flax
                pt_inputs = {k: v for k, v in pt_inputs.items() if k in fx_input_keys}

2235
2236
2237
2238
2239
2240
2241
2242
                # send pytorch inputs to the correct device
                pt_inputs = {
                    k: v.to(device=torch_device) if isinstance(v, torch.Tensor) else v for k, v in pt_inputs.items()
                }

                # convert inputs to Flax
                fx_inputs = {k: np.array(v) for k, v in pt_inputs.items() if torch.is_tensor(v)}

2243
2244
2245
                fx_state = convert_pytorch_state_dict_to_flax(pt_model.state_dict(), fx_model)
                fx_model.params = fx_state

2246
2247
2248
                # send pytorch model to the correct device
                pt_model.to(torch_device)

2249
                with torch.no_grad():
2250
2251
                    pt_outputs = pt_model(**pt_inputs)
                fx_outputs = fx_model(**fx_inputs)
2252

2253
2254
2255
2256
                fx_keys = tuple([k for k, v in fx_outputs.items() if v is not None])
                pt_keys = tuple([k for k, v in pt_outputs.items() if v is not None])

                self.assertEqual(fx_keys, pt_keys)
2257
                self.check_pt_flax_outputs(fx_outputs, pt_outputs, model_class)
2258
2259
2260
2261
2262

                with tempfile.TemporaryDirectory() as tmpdirname:
                    pt_model.save_pretrained(tmpdirname)
                    fx_model_loaded = fx_model_class.from_pretrained(tmpdirname, from_pt=True)

2263
2264
2265
2266
2267
2268
                fx_outputs_loaded = fx_model_loaded(**fx_inputs)

                fx_keys = tuple([k for k, v in fx_outputs_loaded.items() if v is not None])
                pt_keys = tuple([k for k, v in pt_outputs.items() if v is not None])

                self.assertEqual(fx_keys, pt_keys)
2269
                self.check_pt_flax_outputs(fx_outputs_loaded, pt_outputs, model_class)
2270
2271
2272
2273
2274
2275
2276
2277
2278
2279
2280
2281
2282

    @is_pt_flax_cross_test
    def test_equivalence_flax_to_pt(self):
        config, inputs_dict = self.model_tester.prepare_config_and_inputs_for_common()

        for model_class in self.all_model_classes:
            with self.subTest(model_class.__name__):
                fx_model_class_name = "Flax" + model_class.__name__

                if not hasattr(transformers, fx_model_class_name):
                    # no flax model exists for this class
                    return

2283
2284
2285
2286
                # Output all for aggressive testing
                config.output_hidden_states = True
                config.output_attentions = self.has_attentions

2287
2288
                fx_model_class = getattr(transformers, fx_model_class_name)

2289
2290
2291
2292
2293
2294
                # load PyTorch class
                pt_model = model_class(config).eval()
                # Flax models don't use the `use_cache` option and cache is not returned as a default.
                # So we disable `use_cache` here for PyTorch model.
                pt_model.config.use_cache = False

2295
2296
                # load Flax class
                fx_model = fx_model_class(config, dtype=jnp.float32)
2297

2298
2299
2300
2301
2302
2303
2304
2305
2306
                # make sure only flax inputs are forward that actually exist in function args
                fx_input_keys = inspect.signature(fx_model.__call__).parameters.keys()

                # prepare inputs
                pt_inputs = self._prepare_for_class(inputs_dict, model_class)

                # remove function args that don't exist in Flax
                pt_inputs = {k: v for k, v in pt_inputs.items() if k in fx_input_keys}

2307
2308
2309
2310
                # send pytorch inputs to the correct device
                pt_inputs = {
                    k: v.to(device=torch_device) if isinstance(v, torch.Tensor) else v for k, v in pt_inputs.items()
                }
2311

2312
                # convert inputs to Flax
2313
2314
                fx_inputs = {k: np.array(v) for k, v in pt_inputs.items() if torch.is_tensor(v)}

2315
2316
2317
2318
2319
2320
2321
                pt_model = load_flax_weights_in_pytorch_model(pt_model, fx_model.params)

                # make sure weights are tied in PyTorch
                pt_model.tie_weights()

                # send pytorch model to the correct device
                pt_model.to(torch_device)
2322

2323
2324
2325
2326
2327
2328
2329
2330
                with torch.no_grad():
                    pt_outputs = pt_model(**pt_inputs)
                fx_outputs = fx_model(**fx_inputs)

                fx_keys = tuple([k for k, v in fx_outputs.items() if v is not None])
                pt_keys = tuple([k for k, v in pt_outputs.items() if v is not None])

                self.assertEqual(fx_keys, pt_keys)
2331
                self.check_pt_flax_outputs(fx_outputs, pt_outputs, model_class)
2332
2333
2334
2335
2336

                with tempfile.TemporaryDirectory() as tmpdirname:
                    fx_model.save_pretrained(tmpdirname)
                    pt_model_loaded = model_class.from_pretrained(tmpdirname, from_flax=True)

2337
2338
2339
2340
                # send pytorch model to the correct device
                pt_model_loaded.to(torch_device)
                pt_model_loaded.eval()

2341
                with torch.no_grad():
2342
                    pt_outputs_loaded = pt_model_loaded(**pt_inputs)
2343

2344
2345
2346
2347
                fx_keys = tuple([k for k, v in fx_outputs.items() if v is not None])
                pt_keys = tuple([k for k, v in pt_outputs_loaded.items() if v is not None])

                self.assertEqual(fx_keys, pt_keys)
2348
                self.check_pt_flax_outputs(fx_outputs, pt_outputs_loaded, model_class)
2349

Patrick von Platen's avatar
Patrick von Platen committed
2350
    def test_inputs_embeds(self):
2351
2352
2353
2354
        config, inputs_dict = self.model_tester.prepare_config_and_inputs_for_common()

        for model_class in self.all_model_classes:
            model = model_class(config)
2355
            model.to(torch_device)
thomwolf's avatar
thomwolf committed
2356
            model.eval()
2357

2358
            inputs = copy.deepcopy(self._prepare_for_class(inputs_dict, model_class))
Weizhen's avatar
Weizhen committed
2359

2360
2361
2362
2363
2364
2365
2366
2367
2368
            if not self.is_encoder_decoder:
                input_ids = inputs["input_ids"]
                del inputs["input_ids"]
            else:
                encoder_input_ids = inputs["input_ids"]
                decoder_input_ids = inputs.get("decoder_input_ids", encoder_input_ids)
                del inputs["input_ids"]
                inputs.pop("decoder_input_ids", None)

2369
2370
            wte = model.get_input_embeddings()
            if not self.is_encoder_decoder:
2371
                inputs["inputs_embeds"] = wte(input_ids)
2372
            else:
2373
2374
                inputs["inputs_embeds"] = wte(encoder_input_ids)
                inputs["decoder_inputs_embeds"] = wte(decoder_input_ids)
2375

thomwolf's avatar
thomwolf committed
2376
            with torch.no_grad():
Weizhen's avatar
Weizhen committed
2377
                model(**inputs)[0]
2378

2379
2380
    @require_torch_multi_gpu
    def test_multi_gpu_data_parallel_forward(self):
2381
2382
2383
2384
        config, inputs_dict = self.model_tester.prepare_config_and_inputs_for_common()

        # some params shouldn't be scattered by nn.DataParallel
        # so just remove them if they are present.
2385
        blacklist_non_batched_params = ["head_mask", "decoder_head_mask", "cross_attn_head_mask"]
2386
2387
2388
2389
2390
2391
2392
2393
2394
2395
2396
2397
2398
2399
        for k in blacklist_non_batched_params:
            inputs_dict.pop(k, None)

        # move input tensors to cuda:O
        for k, v in inputs_dict.items():
            if torch.is_tensor(v):
                inputs_dict[k] = v.to(0)

        for model_class in self.all_model_classes:
            model = model_class(config=config)
            model.to(0)
            model.eval()

            # Wrap model in nn.DataParallel
2400
            model = nn.DataParallel(model)
2401
            with torch.no_grad():
2402
                _ = model(**self._prepare_for_class(inputs_dict, model_class))
2403

2404
2405
2406
    @require_torch_multi_gpu
    def test_model_parallelization(self):
        if not self.test_model_parallel:
2407
            return
2408

2409
        # a candidate for testing_utils
2410
        def get_current_gpu_memory_use():
Patrick von Platen's avatar
Patrick von Platen committed
2411
            """returns a list of cuda memory allocations per GPU in MBs"""
2412
2413
2414
2415
2416

            per_device_memory = []
            for id in range(torch.cuda.device_count()):
                with torch.cuda.device(id):
                    per_device_memory.append(torch.cuda.memory_allocated() >> 20)
2417
2418
2419
2420
2421
2422
2423
2424
2425

            return per_device_memory

        # Needs a large model to see the difference.
        config = self.model_tester.get_large_model_config()

        for model_class in self.all_parallelizable_model_classes:
            torch.cuda.empty_cache()

2426
2427
2428
            # 1. single gpu memory load + unload + memory measurements
            # Retrieve initial memory usage (can easily be ~0.6-1.5GB if cuda-kernels have been preloaded by previous tests)
            memory_at_start = get_current_gpu_memory_use()
2429

2430
2431
            # Put model on device 0 and take a memory snapshot
            model = model_class(config)
2432
2433
2434
            model.to("cuda:0")
            memory_after_model_load = get_current_gpu_memory_use()

2435
2436
2437
            # The memory use on device 0 should be higher than it was initially.
            self.assertGreater(memory_after_model_load[0], memory_at_start[0])

2438
            del model
2439
            gc.collect()
2440
2441
            torch.cuda.empty_cache()

2442
2443
2444
            # 2. MP test
            # it's essential to re-calibrate the usage before the next stage
            memory_at_start = get_current_gpu_memory_use()
2445
2446

            # Spread model layers over multiple devices
2447
            model = model_class(config)
2448
2449
2450
2451
            model.parallelize()
            memory_after_parallelization = get_current_gpu_memory_use()

            # Assert that the memory use on all devices is higher than it was when loaded only on CPU
2452
            for n in range(len(model.device_map.keys())):
2453
                self.assertGreater(memory_after_parallelization[n], memory_at_start[n])
2454

2455
            # Assert that the memory use of device 0 is lower than it was when the entire model was loaded on it
2456
2457
            self.assertLess(memory_after_parallelization[0], memory_after_model_load[0])

2458
2459
            # Assert that the memory use of device 1 is higher than it was when the entire model was loaded
            # on device 0 and device 1 wasn't used at all
2460
2461
2462
            self.assertGreater(memory_after_parallelization[1], memory_after_model_load[1])

            del model
2463
            gc.collect()
2464
2465
2466
2467
2468
            torch.cuda.empty_cache()

    @require_torch_multi_gpu
    def test_model_parallel_equal_results(self):
        if not self.test_model_parallel:
2469
            return
2470
2471
2472
2473
2474
2475

        config, inputs_dict = self.model_tester.prepare_config_and_inputs_for_common()

        for model_class in self.all_parallelizable_model_classes:
            inputs_dict = self._prepare_for_class(inputs_dict, model_class)

2476
            def cast_to_device(dictionary, device):
2477
2478
2479
                output = {}
                for k, v in dictionary.items():
                    if isinstance(v, torch.Tensor):
2480
                        output[k] = v.to(device)
2481
2482
2483
2484
2485
                    else:
                        output[k] = v

                return output

2486
2487
2488
2489
2490
2491
            model = model_class(config)
            output = model(**cast_to_device(inputs_dict, "cpu"))

            model.parallelize()

            parallel_output = model(**cast_to_device(inputs_dict, "cuda:0"))
2492
2493
2494
2495
2496
2497
2498
2499

            for value, parallel_value in zip(output, parallel_output):
                if isinstance(value, torch.Tensor):
                    self.assertTrue(torch.allclose(value, parallel_value.to("cpu"), atol=1e-7))
                elif isinstance(value, (Tuple, List)):
                    for value_, parallel_value_ in zip(value, parallel_value):
                        self.assertTrue(torch.allclose(value_, parallel_value_.to("cpu"), atol=1e-7))

2500
2501
2502
2503
2504
2505
2506
2507
2508
2509
2510
2511
2512
2513
2514
2515
2516
2517
2518
2519
2520
2521
2522
2523
2524
2525
2526
2527
    @require_torch_multi_gpu
    def test_model_parallel_beam_search(self):
        if not self.test_model_parallel:
            return

        all_generative_and_parallelizable_model_classes = tuple(
            set(self.all_generative_model_classes).intersection(self.all_parallelizable_model_classes)
        )

        config, inputs_dict = self.model_tester.prepare_config_and_inputs_for_common()

        for model_class in all_generative_and_parallelizable_model_classes:
            inputs_dict = self._prepare_for_class(inputs_dict, model_class)
            model = model_class(config)

            def cast_to_device(dictionary, device):
                output = {}
                for k, v in dictionary.items():
                    if isinstance(v, torch.Tensor):
                        output[k] = v.to(device)
                    else:
                        output[k] = v

                return output

            model.parallelize()
            model.generate(**cast_to_device(inputs_dict, "cuda:0"), num_beams=2)

2528
2529
2530
2531
2532
2533
2534
2535
2536
2537
2538
2539
2540
2541
    def check_device_map_is_respected(self, model, device_map):
        for param_name, param in model.named_parameters():
            # Find device in device_map
            while len(param_name) > 0 and param_name not in device_map:
                param_name = ".".join(param_name.split(".")[:-1])
            if param_name not in device_map:
                raise ValueError("device map is incomplete, it does not contain any device for `param_name`.")

            param_device = device_map[param_name]
            if param_device in ["cpu", "disk"]:
                self.assertEqual(param.device, torch.device("meta"))
            else:
                self.assertEqual(param.device, torch.device(param_device))

Sylvain Gugger's avatar
Sylvain Gugger committed
2542
    @require_accelerate
2543
    @mark.accelerate_tests
Sylvain Gugger's avatar
Sylvain Gugger committed
2544
2545
2546
2547
2548
2549
2550
2551
    @require_torch_gpu
    def test_disk_offload(self):
        config, inputs_dict = self.model_tester.prepare_config_and_inputs_for_common()

        for model_class in self.all_model_classes:
            if model_class._no_split_modules is None:
                continue

2552
            inputs_dict_class = self._prepare_for_class(inputs_dict, model_class)
Sylvain Gugger's avatar
Sylvain Gugger committed
2553
2554
            model = model_class(config).eval()
            model = model.to(torch_device)
2555
            torch.manual_seed(0)
2556
            base_output = model(**inputs_dict_class)
Sylvain Gugger's avatar
Sylvain Gugger committed
2557
2558

            model_size = compute_module_sizes(model)[""]
2559
            max_size = int(self.model_split_percents[0] * model_size)
Sylvain Gugger's avatar
Sylvain Gugger committed
2560
2561
2562
2563
2564
2565
2566
2567
2568
2569
2570
2571
2572
            with tempfile.TemporaryDirectory() as tmp_dir:
                model.cpu().save_pretrained(tmp_dir)

                max_memory = {0: max_size, "cpu": max_size}
                with self.assertRaises(ValueError):
                    # This errors out cause it's missing an offload folder
                    new_model = model_class.from_pretrained(tmp_dir, device_map="auto", max_memory=max_memory)

                new_model = model_class.from_pretrained(
                    tmp_dir, device_map="auto", max_memory=max_memory, offload_folder=tmp_dir
                )

                self.check_device_map_is_respected(new_model, new_model.hf_device_map)
2573
                torch.manual_seed(0)
2574
                new_output = new_model(**inputs_dict_class)
Sylvain Gugger's avatar
Sylvain Gugger committed
2575

2576
                self.assertTrue(torch.allclose(base_output[0], new_output[0], atol=1e-5))
Sylvain Gugger's avatar
Sylvain Gugger committed
2577

2578
    @require_accelerate
2579
    @mark.accelerate_tests
2580
2581
2582
2583
2584
2585
2586
2587
    @require_torch_gpu
    def test_cpu_offload(self):
        config, inputs_dict = self.model_tester.prepare_config_and_inputs_for_common()

        for model_class in self.all_model_classes:
            if model_class._no_split_modules is None:
                continue

2588
            inputs_dict_class = self._prepare_for_class(inputs_dict, model_class)
2589
2590
            model = model_class(config).eval()
            model = model.to(torch_device)
2591
2592

            torch.manual_seed(0)
2593
            base_output = model(**inputs_dict_class)
2594
2595
2596

            model_size = compute_module_sizes(model)[""]
            # We test several splits of sizes to make sure it works.
2597
            max_gpu_sizes = [int(p * model_size) for p in self.model_split_percents]
2598
2599
2600
2601
2602
2603
2604
2605
2606
2607
            with tempfile.TemporaryDirectory() as tmp_dir:
                model.cpu().save_pretrained(tmp_dir)

                for max_size in max_gpu_sizes:
                    max_memory = {0: max_size, "cpu": model_size * 2}
                    new_model = model_class.from_pretrained(tmp_dir, device_map="auto", max_memory=max_memory)
                    # Making sure part of the model will actually end up offloaded
                    self.assertSetEqual(set(new_model.hf_device_map.values()), {0, "cpu"})

                    self.check_device_map_is_respected(new_model, new_model.hf_device_map)
2608
2609

                    torch.manual_seed(0)
2610
                    new_output = new_model(**inputs_dict_class)
2611

2612
                    self.assertTrue(torch.allclose(base_output[0], new_output[0], atol=1e-5))
2613
2614

    @require_accelerate
2615
    @mark.accelerate_tests
2616
2617
2618
2619
2620
2621
2622
2623
    @require_torch_multi_gpu
    def test_model_parallelism(self):
        config, inputs_dict = self.model_tester.prepare_config_and_inputs_for_common()

        for model_class in self.all_model_classes:
            if model_class._no_split_modules is None:
                continue

2624
            inputs_dict_class = self._prepare_for_class(inputs_dict, model_class)
2625
2626
            model = model_class(config).eval()
            model = model.to(torch_device)
2627
2628

            torch.manual_seed(0)
2629
            base_output = model(**inputs_dict_class)
2630
2631
2632

            model_size = compute_module_sizes(model)[""]
            # We test several splits of sizes to make sure it works.
2633
            max_gpu_sizes = [int(p * model_size) for p in self.model_split_percents]
2634
2635
2636
2637
2638
2639
2640
2641
2642
2643
            with tempfile.TemporaryDirectory() as tmp_dir:
                model.cpu().save_pretrained(tmp_dir)

                for max_size in max_gpu_sizes:
                    max_memory = {0: max_size, 1: model_size * 2, "cpu": model_size * 2}
                    new_model = model_class.from_pretrained(tmp_dir, device_map="auto", max_memory=max_memory)
                    # Making sure part of the model will actually end up offloaded
                    self.assertSetEqual(set(new_model.hf_device_map.values()), {0, 1})

                    self.check_device_map_is_respected(new_model, new_model.hf_device_map)
2644
2645

                    torch.manual_seed(0)
2646
                    new_output = new_model(**inputs_dict_class)
2647

2648
                    self.assertTrue(torch.allclose(base_output[0], new_output[0], atol=1e-5))
2649

2650
2651
2652
2653
2654
2655
2656
2657
2658
2659
    def test_problem_types(self):
        config, inputs_dict = self.model_tester.prepare_config_and_inputs_for_common()

        problem_types = [
            {"title": "multi_label_classification", "num_labels": 2, "dtype": torch.float},
            {"title": "single_label_classification", "num_labels": 1, "dtype": torch.long},
            {"title": "regression", "num_labels": 1, "dtype": torch.float},
        ]

        for model_class in self.all_model_classes:
2660
2661
2662
            if model_class.__name__ not in [
                *get_values(MODEL_FOR_SEQUENCE_CLASSIFICATION_MAPPING_NAMES),
                *get_values(MODEL_FOR_IMAGE_CLASSIFICATION_MAPPING_NAMES),
2663
            ]:
2664
2665
2666
2667
2668
2669
2670
2671
2672
2673
2674
2675
2676
2677
2678
2679
2680
2681
                continue

            for problem_type in problem_types:
                with self.subTest(msg=f"Testing {model_class} with {problem_type['title']}"):
                    config.problem_type = problem_type["title"]
                    config.num_labels = problem_type["num_labels"]

                    model = model_class(config)
                    model.to(torch_device)
                    model.train()

                    inputs = self._prepare_for_class(inputs_dict, model_class, return_labels=True)

                    if problem_type["num_labels"] > 1:
                        inputs["labels"] = inputs["labels"].unsqueeze(1).repeat(1, problem_type["num_labels"])

                    inputs["labels"] = inputs["labels"].to(problem_type["dtype"])

2682
2683
2684
2685
2686
2687
                    # This tests that we do not trigger the warning form PyTorch "Using a target size that is different
                    # to the input size. This will likely lead to incorrect results due to broadcasting. Please ensure
                    # they have the same size." which is a symptom something in wrong for the regression problem.
                    # See https://github.com/huggingface/transformers/issues/11780
                    with warnings.catch_warnings(record=True) as warning_list:
                        loss = model(**inputs).loss
2688
2689
2690
2691
2692
                    for w in warning_list:
                        if "Using a target size that is different to the input size" in str(w.message):
                            raise ValueError(
                                f"Something is going wrong in the regression problem: intercepted {w.message}"
                            )
2693

2694
2695
                    loss.backward()

2696
    def test_load_with_mismatched_shapes(self):
2697
2698
        if not self.test_mismatched_shapes:
            return
2699
2700
2701
        config, inputs_dict = self.model_tester.prepare_config_and_inputs_for_common()

        for model_class in self.all_model_classes:
2702
            if model_class.__name__ not in get_values(MODEL_FOR_SEQUENCE_CLASSIFICATION_MAPPING_NAMES):
2703
2704
2705
2706
2707
2708
2709
2710
                continue

            with self.subTest(msg=f"Testing {model_class}"):
                with tempfile.TemporaryDirectory() as tmp_dir:
                    model = model_class(config)
                    model.save_pretrained(tmp_dir)

                    # Fails when we don't set ignore_mismatched_sizes=True
2711
                    with self.assertRaises(RuntimeError):
2712
                        new_model = AutoModelForSequenceClassification.from_pretrained(tmp_dir, num_labels=42)
2713
2714
                    with self.assertRaises(RuntimeError):
                        new_model_without_prefix = AutoModel.from_pretrained(tmp_dir, vocab_size=10)
2715
2716

                    logger = logging.get_logger("transformers.modeling_utils")
2717

2718
2719
2720
2721
2722
2723
2724
2725
2726
2727
                    with CaptureLogger(logger) as cl:
                        new_model = AutoModelForSequenceClassification.from_pretrained(
                            tmp_dir, num_labels=42, ignore_mismatched_sizes=True
                        )
                    self.assertIn("the shapes did not match", cl.out)
                    new_model.to(torch_device)
                    inputs = self._prepare_for_class(inputs_dict, model_class)
                    logits = new_model(**inputs).logits
                    self.assertEqual(logits.shape[1], 42)

2728
2729
2730
2731
2732
2733
2734
2735
2736
2737
2738
2739
                    with CaptureLogger(logger) as cl:
                        new_model_without_prefix = AutoModel.from_pretrained(
                            tmp_dir, vocab_size=10, ignore_mismatched_sizes=True
                        )
                    self.assertIn("the shapes did not match", cl.out)
                    input_ids = ids_tensor((2, 8), 10)
                    new_model_without_prefix.to(torch_device)
                    if self.is_encoder_decoder:
                        new_model_without_prefix(input_ids, decoder_input_ids=input_ids)
                    else:
                        new_model_without_prefix(input_ids)

2740

2741
global_rng = random.Random()
thomwolf's avatar
thomwolf committed
2742
2743


thomwolf's avatar
thomwolf committed
2744
def ids_tensor(shape, vocab_size, rng=None, name=None):
2745
    #  Creates a random int32 tensor of the shape within the vocab size
thomwolf's avatar
thomwolf committed
2746
    if rng is None:
2747
        rng = global_rng
thomwolf's avatar
thomwolf committed
2748

thomwolf's avatar
thomwolf committed
2749
2750
2751
    total_dims = 1
    for dim in shape:
        total_dims *= dim
thomwolf's avatar
thomwolf committed
2752

thomwolf's avatar
thomwolf committed
2753
2754
2755
    values = []
    for _ in range(total_dims):
        values.append(rng.randint(0, vocab_size - 1))
thomwolf's avatar
thomwolf committed
2756

2757
    return torch.tensor(data=values, dtype=torch.long, device=torch_device).view(shape).contiguous()
thomwolf's avatar
thomwolf committed
2758
2759


2760
2761
2762
2763
2764
2765
2766
def random_attention_mask(shape, rng=None, name=None):
    attn_mask = ids_tensor(shape, vocab_size=2, rng=None, name=None)
    # make sure that at least one token is attended to for each batch
    attn_mask[:, -1] = 1
    return attn_mask


2767
def floats_tensor(shape, scale=1.0, rng=None, name=None):
Patrick von Platen's avatar
Patrick von Platen committed
2768
    """Creates a random float32 tensor"""
2769
2770
2771
2772
2773
2774
2775
2776
2777
2778
2779
    if rng is None:
        rng = global_rng

    total_dims = 1
    for dim in shape:
        total_dims *= dim

    values = []
    for _ in range(total_dims):
        values.append(rng.random() * scale)

2780
    return torch.tensor(data=values, dtype=torch.float, device=torch_device).view(shape).contiguous()
2781
2782


2783
2784
2785
2786
2787
2788
2789
2790
2791
def check_models_equal(model1, model2):
    models_are_equal = True
    for model1_p, model2_p in zip(model1.parameters(), model2.parameters()):
        if model1_p.data.ne(model2_p.data).sum() > 0:
            models_are_equal = False

    return models_are_equal


2792
@require_torch
2793
class ModelUtilsTest(TestCasePlus):
2794
    @slow
Patrick von Platen's avatar
Patrick von Platen committed
2795
    def test_model_from_pretrained(self):
2796
        for model_name in BERT_PRETRAINED_MODEL_ARCHIVE_LIST[:1]:
thomwolf's avatar
thomwolf committed
2797
2798
2799
2800
2801
2802
2803
2804
            config = BertConfig.from_pretrained(model_name)
            self.assertIsNotNone(config)
            self.assertIsInstance(config, PretrainedConfig)

            model = BertModel.from_pretrained(model_name)
            model, loading_info = BertModel.from_pretrained(model_name, output_loading_info=True)
            self.assertIsNotNone(model)
            self.assertIsInstance(model, PreTrainedModel)
Lysandre Debut's avatar
Lysandre Debut committed
2805
2806
2807
2808
2809

            self.assertEqual(len(loading_info["missing_keys"]), 0)
            self.assertEqual(len(loading_info["unexpected_keys"]), 8)
            self.assertEqual(len(loading_info["mismatched_keys"]), 0)
            self.assertEqual(len(loading_info["error_msgs"]), 0)
thomwolf's avatar
thomwolf committed
2810
2811

            config = BertConfig.from_pretrained(model_name, output_attentions=True, output_hidden_states=True)
Lysandre Debut's avatar
Lysandre Debut committed
2812
2813
2814
2815

            # Not sure this is the intended behavior. TODO fix Lysandre & Thom
            config.name_or_path = model_name

thomwolf's avatar
thomwolf committed
2816
2817
2818
            model = BertModel.from_pretrained(model_name, output_attentions=True, output_hidden_states=True)
            self.assertEqual(model.config.output_hidden_states, True)
            self.assertEqual(model.config, config)
2819

2820
2821
2822
2823
2824
2825
2826
2827
2828
2829
2830
2831
2832
2833
2834
2835
2836
2837
2838
2839
2840
2841
2842
2843
2844
2845
2846
2847
2848
2849
2850
2851
2852
2853
2854
2855
2856
2857
2858
2859
2860
2861
2862
2863
2864
2865
2866
2867
2868
2869
    def test_model_from_pretrained_subfolder(self):
        config = BertConfig.from_pretrained("hf-internal-testing/tiny-random-bert")
        model = BertModel(config)

        subfolder = "bert"
        with tempfile.TemporaryDirectory() as tmp_dir:
            model.save_pretrained(os.path.join(tmp_dir, subfolder))

            with self.assertRaises(OSError):
                _ = BertModel.from_pretrained(tmp_dir)

            model_loaded = BertModel.from_pretrained(tmp_dir, subfolder=subfolder)

        self.assertTrue(check_models_equal(model, model_loaded))

    def test_model_from_pretrained_subfolder_sharded(self):
        config = BertConfig.from_pretrained("hf-internal-testing/tiny-random-bert")
        model = BertModel(config)

        subfolder = "bert"
        with tempfile.TemporaryDirectory() as tmp_dir:
            model.save_pretrained(os.path.join(tmp_dir, subfolder), max_shard_size="10KB")

            with self.assertRaises(OSError):
                _ = BertModel.from_pretrained(tmp_dir)

            model_loaded = BertModel.from_pretrained(tmp_dir, subfolder=subfolder)

        self.assertTrue(check_models_equal(model, model_loaded))

    def test_model_from_pretrained_hub_subfolder(self):
        subfolder = "bert"
        model_id = "hf-internal-testing/tiny-random-bert-subfolder"
        with self.assertRaises(OSError):
            _ = BertModel.from_pretrained(model_id)

        model = BertModel.from_pretrained(model_id, subfolder=subfolder)

        self.assertIsNotNone(model)

    def test_model_from_pretrained_hub_subfolder_sharded(self):
        subfolder = "bert"
        model_id = "hf-internal-testing/tiny-random-bert-sharded-subfolder"
        with self.assertRaises(OSError):
            _ = BertModel.from_pretrained(model_id)

        model = BertModel.from_pretrained(model_id, subfolder=subfolder)

        self.assertIsNotNone(model)

2870
2871
2872
2873
    def test_model_from_pretrained_with_different_pretrained_model_name(self):
        model = T5ForConditionalGeneration.from_pretrained(TINY_T5)
        self.assertIsNotNone(model)

2874
2875
        logger = logging.get_logger("transformers.configuration_utils")
        with CaptureLogger(logger) as cl:
2876
            BertModel.from_pretrained(TINY_T5)
2877
        self.assertTrue("You are using a model of type t5 to instantiate a model of type bert" in cl.out)
Sylvain Gugger's avatar
Sylvain Gugger committed
2878

2879
2880
2881
2882
2883
2884
2885
2886
2887
2888
2889
2890
2891
2892
2893
2894
2895
2896
2897
2898
    def test_model_from_config_torch_dtype(self):
        # test that the model can be instantiated with dtype of user's choice - as long as it's a
        # float dtype. To make it happen config.torch_dtype needs to be set before instantiating the
        # model from the config object.

        config = T5Config.from_pretrained(TINY_T5)
        model = AutoModel.from_config(config)
        # XXX: isn't supported
        # model = T5ForConditionalGeneration.from_config(config)
        self.assertEqual(model.dtype, torch.float32)

        model = AutoModel.from_config(config, torch_dtype=torch.float16)
        self.assertEqual(model.dtype, torch.float16)

        # torch.set_default_dtype() supports only float dtypes, so will fail with non-float type
        with self.assertRaises(ValueError):
            model = AutoModel.from_config(config, torch_dtype=torch.int64)

    def test_model_from_pretrained_torch_dtype(self):
        # test that the model can be instantiated with dtype of either
2899
2900
        # 1. explicit from_pretrained's torch_dtype argument
        # 2. via autodiscovery by looking at model weights (torch_dtype="auto")
2901
        # so if a model.half() was saved, we want it to be instantiated as such.
2902
2903
        #
        # test an explicit model class, but also AutoModel separately as the latter goes through a different code path
2904
2905
2906
2907
2908
2909
        model_path = self.get_auto_remove_tmp_dir()

        # baseline - we know TINY_T5 is fp32 model
        model = T5ForConditionalGeneration.from_pretrained(TINY_T5)
        self.assertEqual(model.dtype, torch.float32)

2910
2911
2912
2913
2914
2915
2916
2917
        def remove_torch_dtype(model_path):
            file = f"{model_path}/config.json"
            with open(file, "r", encoding="utf-8") as f:
                s = json.load(f)
            s.pop("torch_dtype")
            with open(file, "w", encoding="utf-8") as f:
                json.dump(s, f)

2918
2919
2920
2921
        # test the default fp32 save_pretrained => from_pretrained cycle
        model.save_pretrained(model_path)
        model = T5ForConditionalGeneration.from_pretrained(model_path)
        self.assertEqual(model.dtype, torch.float32)
2922
2923
2924
2925
2926
2927
2928
        # 1. test torch_dtype="auto" via `config.torch_dtype`
        model = T5ForConditionalGeneration.from_pretrained(model_path, torch_dtype="auto")
        self.assertEqual(model.dtype, torch.float32)
        # 2. test torch_dtype="auto" via auto-derivation
        # now remove the torch_dtype entry from config.json and try "auto" again which should
        # perform auto-derivation from weights
        remove_torch_dtype(model_path)
2929
2930
2931
2932
2933
2934
2935
2936
2937
2938
        model = T5ForConditionalGeneration.from_pretrained(model_path, torch_dtype="auto")
        self.assertEqual(model.dtype, torch.float32)

        # test forced loading in fp16 (even though the weights are in fp32)
        model = T5ForConditionalGeneration.from_pretrained(model_path, torch_dtype=torch.float16)
        self.assertEqual(model.dtype, torch.float16)

        # test fp16 save_pretrained, loaded with auto-detection
        model = model.half()
        model.save_pretrained(model_path)
2939
        # 1. test torch_dtype="auto" via `config.torch_dtype`
2940
        model = T5ForConditionalGeneration.from_pretrained(model_path, torch_dtype="auto")
2941
        self.assertEqual(model.config.torch_dtype, torch.float16)
2942
        self.assertEqual(model.dtype, torch.float16)
2943
2944
2945
2946
        # tests `config.torch_dtype` saving
        with open(f"{model_path}/config.json") as f:
            config_dict = json.load(f)
        self.assertEqual(config_dict["torch_dtype"], "float16")
2947
2948
2949
2950
2951
        # 2. test torch_dtype="auto" via auto-derivation
        # now same with using config info
        remove_torch_dtype(model_path)
        model = T5ForConditionalGeneration.from_pretrained(model_path, torch_dtype="auto")
        self.assertEqual(model.dtype, torch.float16)
2952

2953
2954
2955
2956
        # 3. now retest that AutoModel behaves the same wrt torch_dtype="auto" as T5ForConditionalGeneration
        model = AutoModel.from_pretrained(model_path, torch_dtype="auto")
        self.assertEqual(model.dtype, torch.float16)

2957
2958
2959
2960
        # test fp16 save_pretrained, loaded with the explicit fp16
        model = T5ForConditionalGeneration.from_pretrained(model_path, torch_dtype=torch.float16)
        self.assertEqual(model.dtype, torch.float16)

2961
        # test AutoModel separately as it goes through a different path
2962
        # test auto-detection - as currently TINY_T5 doesn't have torch_dtype entry
2963
        model = AutoModel.from_pretrained(TINY_T5, torch_dtype="auto")
2964
2965
2966
2967
        # test that the config object didn't get polluted with torch_dtype="auto"
        # there was a bug that after this call we ended up with config.torch_dtype=="auto"
        self.assertNotEqual(model.config.torch_dtype, "auto")
        # now test the outcome
2968
2969
2970
2971
        self.assertEqual(model.dtype, torch.float32)
        model = AutoModel.from_pretrained(TINY_T5, torch_dtype=torch.float16)
        self.assertEqual(model.dtype, torch.float16)

2972
2973
2974
2975
        # test model whose first param is not of a floating type, but int
        model = AutoModel.from_pretrained(TINY_BERT_FOR_TOKEN_CLASSIFICATION, torch_dtype="auto")
        self.assertEqual(model.dtype, torch.float32)

2976
2977
2978
2979
2980
2981
2982
    def test_no_super_init_config_and_model(self):
        config = NoSuperInitConfig(attribute=32)
        model = NoSuperInitModel(config)

        with tempfile.TemporaryDirectory() as tmp_dir:
            model.save_pretrained(tmp_dir)

2983
2984
2985
2986
            new_model = NoSuperInitModel.from_pretrained(tmp_dir)

        for p1, p2 in zip(model.parameters(), new_model.parameters()):
            self.assertTrue(torch.equal(p1, p2))
2987

Sylvain Gugger's avatar
Sylvain Gugger committed
2988
2989
2990
2991
2992
2993
2994
2995
2996
2997
2998
2999
3000
3001
3002
3003
3004
3005
3006
3007
3008
3009
3010
3011
3012
3013
3014
3015
3016
3017
3018
3019
3020
3021
3022
3023
3024
3025
3026
3027
3028
3029
3030
3031
3032
3033
3034
3035
3036
3037
3038
3039
3040
3041
3042
3043
3044
3045
3046
3047
3048
3049
3050
3051
3052
3053
3054
3055
3056
3057
3058
3059
3060
3061
3062
3063
3064
3065
3066
3067
3068
3069
3070
3071
3072
3073
3074
3075
3076
3077
3078
3079
3080
3081
3082
3083
3084
3085
3086
3087
3088
3089
    def test_shard_checkpoint(self):
        # This is the model we will use, total size 340,000 bytes.
        model = torch.nn.Sequential(
            torch.nn.Linear(100, 200, bias=False),  # size 80,000
            torch.nn.Linear(200, 200, bias=False),  # size 160,000
            torch.nn.Linear(200, 100, bias=False),  # size 80,000
            torch.nn.Linear(100, 50, bias=False),  # size 20,000
        )
        state_dict = model.state_dict()

        with self.subTest("No shard when max size is bigger than model size"):
            shards, index = shard_checkpoint(state_dict)
            self.assertIsNone(index)
            self.assertDictEqual(shards, {WEIGHTS_NAME: state_dict})

        with self.subTest("Test sharding, no weights bigger than max size"):
            shards, index = shard_checkpoint(state_dict, max_shard_size="300kB")
            # Split is first two layers then last two.
            self.assertDictEqual(
                index,
                {
                    "metadata": {"total_size": 340000},
                    "weight_map": {
                        "0.weight": "pytorch_model-00001-of-00002.bin",
                        "1.weight": "pytorch_model-00001-of-00002.bin",
                        "2.weight": "pytorch_model-00002-of-00002.bin",
                        "3.weight": "pytorch_model-00002-of-00002.bin",
                    },
                },
            )

            shard1 = {"0.weight": state_dict["0.weight"], "1.weight": state_dict["1.weight"]}
            shard2 = {"2.weight": state_dict["2.weight"], "3.weight": state_dict["3.weight"]}
            self.assertDictEqual(
                shards, {"pytorch_model-00001-of-00002.bin": shard1, "pytorch_model-00002-of-00002.bin": shard2}
            )

        with self.subTest("Test sharding with weights bigger than max size"):
            shards, index = shard_checkpoint(state_dict, max_shard_size="100kB")
            # Split is first layer, second layer then last 2.
            self.assertDictEqual(
                index,
                {
                    "metadata": {"total_size": 340000},
                    "weight_map": {
                        "0.weight": "pytorch_model-00001-of-00003.bin",
                        "1.weight": "pytorch_model-00002-of-00003.bin",
                        "2.weight": "pytorch_model-00003-of-00003.bin",
                        "3.weight": "pytorch_model-00003-of-00003.bin",
                    },
                },
            )

            shard1 = {"0.weight": state_dict["0.weight"]}
            shard2 = {"1.weight": state_dict["1.weight"]}
            shard3 = {"2.weight": state_dict["2.weight"], "3.weight": state_dict["3.weight"]}
            self.assertDictEqual(
                shards,
                {
                    "pytorch_model-00001-of-00003.bin": shard1,
                    "pytorch_model-00002-of-00003.bin": shard2,
                    "pytorch_model-00003-of-00003.bin": shard3,
                },
            )

    def test_checkpoint_sharding_local(self):
        model = BertModel.from_pretrained("hf-internal-testing/tiny-random-bert")

        with tempfile.TemporaryDirectory() as tmp_dir:
            # We use the same folder for various sizes to make sure a new save erases the old checkpoint.
            for max_size in ["50kB", "50kiB", "100kB", "100kiB", "200kB", "200kiB"]:
                model.save_pretrained(tmp_dir, max_shard_size=max_size)

                # Get each shard file and its size
                shard_to_size = {}
                for shard in os.listdir(tmp_dir):
                    if shard.endswith(".bin"):
                        shard_file = os.path.join(tmp_dir, shard)
                        shard_to_size[shard_file] = os.path.getsize(shard_file)

                index_file = os.path.join(tmp_dir, WEIGHTS_INDEX_NAME)
                # Check there is an index but no regular weight file
                self.assertTrue(os.path.isfile(index_file))
                self.assertFalse(os.path.isfile(os.path.join(tmp_dir, WEIGHTS_NAME)))

                # Check a file is bigger than max_size only when it has a single weight
                for shard_file, size in shard_to_size.items():
                    if max_size.endswith("kiB"):
                        max_size_int = int(max_size[:-3]) * 2**10
                    else:
                        max_size_int = int(max_size[:-2]) * 10**3
                    # Note: pickle adds some junk so the weight of the file can end up being slightly bigger than
                    # the size asked for (since we count parameters)
                    if size >= max_size_int + 50000:
                        state_dict = torch.load(shard_file)
                        self.assertEqual(len(state_dict), 1)

                # Check the index and the shard files found match
                with open(index_file, "r", encoding="utf-8") as f:
                    index = json.loads(f.read())

                all_shards = set(index["weight_map"].values())
3090
                shards_found = {f for f in os.listdir(tmp_dir) if f.endswith(".bin")}
Sylvain Gugger's avatar
Sylvain Gugger committed
3091
3092
3093
3094
3095
3096
3097
3098
3099
3100
3101
3102
3103
3104
                self.assertSetEqual(all_shards, shards_found)

                # Finally, check the model can be reloaded
                new_model = BertModel.from_pretrained(tmp_dir)
                for p1, p2 in zip(model.parameters(), new_model.parameters()):
                    self.assertTrue(torch.allclose(p1, p2))

    def test_checkpoint_sharding_from_hub(self):
        model = BertModel.from_pretrained("hf-internal-testing/tiny-random-bert-sharded")
        # the model above is the same as the model below, just a sharded version.
        ref_model = BertModel.from_pretrained("hf-internal-testing/tiny-random-bert")
        for p1, p2 in zip(model.parameters(), ref_model.parameters()):
            self.assertTrue(torch.allclose(p1, p2))

3105
3106
3107
3108
3109
3110
3111
3112
3113
3114
3115
3116
3117
3118
3119
3120
3121
3122
3123
3124
3125
3126
3127
3128
3129
3130
3131
3132
3133
3134
3135
3136
3137
3138
3139
3140
3141
3142
3143
3144
3145
3146
3147
3148
3149
3150
3151
3152
3153
3154
3155
3156
3157
3158
3159
3160
3161
3162
3163
3164
3165
3166
3167
3168
3169
3170
3171
3172
3173
3174
3175
3176
3177
3178
3179
3180
3181
3182
3183
3184
3185
3186
3187
3188
3189
3190
3191
3192
3193
3194
3195
3196
3197
3198
3199
3200
3201
3202
3203
3204
3205
3206
3207
3208
3209
3210
3211
3212
3213
3214
3215
3216
3217
3218
3219
3220
3221
3222
3223
3224
3225
3226
3227
3228
3229
3230
3231
3232
3233
3234
3235
3236
    def test_checkpoint_variant_local(self):
        model = BertModel.from_pretrained("hf-internal-testing/tiny-random-bert")

        with tempfile.TemporaryDirectory() as tmp_dir:
            model.save_pretrained(tmp_dir, variant="v2")

            weights_name = ".".join(WEIGHTS_NAME.split(".")[:-1] + ["v2"] + ["bin"])

            weights_file = os.path.join(tmp_dir, weights_name)
            self.assertTrue(os.path.isfile(weights_file))
            self.assertFalse(os.path.isfile(os.path.join(tmp_dir, WEIGHTS_NAME)))

            with self.assertRaises(EnvironmentError):
                _ = BertModel.from_pretrained(tmp_dir)

            new_model = BertModel.from_pretrained(tmp_dir, variant="v2")

        for p1, p2 in zip(model.parameters(), new_model.parameters()):
            self.assertTrue(torch.allclose(p1, p2))

    def test_checkpoint_variant_local_sharded(self):
        model = BertModel.from_pretrained("hf-internal-testing/tiny-random-bert")

        with tempfile.TemporaryDirectory() as tmp_dir:
            model.save_pretrained(tmp_dir, variant="v2", max_shard_size="50kB")

            weights_index_name = ".".join(WEIGHTS_INDEX_NAME.split(".")[:-1] + ["v2"] + ["json"])
            weights_index_file = os.path.join(tmp_dir, weights_index_name)
            self.assertTrue(os.path.isfile(weights_index_file))
            self.assertFalse(os.path.isfile(os.path.join(tmp_dir, WEIGHTS_INDEX_NAME)))

            for i in range(1, 6):
                weights_name = ".".join(WEIGHTS_NAME.split(".")[:-1] + [f"v2-0000{i}-of-00006"] + ["bin"])
                weights_name_file = os.path.join(tmp_dir, weights_name)
                self.assertTrue(os.path.isfile(weights_name_file))

            with self.assertRaises(EnvironmentError):
                _ = BertModel.from_pretrained(tmp_dir)

            new_model = BertModel.from_pretrained(tmp_dir, variant="v2")

        for p1, p2 in zip(model.parameters(), new_model.parameters()):
            self.assertTrue(torch.allclose(p1, p2))

    @require_safetensors
    def test_checkpoint_variant_local_safe(self):
        model = BertModel.from_pretrained("hf-internal-testing/tiny-random-bert")

        with tempfile.TemporaryDirectory() as tmp_dir:
            model.save_pretrained(tmp_dir, variant="v2", safe_serialization=True)

            weights_name = ".".join(SAFE_WEIGHTS_NAME.split(".")[:-1] + ["v2"] + ["safetensors"])

            weights_file = os.path.join(tmp_dir, weights_name)
            self.assertTrue(os.path.isfile(weights_file))
            self.assertFalse(os.path.isfile(os.path.join(tmp_dir, SAFE_WEIGHTS_NAME)))

            with self.assertRaises(EnvironmentError):
                _ = BertModel.from_pretrained(tmp_dir)

            new_model = BertModel.from_pretrained(tmp_dir, variant="v2")

        for p1, p2 in zip(model.parameters(), new_model.parameters()):
            self.assertTrue(torch.allclose(p1, p2))

    @require_safetensors
    def test_checkpoint_variant_local_sharded_safe(self):
        model = BertModel.from_pretrained("hf-internal-testing/tiny-random-bert")

        with tempfile.TemporaryDirectory() as tmp_dir:
            model.save_pretrained(tmp_dir, variant="v2", max_shard_size="50kB", safe_serialization=True)

            weights_index_name = ".".join(SAFE_WEIGHTS_INDEX_NAME.split(".")[:-1] + ["v2"] + ["json"])
            weights_index_file = os.path.join(tmp_dir, weights_index_name)
            self.assertTrue(os.path.isfile(weights_index_file))
            self.assertFalse(os.path.isfile(os.path.join(tmp_dir, SAFE_WEIGHTS_INDEX_NAME)))

            for i in range(1, 6):
                weights_name = ".".join(SAFE_WEIGHTS_NAME.split(".")[:-1] + [f"v2-0000{i}-of-00006"] + ["safetensors"])
                weights_name_file = os.path.join(tmp_dir, weights_name)
                self.assertTrue(os.path.isfile(weights_name_file))

            with self.assertRaises(EnvironmentError):
                _ = BertModel.from_pretrained(tmp_dir)

            new_model = BertModel.from_pretrained(tmp_dir, variant="v2")

        for p1, p2 in zip(model.parameters(), new_model.parameters()):
            self.assertTrue(torch.allclose(p1, p2))

    def test_checkpoint_variant_hub(self):
        with tempfile.TemporaryDirectory() as tmp_dir:
            with self.assertRaises(EnvironmentError):
                _ = BertModel.from_pretrained("hf-internal-testing/tiny-random-bert-variant", cache_dir=tmp_dir)
            model = BertModel.from_pretrained(
                "hf-internal-testing/tiny-random-bert-variant", cache_dir=tmp_dir, variant="v2"
            )
        self.assertIsNotNone(model)

    def test_checkpoint_variant_hub_sharded(self):
        with tempfile.TemporaryDirectory() as tmp_dir:
            with self.assertRaises(EnvironmentError):
                _ = BertModel.from_pretrained(
                    "hf-internal-testing/tiny-random-bert-variant-sharded", cache_dir=tmp_dir
                )
            model = BertModel.from_pretrained(
                "hf-internal-testing/tiny-random-bert-variant-sharded", cache_dir=tmp_dir, variant="v2"
            )
        self.assertIsNotNone(model)

    @require_safetensors
    def test_checkpoint_variant_hub_safe(self):
        with tempfile.TemporaryDirectory() as tmp_dir:
            with self.assertRaises(EnvironmentError):
                _ = BertModel.from_pretrained("hf-internal-testing/tiny-random-bert-variant-safe", cache_dir=tmp_dir)
            model = BertModel.from_pretrained(
                "hf-internal-testing/tiny-random-bert-variant-safe", cache_dir=tmp_dir, variant="v2"
            )
        self.assertIsNotNone(model)

    @require_safetensors
    def test_checkpoint_variant_hub_sharded_safe(self):
        with tempfile.TemporaryDirectory() as tmp_dir:
            with self.assertRaises(EnvironmentError):
                _ = BertModel.from_pretrained(
                    "hf-internal-testing/tiny-random-bert-variant-sharded-safe", cache_dir=tmp_dir
                )
            model = BertModel.from_pretrained(
                "hf-internal-testing/tiny-random-bert-variant-sharded-safe", cache_dir=tmp_dir, variant="v2"
            )
        self.assertIsNotNone(model)

3237
3238
3239
3240
3241
3242
3243
3244
3245
3246
3247
3248
3249
3250
3251
3252
3253
3254
3255
3256
3257
    def test_checkpoint_variant_save_load(self):
        with tempfile.TemporaryDirectory() as tmp_dir:
            model = BertModel.from_pretrained(
                "hf-internal-testing/tiny-random-bert-variant", cache_dir=tmp_dir, variant="v2"
            )
            weights_name = ".".join(WEIGHTS_NAME.split(".")[:-1] + ["v2"] + ["bin"])

            model.save_pretrained(tmp_dir, variant="v2")
            # saving will create a variant checkpoint
            self.assertTrue(os.path.isfile(os.path.join(tmp_dir, weights_name)))

            model.save_pretrained(tmp_dir)
            # saving shouldn't delete variant checkpoints
            weights_name = ".".join(WEIGHTS_NAME.split(".")[:-1] + ["v2"] + ["bin"])
            self.assertTrue(os.path.isfile(os.path.join(tmp_dir, weights_name)))

            # there should be a normal checkpoint
            self.assertTrue(os.path.isfile(os.path.join(tmp_dir, WEIGHTS_NAME)))

        self.assertIsNotNone(model)

3258
    @require_accelerate
3259
    @mark.accelerate_tests
3260
3261
3262
3263
3264
3265
3266
3267
3268
3269
3270
3271
    def test_from_pretrained_low_cpu_mem_usage_functional(self):
        # test that we can use `from_pretrained(..., low_cpu_mem_usage=True)` with normal and
        # sharded models

        mnames = [
            "hf-internal-testing/tiny-random-bert-sharded",
            "hf-internal-testing/tiny-random-bert",
        ]
        for mname in mnames:
            _ = BertModel.from_pretrained(mname, low_cpu_mem_usage=True)

    @require_usr_bin_time
3272
    @require_accelerate
3273
    @mark.accelerate_tests
3274
3275
3276
3277
3278
3279
3280
3281
3282
3283
3284
3285
3286
3287
3288
3289
3290
3291
3292
3293
3294
3295
3296
3297
3298
3299
3300
3301
3302
3303
3304
3305
3306
3307
3308
3309
3310
3311
    def test_from_pretrained_low_cpu_mem_usage_measured(self):
        # test that `from_pretrained(..., low_cpu_mem_usage=True)` uses less cpu memory than default

        mname = "bert-base-cased"

        preamble = "from transformers import AutoModel"
        one_liner_str = f'{preamble}; AutoModel.from_pretrained("{mname}", low_cpu_mem_usage=False)'
        max_rss_normal = self.python_one_liner_max_rss(one_liner_str)
        # print(f"{max_rss_normal=}")

        one_liner_str = f'{preamble};  AutoModel.from_pretrained("{mname}", low_cpu_mem_usage=True)'
        max_rss_low_mem = self.python_one_liner_max_rss(one_liner_str)
        # print(f"{max_rss_low_mem=}")

        diff_bytes = max_rss_normal - max_rss_low_mem
        diff_percent = diff_bytes / max_rss_low_mem
        # print(f"{diff_bytes=}, {diff_percent=}")
        # ideally we would compare that the diff is close to ~1x checkpoint size in bytes, but
        # measuring cpu memory on linux is very tricky and inconsistent, so instead let's check that
        # it's at least 15% less cpu memory consumed

        self.assertGreater(
            diff_percent,
            0.15,
            "should use less CPU memory for low_cpu_mem_usage=True, "
            f"but got max_rss_normal={max_rss_normal} and max_rss_low_mem={max_rss_low_mem}",
        )

        # if you want to compare things manually, let's first look at the size of the model in bytes
        # model = BertModel.from_pretrained(mname, low_cpu_mem_usage=False)
        # total_numel = sum(dict((p.data_ptr(), p.numel()) for p in model.parameters()).values())
        # total_bytes = total_numel * 4  # 420MB
        # Now the diff_bytes should be very close to total_bytes, but the reports are inconsistent.
        # The easiest way to test this is to switch the model and torch.load to do all the work on
        # gpu - that way one can measure exactly the total and peak memory used. Perhaps once we add
        # functionality to load models directly on gpu, this test can be rewritten to use torch's
        # cuda memory tracking and then we should be able to do a much more precise test.

3312
    @require_accelerate
3313
    @mark.accelerate_tests
3314
3315
3316
3317
3318
3319
3320
3321
3322
3323
3324
3325
3326
3327
3328
3329
    @require_torch_multi_gpu
    @slow
    def test_model_parallelism_gpt2(self):
        device_map = {"transformer.wte": 0, "transformer.wpe": 0, "lm_head": 0, "transformer.ln_f": 1}
        for i in range(12):
            device_map[f"transformer.h.{i}"] = 0 if i <= 5 else 1

        model = AutoModelForCausalLM.from_pretrained("gpt2", device_map=device_map)

        tokenizer = AutoTokenizer.from_pretrained("gpt2")
        inputs = tokenizer("Hello, my name is", return_tensors="pt")
        output = model.generate(inputs["input_ids"].to(0))

        text_output = tokenizer.decode(output[0].tolist())
        self.assertEqual(text_output, "Hello, my name is John. I'm a writer, and I'm a writer. I'm")

Sylvain Gugger's avatar
Sylvain Gugger committed
3330
    @require_accelerate
3331
    @mark.accelerate_tests
Sylvain Gugger's avatar
Sylvain Gugger committed
3332
3333
3334
3335
3336
3337
3338
3339
3340
3341
3342
3343
3344
3345
3346
3347
3348
3349
3350
3351
3352
3353
3354
3355
3356
3357
3358
3359
3360
3361
3362
3363
3364
3365
3366
3367
3368
3369
3370
3371
3372
    @require_torch_gpu
    def test_from_pretrained_disk_offload_task_model(self):
        model = AutoModel.from_pretrained("hf-internal-testing/tiny-random-gpt2")
        device_map = {
            "transformer.wte": 0,
            "transformer.wpe": 0,
            "transformer.h.0": "cpu",
            "transformer.h.1": "cpu",
            "transformer.h.2": "cpu",
            "transformer.h.3": "disk",
            "transformer.h.4": "disk",
            "transformer.ln_f": 0,
            "lm_head": 0,
        }
        with tempfile.TemporaryDirectory() as tmp_dir:
            inputs = torch.tensor([[1, 2, 3]]).to(0)

            model.save_pretrained(tmp_dir)
            new_model = AutoModelForCausalLM.from_pretrained(tmp_dir).to(0)
            outputs1 = new_model.to(0)(inputs)

            offload_folder = os.path.join(tmp_dir, "offload")
            new_model_with_offload = AutoModelForCausalLM.from_pretrained(
                tmp_dir, device_map=device_map, offload_folder=offload_folder
            )
            outputs2 = new_model_with_offload(inputs)

            self.assertTrue(torch.allclose(outputs1.logits.cpu(), outputs2.logits.cpu()))

            # With state dict temp offload
            offload_folder = os.path.join(tmp_dir, "offload")
            new_model_with_offload = AutoModelForCausalLM.from_pretrained(
                tmp_dir,
                device_map=device_map,
                offload_folder=offload_folder,
                offload_state_dict=True,
            )
            outputs2 = new_model_with_offload(inputs)

            self.assertTrue(torch.allclose(outputs1.logits.cpu(), outputs2.logits.cpu()))

3373
3374
3375
3376
    def test_cached_files_are_used_when_internet_is_down(self):
        # A mock response for an HTTP head request to emulate server down
        response_mock = mock.Mock()
        response_mock.status_code = 500
3377
        response_mock.headers = {}
3378
        response_mock.raise_for_status.side_effect = HTTPError
3379
        response_mock.json.return_value = {}
3380
3381
3382
3383
3384

        # Download this model to make sure it's in the cache.
        _ = BertModel.from_pretrained("hf-internal-testing/tiny-random-bert")

        # Under the mock environment we get a 500 error when trying to reach the model.
Lucain's avatar
Lucain committed
3385
        with mock.patch("requests.Session.request", return_value=response_mock) as mock_head:
3386
3387
3388
3389
            _ = BertModel.from_pretrained("hf-internal-testing/tiny-random-bert")
            # This check we did call the fake head request
            mock_head.assert_called()

3390
3391
3392
3393
3394
3395
3396
3397
3398
3399
3400
3401
3402
3403
3404
3405
3406
3407
3408
3409
    def test_load_from_one_file(self):
        try:
            tmp_file = tempfile.mktemp()
            with open(tmp_file, "wb") as f:
                http_get(
                    "https://huggingface.co/hf-internal-testing/tiny-random-bert/resolve/main/pytorch_model.bin", f
                )

            config = BertConfig.from_pretrained("hf-internal-testing/tiny-random-bert")
            _ = BertModel.from_pretrained(tmp_file, config=config)
        finally:
            os.remove(tmp_file)

    def test_legacy_load_from_url(self):
        # This test is for deprecated behavior and can be removed in v5
        config = BertConfig.from_pretrained("hf-internal-testing/tiny-random-bert")
        _ = BertModel.from_pretrained(
            "https://huggingface.co/hf-internal-testing/tiny-random-bert/resolve/main/pytorch_model.bin", config=config
        )

3410
3411
3412
3413
3414
3415
3416
3417
3418
3419
3420
3421
3422
3423
3424
3425
3426
3427
3428
3429
3430
3431
3432
3433
3434
3435
3436
3437
3438
3439
3440
3441
3442
3443
3444
3445
3446
3447
3448
3449
3450
3451
3452
    @require_safetensors
    def test_use_safetensors(self):
        # test nice error message if no safetensor files available
        with self.assertRaises(OSError) as env_error:
            AutoModel.from_pretrained("hf-internal-testing/tiny-random-RobertaModel", use_safetensors=True)

        self.assertTrue(
            "model.safetensors or model.safetensors.index.json and thus cannot be loaded with `safetensors`"
            in str(env_error.exception)
        )

        # test that error if only safetensors is available
        with self.assertRaises(OSError) as env_error:
            BertModel.from_pretrained("hf-internal-testing/tiny-random-bert-safetensors", use_safetensors=False)

        self.assertTrue("does not appear to have a file named pytorch_model.bin" in str(env_error.exception))

        # test that only safetensors if both available and use_safetensors=False
        with tempfile.TemporaryDirectory() as tmp_dir:
            CLIPTextModel.from_pretrained(
                "hf-internal-testing/diffusers-stable-diffusion-tiny-all",
                subfolder="text_encoder",
                use_safetensors=False,
                cache_dir=tmp_dir,
            )

            all_downloaded_files = glob.glob(os.path.join(tmp_dir, "*", "snapshots", "*", "*", "*"))
            self.assertTrue(any(f.endswith("bin") for f in all_downloaded_files))
            self.assertFalse(any(f.endswith("safetensors") for f in all_downloaded_files))

        # test that no safetensors if both available and use_safetensors=True
        with tempfile.TemporaryDirectory() as tmp_dir:
            CLIPTextModel.from_pretrained(
                "hf-internal-testing/diffusers-stable-diffusion-tiny-all",
                subfolder="text_encoder",
                use_safetensors=True,
                cache_dir=tmp_dir,
            )

            all_downloaded_files = glob.glob(os.path.join(tmp_dir, "*", "snapshots", "*", "*", "*"))
            self.assertTrue(any(f.endswith("safetensors") for f in all_downloaded_files))
            self.assertFalse(any(f.endswith("bin") for f in all_downloaded_files))

3453
3454
3455
3456
3457
3458
3459
3460
3461
3462
3463
3464
3465
3466
3467
3468
3469
3470
3471
3472
3473
3474
3475
3476
3477
3478
3479
3480
3481
3482
3483
3484
3485
3486
3487
3488
3489
3490
3491
3492
3493
3494
3495
3496
3497
3498
3499
3500
3501
3502
3503
    @require_safetensors
    def test_safetensors_save_and_load(self):
        model = BertModel.from_pretrained("hf-internal-testing/tiny-random-bert")
        with tempfile.TemporaryDirectory() as tmp_dir:
            model.save_pretrained(tmp_dir, safe_serialization=True)
            # No pytorch_model.bin file, only a model.safetensors
            self.assertTrue(os.path.isfile(os.path.join(tmp_dir, SAFE_WEIGHTS_NAME)))
            self.assertFalse(os.path.isfile(os.path.join(tmp_dir, WEIGHTS_NAME)))

            new_model = BertModel.from_pretrained(tmp_dir)

            # Check models are equal
            for p1, p2 in zip(model.parameters(), new_model.parameters()):
                self.assertTrue(torch.allclose(p1, p2))

    @require_safetensors
    def test_safetensors_load_from_hub(self):
        safetensors_model = BertModel.from_pretrained("hf-internal-testing/tiny-random-bert-safetensors")
        pytorch_model = BertModel.from_pretrained("hf-internal-testing/tiny-random-bert")

        # Check models are equal
        for p1, p2 in zip(safetensors_model.parameters(), pytorch_model.parameters()):
            self.assertTrue(torch.allclose(p1, p2))

    @require_safetensors
    def test_safetensors_save_and_load_sharded(self):
        model = BertModel.from_pretrained("hf-internal-testing/tiny-random-bert")
        with tempfile.TemporaryDirectory() as tmp_dir:
            model.save_pretrained(tmp_dir, safe_serialization=True, max_shard_size="100kB")
            # No pytorch_model.bin index file, only a model.safetensors index
            self.assertFalse(os.path.isfile(os.path.join(tmp_dir, WEIGHTS_INDEX_NAME)))
            self.assertTrue(os.path.isfile(os.path.join(tmp_dir, SAFE_WEIGHTS_INDEX_NAME)))
            # No regular weights file
            self.assertFalse(os.path.isfile(os.path.join(tmp_dir, WEIGHTS_NAME)))
            self.assertFalse(os.path.isfile(os.path.join(tmp_dir, SAFE_WEIGHTS_NAME)))

            new_model = BertModel.from_pretrained(tmp_dir)

            # Check models are equal
            for p1, p2 in zip(model.parameters(), new_model.parameters()):
                self.assertTrue(torch.allclose(p1, p2))

    @require_safetensors
    def test_safetensors_load_from_hub_sharded(self):
        safetensors_model = BertModel.from_pretrained("hf-internal-testing/tiny-random-bert-sharded-safetensors")
        pytorch_model = BertModel.from_pretrained("hf-internal-testing/tiny-random-bert-sharded")

        # Check models are equal
        for p1, p2 in zip(safetensors_model.parameters(), pytorch_model.parameters()):
            self.assertTrue(torch.allclose(p1, p2))

Sylvain Gugger's avatar
Sylvain Gugger committed
3504
3505
3506
3507
3508
3509
3510
3511
3512
3513
3514
3515
3516
3517
3518
3519
3520
3521
3522
3523
3524
3525
    def test_base_model_to_head_model_load(self):
        base_model = BaseModel(PretrainedConfig())
        with tempfile.TemporaryDirectory() as tmp_dir:
            base_model.save_pretrained(tmp_dir)

            # Can load a base model in a model with head
            model = ModelWithHead.from_pretrained(tmp_dir)
            for p1, p2 in zip(model.base.parameters(), base_model.parameters()):
                self.assertTrue(torch.allclose(p1, p2))

            # It doesn't work if the state dict has a mix of keys of the head and base without prefix though.
            base_state_dict = base_model.state_dict()
            head_state_dict = model.state_dict()
            base_state_dict["linear2.weight"] = head_state_dict["linear2.weight"]
            base_state_dict["linear2.bias"] = head_state_dict["linear2.bias"]
            torch.save(base_state_dict, os.path.join(tmp_dir, WEIGHTS_NAME))

            with self.assertRaisesRegex(
                ValueError, "The state dictionary of the model you are trying to load is corrupted."
            ):
                _ = ModelWithHead.from_pretrained(tmp_dir)

Susnato Dhar's avatar
Susnato Dhar committed
3526
    @require_torch_gpu
Joao Gante's avatar
Joao Gante committed
3527
    @slow
Susnato Dhar's avatar
Susnato Dhar committed
3528
3529
3530
3531
3532
3533
3534
3535
3536
3537
3538
3539
3540
3541
3542
3543
3544
3545
3546
3547
    def test_pretrained_low_mem_new_config(self):
        # Checking for 1 model(the same one which was described in the issue) .
        model_ids = ["gpt2"]

        for model_id in model_ids:
            model_config = AutoConfig.from_pretrained(pretrained_model_name_or_path=model_id)
            model_config.n_layer = 48
            model_config.n_head = 25
            model_config.n_embd = 1600
            model = AutoModelForCausalLM.from_pretrained(
                pretrained_model_name_or_path=model_id,
                config=model_config,
                ignore_mismatched_sizes=True,
                torch_dtype=torch.float16,
                low_cpu_mem_usage=True,
            )
            model_ref = AutoModelForCausalLM.from_pretrained(pretrained_model_name_or_path=model_id)

            self.assertEqual(model.__class__.__name__, model_ref.__class__.__name__)

Sylvain Gugger's avatar
Sylvain Gugger committed
3548
3549
3550
3551
3552
3553

@require_torch
@is_staging_test
class ModelPushToHubTester(unittest.TestCase):
    @classmethod
    def setUpClass(cls):
3554
3555
        cls._token = TOKEN
        HfFolder.save_token(TOKEN)
Sylvain Gugger's avatar
Sylvain Gugger committed
3556
3557
3558
3559

    @classmethod
    def tearDownClass(cls):
        try:
3560
            delete_repo(token=cls._token, repo_id="test-model")
Sylvain Gugger's avatar
Sylvain Gugger committed
3561
3562
3563
3564
        except HTTPError:
            pass

        try:
3565
            delete_repo(token=cls._token, repo_id="valid_org/test-model-org")
Sylvain Gugger's avatar
Sylvain Gugger committed
3566
3567
3568
        except HTTPError:
            pass

3569
        try:
3570
            delete_repo(token=cls._token, repo_id="test-dynamic-model")
3571
3572
3573
        except HTTPError:
            pass

Sylvain Gugger's avatar
Sylvain Gugger committed
3574
3575
3576
3577
3578
    def test_push_to_hub(self):
        config = BertConfig(
            vocab_size=99, hidden_size=32, num_hidden_layers=5, num_attention_heads=4, intermediate_size=37
        )
        model = BertModel(config)
3579
3580
3581
3582
3583
3584
3585
3586
3587
3588
        model.push_to_hub("test-model", use_auth_token=self._token)

        new_model = BertModel.from_pretrained(f"{USER}/test-model")
        for p1, p2 in zip(model.parameters(), new_model.parameters()):
            self.assertTrue(torch.equal(p1, p2))

        # Reset repo
        delete_repo(token=self._token, repo_id="test-model")

        # Push to hub via save_pretrained
Sylvain Gugger's avatar
Sylvain Gugger committed
3589
        with tempfile.TemporaryDirectory() as tmp_dir:
3590
            model.save_pretrained(tmp_dir, repo_id="test-model", push_to_hub=True, use_auth_token=self._token)
Sylvain Gugger's avatar
Sylvain Gugger committed
3591

3592
3593
3594
        new_model = BertModel.from_pretrained(f"{USER}/test-model")
        for p1, p2 in zip(model.parameters(), new_model.parameters()):
            self.assertTrue(torch.equal(p1, p2))
Sylvain Gugger's avatar
Sylvain Gugger committed
3595
3596
3597
3598
3599
3600

    def test_push_to_hub_in_organization(self):
        config = BertConfig(
            vocab_size=99, hidden_size=32, num_hidden_layers=5, num_attention_heads=4, intermediate_size=37
        )
        model = BertModel(config)
3601
3602
3603
3604
3605
3606
3607
3608
3609
3610
        model.push_to_hub("valid_org/test-model-org", use_auth_token=self._token)

        new_model = BertModel.from_pretrained("valid_org/test-model-org")
        for p1, p2 in zip(model.parameters(), new_model.parameters()):
            self.assertTrue(torch.equal(p1, p2))

        # Reset repo
        delete_repo(token=self._token, repo_id="valid_org/test-model-org")

        # Push to hub via save_pretrained
Sylvain Gugger's avatar
Sylvain Gugger committed
3611
3612
        with tempfile.TemporaryDirectory() as tmp_dir:
            model.save_pretrained(
3613
                tmp_dir, push_to_hub=True, use_auth_token=self._token, repo_id="valid_org/test-model-org"
Sylvain Gugger's avatar
Sylvain Gugger committed
3614
3615
            )

3616
3617
3618
        new_model = BertModel.from_pretrained("valid_org/test-model-org")
        for p1, p2 in zip(model.parameters(), new_model.parameters()):
            self.assertTrue(torch.equal(p1, p2))
3619
3620

    def test_push_to_hub_dynamic_model(self):
3621
3622
3623
3624
3625
        CustomConfig.register_for_auto_class()
        CustomModel.register_for_auto_class()

        config = CustomConfig(hidden_size=32)
        model = CustomModel(config)
3626

3627
3628
3629
3630
3631
3632
        model.push_to_hub("test-dynamic-model", use_auth_token=self._token)
        # checks
        self.assertDictEqual(
            config.auto_map,
            {"AutoConfig": "custom_configuration.CustomConfig", "AutoModel": "custom_modeling.CustomModel"},
        )
3633
3634

        new_model = AutoModel.from_pretrained(f"{USER}/test-dynamic-model", trust_remote_code=True)
3635
3636
        # Can't make an isinstance check because the new_model is from the CustomModel class of a dynamic module
        self.assertEqual(new_model.__class__.__name__, "CustomModel")
3637
3638
        for p1, p2 in zip(model.parameters(), new_model.parameters()):
            self.assertTrue(torch.equal(p1, p2))
3639

3640
        config = AutoConfig.from_pretrained(f"{USER}/test-dynamic-model", trust_remote_code=True)
3641
        new_model = AutoModel.from_config(config, trust_remote_code=True)
3642
        self.assertEqual(new_model.__class__.__name__, "CustomModel")