test_modeling_common.py 55.4 KB
Newer Older
thomwolf's avatar
thomwolf committed
1
2
3
4
5
6
7
8
9
10
11
12
13
14
# coding=utf-8
# Copyright 2019 HuggingFace Inc.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
#     http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
Aymeric Augustin's avatar
Aymeric Augustin committed
15

16
import copy
17
import gc
18
import inspect
19
import os.path
Aymeric Augustin's avatar
Aymeric Augustin committed
20
import random
21
import tempfile
thomwolf's avatar
thomwolf committed
22
import unittest
23
from typing import List, Tuple
thomwolf's avatar
thomwolf committed
24

25
from transformers import is_torch_available
26
from transformers.file_utils import WEIGHTS_NAME
27
from transformers.testing_utils import require_torch, require_torch_multi_gpu, slow, torch_device
28

Aymeric Augustin's avatar
Aymeric Augustin committed
29

30
if is_torch_available():
31
    import numpy as np
32
    import torch
thomwolf's avatar
thomwolf committed
33

34
    from transformers import (
35
        BERT_PRETRAINED_MODEL_ARCHIVE_LIST,
36
        MODEL_FOR_CAUSAL_LM_MAPPING,
37
        MODEL_FOR_IMAGE_CLASSIFICATION_MAPPING,
38
        MODEL_FOR_MASKED_LM_MAPPING,
39
        MODEL_FOR_MULTIPLE_CHOICE_MAPPING,
40
        MODEL_FOR_NEXT_SENTENCE_PREDICTION_MAPPING,
41
        MODEL_FOR_QUESTION_ANSWERING_MAPPING,
42
43
44
        MODEL_FOR_SEQ_TO_SEQ_CAUSAL_LM_MAPPING,
        MODEL_FOR_SEQUENCE_CLASSIFICATION_MAPPING,
        MODEL_FOR_TOKEN_CLASSIFICATION_MAPPING,
45
        MODEL_MAPPING,
46
47
48
49
50
        AdaptiveEmbedding,
        BertConfig,
        BertModel,
        PretrainedConfig,
        PreTrainedModel,
51
        T5ForConditionalGeneration,
52
    )
thomwolf's avatar
thomwolf committed
53

54

55
56
57
def _config_zero_init(config):
    configs_no_init = copy.deepcopy(config)
    for key in configs_no_init.__dict__.keys():
58
        if "_range" in key or "_std" in key or "initializer_factor" in key:
Lysandre Debut's avatar
Lysandre Debut committed
59
            setattr(configs_no_init, key, 1e-10)
60
61
    return configs_no_init

thomwolf's avatar
thomwolf committed
62

63
64
65
TINY_T5 = "patrickvonplaten/t5-tiny-random"


66
67
68
69
70
@require_torch
class ModelTesterMixin:

    model_tester = None
    all_model_classes = ()
71
    all_generative_model_classes = ()
Patrick von Platen's avatar
Patrick von Platen committed
72
73
74
75
    test_torchscript = True
    test_pruning = True
    test_resize_embeddings = True
    test_head_masking = True
76
    test_missing_keys = True
77
    test_model_parallel = False
78
79
    is_encoder_decoder = False

80
81
    def _prepare_for_class(self, inputs_dict, model_class, return_labels=False):
        inputs_dict = copy.deepcopy(inputs_dict)
82
        if model_class in MODEL_FOR_MULTIPLE_CHOICE_MAPPING.values():
83
            inputs_dict = {
84
                k: v.unsqueeze(1).expand(-1, self.model_tester.num_choices, -1).contiguous()
85
                if isinstance(v, torch.Tensor) and v.ndim > 1
Sylvain Gugger's avatar
Sylvain Gugger committed
86
                else v
87
88
                for k, v in inputs_dict.items()
            }
89
90
91
92
93
94
95
96
97
98
99

        if return_labels:
            if model_class in MODEL_FOR_MULTIPLE_CHOICE_MAPPING.values():
                inputs_dict["labels"] = torch.ones(self.model_tester.batch_size, dtype=torch.long, device=torch_device)
            elif model_class in MODEL_FOR_QUESTION_ANSWERING_MAPPING.values():
                inputs_dict["start_positions"] = torch.zeros(
                    self.model_tester.batch_size, dtype=torch.long, device=torch_device
                )
                inputs_dict["end_positions"] = torch.zeros(
                    self.model_tester.batch_size, dtype=torch.long, device=torch_device
                )
100
101
102
            elif model_class in [
                *MODEL_FOR_SEQUENCE_CLASSIFICATION_MAPPING.values(),
                *MODEL_FOR_NEXT_SENTENCE_PREDICTION_MAPPING.values(),
103
                *MODEL_FOR_IMAGE_CLASSIFICATION_MAPPING.values(),
104
            ]:
105
106
107
108
109
110
111
112
113
114
115
116
                inputs_dict["labels"] = torch.zeros(
                    self.model_tester.batch_size, dtype=torch.long, device=torch_device
                )
            elif model_class in [
                *MODEL_FOR_TOKEN_CLASSIFICATION_MAPPING.values(),
                *MODEL_FOR_CAUSAL_LM_MAPPING.values(),
                *MODEL_FOR_MASKED_LM_MAPPING.values(),
                *MODEL_FOR_SEQ_TO_SEQ_CAUSAL_LM_MAPPING.values(),
            ]:
                inputs_dict["labels"] = torch.zeros(
                    (self.model_tester.batch_size, self.model_tester.seq_length), dtype=torch.long, device=torch_device
                )
117
118
        return inputs_dict

Patrick von Platen's avatar
Patrick von Platen committed
119
    def test_save_load(self):
120
121
122
123
124
125
126
        config, inputs_dict = self.model_tester.prepare_config_and_inputs_for_common()

        for model_class in self.all_model_classes:
            model = model_class(config)
            model.to(torch_device)
            model.eval()
            with torch.no_grad():
127
                outputs = model(**self._prepare_for_class(inputs_dict, model_class))
Weizhen's avatar
Weizhen committed
128

129
            out_2 = outputs[0].cpu().numpy()
130
            out_2[np.isnan(out_2)] = 0
131

132
            with tempfile.TemporaryDirectory() as tmpdirname:
133
134
                model.save_pretrained(tmpdirname)
                model = model_class.from_pretrained(tmpdirname)
135
                model.to(torch_device)
136
                with torch.no_grad():
137
                    after_outputs = model(**self._prepare_for_class(inputs_dict, model_class))
thomwolf's avatar
thomwolf committed
138

139
140
141
                # Make sure we don't have nans
                out_1 = after_outputs[0].cpu().numpy()
                out_1[np.isnan(out_1)] = 0
thomwolf's avatar
thomwolf committed
142
143
                max_diff = np.amax(np.abs(out_1 - out_2))
                self.assertLessEqual(max_diff, 1e-5)
144

145
    def test_save_load__keys_to_ignore_on_save(self):
146
147
148
149
        config, inputs_dict = self.model_tester.prepare_config_and_inputs_for_common()

        for model_class in self.all_model_classes:
            model = model_class(config)
150
151
            _keys_to_ignore_on_save = getattr(model, "_keys_to_ignore_on_save", None)
            if _keys_to_ignore_on_save is None:
152
153
154
                continue

            # check the keys are in the original state_dict
155
            for k in _keys_to_ignore_on_save:
156
157
158
159
160
161
162
                self.assertIn(k, model.state_dict())

            # check that certain keys didn't get saved with the model
            with tempfile.TemporaryDirectory() as tmpdirname:
                model.save_pretrained(tmpdirname)
                output_model_file = os.path.join(tmpdirname, WEIGHTS_NAME)
                state_dict_saved = torch.load(output_model_file)
163
                for k in _keys_to_ignore_on_save:
164
165
                    self.assertNotIn(k, state_dict_saved)

Patrick von Platen's avatar
Patrick von Platen committed
166
    def test_initialization(self):
167
168
169
170
171
172
173
174
        config, inputs_dict = self.model_tester.prepare_config_and_inputs_for_common()

        configs_no_init = _config_zero_init(config)
        for model_class in self.all_model_classes:
            model = model_class(config=configs_no_init)
            for name, param in model.named_parameters():
                if param.requires_grad:
                    self.assertIn(
Lysandre Debut's avatar
Lysandre Debut committed
175
                        ((param.data.mean() * 1e9).round() / 1e9).item(),
176
                        [0.0, 1.0],
177
                        msg=f"Parameter {name} of model {model_class} seems not properly initialized",
178
                    )
thomwolf's avatar
thomwolf committed
179

Patrick von Platen's avatar
Patrick von Platen committed
180
    def test_determinism(self):
181
182
183
184
185
186
187
        config, inputs_dict = self.model_tester.prepare_config_and_inputs_for_common()

        for model_class in self.all_model_classes:
            model = model_class(config)
            model.to(torch_device)
            model.eval()
            with torch.no_grad():
188
189
                first = model(**self._prepare_for_class(inputs_dict, model_class))[0]
                second = model(**self._prepare_for_class(inputs_dict, model_class))[0]
Weizhen's avatar
Weizhen committed
190

191
192
193
194
195
196
197
            out_1 = first.cpu().numpy()
            out_2 = second.cpu().numpy()
            out_1 = out_1[~np.isnan(out_1)]
            out_2 = out_2[~np.isnan(out_2)]
            max_diff = np.amax(np.abs(out_1 - out_2))
            self.assertLessEqual(max_diff, 1e-5)

198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
    def test_forward_signature(self):
        config, _ = self.model_tester.prepare_config_and_inputs_for_common()

        for model_class in self.all_model_classes:
            model = model_class(config)
            signature = inspect.signature(model.forward)
            # signature.parameters is an OrderedDict => so arg_names order is deterministic
            arg_names = [*signature.parameters.keys()]

            if model.config.is_encoder_decoder:
                expected_arg_names = [
                    "input_ids",
                    "attention_mask",
                    "decoder_input_ids",
                    "decoder_attention_mask",
                ]
214
215
216
217
218
219
                expected_arg_names.extend(
                    ["head_mask", "decoder_head_mask", "encoder_outputs"]
                    if "head_mask" and "decoder_head_mask" in arg_names
                    else ["encoder_outputs"]
                )
                self.assertListEqual(arg_names[: len(expected_arg_names)], expected_arg_names)
220
221
222
223
            else:
                expected_arg_names = ["input_ids"]
                self.assertListEqual(arg_names[:1], expected_arg_names)

224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
    def test_training(self):
        if not self.model_tester.is_training:
            return

        config, inputs_dict = self.model_tester.prepare_config_and_inputs_for_common()
        config.return_dict = True

        for model_class in self.all_model_classes:
            if model_class in MODEL_MAPPING.values():
                continue
            model = model_class(config)
            model.to(torch_device)
            model.train()
            inputs = self._prepare_for_class(inputs_dict, model_class, return_labels=True)
            loss = model(**inputs).loss
            loss.backward()

    def test_training_gradient_checkpointing(self):
        config, inputs_dict = self.model_tester.prepare_config_and_inputs_for_common()
        if not self.model_tester.is_training or not hasattr(config, "gradient_checkpointing"):
            return

        config.gradient_checkpointing = True
247
        config.use_cache = False
248
249
250
251
252
253
254
255
256
257
258
259
        config.return_dict = True

        for model_class in self.all_model_classes:
            if model_class in MODEL_MAPPING.values():
                continue
            model = model_class(config)
            model.to(torch_device)
            model.train()
            inputs = self._prepare_for_class(inputs_dict, model_class, return_labels=True)
            loss = model(**inputs).loss
            loss.backward()

Patrick von Platen's avatar
Patrick von Platen committed
260
    def test_attention_outputs(self):
261
        config, inputs_dict = self.model_tester.prepare_config_and_inputs_for_common()
Weizhen's avatar
Weizhen committed
262
263
        config.return_dict = True

sshleifer's avatar
sshleifer committed
264
        seq_len = getattr(self.model_tester, "seq_length", None)
sshleifer's avatar
sshleifer committed
265
266
        decoder_seq_length = getattr(self.model_tester, "decoder_seq_length", seq_len)
        encoder_seq_length = getattr(self.model_tester, "encoder_seq_length", seq_len)
Weizhen's avatar
Weizhen committed
267
        decoder_key_length = getattr(self.model_tester, "decoder_key_length", decoder_seq_length)
268
        encoder_key_length = getattr(self.model_tester, "key_length", encoder_seq_length)
Patrick von Platen's avatar
Patrick von Platen committed
269
270
271
        chunk_length = getattr(self.model_tester, "chunk_length", None)
        if chunk_length is not None and hasattr(self.model_tester, "num_hashes"):
            encoder_seq_length = encoder_seq_length * self.model_tester.num_hashes
272
273

        for model_class in self.all_model_classes:
274
            inputs_dict["output_attentions"] = True
Joseph Liu's avatar
Joseph Liu committed
275
            inputs_dict["output_hidden_states"] = False
276
            config.return_dict = True
277
278
279
280
            model = model_class(config)
            model.to(torch_device)
            model.eval()
            with torch.no_grad():
281
                outputs = model(**self._prepare_for_class(inputs_dict, model_class))
282
            attentions = outputs.encoder_attentions if config.is_encoder_decoder else outputs.attentions
283
284
285
286
287
288
289
290
291
            self.assertEqual(len(attentions), self.model_tester.num_hidden_layers)

            # check that output_attentions also work using config
            del inputs_dict["output_attentions"]
            config.output_attentions = True
            model = model_class(config)
            model.to(torch_device)
            model.eval()
            with torch.no_grad():
292
293
                outputs = model(**self._prepare_for_class(inputs_dict, model_class))
            attentions = outputs.encoder_attentions if config.is_encoder_decoder else outputs.attentions
294
            self.assertEqual(len(attentions), self.model_tester.num_hidden_layers)
Patrick von Platen's avatar
Patrick von Platen committed
295
296
297
298
299
300
301
302
303
304
305

            if chunk_length is not None:
                self.assertListEqual(
                    list(attentions[0].shape[-4:]),
                    [self.model_tester.num_attention_heads, encoder_seq_length, chunk_length, encoder_key_length],
                )
            else:
                self.assertListEqual(
                    list(attentions[0].shape[-3:]),
                    [self.model_tester.num_attention_heads, encoder_seq_length, encoder_key_length],
                )
306
            out_len = len(outputs)
thomwolf's avatar
thomwolf committed
307

308
            if self.is_encoder_decoder:
309
                correct_outlen = 5
310

311
312
313
314
315
316
                # loss is at first position
                if "labels" in inputs_dict:
                    correct_outlen += 1  # loss is added to beginning
                # Question Answering model returns start_logits and end_logits
                if model_class in MODEL_FOR_QUESTION_ANSWERING_MAPPING.values():
                    correct_outlen += 1  # start_logits and end_logits instead of only 1 output
317
318
                if "past_key_values" in outputs:
                    correct_outlen += 1  # past_key_values have been returned
Weizhen's avatar
Weizhen committed
319

Sam Shleifer's avatar
Sam Shleifer committed
320
321
                self.assertEqual(out_len, correct_outlen)

322
                # decoder attentions
323
                decoder_attentions = outputs.decoder_attentions
Sam Shleifer's avatar
Sam Shleifer committed
324
                self.assertIsInstance(decoder_attentions, (list, tuple))
325
                self.assertEqual(len(decoder_attentions), self.model_tester.num_hidden_layers)
thomwolf's avatar
thomwolf committed
326
                self.assertListEqual(
327
328
                    list(decoder_attentions[0].shape[-3:]),
                    [self.model_tester.num_attention_heads, decoder_seq_length, decoder_key_length],
329
                )
thomwolf's avatar
thomwolf committed
330

331
332
333
334
335
336
337
338
339
340
341
342
343
                # cross attentions
                cross_attentions = outputs.cross_attentions
                self.assertIsInstance(cross_attentions, (list, tuple))
                self.assertEqual(len(cross_attentions), self.model_tester.num_hidden_layers)
                self.assertListEqual(
                    list(cross_attentions[0].shape[-3:]),
                    [
                        self.model_tester.num_attention_heads,
                        decoder_seq_length,
                        encoder_key_length,
                    ],
                )

344
            # Check attention is always last and order is fine
345
            inputs_dict["output_attentions"] = True
Joseph Liu's avatar
Joseph Liu committed
346
            inputs_dict["output_hidden_states"] = True
347
348
349
350
            model = model_class(config)
            model.to(torch_device)
            model.eval()
            with torch.no_grad():
351
                outputs = model(**self._prepare_for_class(inputs_dict, model_class))
352

Weizhen's avatar
Weizhen committed
353
354
355
356
357
358
359
360
            if hasattr(self.model_tester, "num_hidden_states_types"):
                added_hidden_states = self.model_tester.num_hidden_states_types
            elif self.is_encoder_decoder:
                added_hidden_states = 2
            else:
                added_hidden_states = 1
            self.assertEqual(out_len + added_hidden_states, len(outputs))

361
362
            self_attentions = outputs.encoder_attentions if config.is_encoder_decoder else outputs.attentions

363
            self.assertEqual(len(self_attentions), self.model_tester.num_hidden_layers)
Patrick von Platen's avatar
Patrick von Platen committed
364
365
366
367
368
369
370
371
372
373
            if chunk_length is not None:
                self.assertListEqual(
                    list(self_attentions[0].shape[-4:]),
                    [self.model_tester.num_attention_heads, encoder_seq_length, chunk_length, encoder_key_length],
                )
            else:
                self.assertListEqual(
                    list(self_attentions[0].shape[-3:]),
                    [self.model_tester.num_attention_heads, encoder_seq_length, encoder_key_length],
                )
thomwolf's avatar
thomwolf committed
374

Patrick von Platen's avatar
Patrick von Platen committed
375
    def test_torchscript(self):
376
377
        config, inputs_dict = self.model_tester.prepare_config_and_inputs_for_common()
        self._create_and_check_torchscript(config, inputs_dict)
thomwolf's avatar
thomwolf committed
378

Patrick von Platen's avatar
Patrick von Platen committed
379
    def test_torchscript_output_attentions(self):
380
381
382
        config, inputs_dict = self.model_tester.prepare_config_and_inputs_for_common()
        config.output_attentions = True
        self._create_and_check_torchscript(config, inputs_dict)
thomwolf's avatar
thomwolf committed
383

Patrick von Platen's avatar
Patrick von Platen committed
384
    def test_torchscript_output_hidden_state(self):
385
386
387
        config, inputs_dict = self.model_tester.prepare_config_and_inputs_for_common()
        config.output_hidden_states = True
        self._create_and_check_torchscript(config, inputs_dict)
thomwolf's avatar
thomwolf committed
388

389
    def _create_and_check_torchscript(self, config, inputs_dict):
Patrick von Platen's avatar
Patrick von Platen committed
390
        if not self.test_torchscript:
391
            return
392

393
394
395
396
397
398
        configs_no_init = _config_zero_init(config)  # To be sure we have no Nan
        configs_no_init.torchscript = True
        for model_class in self.all_model_classes:
            model = model_class(config=configs_no_init)
            model.to(torch_device)
            model.eval()
399
            inputs = self._prepare_for_class(inputs_dict, model_class)
thomwolf's avatar
thomwolf committed
400

401
            try:
402
                if model.config.is_encoder_decoder:
403
                    model.config.use_cache = False  # FSTM still requires this hack -> FSTM should probably be refactored similar to BART afterward
404
405
406
407
408
409
410
411
412
413
                    input_ids = inputs["input_ids"]
                    attention_mask = inputs["attention_mask"]
                    decoder_input_ids = inputs["decoder_input_ids"]
                    decoder_attention_mask = inputs["decoder_attention_mask"]
                    traced_model = torch.jit.trace(
                        model, (input_ids, attention_mask, decoder_input_ids, decoder_attention_mask)
                    )
                else:
                    input_ids = inputs["input_ids"]
                    traced_model = torch.jit.trace(model, input_ids)
414
415
            except RuntimeError:
                self.fail("Couldn't trace module.")
thomwolf's avatar
thomwolf committed
416

417
            with tempfile.TemporaryDirectory() as tmp_dir_name:
418
                pt_file_name = os.path.join(tmp_dir_name, "traced_model.pt")
thomwolf's avatar
thomwolf committed
419

420
                try:
421
                    torch.jit.save(traced_model, pt_file_name)
422
423
                except Exception:
                    self.fail("Couldn't save module.")
thomwolf's avatar
thomwolf committed
424

425
426
427
428
                try:
                    loaded_model = torch.jit.load(pt_file_name)
                except Exception:
                    self.fail("Couldn't load module.")
LysandreJik's avatar
LysandreJik committed
429

430
431
            model.to(torch_device)
            model.eval()
thomwolf's avatar
thomwolf committed
432

433
434
            loaded_model.to(torch_device)
            loaded_model.eval()
thomwolf's avatar
thomwolf committed
435

436
437
438
439
            model_state_dict = model.state_dict()
            loaded_model_state_dict = loaded_model.state_dict()

            self.assertEqual(set(model_state_dict.keys()), set(loaded_model_state_dict.keys()))
thomwolf's avatar
thomwolf committed
440

441
            models_equal = True
442
443
            for layer_name, p1 in model_state_dict.items():
                p2 = loaded_model_state_dict[layer_name]
444
445
                if p1.data.ne(p2.data).sum() > 0:
                    models_equal = False
thomwolf's avatar
thomwolf committed
446

447
            self.assertTrue(models_equal)
thomwolf's avatar
thomwolf committed
448

Patrick von Platen's avatar
Patrick von Platen committed
449
450
    def test_headmasking(self):
        if not self.test_head_masking:
451
            return
452

453
454
455
        global_rng.seed(42)
        config, inputs_dict = self.model_tester.prepare_config_and_inputs_for_common()
        global_rng.seed()
LysandreJik's avatar
LysandreJik committed
456

457
        inputs_dict["output_attentions"] = True
458
459
460
461
462
463
        config.output_hidden_states = True
        configs_no_init = _config_zero_init(config)  # To be sure we have no Nan
        for model_class in self.all_model_classes:
            model = model_class(config=configs_no_init)
            model.to(torch_device)
            model.eval()
LysandreJik's avatar
LysandreJik committed
464

465
466
467
            # Prepare head_mask
            # Set require_grad after having prepared the tensor to avoid error (leaf variable has been moved into the graph interior)
            head_mask = torch.ones(
Lysandre's avatar
Lysandre committed
468
469
470
                self.model_tester.num_hidden_layers,
                self.model_tester.num_attention_heads,
                device=torch_device,
471
472
473
474
            )
            head_mask[0, 0] = 0
            head_mask[-1, :-1] = 0
            head_mask.requires_grad_(requires_grad=True)
475
            inputs = self._prepare_for_class(inputs_dict, model_class).copy()
476
            inputs["head_mask"] = head_mask
477
478
479
480
481
            if model.config.is_encoder_decoder:
                signature = inspect.signature(model.forward)
                arg_names = [*signature.parameters.keys()]
                if "decoder_head_mask" in arg_names:  # necessary diferentiation because of T5 model
                    inputs["decoder_head_mask"] = head_mask
482
            outputs = model(**inputs, return_dict=True)
483
484
485
486
487
488
489
490
491

            # Test that we can get a gradient back for importance score computation
            output = sum(t.sum() for t in outputs[0])
            output = output.sum()
            output.backward()
            multihead_outputs = head_mask.grad

            self.assertIsNotNone(multihead_outputs)
            self.assertEqual(len(multihead_outputs), self.model_tester.num_hidden_layers)
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514

            def check_attentions_validity(attentions):
                # Remove Nan
                for t in attentions:
                    self.assertLess(
                        torch.sum(torch.isnan(t)), t.numel() / 4
                    )  # Check we don't have more than 25% nans (arbitrary)
                attentions = [
                    t.masked_fill(torch.isnan(t), 0.0) for t in attentions
                ]  # remove them (the test is less complete)

                self.assertAlmostEqual(attentions[0][..., 0, :, :].flatten().sum().item(), 0.0)
                self.assertNotEqual(attentions[0][..., -1, :, :].flatten().sum().item(), 0.0)
                if len(attentions) > 2:  # encoder-decoder models have only 2 layers in each module
                    self.assertNotEqual(attentions[1][..., 0, :, :].flatten().sum().item(), 0.0)
                self.assertAlmostEqual(attentions[-1][..., -2, :, :].flatten().sum().item(), 0.0)
                self.assertNotEqual(attentions[-1][..., -1, :, :].flatten().sum().item(), 0.0)

            if model.config.is_encoder_decoder:
                check_attentions_validity(outputs.encoder_attentions)
                check_attentions_validity(outputs.decoder_attentions)
            else:
                check_attentions_validity(outputs.attentions)
515

Patrick von Platen's avatar
Patrick von Platen committed
516
517
    def test_head_pruning(self):
        if not self.test_pruning:
518
519
520
            return

        for model_class in self.all_model_classes:
Lysandre's avatar
Lysandre committed
521
522
523
524
            (
                config,
                inputs_dict,
            ) = self.model_tester.prepare_config_and_inputs_for_common()
525

526
527
            if "head_mask" in inputs_dict:
                del inputs_dict["head_mask"]
528

529
            inputs_dict["output_attentions"] = True
530
531
532
533
            config.output_hidden_states = False
            model = model_class(config=config)
            model.to(torch_device)
            model.eval()
534
535
536
537
            heads_to_prune = {
                0: list(range(1, self.model_tester.num_attention_heads)),
                -1: [0],
            }
538
539
            model.prune_heads(heads_to_prune)
            with torch.no_grad():
540
                outputs = model(**self._prepare_for_class(inputs_dict, model_class))
541

542
            attentions = outputs[-1]
543

544
545
546
            self.assertEqual(attentions[0].shape[-3], 1)
            self.assertEqual(attentions[1].shape[-3], self.model_tester.num_attention_heads)
            self.assertEqual(attentions[-1].shape[-3], self.model_tester.num_attention_heads - 1)
LysandreJik's avatar
LysandreJik committed
547

Patrick von Platen's avatar
Patrick von Platen committed
548
549
    def test_head_pruning_save_load_from_pretrained(self):
        if not self.test_pruning:
550
            return
LysandreJik's avatar
LysandreJik committed
551

552
        for model_class in self.all_model_classes:
Lysandre's avatar
Lysandre committed
553
554
555
556
            (
                config,
                inputs_dict,
            ) = self.model_tester.prepare_config_and_inputs_for_common()
557
558
559

            if "head_mask" in inputs_dict:
                del inputs_dict["head_mask"]
560

561
            inputs_dict["output_attentions"] = True
562
563
564
565
            config.output_hidden_states = False
            model = model_class(config=config)
            model.to(torch_device)
            model.eval()
566
567
568
569
            heads_to_prune = {
                0: list(range(1, self.model_tester.num_attention_heads)),
                -1: [0],
            }
570
            model.prune_heads(heads_to_prune)
571

572
            with tempfile.TemporaryDirectory() as temp_dir_name:
573
574
                model.save_pretrained(temp_dir_name)
                model = model_class.from_pretrained(temp_dir_name)
575
                model.to(torch_device)
576

577
            with torch.no_grad():
578
                outputs = model(**self._prepare_for_class(inputs_dict, model_class))
579
580
581
582
            attentions = outputs[-1]
            self.assertEqual(attentions[0].shape[-3], 1)
            self.assertEqual(attentions[1].shape[-3], self.model_tester.num_attention_heads)
            self.assertEqual(attentions[-1].shape[-3], self.model_tester.num_attention_heads - 1)
583

Patrick von Platen's avatar
Patrick von Platen committed
584
585
    def test_head_pruning_save_load_from_config_init(self):
        if not self.test_pruning:
586
            return
587

588
        for model_class in self.all_model_classes:
Lysandre's avatar
Lysandre committed
589
590
591
592
            (
                config,
                inputs_dict,
            ) = self.model_tester.prepare_config_and_inputs_for_common()
593

594
595
            if "head_mask" in inputs_dict:
                del inputs_dict["head_mask"]
596

597
            inputs_dict["output_attentions"] = True
598
            config.output_hidden_states = False
599

600
601
602
603
            heads_to_prune = {
                0: list(range(1, self.model_tester.num_attention_heads)),
                -1: [0],
            }
604
            config.pruned_heads = heads_to_prune
605

606
607
608
            model = model_class(config=config)
            model.to(torch_device)
            model.eval()
609

610
            with torch.no_grad():
611
                outputs = model(**self._prepare_for_class(inputs_dict, model_class))
612
            attentions = outputs[-1]
613

614
615
616
            self.assertEqual(attentions[0].shape[-3], 1)
            self.assertEqual(attentions[1].shape[-3], self.model_tester.num_attention_heads)
            self.assertEqual(attentions[-1].shape[-3], self.model_tester.num_attention_heads - 1)
617

Patrick von Platen's avatar
Patrick von Platen committed
618
619
    def test_head_pruning_integration(self):
        if not self.test_pruning:
620
            return
621

622
        for model_class in self.all_model_classes:
Lysandre's avatar
Lysandre committed
623
624
625
626
            (
                config,
                inputs_dict,
            ) = self.model_tester.prepare_config_and_inputs_for_common()
627

628
629
            if "head_mask" in inputs_dict:
                del inputs_dict["head_mask"]
630

631
            inputs_dict["output_attentions"] = True
632
            config.output_hidden_states = False
633

634
635
            heads_to_prune = {0: [0], 1: [1, 2]}
            config.pruned_heads = heads_to_prune
636

637
638
639
            model = model_class(config=config)
            model.to(torch_device)
            model.eval()
640

641
            with torch.no_grad():
642
                outputs = model(**self._prepare_for_class(inputs_dict, model_class))
643
            attentions = outputs[-1]
644

645
646
647
648
            self.assertEqual(attentions[0].shape[-3], self.model_tester.num_attention_heads - 1)
            self.assertEqual(attentions[1].shape[-3], self.model_tester.num_attention_heads - 2)
            self.assertEqual(attentions[2].shape[-3], self.model_tester.num_attention_heads)
            self.assertEqual(attentions[3].shape[-3], self.model_tester.num_attention_heads)
thomwolf's avatar
thomwolf committed
649

650
            with tempfile.TemporaryDirectory() as temp_dir_name:
651
652
                model.save_pretrained(temp_dir_name)
                model = model_class.from_pretrained(temp_dir_name)
653
                model.to(torch_device)
thomwolf's avatar
thomwolf committed
654

655
            with torch.no_grad():
656
                outputs = model(**self._prepare_for_class(inputs_dict, model_class))
657
            attentions = outputs[-1]
LysandreJik's avatar
LysandreJik committed
658

659
660
661
662
            self.assertEqual(attentions[0].shape[-3], self.model_tester.num_attention_heads - 1)
            self.assertEqual(attentions[1].shape[-3], self.model_tester.num_attention_heads - 2)
            self.assertEqual(attentions[2].shape[-3], self.model_tester.num_attention_heads)
            self.assertEqual(attentions[3].shape[-3], self.model_tester.num_attention_heads)
thomwolf's avatar
thomwolf committed
663

664
665
            heads_to_prune = {0: [0], 2: [1, 2]}
            model.prune_heads(heads_to_prune)
666

667
            with torch.no_grad():
668
                outputs = model(**self._prepare_for_class(inputs_dict, model_class))
669
            attentions = outputs[-1]
670

671
672
673
674
            self.assertEqual(attentions[0].shape[-3], self.model_tester.num_attention_heads - 1)
            self.assertEqual(attentions[1].shape[-3], self.model_tester.num_attention_heads - 2)
            self.assertEqual(attentions[2].shape[-3], self.model_tester.num_attention_heads - 2)
            self.assertEqual(attentions[3].shape[-3], self.model_tester.num_attention_heads)
675

676
            self.assertDictEqual(model.config.pruned_heads, {0: [0], 1: [1, 2], 2: [1, 2]})
thomwolf's avatar
thomwolf committed
677

Patrick von Platen's avatar
Patrick von Platen committed
678
    def test_hidden_states_output(self):
Joseph Liu's avatar
Joseph Liu committed
679
        def check_hidden_states_output(inputs_dict, config, model_class):
680
            model = model_class(config)
681
            model.to(torch_device)
thomwolf's avatar
thomwolf committed
682
            model.eval()
Joseph Liu's avatar
Joseph Liu committed
683

thomwolf's avatar
thomwolf committed
684
            with torch.no_grad():
685
                outputs = model(**self._prepare_for_class(inputs_dict, model_class))
686
687

            hidden_states = outputs.encoder_hidden_states if config.is_encoder_decoder else outputs.hidden_states
Patrick von Platen's avatar
Patrick von Platen committed
688

Sylvain Gugger's avatar
Sylvain Gugger committed
689
690
691
692
            expected_num_layers = getattr(
                self.model_tester, "expected_num_hidden_layers", self.model_tester.num_hidden_layers + 1
            )
            self.assertEqual(len(hidden_states), expected_num_layers)
693

Patrick von Platen's avatar
Patrick von Platen committed
694
695
696
697
698
699
700
            if hasattr(self.model_tester, "encoder_seq_length"):
                seq_length = self.model_tester.encoder_seq_length
                if hasattr(self.model_tester, "chunk_length") and self.model_tester.chunk_length > 1:
                    seq_length = seq_length * self.model_tester.chunk_length
            else:
                seq_length = self.model_tester.seq_length

701
            self.assertListEqual(
Lysandre's avatar
Lysandre committed
702
703
                list(hidden_states[0].shape[-2:]),
                [seq_length, self.model_tester.hidden_size],
704
            )
thomwolf's avatar
thomwolf committed
705

706
707
708
709
710
711
712
713
714
715
716
717
718
            if config.is_encoder_decoder:
                hidden_states = outputs.decoder_hidden_states

                self.assertIsInstance(hidden_states, (list, tuple))
                self.assertEqual(len(hidden_states), expected_num_layers)
                seq_len = getattr(self.model_tester, "seq_length", None)
                decoder_seq_length = getattr(self.model_tester, "decoder_seq_length", seq_len)

                self.assertListEqual(
                    list(hidden_states[0].shape[-2:]),
                    [decoder_seq_length, self.model_tester.hidden_size],
                )

Joseph Liu's avatar
Joseph Liu committed
719
720
721
722
723
724
725
726
727
728
729
730
        config, inputs_dict = self.model_tester.prepare_config_and_inputs_for_common()

        for model_class in self.all_model_classes:
            inputs_dict["output_hidden_states"] = True
            check_hidden_states_output(inputs_dict, config, model_class)

            # check that output_hidden_states also work using config
            del inputs_dict["output_hidden_states"]
            config.output_hidden_states = True

            check_hidden_states_output(inputs_dict, config, model_class)

731
732
733
734
735
736
737
738
739
740
741
742
743
    def test_retain_grad_hidden_states_attentions(self):
        config, inputs_dict = self.model_tester.prepare_config_and_inputs_for_common()
        config.output_hidden_states = True
        config.output_attentions = True

        # no need to test all models as different heads yield the same functionality
        model_class = self.all_model_classes[0]
        model = model_class(config)
        model.to(torch_device)

        inputs = self._prepare_for_class(inputs_dict, model_class)

        outputs = model(**inputs)
744
745

        print(outputs)
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
        output = outputs[0]

        if config.is_encoder_decoder:
            # Seq2Seq models
            encoder_hidden_states = outputs.encoder_hidden_states[0]
            encoder_attentions = outputs.encoder_attentions[0]
            encoder_hidden_states.retain_grad()
            encoder_attentions.retain_grad()

            decoder_hidden_states = outputs.decoder_hidden_states[0]
            decoder_attentions = outputs.decoder_attentions[0]
            decoder_hidden_states.retain_grad()
            decoder_attentions.retain_grad()

            cross_attentions = outputs.cross_attentions[0]
            cross_attentions.retain_grad()

            output.flatten()[0].backward(retain_graph=True)

            self.assertIsNotNone(encoder_hidden_states.grad)
            self.assertIsNotNone(encoder_attentions.grad)
            self.assertIsNotNone(decoder_hidden_states.grad)
            self.assertIsNotNone(decoder_attentions.grad)
            self.assertIsNotNone(cross_attentions.grad)
        else:
            # Encoder-/Decoder-only models
            hidden_states = outputs.hidden_states[0]
            attentions = outputs.attentions[0]

            hidden_states.retain_grad()
            attentions.retain_grad()

            output.flatten()[0].backward(retain_graph=True)

            self.assertIsNotNone(hidden_states.grad)
            self.assertIsNotNone(attentions.grad)

Pradhy729's avatar
Pradhy729 committed
783
    def test_feed_forward_chunking(self):
Lysandre's avatar
Lysandre committed
784
785
786
787
        (
            original_config,
            inputs_dict,
        ) = self.model_tester.prepare_config_and_inputs_for_common()
Pradhy729's avatar
Pradhy729 committed
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
        for model_class in self.all_model_classes:
            torch.manual_seed(0)
            config = copy.deepcopy(original_config)
            model = model_class(config)
            model.to(torch_device)
            model.eval()

            hidden_states_no_chunk = model(**self._prepare_for_class(inputs_dict, model_class))[0]

            torch.manual_seed(0)
            config.chunk_size_feed_forward = 1
            model = model_class(config)
            model.to(torch_device)
            model.eval()

            hidden_states_with_chunk = model(**self._prepare_for_class(inputs_dict, model_class))[0]
            self.assertTrue(torch.allclose(hidden_states_no_chunk, hidden_states_with_chunk, atol=1e-3))

Patrick von Platen's avatar
Patrick von Platen committed
806
    def test_resize_tokens_embeddings(self):
Lysandre's avatar
Lysandre committed
807
808
809
810
        (
            original_config,
            inputs_dict,
        ) = self.model_tester.prepare_config_and_inputs_for_common()
Patrick von Platen's avatar
Patrick von Platen committed
811
        if not self.test_resize_embeddings:
812
813
814
815
816
            return

        for model_class in self.all_model_classes:
            config = copy.deepcopy(original_config)
            model = model_class(config)
817
            model.to(torch_device)
818

Patrick von Platen's avatar
Patrick von Platen committed
819
820
821
            if self.model_tester.is_training is False:
                model.eval()

822
823
824
825
826
827
828
829
830
831
            model_vocab_size = config.vocab_size
            # Retrieve the embeddings and clone theme
            model_embed = model.resize_token_embeddings(model_vocab_size)
            cloned_embeddings = model_embed.weight.clone()

            # Check that resizing the token embeddings with a larger vocab size increases the model's vocab size
            model_embed = model.resize_token_embeddings(model_vocab_size + 10)
            self.assertEqual(model.config.vocab_size, model_vocab_size + 10)
            # Check that it actually resizes the embeddings matrix
            self.assertEqual(model_embed.weight.shape[0], cloned_embeddings.shape[0] + 10)
832
            # Check that the model can still do a forward pass successfully (every parameter should be resized)
833
            model(**self._prepare_for_class(inputs_dict, model_class))
834
835
836
837
838
839
840

            # Check that resizing the token embeddings with a smaller vocab size decreases the model's vocab size
            model_embed = model.resize_token_embeddings(model_vocab_size - 15)
            self.assertEqual(model.config.vocab_size, model_vocab_size - 15)
            # Check that it actually resizes the embeddings matrix
            self.assertEqual(model_embed.weight.shape[0], cloned_embeddings.shape[0] - 15)

841
842
843
            # Check that the model can still do a forward pass successfully (every parameter should be resized)
            # Input ids should be clamped to the maximum size of the vocabulary
            inputs_dict["input_ids"].clamp_(max=model_vocab_size - 15 - 1)
844
845
846
847

            # make sure that decoder_input_ids are resized as well
            if "decoder_input_ids" in inputs_dict:
                inputs_dict["decoder_input_ids"].clamp_(max=model_vocab_size - 15 - 1)
848
            model(**self._prepare_for_class(inputs_dict, model_class))
849

850
851
852
853
854
855
856
857
            # Check that adding and removing tokens has not modified the first part of the embedding matrix.
            models_equal = True
            for p1, p2 in zip(cloned_embeddings, model_embed.weight):
                if p1.data.ne(p2.data).sum() > 0:
                    models_equal = False

            self.assertTrue(models_equal)

858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
    def test_resize_embeddings_untied(self):
        (
            original_config,
            inputs_dict,
        ) = self.model_tester.prepare_config_and_inputs_for_common()
        if not self.test_resize_embeddings:
            return

        original_config.tie_word_embeddings = False

        # if model cannot untied embeddings -> leave test
        if original_config.tie_word_embeddings:
            return

        for model_class in self.all_model_classes:
            config = copy.deepcopy(original_config)
            model = model_class(config).to(torch_device)

            # if no output embeddings -> leave test
            if model.get_output_embeddings() is None:
                continue

            # Check that resizing the token embeddings with a larger vocab size increases the model's vocab size
            model_vocab_size = config.vocab_size
            model.resize_token_embeddings(model_vocab_size + 10)
            self.assertEqual(model.config.vocab_size, model_vocab_size + 10)
            output_embeds = model.get_output_embeddings()
            self.assertEqual(output_embeds.weight.shape[0], model_vocab_size + 10)
            # Check bias if present
            if output_embeds.bias is not None:
                self.assertEqual(output_embeds.bias.shape[0], model_vocab_size + 10)
            # Check that the model can still do a forward pass successfully (every parameter should be resized)
            model(**self._prepare_for_class(inputs_dict, model_class))

            # Check that resizing the token embeddings with a smaller vocab size decreases the model's vocab size
            model.resize_token_embeddings(model_vocab_size - 15)
            self.assertEqual(model.config.vocab_size, model_vocab_size - 15)
            # Check that it actually resizes the embeddings matrix
            output_embeds = model.get_output_embeddings()
            self.assertEqual(output_embeds.weight.shape[0], model_vocab_size - 15)
            # Check bias if present
            if output_embeds.bias is not None:
                self.assertEqual(output_embeds.bias.shape[0], model_vocab_size - 15)
            # Check that the model can still do a forward pass successfully (every parameter should be resized)
            # Input ids should be clamped to the maximum size of the vocabulary
            inputs_dict["input_ids"].clamp_(max=model_vocab_size - 15 - 1)
            if "decoder_input_ids" in inputs_dict:
                inputs_dict["decoder_input_ids"].clamp_(max=model_vocab_size - 15 - 1)
            # Check that the model can still do a forward pass successfully (every parameter should be resized)
            model(**self._prepare_for_class(inputs_dict, model_class))

Patrick von Platen's avatar
Patrick von Platen committed
909
    def test_model_common_attributes(self):
910
911
912
913
914
915
916
917
918
        config, inputs_dict = self.model_tester.prepare_config_and_inputs_for_common()

        for model_class in self.all_model_classes:
            model = model_class(config)
            self.assertIsInstance(model.get_input_embeddings(), (torch.nn.Embedding, AdaptiveEmbedding))
            model.set_input_embeddings(torch.nn.Embedding(10, 10))
            x = model.get_output_embeddings()
            self.assertTrue(x is None or isinstance(x, torch.nn.Linear))

919
    def test_correct_missing_keys(self):
920
921
        if not self.test_missing_keys:
            return
922
923
924
925
926
927
928
929
930
931
932
        config, _ = self.model_tester.prepare_config_and_inputs_for_common()

        for model_class in self.all_model_classes:
            model = model_class(config)
            base_model_prefix = model.base_model_prefix

            if hasattr(model, base_model_prefix):
                with tempfile.TemporaryDirectory() as temp_dir_name:
                    model.base_model.save_pretrained(temp_dir_name)
                    model, loading_info = model_class.from_pretrained(temp_dir_name, output_loading_info=True)

933
                    with self.subTest(msg=f"Missing keys for {model.__class__.__name__}"):
934
935
                        self.assertGreater(len(loading_info["missing_keys"]), 0)

936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
    def test_tie_model_weights(self):
        if not self.test_torchscript:
            return

        config, inputs_dict = self.model_tester.prepare_config_and_inputs_for_common()

        def check_same_values(layer_1, layer_2):
            equal = True
            for p1, p2 in zip(layer_1.weight, layer_2.weight):
                if p1.data.ne(p2.data).sum() > 0:
                    equal = False
            return equal

        for model_class in self.all_model_classes:
            config.torchscript = True
            model_not_tied = model_class(config)
            if model_not_tied.get_output_embeddings() is None:
                continue

            config_tied = copy.deepcopy(config)
            config_tied.torchscript = False
            model_tied = model_class(config_tied)
            params_tied = list(model_tied.parameters())
            # Check that the embedding layer and decoding layer are the same in size and in value
            # self.assertTrue(check_same_values(embeddings, decoding))

            # # Check that after modification, they remain the same.
            # embeddings.weight.data.div_(2)
            # # Check that the embedding layer and decoding layer are the same in size and in value
            # self.assertTrue(embeddings.weight.shape, decoding.weight.shape)
            # self.assertTrue(check_same_values(embeddings, decoding))

            # # Check that after modification, they remain the same.
            # decoding.weight.data.div_(4)
            # # Check that the embedding layer and decoding layer are the same in size and in value
            # self.assertTrue(embeddings.weight.shape, decoding.weight.shape)
            # self.assertTrue(check_same_values(embeddings, decoding))

            # Check that after resize they remain tied.
            model_tied.resize_token_embeddings(config.vocab_size + 10)
            params_tied_2 = list(model_tied.parameters())
            self.assertEqual(len(params_tied_2), len(params_tied))

            # decoding.weight.data.mul_(20)
            # # Check that the embedding layer and decoding layer are the same in size and in value
            # self.assertTrue(model.transformer.wte.weight.shape, model.lm_head.weight.shape)
            # self.assertTrue(check_same_values(model.transformer.wte, model.lm_head))

984
985
986
987
    def test_model_outputs_equivalence(self):

        config, inputs_dict = self.model_tester.prepare_config_and_inputs_for_common()

Sam Shleifer's avatar
Sam Shleifer committed
988
989
990
991
        def set_nan_tensor_to_zero(t):
            t[t != t] = 0
            return t

992
993
994
995
996
997
998
999
1000
1001
1002
1003
1004
        def check_equivalence(model, tuple_inputs, dict_inputs, additional_kwargs={}):
            with torch.no_grad():
                tuple_output = model(**tuple_inputs, return_dict=False, **additional_kwargs)
                dict_output = model(**dict_inputs, return_dict=True, **additional_kwargs).to_tuple()

                def recursive_check(tuple_object, dict_object):
                    if isinstance(tuple_object, (List, Tuple)):
                        for tuple_iterable_value, dict_iterable_value in zip(tuple_object, dict_object):
                            recursive_check(tuple_iterable_value, dict_iterable_value)
                    elif tuple_object is None:
                        return
                    else:
                        self.assertTrue(
Sam Shleifer's avatar
Sam Shleifer committed
1005
1006
1007
                            torch.allclose(
                                set_nan_tensor_to_zero(tuple_object), set_nan_tensor_to_zero(dict_object), atol=1e-5
                            ),
1008
                            msg=f"Tuple and dict output are not equal. Difference: {torch.max(torch.abs(tuple_object - dict_object))}. Tuple has `nan`: {torch.isnan(tuple_object).any()} and `inf`: {torch.isinf(tuple_object)}. Dict has `nan`: {torch.isnan(dict_object).any()} and `inf`: {torch.isinf(dict_object)}.",
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025
1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
                        )

                recursive_check(tuple_output, dict_output)

        for model_class in self.all_model_classes:
            model = model_class(config)
            model.to(torch_device)
            model.eval()

            tuple_inputs = self._prepare_for_class(inputs_dict, model_class)
            dict_inputs = self._prepare_for_class(inputs_dict, model_class)
            check_equivalence(model, tuple_inputs, dict_inputs)

            tuple_inputs = self._prepare_for_class(inputs_dict, model_class, return_labels=True)
            dict_inputs = self._prepare_for_class(inputs_dict, model_class, return_labels=True)
            check_equivalence(model, tuple_inputs, dict_inputs)

            tuple_inputs = self._prepare_for_class(inputs_dict, model_class)
            dict_inputs = self._prepare_for_class(inputs_dict, model_class)
            check_equivalence(model, tuple_inputs, dict_inputs, {"output_hidden_states": True})

            tuple_inputs = self._prepare_for_class(inputs_dict, model_class)
            dict_inputs = self._prepare_for_class(inputs_dict, model_class)
            check_equivalence(model, tuple_inputs, dict_inputs, {"output_attentions": True})

            tuple_inputs = self._prepare_for_class(inputs_dict, model_class, return_labels=True)
            dict_inputs = self._prepare_for_class(inputs_dict, model_class, return_labels=True)
            check_equivalence(model, tuple_inputs, dict_inputs, {"output_hidden_states": True})

            tuple_inputs = self._prepare_for_class(inputs_dict, model_class, return_labels=True)
            dict_inputs = self._prepare_for_class(inputs_dict, model_class, return_labels=True)
            check_equivalence(model, tuple_inputs, dict_inputs, {"output_attentions": True})

            tuple_inputs = self._prepare_for_class(inputs_dict, model_class, return_labels=True)
            dict_inputs = self._prepare_for_class(inputs_dict, model_class, return_labels=True)
            check_equivalence(
                model, tuple_inputs, dict_inputs, {"output_hidden_states": True, "output_attentions": True}
            )

Patrick von Platen's avatar
Patrick von Platen committed
1048
    def test_inputs_embeds(self):
1049
1050
1051
1052
        config, inputs_dict = self.model_tester.prepare_config_and_inputs_for_common()

        for model_class in self.all_model_classes:
            model = model_class(config)
1053
            model.to(torch_device)
thomwolf's avatar
thomwolf committed
1054
            model.eval()
1055

1056
            inputs = copy.deepcopy(self._prepare_for_class(inputs_dict, model_class))
Weizhen's avatar
Weizhen committed
1057

1058
1059
1060
1061
1062
1063
1064
1065
1066
            if not self.is_encoder_decoder:
                input_ids = inputs["input_ids"]
                del inputs["input_ids"]
            else:
                encoder_input_ids = inputs["input_ids"]
                decoder_input_ids = inputs.get("decoder_input_ids", encoder_input_ids)
                del inputs["input_ids"]
                inputs.pop("decoder_input_ids", None)

1067
1068
            wte = model.get_input_embeddings()
            if not self.is_encoder_decoder:
1069
                inputs["inputs_embeds"] = wte(input_ids)
1070
            else:
1071
1072
                inputs["inputs_embeds"] = wte(encoder_input_ids)
                inputs["decoder_inputs_embeds"] = wte(decoder_input_ids)
1073

thomwolf's avatar
thomwolf committed
1074
            with torch.no_grad():
Weizhen's avatar
Weizhen committed
1075
                model(**inputs)[0]
1076

1077
1078
    @require_torch_multi_gpu
    def test_multi_gpu_data_parallel_forward(self):
1079
1080
1081
1082
        config, inputs_dict = self.model_tester.prepare_config_and_inputs_for_common()

        # some params shouldn't be scattered by nn.DataParallel
        # so just remove them if they are present.
Patrick von Platen's avatar
Patrick von Platen committed
1083
        blacklist_non_batched_params = ["head_mask", "decoder_head_mask"]
1084
1085
1086
1087
1088
1089
1090
1091
1092
1093
1094
1095
1096
1097
1098
1099
        for k in blacklist_non_batched_params:
            inputs_dict.pop(k, None)

        # move input tensors to cuda:O
        for k, v in inputs_dict.items():
            if torch.is_tensor(v):
                inputs_dict[k] = v.to(0)

        for model_class in self.all_model_classes:
            model = model_class(config=config)
            model.to(0)
            model.eval()

            # Wrap model in nn.DataParallel
            model = torch.nn.DataParallel(model)
            with torch.no_grad():
1100
                _ = model(**self._prepare_for_class(inputs_dict, model_class))
1101

1102
1103
1104
    @require_torch_multi_gpu
    def test_model_parallelization(self):
        if not self.test_model_parallel:
1105
            return
1106

1107
        # a candidate for testing_utils
1108
        def get_current_gpu_memory_use():
1109
1110
1111
1112
1113
1114
            """ returns a list of cuda memory allocations per GPU in MBs"""

            per_device_memory = []
            for id in range(torch.cuda.device_count()):
                with torch.cuda.device(id):
                    per_device_memory.append(torch.cuda.memory_allocated() >> 20)
1115
1116
1117
1118
1119
1120
1121
1122
1123

            return per_device_memory

        # Needs a large model to see the difference.
        config = self.model_tester.get_large_model_config()

        for model_class in self.all_parallelizable_model_classes:
            torch.cuda.empty_cache()

1124
1125
1126
            # 1. single gpu memory load + unload + memory measurements
            # Retrieve initial memory usage (can easily be ~0.6-1.5GB if cuda-kernels have been preloaded by previous tests)
            memory_at_start = get_current_gpu_memory_use()
1127

1128
1129
            # Put model on device 0 and take a memory snapshot
            model = model_class(config)
1130
1131
1132
            model.to("cuda:0")
            memory_after_model_load = get_current_gpu_memory_use()

1133
1134
1135
            # The memory use on device 0 should be higher than it was initially.
            self.assertGreater(memory_after_model_load[0], memory_at_start[0])

1136
            del model
1137
            gc.collect()
1138
1139
            torch.cuda.empty_cache()

1140
1141
1142
            # 2. MP test
            # it's essential to re-calibrate the usage before the next stage
            memory_at_start = get_current_gpu_memory_use()
1143
1144

            # Spread model layers over multiple devices
1145
            model = model_class(config)
1146
1147
1148
1149
1150
            model.parallelize()
            memory_after_parallelization = get_current_gpu_memory_use()

            # Assert that the memory use on all devices is higher than it was when loaded only on CPU
            for n in range(torch.cuda.device_count()):
1151
                self.assertGreater(memory_after_parallelization[n], memory_at_start[n])
1152

1153
            # Assert that the memory use of device 0 is lower than it was when the entire model was loaded on it
1154
1155
            self.assertLess(memory_after_parallelization[0], memory_after_model_load[0])

1156
1157
            # Assert that the memory use of device 1 is higher than it was when the entire model was loaded
            # on device 0 and device 1 wasn't used at all
1158
1159
1160
            self.assertGreater(memory_after_parallelization[1], memory_after_model_load[1])

            del model
1161
            gc.collect()
1162
1163
1164
1165
1166
            torch.cuda.empty_cache()

    @require_torch_multi_gpu
    def test_model_parallel_equal_results(self):
        if not self.test_model_parallel:
1167
            return
1168
1169
1170
1171
1172
1173

        config, inputs_dict = self.model_tester.prepare_config_and_inputs_for_common()

        for model_class in self.all_parallelizable_model_classes:
            inputs_dict = self._prepare_for_class(inputs_dict, model_class)

1174
            def cast_to_device(dictionary, device):
1175
1176
1177
                output = {}
                for k, v in dictionary.items():
                    if isinstance(v, torch.Tensor):
1178
                        output[k] = v.to(device)
1179
1180
1181
1182
1183
                    else:
                        output[k] = v

                return output

1184
1185
1186
1187
1188
1189
            model = model_class(config)
            output = model(**cast_to_device(inputs_dict, "cpu"))

            model.parallelize()

            parallel_output = model(**cast_to_device(inputs_dict, "cuda:0"))
1190
1191
1192
1193
1194
1195
1196
1197

            for value, parallel_value in zip(output, parallel_output):
                if isinstance(value, torch.Tensor):
                    self.assertTrue(torch.allclose(value, parallel_value.to("cpu"), atol=1e-7))
                elif isinstance(value, (Tuple, List)):
                    for value_, parallel_value_ in zip(value, parallel_value):
                        self.assertTrue(torch.allclose(value_, parallel_value_.to("cpu"), atol=1e-7))

1198
1199
1200
1201
1202
1203
1204
1205
1206
1207
1208
1209
1210
1211
1212
1213
1214
1215
1216
1217
1218
1219
1220
1221
1222
1223
1224
1225
    @require_torch_multi_gpu
    def test_model_parallel_beam_search(self):
        if not self.test_model_parallel:
            return

        all_generative_and_parallelizable_model_classes = tuple(
            set(self.all_generative_model_classes).intersection(self.all_parallelizable_model_classes)
        )

        config, inputs_dict = self.model_tester.prepare_config_and_inputs_for_common()

        for model_class in all_generative_and_parallelizable_model_classes:
            inputs_dict = self._prepare_for_class(inputs_dict, model_class)
            model = model_class(config)

            def cast_to_device(dictionary, device):
                output = {}
                for k, v in dictionary.items():
                    if isinstance(v, torch.Tensor):
                        output[k] = v.to(device)
                    else:
                        output[k] = v

                return output

            model.parallelize()
            model.generate(**cast_to_device(inputs_dict, "cuda:0"), num_beams=2)

1226

1227
global_rng = random.Random()
thomwolf's avatar
thomwolf committed
1228
1229


thomwolf's avatar
thomwolf committed
1230
def ids_tensor(shape, vocab_size, rng=None, name=None):
1231
    #  Creates a random int32 tensor of the shape within the vocab size
thomwolf's avatar
thomwolf committed
1232
    if rng is None:
1233
        rng = global_rng
thomwolf's avatar
thomwolf committed
1234

thomwolf's avatar
thomwolf committed
1235
1236
1237
    total_dims = 1
    for dim in shape:
        total_dims *= dim
thomwolf's avatar
thomwolf committed
1238

thomwolf's avatar
thomwolf committed
1239
1240
1241
    values = []
    for _ in range(total_dims):
        values.append(rng.randint(0, vocab_size - 1))
thomwolf's avatar
thomwolf committed
1242

1243
    return torch.tensor(data=values, dtype=torch.long, device=torch_device).view(shape).contiguous()
thomwolf's avatar
thomwolf committed
1244
1245


1246
1247
1248
1249
1250
1251
1252
def random_attention_mask(shape, rng=None, name=None):
    attn_mask = ids_tensor(shape, vocab_size=2, rng=None, name=None)
    # make sure that at least one token is attended to for each batch
    attn_mask[:, -1] = 1
    return attn_mask


1253
def floats_tensor(shape, scale=1.0, rng=None, name=None):
Patrick von Platen's avatar
Patrick von Platen committed
1254
    """Creates a random float32 tensor"""
1255
1256
1257
1258
1259
1260
1261
1262
1263
1264
1265
    if rng is None:
        rng = global_rng

    total_dims = 1
    for dim in shape:
        total_dims *= dim

    values = []
    for _ in range(total_dims):
        values.append(rng.random() * scale)

1266
    return torch.tensor(data=values, dtype=torch.float, device=torch_device).view(shape).contiguous()
1267
1268


1269
@require_torch
thomwolf's avatar
thomwolf committed
1270
class ModelUtilsTest(unittest.TestCase):
1271
    @slow
Patrick von Platen's avatar
Patrick von Platen committed
1272
    def test_model_from_pretrained(self):
1273
        for model_name in BERT_PRETRAINED_MODEL_ARCHIVE_LIST[:1]:
thomwolf's avatar
thomwolf committed
1274
1275
1276
1277
1278
1279
1280
1281
1282
1283
1284
1285
            config = BertConfig.from_pretrained(model_name)
            self.assertIsNotNone(config)
            self.assertIsInstance(config, PretrainedConfig)

            model = BertModel.from_pretrained(model_name)
            model, loading_info = BertModel.from_pretrained(model_name, output_loading_info=True)
            self.assertIsNotNone(model)
            self.assertIsInstance(model, PreTrainedModel)
            for value in loading_info.values():
                self.assertEqual(len(value), 0)

            config = BertConfig.from_pretrained(model_name, output_attentions=True, output_hidden_states=True)
Lysandre Debut's avatar
Lysandre Debut committed
1286
1287
1288
1289

            # Not sure this is the intended behavior. TODO fix Lysandre & Thom
            config.name_or_path = model_name

thomwolf's avatar
thomwolf committed
1290
1291
1292
            model = BertModel.from_pretrained(model_name, output_attentions=True, output_hidden_states=True)
            self.assertEqual(model.config.output_hidden_states, True)
            self.assertEqual(model.config, config)
1293
1294
1295
1296
1297
1298
1299
1300

    def test_model_from_pretrained_with_different_pretrained_model_name(self):
        model = T5ForConditionalGeneration.from_pretrained(TINY_T5)
        self.assertIsNotNone(model)

        with self.assertRaises(Exception) as context:
            BertModel.from_pretrained(TINY_T5)
        self.assertTrue("You tried to initiate a model of type" in str(context.exception))