test_modeling_common.py 95.9 KB
Newer Older
thomwolf's avatar
thomwolf committed
1
2
3
4
5
6
7
8
9
10
11
12
13
14
# coding=utf-8
# Copyright 2019 HuggingFace Inc.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
#     http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
Aymeric Augustin's avatar
Aymeric Augustin committed
15

16
import copy
17
import gc
18
import inspect
19
import json
20
import os
21
import os.path
Aymeric Augustin's avatar
Aymeric Augustin committed
22
import random
23
import sys
24
import tempfile
thomwolf's avatar
thomwolf committed
25
import unittest
26
import warnings
27
from pathlib import Path
NielsRogge's avatar
NielsRogge committed
28
from typing import Dict, List, Tuple
thomwolf's avatar
thomwolf committed
29

30
31
32
import numpy as np

import transformers
33
from huggingface_hub import Repository, delete_repo, login
Sylvain Gugger's avatar
Sylvain Gugger committed
34
from requests.exceptions import HTTPError
35
36
37
38
39
40
41
42
from transformers import (
    AutoConfig,
    AutoModel,
    AutoModelForSequenceClassification,
    PretrainedConfig,
    is_torch_available,
    logging,
)
43
from transformers.file_utils import WEIGHTS_NAME, is_flax_available, is_torch_fx_available
44
from transformers.models.auto import get_values
Sylvain Gugger's avatar
Sylvain Gugger committed
45
46
47
48
from transformers.testing_utils import (
    PASS,
    USER,
    CaptureLogger,
49
    TestCasePlus,
50
51
    is_pt_flax_cross_test,
    is_pt_tf_cross_test,
Sylvain Gugger's avatar
Sylvain Gugger committed
52
53
54
55
56
57
    is_staging_test,
    require_torch,
    require_torch_multi_gpu,
    slow,
    torch_device,
)
58

Aymeric Augustin's avatar
Aymeric Augustin committed
59

60
61
sys.path.append(str(Path(__file__).parent.parent / "utils"))

62
from test_module.custom_configuration import CustomConfig, NoSuperInitConfig  # noqa E402
63
64


65
if is_torch_available():
66
    import torch
67
    from torch import nn
thomwolf's avatar
thomwolf committed
68

69
    from test_module.custom_modeling import CustomModel, NoSuperInitModel
70
    from transformers import (
71
        BERT_PRETRAINED_MODEL_ARCHIVE_LIST,
72
        MODEL_FOR_AUDIO_XVECTOR_MAPPING,
NielsRogge's avatar
NielsRogge committed
73
        MODEL_FOR_CAUSAL_IMAGE_MODELING_MAPPING,
74
        MODEL_FOR_CAUSAL_LM_MAPPING,
75
        MODEL_FOR_IMAGE_CLASSIFICATION_MAPPING,
NielsRogge's avatar
NielsRogge committed
76
        MODEL_FOR_MASKED_IMAGE_MODELING_MAPPING,
77
        MODEL_FOR_MASKED_LM_MAPPING,
78
        MODEL_FOR_MULTIPLE_CHOICE_MAPPING,
79
        MODEL_FOR_NEXT_SENTENCE_PREDICTION_MAPPING,
80
        MODEL_FOR_QUESTION_ANSWERING_MAPPING,
81
82
83
        MODEL_FOR_SEQ_TO_SEQ_CAUSAL_LM_MAPPING,
        MODEL_FOR_SEQUENCE_CLASSIFICATION_MAPPING,
        MODEL_FOR_TOKEN_CLASSIFICATION_MAPPING,
84
        MODEL_MAPPING,
85
86
87
88
        AdaptiveEmbedding,
        BertConfig,
        BertModel,
        PreTrainedModel,
89
        T5Config,
90
        T5ForConditionalGeneration,
91
    )
thomwolf's avatar
thomwolf committed
92

93
94
95
96
97
98
99
if is_flax_available():
    import jax.numpy as jnp
    from transformers.modeling_flax_pytorch_utils import (
        convert_pytorch_state_dict_to_flax,
        load_flax_weights_in_pytorch_model,
    )

100
if is_torch_fx_available():
101
    from transformers.utils.fx import symbolic_trace
102

103

104
105
106
def _config_zero_init(config):
    configs_no_init = copy.deepcopy(config)
    for key in configs_no_init.__dict__.keys():
107
        if "_range" in key or "_std" in key or "initializer_factor" in key or "layer_scale" in key:
Lysandre Debut's avatar
Lysandre Debut committed
108
            setattr(configs_no_init, key, 1e-10)
109
110
    return configs_no_init

thomwolf's avatar
thomwolf committed
111

112
113
114
TINY_T5 = "patrickvonplaten/t5-tiny-random"


115
116
117
118
119
@require_torch
class ModelTesterMixin:

    model_tester = None
    all_model_classes = ()
120
    all_generative_model_classes = ()
121
    fx_compatible = False
Patrick von Platen's avatar
Patrick von Platen committed
122
123
124
    test_torchscript = True
    test_pruning = True
    test_resize_embeddings = True
125
    test_resize_position_embeddings = False
Patrick von Platen's avatar
Patrick von Platen committed
126
    test_head_masking = True
127
    test_mismatched_shapes = True
128
    test_missing_keys = True
129
    test_model_parallel = False
130
131
    is_encoder_decoder = False

132
133
    def _prepare_for_class(self, inputs_dict, model_class, return_labels=False):
        inputs_dict = copy.deepcopy(inputs_dict)
134
        if model_class in get_values(MODEL_FOR_MULTIPLE_CHOICE_MAPPING):
135
            inputs_dict = {
136
                k: v.unsqueeze(1).expand(-1, self.model_tester.num_choices, -1).contiguous()
137
                if isinstance(v, torch.Tensor) and v.ndim > 1
Sylvain Gugger's avatar
Sylvain Gugger committed
138
                else v
139
140
                for k, v in inputs_dict.items()
            }
141
142
        elif model_class in get_values(MODEL_FOR_AUDIO_XVECTOR_MAPPING):
            inputs_dict.pop("attention_mask")
143
144

        if return_labels:
145
            if model_class in get_values(MODEL_FOR_MULTIPLE_CHOICE_MAPPING):
146
                inputs_dict["labels"] = torch.ones(self.model_tester.batch_size, dtype=torch.long, device=torch_device)
147
            elif model_class in get_values(MODEL_FOR_QUESTION_ANSWERING_MAPPING):
148
149
150
151
152
153
                inputs_dict["start_positions"] = torch.zeros(
                    self.model_tester.batch_size, dtype=torch.long, device=torch_device
                )
                inputs_dict["end_positions"] = torch.zeros(
                    self.model_tester.batch_size, dtype=torch.long, device=torch_device
                )
154
            elif model_class in [
155
156
157
                *get_values(MODEL_FOR_SEQUENCE_CLASSIFICATION_MAPPING),
                *get_values(MODEL_FOR_NEXT_SENTENCE_PREDICTION_MAPPING),
                *get_values(MODEL_FOR_IMAGE_CLASSIFICATION_MAPPING),
158
            ]:
159
160
161
162
                inputs_dict["labels"] = torch.zeros(
                    self.model_tester.batch_size, dtype=torch.long, device=torch_device
                )
            elif model_class in [
163
164
                *get_values(MODEL_FOR_TOKEN_CLASSIFICATION_MAPPING),
                *get_values(MODEL_FOR_CAUSAL_LM_MAPPING),
NielsRogge's avatar
NielsRogge committed
165
                *get_values(MODEL_FOR_CAUSAL_IMAGE_MODELING_MAPPING),
166
167
                *get_values(MODEL_FOR_MASKED_LM_MAPPING),
                *get_values(MODEL_FOR_SEQ_TO_SEQ_CAUSAL_LM_MAPPING),
168
169
170
171
            ]:
                inputs_dict["labels"] = torch.zeros(
                    (self.model_tester.batch_size, self.model_tester.seq_length), dtype=torch.long, device=torch_device
                )
NielsRogge's avatar
NielsRogge committed
172
173
174
175
176
            elif model_class in get_values(MODEL_FOR_MASKED_IMAGE_MODELING_MAPPING):
                num_patches = self.model_tester.image_size // self.model_tester.patch_size
                inputs_dict["bool_masked_pos"] = torch.zeros(
                    (self.model_tester.batch_size, num_patches**2), dtype=torch.long, device=torch_device
                )
177

178
179
        return inputs_dict

Patrick von Platen's avatar
Patrick von Platen committed
180
    def test_save_load(self):
181
182
183
184
185
186
187
        config, inputs_dict = self.model_tester.prepare_config_and_inputs_for_common()

        for model_class in self.all_model_classes:
            model = model_class(config)
            model.to(torch_device)
            model.eval()
            with torch.no_grad():
188
                outputs = model(**self._prepare_for_class(inputs_dict, model_class))
Weizhen's avatar
Weizhen committed
189

190
            out_2 = outputs[0].cpu().numpy()
191
            out_2[np.isnan(out_2)] = 0
192

193
            with tempfile.TemporaryDirectory() as tmpdirname:
194
195
                model.save_pretrained(tmpdirname)
                model = model_class.from_pretrained(tmpdirname)
196
                model.to(torch_device)
197
                with torch.no_grad():
198
                    after_outputs = model(**self._prepare_for_class(inputs_dict, model_class))
thomwolf's avatar
thomwolf committed
199

200
201
202
                # Make sure we don't have nans
                out_1 = after_outputs[0].cpu().numpy()
                out_1[np.isnan(out_1)] = 0
thomwolf's avatar
thomwolf committed
203
204
                max_diff = np.amax(np.abs(out_1 - out_2))
                self.assertLessEqual(max_diff, 1e-5)
205

206
    def test_save_load_keys_to_ignore_on_save(self):
207
208
209
210
        config, inputs_dict = self.model_tester.prepare_config_and_inputs_for_common()

        for model_class in self.all_model_classes:
            model = model_class(config)
211
212
            _keys_to_ignore_on_save = getattr(model, "_keys_to_ignore_on_save", None)
            if _keys_to_ignore_on_save is None:
213
214
215
                continue

            # check the keys are in the original state_dict
216
            for k in _keys_to_ignore_on_save:
217
                self.assertIn(k, model.state_dict().keys(), "\n".join(model.state_dict().keys()))
218
219
220
221
222
223

            # check that certain keys didn't get saved with the model
            with tempfile.TemporaryDirectory() as tmpdirname:
                model.save_pretrained(tmpdirname)
                output_model_file = os.path.join(tmpdirname, WEIGHTS_NAME)
                state_dict_saved = torch.load(output_model_file)
224
                for k in _keys_to_ignore_on_save:
225
                    self.assertNotIn(k, state_dict_saved.keys(), "\n".join(state_dict_saved.keys()))
226

Sylvain Gugger's avatar
Sylvain Gugger committed
227
228
229
                # Test we can load the state dict in the model, necessary for the checkpointing API in Trainer.
                load_result = model.load_state_dict(state_dict_saved, strict=False)
                self.assertTrue(
230
231
                    len(load_result.missing_keys) == 0
                    or set(load_result.missing_keys) == set(model._keys_to_ignore_on_save)
Sylvain Gugger's avatar
Sylvain Gugger committed
232
233
234
                )
                self.assertTrue(len(load_result.unexpected_keys) == 0)

235
236
237
238
239
240
241
242
243
244
245
    def test_gradient_checkpointing_backward_compatibility(self):
        config, inputs_dict = self.model_tester.prepare_config_and_inputs_for_common()

        for model_class in self.all_model_classes:
            if not model_class.supports_gradient_checkpointing:
                continue

            config.gradient_checkpointing = True
            model = model_class(config)
            self.assertTrue(model.is_gradient_checkpointing)

246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
    def test_gradient_checkpointing_enable_disable(self):
        config, inputs_dict = self.model_tester.prepare_config_and_inputs_for_common()

        for model_class in self.all_model_classes:
            if not model_class.supports_gradient_checkpointing:
                continue

            # at init model should have gradient checkpointing disabled
            model = model_class(config)
            self.assertFalse(model.is_gradient_checkpointing)

            # check enable works
            model.gradient_checkpointing_enable()
            self.assertTrue(model.is_gradient_checkpointing)

            # check disable works
            model.gradient_checkpointing_disable()
            self.assertFalse(model.is_gradient_checkpointing)

265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
    def _mock_init_weights(self, module):
        if hasattr(module, "weight") and module.weight is not None:
            module.weight.data.fill_(3)
        if hasattr(module, "bias") and module.bias is not None:
            module.bias.data.fill_(3)

    def test_save_load_fast_init_from_base(self):
        config, inputs_dict = self.model_tester.prepare_config_and_inputs_for_common()
        base_class = MODEL_MAPPING[config.__class__]

        if isinstance(base_class, tuple):
            base_class = base_class[0]

        for model_class in self.all_model_classes:
            if model_class == base_class:
                continue

            # make a copy of model class to not break future tests
            # from https://stackoverflow.com/questions/9541025/how-to-copy-a-python-class
            class CopyClass(model_class):
                pass

            model_class_copy = CopyClass

            # make sure that all keys are expected for test
            model_class_copy._keys_to_ignore_on_load_missing = []

            # make init deterministic, but make sure that
            # non-initialized weights throw errors nevertheless
            model_class_copy._init_weights = self._mock_init_weights

            model = base_class(config)
            state_dict = model.state_dict()

            # this will often delete a single weight of a multi-weight module
            # to test an edge case
            random_key_to_del = random.choice(list(state_dict.keys()))
            del state_dict[random_key_to_del]

            # check that certain keys didn't get saved with the model
            with tempfile.TemporaryDirectory() as tmpdirname:
                model.save_pretrained(tmpdirname)
                torch.save(state_dict, os.path.join(tmpdirname, "pytorch_model.bin"))

                model_fast_init = model_class_copy.from_pretrained(tmpdirname)
                model_slow_init = model_class_copy.from_pretrained(tmpdirname, _fast_init=False)

                for key in model_fast_init.state_dict().keys():
                    max_diff = (model_slow_init.state_dict()[key] - model_fast_init.state_dict()[key]).sum().item()
                    self.assertLessEqual(max_diff, 1e-3, msg=f"{key} not identical")

    def test_save_load_fast_init_to_base(self):
        config, inputs_dict = self.model_tester.prepare_config_and_inputs_for_common()
        base_class = MODEL_MAPPING[config.__class__]

        if isinstance(base_class, tuple):
            base_class = base_class[0]

        for model_class in self.all_model_classes:

            if model_class == base_class:
                continue

            # make a copy of model class to not break future tests
            # from https://stackoverflow.com/questions/9541025/how-to-copy-a-python-class
            class CopyClass(base_class):
                pass

            base_class_copy = CopyClass

            # make sure that all keys are expected for test
            base_class_copy._keys_to_ignore_on_load_missing = []

            # make init deterministic, but make sure that
            # non-initialized weights throw errors nevertheless
            base_class_copy._init_weights = self._mock_init_weights

            model = model_class(config)
            state_dict = model.state_dict()

            # this will often delete a single weight of a multi-weight module
            # to test an edge case
            random_key_to_del = random.choice(list(state_dict.keys()))
            del state_dict[random_key_to_del]

            # check that certain keys didn't get saved with the model
            with tempfile.TemporaryDirectory() as tmpdirname:
                model.config.save_pretrained(tmpdirname)
                torch.save(state_dict, os.path.join(tmpdirname, "pytorch_model.bin"))

                model_fast_init = base_class_copy.from_pretrained(tmpdirname)
                model_slow_init = base_class_copy.from_pretrained(tmpdirname, _fast_init=False)

                for key in model_fast_init.state_dict().keys():
                    max_diff = (model_slow_init.state_dict()[key] - model_fast_init.state_dict()[key]).sum().item()
                    self.assertLessEqual(max_diff, 1e-3, msg=f"{key} not identical")

Patrick von Platen's avatar
Patrick von Platen committed
362
    def test_initialization(self):
363
364
365
366
367
368
369
370
        config, inputs_dict = self.model_tester.prepare_config_and_inputs_for_common()

        configs_no_init = _config_zero_init(config)
        for model_class in self.all_model_classes:
            model = model_class(config=configs_no_init)
            for name, param in model.named_parameters():
                if param.requires_grad:
                    self.assertIn(
Lysandre Debut's avatar
Lysandre Debut committed
371
                        ((param.data.mean() * 1e9).round() / 1e9).item(),
372
                        [0.0, 1.0],
373
                        msg=f"Parameter {name} of model {model_class} seems not properly initialized",
374
                    )
thomwolf's avatar
thomwolf committed
375

Patrick von Platen's avatar
Patrick von Platen committed
376
    def test_determinism(self):
377
378
379
380
381
382
        config, inputs_dict = self.model_tester.prepare_config_and_inputs_for_common()
        for model_class in self.all_model_classes:
            model = model_class(config)
            model.to(torch_device)
            model.eval()
            with torch.no_grad():
383
384
                first = model(**self._prepare_for_class(inputs_dict, model_class))[0]
                second = model(**self._prepare_for_class(inputs_dict, model_class))[0]
Weizhen's avatar
Weizhen committed
385

386
387
388
389
390
391
392
            out_1 = first.cpu().numpy()
            out_2 = second.cpu().numpy()
            out_1 = out_1[~np.isnan(out_1)]
            out_2 = out_2[~np.isnan(out_2)]
            max_diff = np.amax(np.abs(out_1 - out_2))
            self.assertLessEqual(max_diff, 1e-5)

393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
    def test_forward_signature(self):
        config, _ = self.model_tester.prepare_config_and_inputs_for_common()

        for model_class in self.all_model_classes:
            model = model_class(config)
            signature = inspect.signature(model.forward)
            # signature.parameters is an OrderedDict => so arg_names order is deterministic
            arg_names = [*signature.parameters.keys()]

            if model.config.is_encoder_decoder:
                expected_arg_names = [
                    "input_ids",
                    "attention_mask",
                    "decoder_input_ids",
                    "decoder_attention_mask",
                ]
409
                expected_arg_names.extend(
410
411
                    ["head_mask", "decoder_head_mask", "cross_attn_head_mask", "encoder_outputs"]
                    if "head_mask" and "decoder_head_mask" and "cross_attn_head_mask" in arg_names
412
413
414
                    else ["encoder_outputs"]
                )
                self.assertListEqual(arg_names[: len(expected_arg_names)], expected_arg_names)
415
416
417
418
            else:
                expected_arg_names = ["input_ids"]
                self.assertListEqual(arg_names[:1], expected_arg_names)

419
420
421
422
423
    def test_training(self):
        if not self.model_tester.is_training:
            return

        for model_class in self.all_model_classes:
424
425
426
            config, inputs_dict = self.model_tester.prepare_config_and_inputs_for_common()
            config.return_dict = True

427
            if model_class in get_values(MODEL_MAPPING):
428
                continue
429

430
431
432
433
434
435
436
437
            model = model_class(config)
            model.to(torch_device)
            model.train()
            inputs = self._prepare_for_class(inputs_dict, model_class, return_labels=True)
            loss = model(**inputs).loss
            loss.backward()

    def test_training_gradient_checkpointing(self):
438
        if not self.model_tester.is_training:
439
440
441
            return

        for model_class in self.all_model_classes:
442
443
444
445
            config, inputs_dict = self.model_tester.prepare_config_and_inputs_for_common()
            config.use_cache = False
            config.return_dict = True

446
            if model_class in get_values(MODEL_MAPPING) or not model_class.supports_gradient_checkpointing:
447
448
449
                continue
            model = model_class(config)
            model.to(torch_device)
450
            model.gradient_checkpointing_enable()
451
452
453
454
455
            model.train()
            inputs = self._prepare_for_class(inputs_dict, model_class, return_labels=True)
            loss = model(**inputs).loss
            loss.backward()

Patrick von Platen's avatar
Patrick von Platen committed
456
    def test_attention_outputs(self):
457
        config, inputs_dict = self.model_tester.prepare_config_and_inputs_for_common()
Weizhen's avatar
Weizhen committed
458
459
        config.return_dict = True

sshleifer's avatar
sshleifer committed
460
        seq_len = getattr(self.model_tester, "seq_length", None)
sshleifer's avatar
sshleifer committed
461
462
        decoder_seq_length = getattr(self.model_tester, "decoder_seq_length", seq_len)
        encoder_seq_length = getattr(self.model_tester, "encoder_seq_length", seq_len)
Weizhen's avatar
Weizhen committed
463
        decoder_key_length = getattr(self.model_tester, "decoder_key_length", decoder_seq_length)
464
        encoder_key_length = getattr(self.model_tester, "key_length", encoder_seq_length)
Patrick von Platen's avatar
Patrick von Platen committed
465
466
467
        chunk_length = getattr(self.model_tester, "chunk_length", None)
        if chunk_length is not None and hasattr(self.model_tester, "num_hashes"):
            encoder_seq_length = encoder_seq_length * self.model_tester.num_hashes
468
469

        for model_class in self.all_model_classes:
470
            inputs_dict["output_attentions"] = True
Joseph Liu's avatar
Joseph Liu committed
471
            inputs_dict["output_hidden_states"] = False
472
            config.return_dict = True
473
474
475
476
            model = model_class(config)
            model.to(torch_device)
            model.eval()
            with torch.no_grad():
477
                outputs = model(**self._prepare_for_class(inputs_dict, model_class))
478
            attentions = outputs.encoder_attentions if config.is_encoder_decoder else outputs.attentions
479
480
481
482
483
484
485
486
487
            self.assertEqual(len(attentions), self.model_tester.num_hidden_layers)

            # check that output_attentions also work using config
            del inputs_dict["output_attentions"]
            config.output_attentions = True
            model = model_class(config)
            model.to(torch_device)
            model.eval()
            with torch.no_grad():
488
489
                outputs = model(**self._prepare_for_class(inputs_dict, model_class))
            attentions = outputs.encoder_attentions if config.is_encoder_decoder else outputs.attentions
490
            self.assertEqual(len(attentions), self.model_tester.num_hidden_layers)
Patrick von Platen's avatar
Patrick von Platen committed
491
492
493
494
495
496
497
498
499
500
501

            if chunk_length is not None:
                self.assertListEqual(
                    list(attentions[0].shape[-4:]),
                    [self.model_tester.num_attention_heads, encoder_seq_length, chunk_length, encoder_key_length],
                )
            else:
                self.assertListEqual(
                    list(attentions[0].shape[-3:]),
                    [self.model_tester.num_attention_heads, encoder_seq_length, encoder_key_length],
                )
502
            out_len = len(outputs)
thomwolf's avatar
thomwolf committed
503

504
            if self.is_encoder_decoder:
505
                correct_outlen = 5
506

507
508
509
510
                # loss is at first position
                if "labels" in inputs_dict:
                    correct_outlen += 1  # loss is added to beginning
                # Question Answering model returns start_logits and end_logits
511
                if model_class in get_values(MODEL_FOR_QUESTION_ANSWERING_MAPPING):
512
                    correct_outlen += 1  # start_logits and end_logits instead of only 1 output
513
514
                if "past_key_values" in outputs:
                    correct_outlen += 1  # past_key_values have been returned
Weizhen's avatar
Weizhen committed
515

Sam Shleifer's avatar
Sam Shleifer committed
516
517
                self.assertEqual(out_len, correct_outlen)

518
                # decoder attentions
519
                decoder_attentions = outputs.decoder_attentions
Sam Shleifer's avatar
Sam Shleifer committed
520
                self.assertIsInstance(decoder_attentions, (list, tuple))
521
                self.assertEqual(len(decoder_attentions), self.model_tester.num_hidden_layers)
thomwolf's avatar
thomwolf committed
522
                self.assertListEqual(
523
524
                    list(decoder_attentions[0].shape[-3:]),
                    [self.model_tester.num_attention_heads, decoder_seq_length, decoder_key_length],
525
                )
thomwolf's avatar
thomwolf committed
526

527
528
529
530
531
532
533
534
535
536
537
538
539
                # cross attentions
                cross_attentions = outputs.cross_attentions
                self.assertIsInstance(cross_attentions, (list, tuple))
                self.assertEqual(len(cross_attentions), self.model_tester.num_hidden_layers)
                self.assertListEqual(
                    list(cross_attentions[0].shape[-3:]),
                    [
                        self.model_tester.num_attention_heads,
                        decoder_seq_length,
                        encoder_key_length,
                    ],
                )

540
            # Check attention is always last and order is fine
541
            inputs_dict["output_attentions"] = True
Joseph Liu's avatar
Joseph Liu committed
542
            inputs_dict["output_hidden_states"] = True
543
544
545
546
            model = model_class(config)
            model.to(torch_device)
            model.eval()
            with torch.no_grad():
547
                outputs = model(**self._prepare_for_class(inputs_dict, model_class))
548

Weizhen's avatar
Weizhen committed
549
550
551
552
553
554
555
556
            if hasattr(self.model_tester, "num_hidden_states_types"):
                added_hidden_states = self.model_tester.num_hidden_states_types
            elif self.is_encoder_decoder:
                added_hidden_states = 2
            else:
                added_hidden_states = 1
            self.assertEqual(out_len + added_hidden_states, len(outputs))

557
558
            self_attentions = outputs.encoder_attentions if config.is_encoder_decoder else outputs.attentions

559
            self.assertEqual(len(self_attentions), self.model_tester.num_hidden_layers)
Patrick von Platen's avatar
Patrick von Platen committed
560
561
562
563
564
565
566
567
568
569
            if chunk_length is not None:
                self.assertListEqual(
                    list(self_attentions[0].shape[-4:]),
                    [self.model_tester.num_attention_heads, encoder_seq_length, chunk_length, encoder_key_length],
                )
            else:
                self.assertListEqual(
                    list(self_attentions[0].shape[-3:]),
                    [self.model_tester.num_attention_heads, encoder_seq_length, encoder_key_length],
                )
thomwolf's avatar
thomwolf committed
570

571
    @slow
Patrick von Platen's avatar
Patrick von Platen committed
572
    def test_torchscript(self):
573
574
        config, inputs_dict = self.model_tester.prepare_config_and_inputs_for_common()
        self._create_and_check_torchscript(config, inputs_dict)
thomwolf's avatar
thomwolf committed
575

576
    @slow
Patrick von Platen's avatar
Patrick von Platen committed
577
    def test_torchscript_output_attentions(self):
578
579
580
        config, inputs_dict = self.model_tester.prepare_config_and_inputs_for_common()
        config.output_attentions = True
        self._create_and_check_torchscript(config, inputs_dict)
thomwolf's avatar
thomwolf committed
581

582
    @slow
Patrick von Platen's avatar
Patrick von Platen committed
583
    def test_torchscript_output_hidden_state(self):
584
585
586
        config, inputs_dict = self.model_tester.prepare_config_and_inputs_for_common()
        config.output_hidden_states = True
        self._create_and_check_torchscript(config, inputs_dict)
thomwolf's avatar
thomwolf committed
587

588
    def _create_and_check_torchscript(self, config, inputs_dict):
Patrick von Platen's avatar
Patrick von Platen committed
589
        if not self.test_torchscript:
590
            return
591

592
593
594
595
596
597
        configs_no_init = _config_zero_init(config)  # To be sure we have no Nan
        configs_no_init.torchscript = True
        for model_class in self.all_model_classes:
            model = model_class(config=configs_no_init)
            model.to(torch_device)
            model.eval()
598
            inputs = self._prepare_for_class(inputs_dict, model_class)
thomwolf's avatar
thomwolf committed
599

600
            try:
601
                if model.config.is_encoder_decoder:
602
                    model.config.use_cache = False  # FSTM still requires this hack -> FSTM should probably be refactored similar to BART afterward
603
604
605
606
607
608
609
610
611
612
                    input_ids = inputs["input_ids"]
                    attention_mask = inputs["attention_mask"]
                    decoder_input_ids = inputs["decoder_input_ids"]
                    decoder_attention_mask = inputs["decoder_attention_mask"]
                    traced_model = torch.jit.trace(
                        model, (input_ids, attention_mask, decoder_input_ids, decoder_attention_mask)
                    )
                else:
                    input_ids = inputs["input_ids"]
                    traced_model = torch.jit.trace(model, input_ids)
613
614
            except RuntimeError:
                self.fail("Couldn't trace module.")
thomwolf's avatar
thomwolf committed
615

616
            with tempfile.TemporaryDirectory() as tmp_dir_name:
617
                pt_file_name = os.path.join(tmp_dir_name, "traced_model.pt")
thomwolf's avatar
thomwolf committed
618

619
                try:
620
                    torch.jit.save(traced_model, pt_file_name)
621
622
                except Exception:
                    self.fail("Couldn't save module.")
thomwolf's avatar
thomwolf committed
623

624
625
626
627
                try:
                    loaded_model = torch.jit.load(pt_file_name)
                except Exception:
                    self.fail("Couldn't load module.")
LysandreJik's avatar
LysandreJik committed
628

629
630
            model.to(torch_device)
            model.eval()
thomwolf's avatar
thomwolf committed
631

632
633
            loaded_model.to(torch_device)
            loaded_model.eval()
thomwolf's avatar
thomwolf committed
634

635
636
637
            model_state_dict = model.state_dict()
            loaded_model_state_dict = loaded_model.state_dict()

638
639
640
641
642
643
644
645
646
            non_persistent_buffers = {}
            for key in loaded_model_state_dict.keys():
                if key not in model_state_dict.keys():
                    non_persistent_buffers[key] = loaded_model_state_dict[key]

            loaded_model_state_dict = {
                key: value for key, value in loaded_model_state_dict.items() if key not in non_persistent_buffers
            }

647
            self.assertEqual(set(model_state_dict.keys()), set(loaded_model_state_dict.keys()))
thomwolf's avatar
thomwolf committed
648

649
650
651
652
653
654
655
656
657
658
659
            model_buffers = list(model.buffers())
            for non_persistent_buffer in non_persistent_buffers.values():
                found_buffer = False
                for i, model_buffer in enumerate(model_buffers):
                    if torch.equal(non_persistent_buffer, model_buffer):
                        found_buffer = True
                        break

                self.assertTrue(found_buffer)
                model_buffers.pop(i)

660
            models_equal = True
661
            for layer_name, p1 in model_state_dict.items():
662
663
664
665
                if layer_name in loaded_model_state_dict:
                    p2 = loaded_model_state_dict[layer_name]
                    if p1.data.ne(p2.data).sum() > 0:
                        models_equal = False
thomwolf's avatar
thomwolf committed
666

667
            self.assertTrue(models_equal)
thomwolf's avatar
thomwolf committed
668

669
670
671
672
673
674
675
676
    def test_torch_fx(self):
        config, inputs_dict = self.model_tester.prepare_config_and_inputs_for_common()
        self._create_and_check_torch_fx_tracing(config, inputs_dict)

    def test_torch_fx_output_loss(self):
        config, inputs_dict = self.model_tester.prepare_config_and_inputs_for_common()
        self._create_and_check_torch_fx_tracing(config, inputs_dict, output_loss=True)

677
678
    def _create_and_check_torch_fx_tracing(self, config, inputs_dict, output_loss=False):
        if not is_torch_fx_available() or not self.fx_compatible:
679
680
681
682
683
            return

        configs_no_init = _config_zero_init(config)  # To be sure we have no Nan
        configs_no_init.return_dict = False

684
        for model_class in self.all_model_classes:
685
686
687
688
689
690
691
692
693
694
695
696
            model = model_class(config=configs_no_init)
            model.to(torch_device)
            model.eval()
            inputs = self._prepare_for_class(inputs_dict, model_class, return_labels=output_loss)

            try:
                if model.config.is_encoder_decoder:
                    model.config.use_cache = False  # FSTM still requires this hack -> FSTM should probably be refactored similar to BART afterward
                    labels = inputs.get("labels", None)
                    input_names = ["input_ids", "attention_mask", "decoder_input_ids", "decoder_attention_mask"]
                    if labels is not None:
                        input_names.append("labels")
697
                    filtered_inputs = {k: v for (k, v) in inputs.items() if k in input_names}
698

699
                    model_output = model(**filtered_inputs)
700

701
                    traced_model = symbolic_trace(model, input_names)
702
                    traced_output = traced_model(**filtered_inputs)
703
                else:
704
                    input_names = ["input_ids", "attention_mask", "token_type_ids"]
705
                    input_ids = inputs["input_ids"]
706

707
                    labels = inputs.get("labels", None)
708
709
                    start_positions = inputs.get("start_positions", None)
                    end_positions = inputs.get("end_positions", None)
710
711
                    if labels is not None:
                        input_names.append("labels")
712
713
714
715
                    if start_positions is not None:
                        input_names.append("start_positions")
                    if end_positions is not None:
                        input_names.append("end_positions")
716

717
718
                    filtered_inputs = {k: v for (k, v) in inputs.items() if k in input_names}
                    input_names = filtered_inputs.keys()
719

720
                    model_output = model(**filtered_inputs)
721

722
                    rank = len(input_ids.shape)
723
                    if rank not in [2, 3]:
724
725
726
                        raise NotImplementedError(
                            f"symbolic_trace automatic parameters inference not implemented for input of rank {rank}."
                        )
727

728
                    traced_model = symbolic_trace(model, input_names)
729
                    traced_output = traced_model(**filtered_inputs)
730
731
732
733

            except RuntimeError:
                self.fail("Couldn't trace module.")

734
735
736
737
738
739
740
741
742
743
744
745
746
            def flatten_output(output):
                flatten = []
                for x in output:
                    if isinstance(x, (tuple, list)):
                        flatten += flatten_output(x)
                    elif not isinstance(x, torch.Tensor):
                        continue
                    else:
                        flatten.append(x)
                return flatten

            model_output = flatten_output(model_output)
            traced_output = flatten_output(traced_output)
747
            num_outputs = len(model_output)
748
749
750
751
752
753

            for i in range(num_outputs):
                self.assertTrue(
                    torch.allclose(model_output[i], traced_output[i]),
                    f"traced {i}th output doesn't match model {i}th output for {model_class}",
                )
754

Patrick von Platen's avatar
Patrick von Platen committed
755
756
    def test_headmasking(self):
        if not self.test_head_masking:
757
            return
758

759
760
761
        global_rng.seed(42)
        config, inputs_dict = self.model_tester.prepare_config_and_inputs_for_common()
        global_rng.seed()
LysandreJik's avatar
LysandreJik committed
762

763
        inputs_dict["output_attentions"] = True
764
765
766
767
768
769
        config.output_hidden_states = True
        configs_no_init = _config_zero_init(config)  # To be sure we have no Nan
        for model_class in self.all_model_classes:
            model = model_class(config=configs_no_init)
            model.to(torch_device)
            model.eval()
LysandreJik's avatar
LysandreJik committed
770

771
772
773
            # Prepare head_mask
            # Set require_grad after having prepared the tensor to avoid error (leaf variable has been moved into the graph interior)
            head_mask = torch.ones(
Lysandre's avatar
Lysandre committed
774
775
776
                self.model_tester.num_hidden_layers,
                self.model_tester.num_attention_heads,
                device=torch_device,
777
778
779
780
            )
            head_mask[0, 0] = 0
            head_mask[-1, :-1] = 0
            head_mask.requires_grad_(requires_grad=True)
781
            inputs = self._prepare_for_class(inputs_dict, model_class).copy()
782
            inputs["head_mask"] = head_mask
783
784
785
786
787
            if model.config.is_encoder_decoder:
                signature = inspect.signature(model.forward)
                arg_names = [*signature.parameters.keys()]
                if "decoder_head_mask" in arg_names:  # necessary diferentiation because of T5 model
                    inputs["decoder_head_mask"] = head_mask
788
789
                if "cross_attn_head_mask" in arg_names:
                    inputs["cross_attn_head_mask"] = head_mask
790
            outputs = model(**inputs, return_dict=True)
791
792
793
794
795
796
797
798
799

            # Test that we can get a gradient back for importance score computation
            output = sum(t.sum() for t in outputs[0])
            output = output.sum()
            output.backward()
            multihead_outputs = head_mask.grad

            self.assertIsNotNone(multihead_outputs)
            self.assertEqual(len(multihead_outputs), self.model_tester.num_hidden_layers)
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820

            def check_attentions_validity(attentions):
                # Remove Nan
                for t in attentions:
                    self.assertLess(
                        torch.sum(torch.isnan(t)), t.numel() / 4
                    )  # Check we don't have more than 25% nans (arbitrary)
                attentions = [
                    t.masked_fill(torch.isnan(t), 0.0) for t in attentions
                ]  # remove them (the test is less complete)

                self.assertAlmostEqual(attentions[0][..., 0, :, :].flatten().sum().item(), 0.0)
                self.assertNotEqual(attentions[0][..., -1, :, :].flatten().sum().item(), 0.0)
                if len(attentions) > 2:  # encoder-decoder models have only 2 layers in each module
                    self.assertNotEqual(attentions[1][..., 0, :, :].flatten().sum().item(), 0.0)
                self.assertAlmostEqual(attentions[-1][..., -2, :, :].flatten().sum().item(), 0.0)
                self.assertNotEqual(attentions[-1][..., -1, :, :].flatten().sum().item(), 0.0)

            if model.config.is_encoder_decoder:
                check_attentions_validity(outputs.encoder_attentions)
                check_attentions_validity(outputs.decoder_attentions)
821
                check_attentions_validity(outputs.cross_attentions)
822
823
            else:
                check_attentions_validity(outputs.attentions)
824

Patrick von Platen's avatar
Patrick von Platen committed
825
826
    def test_head_pruning(self):
        if not self.test_pruning:
827
828
829
            return

        for model_class in self.all_model_classes:
Lysandre's avatar
Lysandre committed
830
831
832
833
            (
                config,
                inputs_dict,
            ) = self.model_tester.prepare_config_and_inputs_for_common()
834

835
836
            if "head_mask" in inputs_dict:
                del inputs_dict["head_mask"]
837

838
            inputs_dict["output_attentions"] = True
839
840
841
842
            config.output_hidden_states = False
            model = model_class(config=config)
            model.to(torch_device)
            model.eval()
843
844
845
846
            heads_to_prune = {
                0: list(range(1, self.model_tester.num_attention_heads)),
                -1: [0],
            }
847
848
            model.prune_heads(heads_to_prune)
            with torch.no_grad():
849
                outputs = model(**self._prepare_for_class(inputs_dict, model_class))
850

851
            attentions = outputs[-1]
852

853
854
855
            self.assertEqual(attentions[0].shape[-3], 1)
            self.assertEqual(attentions[1].shape[-3], self.model_tester.num_attention_heads)
            self.assertEqual(attentions[-1].shape[-3], self.model_tester.num_attention_heads - 1)
LysandreJik's avatar
LysandreJik committed
856

Patrick von Platen's avatar
Patrick von Platen committed
857
858
    def test_head_pruning_save_load_from_pretrained(self):
        if not self.test_pruning:
859
            return
LysandreJik's avatar
LysandreJik committed
860

861
        for model_class in self.all_model_classes:
Lysandre's avatar
Lysandre committed
862
863
864
865
            (
                config,
                inputs_dict,
            ) = self.model_tester.prepare_config_and_inputs_for_common()
866
867
868

            if "head_mask" in inputs_dict:
                del inputs_dict["head_mask"]
869

870
            inputs_dict["output_attentions"] = True
871
872
873
874
            config.output_hidden_states = False
            model = model_class(config=config)
            model.to(torch_device)
            model.eval()
875
876
877
878
            heads_to_prune = {
                0: list(range(1, self.model_tester.num_attention_heads)),
                -1: [0],
            }
879
            model.prune_heads(heads_to_prune)
880

881
            with tempfile.TemporaryDirectory() as temp_dir_name:
882
883
                model.save_pretrained(temp_dir_name)
                model = model_class.from_pretrained(temp_dir_name)
884
                model.to(torch_device)
885

886
            with torch.no_grad():
887
                outputs = model(**self._prepare_for_class(inputs_dict, model_class))
888
889
890
891
            attentions = outputs[-1]
            self.assertEqual(attentions[0].shape[-3], 1)
            self.assertEqual(attentions[1].shape[-3], self.model_tester.num_attention_heads)
            self.assertEqual(attentions[-1].shape[-3], self.model_tester.num_attention_heads - 1)
892

Patrick von Platen's avatar
Patrick von Platen committed
893
894
    def test_head_pruning_save_load_from_config_init(self):
        if not self.test_pruning:
895
            return
896

897
        for model_class in self.all_model_classes:
Lysandre's avatar
Lysandre committed
898
899
900
901
            (
                config,
                inputs_dict,
            ) = self.model_tester.prepare_config_and_inputs_for_common()
902

903
904
            if "head_mask" in inputs_dict:
                del inputs_dict["head_mask"]
905

906
            inputs_dict["output_attentions"] = True
907
            config.output_hidden_states = False
908

909
910
911
912
            heads_to_prune = {
                0: list(range(1, self.model_tester.num_attention_heads)),
                -1: [0],
            }
913
            config.pruned_heads = heads_to_prune
914

915
916
917
            model = model_class(config=config)
            model.to(torch_device)
            model.eval()
918

919
            with torch.no_grad():
920
                outputs = model(**self._prepare_for_class(inputs_dict, model_class))
921
            attentions = outputs[-1]
922

923
924
925
            self.assertEqual(attentions[0].shape[-3], 1)
            self.assertEqual(attentions[1].shape[-3], self.model_tester.num_attention_heads)
            self.assertEqual(attentions[-1].shape[-3], self.model_tester.num_attention_heads - 1)
926

Patrick von Platen's avatar
Patrick von Platen committed
927
928
    def test_head_pruning_integration(self):
        if not self.test_pruning:
929
            return
930

931
        for model_class in self.all_model_classes:
Lysandre's avatar
Lysandre committed
932
933
934
935
            (
                config,
                inputs_dict,
            ) = self.model_tester.prepare_config_and_inputs_for_common()
936

937
938
            if "head_mask" in inputs_dict:
                del inputs_dict["head_mask"]
939

940
            inputs_dict["output_attentions"] = True
941
            config.output_hidden_states = False
942

943
944
            heads_to_prune = {0: [0], 1: [1, 2]}
            config.pruned_heads = heads_to_prune
945

946
947
948
            model = model_class(config=config)
            model.to(torch_device)
            model.eval()
949

950
            with torch.no_grad():
951
                outputs = model(**self._prepare_for_class(inputs_dict, model_class))
952
            attentions = outputs[-1]
953

954
955
956
957
            self.assertEqual(attentions[0].shape[-3], self.model_tester.num_attention_heads - 1)
            self.assertEqual(attentions[1].shape[-3], self.model_tester.num_attention_heads - 2)
            self.assertEqual(attentions[2].shape[-3], self.model_tester.num_attention_heads)
            self.assertEqual(attentions[3].shape[-3], self.model_tester.num_attention_heads)
thomwolf's avatar
thomwolf committed
958

959
            with tempfile.TemporaryDirectory() as temp_dir_name:
960
961
                model.save_pretrained(temp_dir_name)
                model = model_class.from_pretrained(temp_dir_name)
962
                model.to(torch_device)
thomwolf's avatar
thomwolf committed
963

964
            with torch.no_grad():
965
                outputs = model(**self._prepare_for_class(inputs_dict, model_class))
966
            attentions = outputs[-1]
LysandreJik's avatar
LysandreJik committed
967

968
969
970
971
            self.assertEqual(attentions[0].shape[-3], self.model_tester.num_attention_heads - 1)
            self.assertEqual(attentions[1].shape[-3], self.model_tester.num_attention_heads - 2)
            self.assertEqual(attentions[2].shape[-3], self.model_tester.num_attention_heads)
            self.assertEqual(attentions[3].shape[-3], self.model_tester.num_attention_heads)
thomwolf's avatar
thomwolf committed
972

973
974
            heads_to_prune = {0: [0], 2: [1, 2]}
            model.prune_heads(heads_to_prune)
975

976
            with torch.no_grad():
977
                outputs = model(**self._prepare_for_class(inputs_dict, model_class))
978
            attentions = outputs[-1]
979

980
981
982
983
            self.assertEqual(attentions[0].shape[-3], self.model_tester.num_attention_heads - 1)
            self.assertEqual(attentions[1].shape[-3], self.model_tester.num_attention_heads - 2)
            self.assertEqual(attentions[2].shape[-3], self.model_tester.num_attention_heads - 2)
            self.assertEqual(attentions[3].shape[-3], self.model_tester.num_attention_heads)
984

985
            self.assertDictEqual(model.config.pruned_heads, {0: [0], 1: [1, 2], 2: [1, 2]})
thomwolf's avatar
thomwolf committed
986

Patrick von Platen's avatar
Patrick von Platen committed
987
    def test_hidden_states_output(self):
Joseph Liu's avatar
Joseph Liu committed
988
        def check_hidden_states_output(inputs_dict, config, model_class):
989
            model = model_class(config)
990
            model.to(torch_device)
thomwolf's avatar
thomwolf committed
991
            model.eval()
Joseph Liu's avatar
Joseph Liu committed
992

thomwolf's avatar
thomwolf committed
993
            with torch.no_grad():
994
                outputs = model(**self._prepare_for_class(inputs_dict, model_class))
995
996

            hidden_states = outputs.encoder_hidden_states if config.is_encoder_decoder else outputs.hidden_states
Patrick von Platen's avatar
Patrick von Platen committed
997

Sylvain Gugger's avatar
Sylvain Gugger committed
998
999
1000
1001
            expected_num_layers = getattr(
                self.model_tester, "expected_num_hidden_layers", self.model_tester.num_hidden_layers + 1
            )
            self.assertEqual(len(hidden_states), expected_num_layers)
1002

Patrick von Platen's avatar
Patrick von Platen committed
1003
1004
1005
1006
1007
1008
1009
            if hasattr(self.model_tester, "encoder_seq_length"):
                seq_length = self.model_tester.encoder_seq_length
                if hasattr(self.model_tester, "chunk_length") and self.model_tester.chunk_length > 1:
                    seq_length = seq_length * self.model_tester.chunk_length
            else:
                seq_length = self.model_tester.seq_length

1010
            self.assertListEqual(
Lysandre's avatar
Lysandre committed
1011
1012
                list(hidden_states[0].shape[-2:]),
                [seq_length, self.model_tester.hidden_size],
1013
            )
thomwolf's avatar
thomwolf committed
1014

1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025
1026
1027
            if config.is_encoder_decoder:
                hidden_states = outputs.decoder_hidden_states

                self.assertIsInstance(hidden_states, (list, tuple))
                self.assertEqual(len(hidden_states), expected_num_layers)
                seq_len = getattr(self.model_tester, "seq_length", None)
                decoder_seq_length = getattr(self.model_tester, "decoder_seq_length", seq_len)

                self.assertListEqual(
                    list(hidden_states[0].shape[-2:]),
                    [decoder_seq_length, self.model_tester.hidden_size],
                )

Joseph Liu's avatar
Joseph Liu committed
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
        config, inputs_dict = self.model_tester.prepare_config_and_inputs_for_common()

        for model_class in self.all_model_classes:
            inputs_dict["output_hidden_states"] = True
            check_hidden_states_output(inputs_dict, config, model_class)

            # check that output_hidden_states also work using config
            del inputs_dict["output_hidden_states"]
            config.output_hidden_states = True

            check_hidden_states_output(inputs_dict, config, model_class)

1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
    def test_retain_grad_hidden_states_attentions(self):
        config, inputs_dict = self.model_tester.prepare_config_and_inputs_for_common()
        config.output_hidden_states = True
        config.output_attentions = True

        # no need to test all models as different heads yield the same functionality
        model_class = self.all_model_classes[0]
        model = model_class(config)
        model.to(torch_device)

        inputs = self._prepare_for_class(inputs_dict, model_class)

        outputs = model(**inputs)
1053

1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079
1080
1081
1082
1083
1084
1085
1086
1087
1088
1089
1090
        output = outputs[0]

        if config.is_encoder_decoder:
            # Seq2Seq models
            encoder_hidden_states = outputs.encoder_hidden_states[0]
            encoder_attentions = outputs.encoder_attentions[0]
            encoder_hidden_states.retain_grad()
            encoder_attentions.retain_grad()

            decoder_hidden_states = outputs.decoder_hidden_states[0]
            decoder_attentions = outputs.decoder_attentions[0]
            decoder_hidden_states.retain_grad()
            decoder_attentions.retain_grad()

            cross_attentions = outputs.cross_attentions[0]
            cross_attentions.retain_grad()

            output.flatten()[0].backward(retain_graph=True)

            self.assertIsNotNone(encoder_hidden_states.grad)
            self.assertIsNotNone(encoder_attentions.grad)
            self.assertIsNotNone(decoder_hidden_states.grad)
            self.assertIsNotNone(decoder_attentions.grad)
            self.assertIsNotNone(cross_attentions.grad)
        else:
            # Encoder-/Decoder-only models
            hidden_states = outputs.hidden_states[0]
            attentions = outputs.attentions[0]

            hidden_states.retain_grad()
            attentions.retain_grad()

            output.flatten()[0].backward(retain_graph=True)

            self.assertIsNotNone(hidden_states.grad)
            self.assertIsNotNone(attentions.grad)

Pradhy729's avatar
Pradhy729 committed
1091
    def test_feed_forward_chunking(self):
Lysandre's avatar
Lysandre committed
1092
1093
1094
1095
        (
            original_config,
            inputs_dict,
        ) = self.model_tester.prepare_config_and_inputs_for_common()
Pradhy729's avatar
Pradhy729 committed
1096
1097
1098
1099
1100
1101
1102
1103
1104
1105
1106
1107
1108
1109
1110
1111
1112
1113
        for model_class in self.all_model_classes:
            torch.manual_seed(0)
            config = copy.deepcopy(original_config)
            model = model_class(config)
            model.to(torch_device)
            model.eval()

            hidden_states_no_chunk = model(**self._prepare_for_class(inputs_dict, model_class))[0]

            torch.manual_seed(0)
            config.chunk_size_feed_forward = 1
            model = model_class(config)
            model.to(torch_device)
            model.eval()

            hidden_states_with_chunk = model(**self._prepare_for_class(inputs_dict, model_class))[0]
            self.assertTrue(torch.allclose(hidden_states_no_chunk, hidden_states_with_chunk, atol=1e-3))

1114
1115
1116
1117
1118
1119
1120
1121
1122
1123
1124
1125
1126
1127
1128
1129
1130
1131
1132
1133
1134
1135
1136
1137
1138
1139
1140
1141
1142
1143
1144
1145
1146
1147
1148
1149
1150
1151
1152
1153
1154
1155
1156
1157
1158
1159
1160
1161
1162
1163
1164
1165
1166
1167
1168
1169
1170
1171
1172
1173
1174
1175
1176
1177
1178
1179
1180
1181
1182
1183
1184
1185
1186
1187
1188
1189
1190
1191
1192
    def test_resize_position_vector_embeddings(self):
        if not self.test_resize_position_embeddings:
            return

        (
            original_config,
            inputs_dict,
        ) = self.model_tester.prepare_config_and_inputs_for_common()

        for model_class in self.all_model_classes:
            config = copy.deepcopy(original_config)
            model = model_class(config)
            model.to(torch_device)

            if self.model_tester.is_training is False:
                model.eval()

            max_position_embeddings = config.max_position_embeddings

            # Retrieve the embeddings and clone theme
            if model.config.is_encoder_decoder:
                encoder_model_embed, decoder_model_embed = model.get_position_embeddings()
                encoder_cloned_embeddings = encoder_model_embed.weight.clone()
                decoder_cloned_embeddings = decoder_model_embed.weight.clone()
            else:
                model_embed = model.get_position_embeddings()
                cloned_embeddings = model_embed.weight.clone()

            # Check that resizing the position embeddings with a larger max_position_embeddings increases
            # the model's postion embeddings size
            model.resize_position_embeddings(max_position_embeddings + 10)
            self.assertEqual(model.config.max_position_embeddings, max_position_embeddings + 10)

            # Check that it actually resizes the embeddings matrix
            if model.config.is_encoder_decoder:
                encoder_model_embed, decoder_model_embed = model.get_position_embeddings()
                self.assertEqual(encoder_model_embed.weight.shape[0], encoder_cloned_embeddings.shape[0] + 10)
                self.assertEqual(decoder_model_embed.weight.shape[0], decoder_cloned_embeddings.shape[0] + 10)
            else:
                model_embed = model.get_position_embeddings()
                self.assertEqual(model_embed.weight.shape[0], cloned_embeddings.shape[0] + 10)

            # Check that the model can still do a forward pass successfully (every parameter should be resized)
            model(**self._prepare_for_class(inputs_dict, model_class))

            # Check that resizing the position embeddings with a smaller max_position_embeddings decreases
            # the model's max_position_embeddings
            model.resize_position_embeddings(max_position_embeddings - 5)
            self.assertEqual(model.config.max_position_embeddings, max_position_embeddings - 5)

            # Check that it actually resizes the embeddings matrix
            if model.config.is_encoder_decoder:
                encoder_model_embed, decoder_model_embed = model.get_position_embeddings()
                self.assertEqual(encoder_model_embed.weight.shape[0], encoder_cloned_embeddings.shape[0] - 5)
                self.assertEqual(decoder_model_embed.weight.shape[0], decoder_cloned_embeddings.shape[0] - 5)
            else:
                model_embed = model.get_position_embeddings()
                self.assertEqual(model_embed.weight.shape[0], cloned_embeddings.shape[0] - 5)

            # Check that the model can still do a forward pass successfully (every parameter should be resized)
            model(**self._prepare_for_class(inputs_dict, model_class))

            # Check that adding and removing tokens has not modified the first part of the embedding matrix.
            models_equal = True

            if model.config.is_encoder_decoder:
                for p1, p2 in zip(encoder_cloned_embeddings, encoder_model_embed.weight):
                    if p1.data.ne(p2.data).sum() > 0:
                        models_equal = False
                for p1, p2 in zip(decoder_cloned_embeddings, decoder_model_embed.weight):
                    if p1.data.ne(p2.data).sum() > 0:
                        models_equal = False
            else:
                for p1, p2 in zip(cloned_embeddings, model_embed.weight):
                    if p1.data.ne(p2.data).sum() > 0:
                        models_equal = False

            self.assertTrue(models_equal)

Patrick von Platen's avatar
Patrick von Platen committed
1193
    def test_resize_tokens_embeddings(self):
Lysandre's avatar
Lysandre committed
1194
1195
1196
1197
        (
            original_config,
            inputs_dict,
        ) = self.model_tester.prepare_config_and_inputs_for_common()
Patrick von Platen's avatar
Patrick von Platen committed
1198
        if not self.test_resize_embeddings:
1199
1200
1201
1202
1203
            return

        for model_class in self.all_model_classes:
            config = copy.deepcopy(original_config)
            model = model_class(config)
1204
            model.to(torch_device)
1205

Patrick von Platen's avatar
Patrick von Platen committed
1206
1207
1208
            if self.model_tester.is_training is False:
                model.eval()

1209
1210
1211
1212
1213
1214
1215
1216
1217
1218
            model_vocab_size = config.vocab_size
            # Retrieve the embeddings and clone theme
            model_embed = model.resize_token_embeddings(model_vocab_size)
            cloned_embeddings = model_embed.weight.clone()

            # Check that resizing the token embeddings with a larger vocab size increases the model's vocab size
            model_embed = model.resize_token_embeddings(model_vocab_size + 10)
            self.assertEqual(model.config.vocab_size, model_vocab_size + 10)
            # Check that it actually resizes the embeddings matrix
            self.assertEqual(model_embed.weight.shape[0], cloned_embeddings.shape[0] + 10)
1219
            # Check that the model can still do a forward pass successfully (every parameter should be resized)
1220
            model(**self._prepare_for_class(inputs_dict, model_class))
1221
1222
1223
1224
1225
1226
1227

            # Check that resizing the token embeddings with a smaller vocab size decreases the model's vocab size
            model_embed = model.resize_token_embeddings(model_vocab_size - 15)
            self.assertEqual(model.config.vocab_size, model_vocab_size - 15)
            # Check that it actually resizes the embeddings matrix
            self.assertEqual(model_embed.weight.shape[0], cloned_embeddings.shape[0] - 15)

1228
1229
1230
            # Check that the model can still do a forward pass successfully (every parameter should be resized)
            # Input ids should be clamped to the maximum size of the vocabulary
            inputs_dict["input_ids"].clamp_(max=model_vocab_size - 15 - 1)
1231
1232
1233
1234

            # make sure that decoder_input_ids are resized as well
            if "decoder_input_ids" in inputs_dict:
                inputs_dict["decoder_input_ids"].clamp_(max=model_vocab_size - 15 - 1)
1235
            model(**self._prepare_for_class(inputs_dict, model_class))
1236

1237
1238
1239
1240
1241
1242
1243
1244
            # Check that adding and removing tokens has not modified the first part of the embedding matrix.
            models_equal = True
            for p1, p2 in zip(cloned_embeddings, model_embed.weight):
                if p1.data.ne(p2.data).sum() > 0:
                    models_equal = False

            self.assertTrue(models_equal)

1245
1246
1247
1248
1249
1250
1251
1252
1253
1254
1255
1256
1257
1258
1259
1260
1261
1262
1263
1264
1265
1266
1267
1268
1269
1270
1271
1272
1273
1274
1275
1276
1277
1278
1279
1280
1281
1282
1283
1284
1285
1286
1287
1288
1289
1290
1291
1292
1293
1294
1295
    def test_resize_embeddings_untied(self):
        (
            original_config,
            inputs_dict,
        ) = self.model_tester.prepare_config_and_inputs_for_common()
        if not self.test_resize_embeddings:
            return

        original_config.tie_word_embeddings = False

        # if model cannot untied embeddings -> leave test
        if original_config.tie_word_embeddings:
            return

        for model_class in self.all_model_classes:
            config = copy.deepcopy(original_config)
            model = model_class(config).to(torch_device)

            # if no output embeddings -> leave test
            if model.get_output_embeddings() is None:
                continue

            # Check that resizing the token embeddings with a larger vocab size increases the model's vocab size
            model_vocab_size = config.vocab_size
            model.resize_token_embeddings(model_vocab_size + 10)
            self.assertEqual(model.config.vocab_size, model_vocab_size + 10)
            output_embeds = model.get_output_embeddings()
            self.assertEqual(output_embeds.weight.shape[0], model_vocab_size + 10)
            # Check bias if present
            if output_embeds.bias is not None:
                self.assertEqual(output_embeds.bias.shape[0], model_vocab_size + 10)
            # Check that the model can still do a forward pass successfully (every parameter should be resized)
            model(**self._prepare_for_class(inputs_dict, model_class))

            # Check that resizing the token embeddings with a smaller vocab size decreases the model's vocab size
            model.resize_token_embeddings(model_vocab_size - 15)
            self.assertEqual(model.config.vocab_size, model_vocab_size - 15)
            # Check that it actually resizes the embeddings matrix
            output_embeds = model.get_output_embeddings()
            self.assertEqual(output_embeds.weight.shape[0], model_vocab_size - 15)
            # Check bias if present
            if output_embeds.bias is not None:
                self.assertEqual(output_embeds.bias.shape[0], model_vocab_size - 15)
            # Check that the model can still do a forward pass successfully (every parameter should be resized)
            # Input ids should be clamped to the maximum size of the vocabulary
            inputs_dict["input_ids"].clamp_(max=model_vocab_size - 15 - 1)
            if "decoder_input_ids" in inputs_dict:
                inputs_dict["decoder_input_ids"].clamp_(max=model_vocab_size - 15 - 1)
            # Check that the model can still do a forward pass successfully (every parameter should be resized)
            model(**self._prepare_for_class(inputs_dict, model_class))

Patrick von Platen's avatar
Patrick von Platen committed
1296
    def test_model_common_attributes(self):
1297
1298
1299
1300
        config, inputs_dict = self.model_tester.prepare_config_and_inputs_for_common()

        for model_class in self.all_model_classes:
            model = model_class(config)
1301
1302
            self.assertIsInstance(model.get_input_embeddings(), (nn.Embedding, AdaptiveEmbedding))
            model.set_input_embeddings(nn.Embedding(10, 10))
1303
            x = model.get_output_embeddings()
1304
            self.assertTrue(x is None or isinstance(x, nn.Linear))
1305

1306
1307
1308
1309
1310
1311
1312
    def test_model_main_input_name(self):
        for model_class in self.all_model_classes:
            model_signature = inspect.signature(getattr(model_class, "forward"))
            # The main input is the name of the argument after `self`
            observed_main_input_name = list(model_signature.parameters.keys())[1]
            self.assertEqual(model_class.main_input_name, observed_main_input_name)

1313
    def test_correct_missing_keys(self):
1314
1315
        if not self.test_missing_keys:
            return
1316
1317
1318
1319
1320
1321
1322
1323
1324
1325
        config, _ = self.model_tester.prepare_config_and_inputs_for_common()

        for model_class in self.all_model_classes:
            model = model_class(config)
            base_model_prefix = model.base_model_prefix

            if hasattr(model, base_model_prefix):
                with tempfile.TemporaryDirectory() as temp_dir_name:
                    model.base_model.save_pretrained(temp_dir_name)
                    model, loading_info = model_class.from_pretrained(temp_dir_name, output_loading_info=True)
1326
                    with self.subTest(msg=f"Missing keys for {model.__class__.__name__}"):
1327
1328
                        self.assertGreater(len(loading_info["missing_keys"]), 0)

1329
1330
1331
1332
1333
1334
1335
1336
1337
1338
1339
1340
1341
1342
1343
1344
1345
1346
1347
1348
1349
1350
1351
1352
1353
1354
1355
1356
1357
1358
1359
1360
1361
1362
1363
1364
1365
1366
1367
1368
1369
1370
1371
1372
1373
1374
1375
1376
    def test_tie_model_weights(self):
        if not self.test_torchscript:
            return

        config, inputs_dict = self.model_tester.prepare_config_and_inputs_for_common()

        def check_same_values(layer_1, layer_2):
            equal = True
            for p1, p2 in zip(layer_1.weight, layer_2.weight):
                if p1.data.ne(p2.data).sum() > 0:
                    equal = False
            return equal

        for model_class in self.all_model_classes:
            config.torchscript = True
            model_not_tied = model_class(config)
            if model_not_tied.get_output_embeddings() is None:
                continue

            config_tied = copy.deepcopy(config)
            config_tied.torchscript = False
            model_tied = model_class(config_tied)
            params_tied = list(model_tied.parameters())
            # Check that the embedding layer and decoding layer are the same in size and in value
            # self.assertTrue(check_same_values(embeddings, decoding))

            # # Check that after modification, they remain the same.
            # embeddings.weight.data.div_(2)
            # # Check that the embedding layer and decoding layer are the same in size and in value
            # self.assertTrue(embeddings.weight.shape, decoding.weight.shape)
            # self.assertTrue(check_same_values(embeddings, decoding))

            # # Check that after modification, they remain the same.
            # decoding.weight.data.div_(4)
            # # Check that the embedding layer and decoding layer are the same in size and in value
            # self.assertTrue(embeddings.weight.shape, decoding.weight.shape)
            # self.assertTrue(check_same_values(embeddings, decoding))

            # Check that after resize they remain tied.
            model_tied.resize_token_embeddings(config.vocab_size + 10)
            params_tied_2 = list(model_tied.parameters())
            self.assertEqual(len(params_tied_2), len(params_tied))

            # decoding.weight.data.mul_(20)
            # # Check that the embedding layer and decoding layer are the same in size and in value
            # self.assertTrue(model.transformer.wte.weight.shape, model.lm_head.weight.shape)
            # self.assertTrue(check_same_values(model.transformer.wte, model.lm_head))

1377
1378
1379
    def test_model_outputs_equivalence(self):
        config, inputs_dict = self.model_tester.prepare_config_and_inputs_for_common()

Sam Shleifer's avatar
Sam Shleifer committed
1380
1381
1382
1383
        def set_nan_tensor_to_zero(t):
            t[t != t] = 0
            return t

1384
1385
1386
1387
1388
1389
1390
1391
1392
        def check_equivalence(model, tuple_inputs, dict_inputs, additional_kwargs={}):
            with torch.no_grad():
                tuple_output = model(**tuple_inputs, return_dict=False, **additional_kwargs)
                dict_output = model(**dict_inputs, return_dict=True, **additional_kwargs).to_tuple()

                def recursive_check(tuple_object, dict_object):
                    if isinstance(tuple_object, (List, Tuple)):
                        for tuple_iterable_value, dict_iterable_value in zip(tuple_object, dict_object):
                            recursive_check(tuple_iterable_value, dict_iterable_value)
NielsRogge's avatar
NielsRogge committed
1393
1394
1395
1396
1397
                    elif isinstance(tuple_object, Dict):
                        for tuple_iterable_value, dict_iterable_value in zip(
                            tuple_object.values(), dict_object.values()
                        ):
                            recursive_check(tuple_iterable_value, dict_iterable_value)
1398
1399
1400
1401
                    elif tuple_object is None:
                        return
                    else:
                        self.assertTrue(
Sam Shleifer's avatar
Sam Shleifer committed
1402
1403
1404
                            torch.allclose(
                                set_nan_tensor_to_zero(tuple_object), set_nan_tensor_to_zero(dict_object), atol=1e-5
                            ),
1405
                            msg=f"Tuple and dict output are not equal. Difference: {torch.max(torch.abs(tuple_object - dict_object))}. Tuple has `nan`: {torch.isnan(tuple_object).any()} and `inf`: {torch.isinf(tuple_object)}. Dict has `nan`: {torch.isnan(dict_object).any()} and `inf`: {torch.isinf(dict_object)}.",
1406
1407
1408
1409
1410
1411
1412
1413
1414
1415
1416
1417
1418
1419
1420
1421
1422
1423
1424
1425
1426
1427
1428
1429
1430
1431
1432
1433
1434
1435
1436
1437
1438
1439
1440
1441
1442
1443
1444
                        )

                recursive_check(tuple_output, dict_output)

        for model_class in self.all_model_classes:
            model = model_class(config)
            model.to(torch_device)
            model.eval()

            tuple_inputs = self._prepare_for_class(inputs_dict, model_class)
            dict_inputs = self._prepare_for_class(inputs_dict, model_class)
            check_equivalence(model, tuple_inputs, dict_inputs)

            tuple_inputs = self._prepare_for_class(inputs_dict, model_class, return_labels=True)
            dict_inputs = self._prepare_for_class(inputs_dict, model_class, return_labels=True)
            check_equivalence(model, tuple_inputs, dict_inputs)

            tuple_inputs = self._prepare_for_class(inputs_dict, model_class)
            dict_inputs = self._prepare_for_class(inputs_dict, model_class)
            check_equivalence(model, tuple_inputs, dict_inputs, {"output_hidden_states": True})

            tuple_inputs = self._prepare_for_class(inputs_dict, model_class)
            dict_inputs = self._prepare_for_class(inputs_dict, model_class)
            check_equivalence(model, tuple_inputs, dict_inputs, {"output_attentions": True})

            tuple_inputs = self._prepare_for_class(inputs_dict, model_class, return_labels=True)
            dict_inputs = self._prepare_for_class(inputs_dict, model_class, return_labels=True)
            check_equivalence(model, tuple_inputs, dict_inputs, {"output_hidden_states": True})

            tuple_inputs = self._prepare_for_class(inputs_dict, model_class, return_labels=True)
            dict_inputs = self._prepare_for_class(inputs_dict, model_class, return_labels=True)
            check_equivalence(model, tuple_inputs, dict_inputs, {"output_attentions": True})

            tuple_inputs = self._prepare_for_class(inputs_dict, model_class, return_labels=True)
            dict_inputs = self._prepare_for_class(inputs_dict, model_class, return_labels=True)
            check_equivalence(
                model, tuple_inputs, dict_inputs, {"output_hidden_states": True, "output_attentions": True}
            )

1445
1446
1447
1448
1449
1450
1451
1452
1453
1454
1455
1456
1457
1458
1459
1460
1461
1462
1463
1464
1465
1466
1467
1468
1469
1470
1471
1472
1473
1474
1475
1476
1477
1478
1479
1480
1481
1482
1483
1484
1485
1486
    @is_pt_tf_cross_test
    def test_pt_tf_model_equivalence(self):
        import numpy as np
        import tensorflow as tf

        import transformers

        config, inputs_dict = self.model_tester.prepare_config_and_inputs_for_common()

        for model_class in self.all_model_classes:
            tf_model_class_name = "TF" + model_class.__name__  # Add the "TF" at the beginning

            if not hasattr(transformers, tf_model_class_name):
                # transformers does not have TF version yet
                return

            tf_model_class = getattr(transformers, tf_model_class_name)

            config.output_hidden_states = True

            tf_model = tf_model_class(config)
            pt_model = model_class(config)

            # make sure only tf inputs are forward that actually exist in function args
            tf_input_keys = set(inspect.signature(tf_model.call).parameters.keys())

            # remove all head masks
            tf_input_keys.discard("head_mask")
            tf_input_keys.discard("cross_attn_head_mask")
            tf_input_keys.discard("decoder_head_mask")

            pt_inputs = self._prepare_for_class(inputs_dict, model_class)
            pt_inputs = {k: v for k, v in pt_inputs.items() if k in tf_input_keys}

            # Check predictions on first output (logits/hidden-states) are close enought given low-level computational differences
            pt_model.eval()
            tf_inputs_dict = {}
            for key, tensor in pt_inputs.items():
                # skip key that does not exist in tf
                if type(tensor) == bool:
                    tf_inputs_dict[key] = tensor
                elif key == "input_values":
1487
                    tf_inputs_dict[key] = tf.convert_to_tensor(tensor.cpu().numpy(), dtype=tf.float32)
Yih-Dar's avatar
Yih-Dar committed
1488
                elif key == "pixel_values":
1489
                    tf_inputs_dict[key] = tf.convert_to_tensor(tensor.cpu().numpy(), dtype=tf.float32)
Joao Gante's avatar
Joao Gante committed
1490
                elif key == "input_features":
1491
                    tf_inputs_dict[key] = tf.convert_to_tensor(tensor.cpu().numpy(), dtype=tf.float32)
1492
                else:
1493
                    tf_inputs_dict[key] = tf.convert_to_tensor(tensor.cpu().numpy(), dtype=tf.int32)
1494
1495
1496

            # Check we can load pt model in tf and vice-versa with model => model functions
            tf_model = transformers.load_pytorch_model_in_tf2_model(tf_model, pt_model, tf_inputs=tf_inputs_dict)
1497
            pt_model = transformers.load_tf2_model_in_pytorch_model(pt_model, tf_model).to(torch_device)
1498

1499
1500
            # Make sure PyTorch tensors are on same device as model
            pt_inputs = {k: v.to(torch_device) if torch.is_tensor(v) else v for k, v in pt_inputs.items()}
1501
1502
1503
1504
1505
1506

            with torch.no_grad():
                pto = pt_model(**pt_inputs)
            tfo = tf_model(tf_inputs_dict, training=False)

            tf_hidden_states = tfo[0].numpy()
1507
            pt_hidden_states = pto[0].cpu().numpy()
1508
1509
1510
1511
1512
1513
1514
1515
1516
1517
1518
1519
1520
1521
1522
1523
1524
1525
1526
1527
1528

            tf_nans = np.copy(np.isnan(tf_hidden_states))
            pt_nans = np.copy(np.isnan(pt_hidden_states))

            pt_hidden_states[tf_nans] = 0
            tf_hidden_states[tf_nans] = 0
            pt_hidden_states[pt_nans] = 0
            tf_hidden_states[pt_nans] = 0

            max_diff = np.amax(np.abs(tf_hidden_states - pt_hidden_states))
            self.assertLessEqual(max_diff, 4e-2)

            # Check we can load pt model in tf and vice-versa with checkpoint => model functions
            with tempfile.TemporaryDirectory() as tmpdirname:
                pt_checkpoint_path = os.path.join(tmpdirname, "pt_model.bin")
                torch.save(pt_model.state_dict(), pt_checkpoint_path)
                tf_model = transformers.load_pytorch_checkpoint_in_tf2_model(tf_model, pt_checkpoint_path)

                tf_checkpoint_path = os.path.join(tmpdirname, "tf_model.h5")
                tf_model.save_weights(tf_checkpoint_path)
                pt_model = transformers.load_tf2_checkpoint_in_pytorch_model(pt_model, tf_checkpoint_path)
1529
                pt_model = pt_model.to(torch_device)
1530
1531
1532
1533
1534
1535
1536
1537
1538
1539

            # Check predictions on first output (logits/hidden-states) are close enought given low-level computational differences
            pt_model.eval()
            tf_inputs_dict = {}
            for key, tensor in pt_inputs.items():
                # skip key that does not exist in tf
                if type(tensor) == bool:
                    tensor = np.array(tensor, dtype=bool)
                    tf_inputs_dict[key] = tf.convert_to_tensor(tensor, dtype=tf.int32)
                elif key == "input_values":
1540
                    tf_inputs_dict[key] = tf.convert_to_tensor(tensor.cpu().numpy(), dtype=tf.float32)
Yih-Dar's avatar
Yih-Dar committed
1541
                elif key == "pixel_values":
1542
                    tf_inputs_dict[key] = tf.convert_to_tensor(tensor.cpu().numpy(), dtype=tf.float32)
Joao Gante's avatar
Joao Gante committed
1543
                elif key == "input_features":
1544
                    tf_inputs_dict[key] = tf.convert_to_tensor(tensor.cpu().numpy(), dtype=tf.float32)
1545
                else:
1546
                    tf_inputs_dict[key] = tf.convert_to_tensor(tensor.cpu().numpy(), dtype=tf.int32)
1547
1548
1549
1550
1551
1552
1553
1554
1555
1556

            # need to rename encoder-decoder "inputs" for PyTorch
            #            if "inputs" in pt_inputs_dict and self.is_encoder_decoder:
            #                pt_inputs_dict["input_ids"] = pt_inputs_dict.pop("inputs")

            with torch.no_grad():
                pto = pt_model(**pt_inputs)

            tfo = tf_model(tf_inputs_dict)
            tfo = tfo[0].numpy()
1557
            pto = pto[0].cpu().numpy()
1558
1559
1560
1561
1562
1563
1564
1565
1566
1567
1568
1569
1570
1571
1572
1573
1574
1575
1576
1577
1578
1579
1580
1581
1582
1583
1584
1585
1586
1587
1588
1589
1590
1591
1592
1593
1594
1595
1596
1597
1598
1599
1600
1601
1602
1603
1604
1605
1606
1607
1608
1609
1610
1611
1612
1613
1614
1615
1616
1617
1618
1619
1620
1621
1622
1623
1624
1625
1626
1627
1628
1629
1630
1631
1632
1633
1634
1635
1636
1637
1638
1639
1640
1641
1642
1643
1644
1645
1646
1647
1648
1649
1650
1651
1652
1653
1654
1655
1656
1657
1658
1659
1660
1661
1662
1663
1664
1665
1666
1667
1668
1669
1670
1671
1672
1673
1674
1675
1676
1677
1678
1679
1680
1681
1682
1683
1684
1685
1686
1687
            tf_nans = np.copy(np.isnan(tfo))
            pt_nans = np.copy(np.isnan(pto))

            pto[tf_nans] = 0
            tfo[tf_nans] = 0
            pto[pt_nans] = 0
            tfo[pt_nans] = 0

            max_diff = np.amax(np.abs(tfo - pto))
            self.assertLessEqual(max_diff, 4e-2)

    def assert_almost_equals(self, a: np.ndarray, b: np.ndarray, tol: float):
        diff = np.abs((a - b)).max()
        self.assertLessEqual(diff, tol, f"Difference between torch and flax is {diff} (>= {tol}).")

    @is_pt_flax_cross_test
    def test_equivalence_pt_to_flax(self):
        config, inputs_dict = self.model_tester.prepare_config_and_inputs_for_common()

        for model_class in self.all_model_classes:
            with self.subTest(model_class.__name__):

                # load PyTorch class
                pt_model = model_class(config).eval()
                # Flax models don't use the `use_cache` option and cache is not returned as a default.
                # So we disable `use_cache` here for PyTorch model.
                pt_model.config.use_cache = False

                fx_model_class_name = "Flax" + model_class.__name__

                if not hasattr(transformers, fx_model_class_name):
                    return

                fx_model_class = getattr(transformers, fx_model_class_name)

                # load Flax class
                fx_model = fx_model_class(config, dtype=jnp.float32)
                # make sure only flax inputs are forward that actually exist in function args
                fx_input_keys = inspect.signature(fx_model.__call__).parameters.keys()

                # prepare inputs
                pt_inputs = self._prepare_for_class(inputs_dict, model_class)

                # remove function args that don't exist in Flax
                pt_inputs = {k: v for k, v in pt_inputs.items() if k in fx_input_keys}

                fx_state = convert_pytorch_state_dict_to_flax(pt_model.state_dict(), fx_model)
                fx_model.params = fx_state

                with torch.no_grad():
                    pt_outputs = pt_model(**pt_inputs).to_tuple()

                # convert inputs to Flax
                fx_inputs = {k: np.array(v) for k, v in pt_inputs.items() if torch.is_tensor(v)}
                fx_outputs = fx_model(**fx_inputs).to_tuple()
                self.assertEqual(len(fx_outputs), len(pt_outputs), "Output lengths differ between Flax and PyTorch")
                for fx_output, pt_output in zip(fx_outputs, pt_outputs):
                    self.assert_almost_equals(fx_output, pt_output.numpy(), 4e-2)

                with tempfile.TemporaryDirectory() as tmpdirname:
                    pt_model.save_pretrained(tmpdirname)
                    fx_model_loaded = fx_model_class.from_pretrained(tmpdirname, from_pt=True)

                fx_outputs_loaded = fx_model_loaded(**fx_inputs).to_tuple()
                self.assertEqual(
                    len(fx_outputs_loaded), len(pt_outputs), "Output lengths differ between Flax and PyTorch"
                )
                for fx_output_loaded, pt_output in zip(fx_outputs_loaded, pt_outputs):
                    self.assert_almost_equals(fx_output_loaded, pt_output.numpy(), 4e-2)

    @is_pt_flax_cross_test
    def test_equivalence_flax_to_pt(self):
        config, inputs_dict = self.model_tester.prepare_config_and_inputs_for_common()

        for model_class in self.all_model_classes:
            with self.subTest(model_class.__name__):
                # load corresponding PyTorch class
                pt_model = model_class(config).eval()

                # So we disable `use_cache` here for PyTorch model.
                pt_model.config.use_cache = False

                fx_model_class_name = "Flax" + model_class.__name__

                if not hasattr(transformers, fx_model_class_name):
                    # no flax model exists for this class
                    return

                fx_model_class = getattr(transformers, fx_model_class_name)

                # load Flax class
                fx_model = fx_model_class(config, dtype=jnp.float32)
                # make sure only flax inputs are forward that actually exist in function args
                fx_input_keys = inspect.signature(fx_model.__call__).parameters.keys()

                pt_model = load_flax_weights_in_pytorch_model(pt_model, fx_model.params)

                # make sure weights are tied in PyTorch
                pt_model.tie_weights()

                # prepare inputs
                pt_inputs = self._prepare_for_class(inputs_dict, model_class)

                # remove function args that don't exist in Flax
                pt_inputs = {k: v for k, v in pt_inputs.items() if k in fx_input_keys}

                with torch.no_grad():
                    pt_outputs = pt_model(**pt_inputs).to_tuple()

                fx_inputs = {k: np.array(v) for k, v in pt_inputs.items() if torch.is_tensor(v)}

                fx_outputs = fx_model(**fx_inputs).to_tuple()
                self.assertEqual(len(fx_outputs), len(pt_outputs), "Output lengths differ between Flax and PyTorch")

                for fx_output, pt_output in zip(fx_outputs, pt_outputs):
                    self.assert_almost_equals(fx_output, pt_output.numpy(), 4e-2)

                with tempfile.TemporaryDirectory() as tmpdirname:
                    fx_model.save_pretrained(tmpdirname)
                    pt_model_loaded = model_class.from_pretrained(tmpdirname, from_flax=True)

                with torch.no_grad():
                    pt_outputs_loaded = pt_model_loaded(**pt_inputs).to_tuple()

                self.assertEqual(
                    len(fx_outputs), len(pt_outputs_loaded), "Output lengths differ between Flax and PyTorch"
                )
                for fx_output, pt_output in zip(fx_outputs, pt_outputs_loaded):
                    self.assert_almost_equals(fx_output, pt_output.numpy(), 4e-2)

Patrick von Platen's avatar
Patrick von Platen committed
1688
    def test_inputs_embeds(self):
1689
1690
1691
1692
        config, inputs_dict = self.model_tester.prepare_config_and_inputs_for_common()

        for model_class in self.all_model_classes:
            model = model_class(config)
1693
            model.to(torch_device)
thomwolf's avatar
thomwolf committed
1694
            model.eval()
1695

1696
            inputs = copy.deepcopy(self._prepare_for_class(inputs_dict, model_class))
Weizhen's avatar
Weizhen committed
1697

1698
1699
1700
1701
1702
1703
1704
1705
1706
            if not self.is_encoder_decoder:
                input_ids = inputs["input_ids"]
                del inputs["input_ids"]
            else:
                encoder_input_ids = inputs["input_ids"]
                decoder_input_ids = inputs.get("decoder_input_ids", encoder_input_ids)
                del inputs["input_ids"]
                inputs.pop("decoder_input_ids", None)

1707
1708
            wte = model.get_input_embeddings()
            if not self.is_encoder_decoder:
1709
                inputs["inputs_embeds"] = wte(input_ids)
1710
            else:
1711
1712
                inputs["inputs_embeds"] = wte(encoder_input_ids)
                inputs["decoder_inputs_embeds"] = wte(decoder_input_ids)
1713

thomwolf's avatar
thomwolf committed
1714
            with torch.no_grad():
Weizhen's avatar
Weizhen committed
1715
                model(**inputs)[0]
1716

1717
1718
    @require_torch_multi_gpu
    def test_multi_gpu_data_parallel_forward(self):
1719
1720
1721
1722
        config, inputs_dict = self.model_tester.prepare_config_and_inputs_for_common()

        # some params shouldn't be scattered by nn.DataParallel
        # so just remove them if they are present.
1723
        blacklist_non_batched_params = ["head_mask", "decoder_head_mask", "cross_attn_head_mask"]
1724
1725
1726
1727
1728
1729
1730
1731
1732
1733
1734
1735
1736
1737
        for k in blacklist_non_batched_params:
            inputs_dict.pop(k, None)

        # move input tensors to cuda:O
        for k, v in inputs_dict.items():
            if torch.is_tensor(v):
                inputs_dict[k] = v.to(0)

        for model_class in self.all_model_classes:
            model = model_class(config=config)
            model.to(0)
            model.eval()

            # Wrap model in nn.DataParallel
1738
            model = nn.DataParallel(model)
1739
            with torch.no_grad():
1740
                _ = model(**self._prepare_for_class(inputs_dict, model_class))
1741

1742
1743
1744
    @require_torch_multi_gpu
    def test_model_parallelization(self):
        if not self.test_model_parallel:
1745
            return
1746

1747
        # a candidate for testing_utils
1748
        def get_current_gpu_memory_use():
Patrick von Platen's avatar
Patrick von Platen committed
1749
            """returns a list of cuda memory allocations per GPU in MBs"""
1750
1751
1752
1753
1754

            per_device_memory = []
            for id in range(torch.cuda.device_count()):
                with torch.cuda.device(id):
                    per_device_memory.append(torch.cuda.memory_allocated() >> 20)
1755
1756
1757
1758
1759
1760
1761
1762
1763

            return per_device_memory

        # Needs a large model to see the difference.
        config = self.model_tester.get_large_model_config()

        for model_class in self.all_parallelizable_model_classes:
            torch.cuda.empty_cache()

1764
1765
1766
            # 1. single gpu memory load + unload + memory measurements
            # Retrieve initial memory usage (can easily be ~0.6-1.5GB if cuda-kernels have been preloaded by previous tests)
            memory_at_start = get_current_gpu_memory_use()
1767

1768
1769
            # Put model on device 0 and take a memory snapshot
            model = model_class(config)
1770
1771
1772
            model.to("cuda:0")
            memory_after_model_load = get_current_gpu_memory_use()

1773
1774
1775
            # The memory use on device 0 should be higher than it was initially.
            self.assertGreater(memory_after_model_load[0], memory_at_start[0])

1776
            del model
1777
            gc.collect()
1778
1779
            torch.cuda.empty_cache()

1780
1781
1782
            # 2. MP test
            # it's essential to re-calibrate the usage before the next stage
            memory_at_start = get_current_gpu_memory_use()
1783
1784

            # Spread model layers over multiple devices
1785
            model = model_class(config)
1786
1787
1788
1789
1790
            model.parallelize()
            memory_after_parallelization = get_current_gpu_memory_use()

            # Assert that the memory use on all devices is higher than it was when loaded only on CPU
            for n in range(torch.cuda.device_count()):
1791
                self.assertGreater(memory_after_parallelization[n], memory_at_start[n])
1792

1793
            # Assert that the memory use of device 0 is lower than it was when the entire model was loaded on it
1794
1795
            self.assertLess(memory_after_parallelization[0], memory_after_model_load[0])

1796
1797
            # Assert that the memory use of device 1 is higher than it was when the entire model was loaded
            # on device 0 and device 1 wasn't used at all
1798
1799
1800
            self.assertGreater(memory_after_parallelization[1], memory_after_model_load[1])

            del model
1801
            gc.collect()
1802
1803
1804
1805
1806
            torch.cuda.empty_cache()

    @require_torch_multi_gpu
    def test_model_parallel_equal_results(self):
        if not self.test_model_parallel:
1807
            return
1808
1809
1810
1811
1812
1813

        config, inputs_dict = self.model_tester.prepare_config_and_inputs_for_common()

        for model_class in self.all_parallelizable_model_classes:
            inputs_dict = self._prepare_for_class(inputs_dict, model_class)

1814
            def cast_to_device(dictionary, device):
1815
1816
1817
                output = {}
                for k, v in dictionary.items():
                    if isinstance(v, torch.Tensor):
1818
                        output[k] = v.to(device)
1819
1820
1821
1822
1823
                    else:
                        output[k] = v

                return output

1824
1825
1826
1827
1828
1829
            model = model_class(config)
            output = model(**cast_to_device(inputs_dict, "cpu"))

            model.parallelize()

            parallel_output = model(**cast_to_device(inputs_dict, "cuda:0"))
1830
1831
1832
1833
1834
1835
1836
1837

            for value, parallel_value in zip(output, parallel_output):
                if isinstance(value, torch.Tensor):
                    self.assertTrue(torch.allclose(value, parallel_value.to("cpu"), atol=1e-7))
                elif isinstance(value, (Tuple, List)):
                    for value_, parallel_value_ in zip(value, parallel_value):
                        self.assertTrue(torch.allclose(value_, parallel_value_.to("cpu"), atol=1e-7))

1838
1839
1840
1841
1842
1843
1844
1845
1846
1847
1848
1849
1850
1851
1852
1853
1854
1855
1856
1857
1858
1859
1860
1861
1862
1863
1864
1865
    @require_torch_multi_gpu
    def test_model_parallel_beam_search(self):
        if not self.test_model_parallel:
            return

        all_generative_and_parallelizable_model_classes = tuple(
            set(self.all_generative_model_classes).intersection(self.all_parallelizable_model_classes)
        )

        config, inputs_dict = self.model_tester.prepare_config_and_inputs_for_common()

        for model_class in all_generative_and_parallelizable_model_classes:
            inputs_dict = self._prepare_for_class(inputs_dict, model_class)
            model = model_class(config)

            def cast_to_device(dictionary, device):
                output = {}
                for k, v in dictionary.items():
                    if isinstance(v, torch.Tensor):
                        output[k] = v.to(device)
                    else:
                        output[k] = v

                return output

            model.parallelize()
            model.generate(**cast_to_device(inputs_dict, "cuda:0"), num_beams=2)

1866
1867
1868
1869
1870
1871
1872
1873
1874
1875
1876
1877
1878
1879
1880
1881
1882
1883
1884
1885
1886
1887
1888
1889
1890
1891
1892
1893
1894
1895
    def test_problem_types(self):
        config, inputs_dict = self.model_tester.prepare_config_and_inputs_for_common()

        problem_types = [
            {"title": "multi_label_classification", "num_labels": 2, "dtype": torch.float},
            {"title": "single_label_classification", "num_labels": 1, "dtype": torch.long},
            {"title": "regression", "num_labels": 1, "dtype": torch.float},
        ]

        for model_class in self.all_model_classes:
            if model_class not in get_values(MODEL_FOR_SEQUENCE_CLASSIFICATION_MAPPING):
                continue

            for problem_type in problem_types:
                with self.subTest(msg=f"Testing {model_class} with {problem_type['title']}"):

                    config.problem_type = problem_type["title"]
                    config.num_labels = problem_type["num_labels"]

                    model = model_class(config)
                    model.to(torch_device)
                    model.train()

                    inputs = self._prepare_for_class(inputs_dict, model_class, return_labels=True)

                    if problem_type["num_labels"] > 1:
                        inputs["labels"] = inputs["labels"].unsqueeze(1).repeat(1, problem_type["num_labels"])

                    inputs["labels"] = inputs["labels"].to(problem_type["dtype"])

1896
1897
1898
1899
1900
1901
                    # This tests that we do not trigger the warning form PyTorch "Using a target size that is different
                    # to the input size. This will likely lead to incorrect results due to broadcasting. Please ensure
                    # they have the same size." which is a symptom something in wrong for the regression problem.
                    # See https://github.com/huggingface/transformers/issues/11780
                    with warnings.catch_warnings(record=True) as warning_list:
                        loss = model(**inputs).loss
1902
1903
1904
1905
1906
                    for w in warning_list:
                        if "Using a target size that is different to the input size" in str(w.message):
                            raise ValueError(
                                f"Something is going wrong in the regression problem: intercepted {w.message}"
                            )
1907

1908
1909
                    loss.backward()

1910
    def test_load_with_mismatched_shapes(self):
1911
1912
        if not self.test_mismatched_shapes:
            return
1913
1914
1915
1916
1917
1918
1919
1920
1921
1922
1923
1924
        config, inputs_dict = self.model_tester.prepare_config_and_inputs_for_common()

        for model_class in self.all_model_classes:
            if model_class not in get_values(MODEL_FOR_SEQUENCE_CLASSIFICATION_MAPPING):
                continue

            with self.subTest(msg=f"Testing {model_class}"):
                with tempfile.TemporaryDirectory() as tmp_dir:
                    model = model_class(config)
                    model.save_pretrained(tmp_dir)

                    # Fails when we don't set ignore_mismatched_sizes=True
1925
                    with self.assertRaises(RuntimeError):
1926
                        new_model = AutoModelForSequenceClassification.from_pretrained(tmp_dir, num_labels=42)
1927
1928
                    with self.assertRaises(RuntimeError):
                        new_model_without_prefix = AutoModel.from_pretrained(tmp_dir, vocab_size=10)
1929
1930

                    logger = logging.get_logger("transformers.modeling_utils")
1931

1932
1933
1934
1935
1936
1937
1938
1939
1940
1941
                    with CaptureLogger(logger) as cl:
                        new_model = AutoModelForSequenceClassification.from_pretrained(
                            tmp_dir, num_labels=42, ignore_mismatched_sizes=True
                        )
                    self.assertIn("the shapes did not match", cl.out)
                    new_model.to(torch_device)
                    inputs = self._prepare_for_class(inputs_dict, model_class)
                    logits = new_model(**inputs).logits
                    self.assertEqual(logits.shape[1], 42)

1942
1943
1944
1945
1946
1947
1948
1949
1950
1951
1952
1953
                    with CaptureLogger(logger) as cl:
                        new_model_without_prefix = AutoModel.from_pretrained(
                            tmp_dir, vocab_size=10, ignore_mismatched_sizes=True
                        )
                    self.assertIn("the shapes did not match", cl.out)
                    input_ids = ids_tensor((2, 8), 10)
                    new_model_without_prefix.to(torch_device)
                    if self.is_encoder_decoder:
                        new_model_without_prefix(input_ids, decoder_input_ids=input_ids)
                    else:
                        new_model_without_prefix(input_ids)

1954

1955
global_rng = random.Random()
thomwolf's avatar
thomwolf committed
1956
1957


thomwolf's avatar
thomwolf committed
1958
def ids_tensor(shape, vocab_size, rng=None, name=None):
1959
    #  Creates a random int32 tensor of the shape within the vocab size
thomwolf's avatar
thomwolf committed
1960
    if rng is None:
1961
        rng = global_rng
thomwolf's avatar
thomwolf committed
1962

thomwolf's avatar
thomwolf committed
1963
1964
1965
    total_dims = 1
    for dim in shape:
        total_dims *= dim
thomwolf's avatar
thomwolf committed
1966

thomwolf's avatar
thomwolf committed
1967
1968
1969
    values = []
    for _ in range(total_dims):
        values.append(rng.randint(0, vocab_size - 1))
thomwolf's avatar
thomwolf committed
1970

1971
    return torch.tensor(data=values, dtype=torch.long, device=torch_device).view(shape).contiguous()
thomwolf's avatar
thomwolf committed
1972
1973


1974
1975
1976
1977
1978
1979
1980
def random_attention_mask(shape, rng=None, name=None):
    attn_mask = ids_tensor(shape, vocab_size=2, rng=None, name=None)
    # make sure that at least one token is attended to for each batch
    attn_mask[:, -1] = 1
    return attn_mask


1981
def floats_tensor(shape, scale=1.0, rng=None, name=None):
Patrick von Platen's avatar
Patrick von Platen committed
1982
    """Creates a random float32 tensor"""
1983
1984
1985
1986
1987
1988
1989
1990
1991
1992
1993
    if rng is None:
        rng = global_rng

    total_dims = 1
    for dim in shape:
        total_dims *= dim

    values = []
    for _ in range(total_dims):
        values.append(rng.random() * scale)

1994
    return torch.tensor(data=values, dtype=torch.float, device=torch_device).view(shape).contiguous()
1995
1996


1997
@require_torch
1998
class ModelUtilsTest(TestCasePlus):
1999
    @slow
Patrick von Platen's avatar
Patrick von Platen committed
2000
    def test_model_from_pretrained(self):
2001
        for model_name in BERT_PRETRAINED_MODEL_ARCHIVE_LIST[:1]:
thomwolf's avatar
thomwolf committed
2002
2003
2004
2005
2006
2007
2008
2009
            config = BertConfig.from_pretrained(model_name)
            self.assertIsNotNone(config)
            self.assertIsInstance(config, PretrainedConfig)

            model = BertModel.from_pretrained(model_name)
            model, loading_info = BertModel.from_pretrained(model_name, output_loading_info=True)
            self.assertIsNotNone(model)
            self.assertIsInstance(model, PreTrainedModel)
Lysandre Debut's avatar
Lysandre Debut committed
2010
2011
2012
2013
2014

            self.assertEqual(len(loading_info["missing_keys"]), 0)
            self.assertEqual(len(loading_info["unexpected_keys"]), 8)
            self.assertEqual(len(loading_info["mismatched_keys"]), 0)
            self.assertEqual(len(loading_info["error_msgs"]), 0)
thomwolf's avatar
thomwolf committed
2015
2016

            config = BertConfig.from_pretrained(model_name, output_attentions=True, output_hidden_states=True)
Lysandre Debut's avatar
Lysandre Debut committed
2017
2018
2019
2020

            # Not sure this is the intended behavior. TODO fix Lysandre & Thom
            config.name_or_path = model_name

thomwolf's avatar
thomwolf committed
2021
2022
2023
            model = BertModel.from_pretrained(model_name, output_attentions=True, output_hidden_states=True)
            self.assertEqual(model.config.output_hidden_states, True)
            self.assertEqual(model.config, config)
2024
2025
2026
2027
2028

    def test_model_from_pretrained_with_different_pretrained_model_name(self):
        model = T5ForConditionalGeneration.from_pretrained(TINY_T5)
        self.assertIsNotNone(model)

2029
2030
        logger = logging.get_logger("transformers.configuration_utils")
        with CaptureLogger(logger) as cl:
2031
            BertModel.from_pretrained(TINY_T5)
2032
        self.assertTrue("You are using a model of type t5 to instantiate a model of type bert" in cl.out)
Sylvain Gugger's avatar
Sylvain Gugger committed
2033

2034
2035
2036
2037
2038
2039
2040
2041
2042
2043
2044
2045
2046
2047
2048
2049
2050
2051
2052
2053
2054
2055
    @require_torch
    def test_model_from_config_torch_dtype(self):
        # test that the model can be instantiated with dtype of user's choice - as long as it's a
        # float dtype. To make it happen config.torch_dtype needs to be set before instantiating the
        # model from the config object.

        config = T5Config.from_pretrained(TINY_T5)
        model = AutoModel.from_config(config)
        # XXX: isn't supported
        # model = T5ForConditionalGeneration.from_config(config)
        self.assertEqual(model.dtype, torch.float32)

        model = AutoModel.from_config(config, torch_dtype=torch.float16)
        self.assertEqual(model.dtype, torch.float16)

        # torch.set_default_dtype() supports only float dtypes, so will fail with non-float type
        with self.assertRaises(ValueError):
            model = AutoModel.from_config(config, torch_dtype=torch.int64)

    @require_torch
    def test_model_from_pretrained_torch_dtype(self):
        # test that the model can be instantiated with dtype of either
2056
2057
        # 1. explicit from_pretrained's torch_dtype argument
        # 2. via autodiscovery by looking at model weights (torch_dtype="auto")
2058
        # so if a model.half() was saved, we want it to be instantiated as such.
2059
2060
        #
        # test an explicit model class, but also AutoModel separately as the latter goes through a different code path
2061
2062
2063
2064
2065
2066
2067
2068
2069
2070
2071
2072
2073
2074
2075
2076
2077
2078
2079
2080
2081
2082
        model_path = self.get_auto_remove_tmp_dir()

        # baseline - we know TINY_T5 is fp32 model
        model = T5ForConditionalGeneration.from_pretrained(TINY_T5)
        self.assertEqual(model.dtype, torch.float32)

        # test the default fp32 save_pretrained => from_pretrained cycle
        model.save_pretrained(model_path)
        model = T5ForConditionalGeneration.from_pretrained(model_path)
        self.assertEqual(model.dtype, torch.float32)
        # test with auto-detection
        model = T5ForConditionalGeneration.from_pretrained(model_path, torch_dtype="auto")
        self.assertEqual(model.dtype, torch.float32)

        # test forced loading in fp16 (even though the weights are in fp32)
        model = T5ForConditionalGeneration.from_pretrained(model_path, torch_dtype=torch.float16)
        self.assertEqual(model.dtype, torch.float16)

        # test fp16 save_pretrained, loaded with auto-detection
        model = model.half()
        model.save_pretrained(model_path)
        model = T5ForConditionalGeneration.from_pretrained(model_path, torch_dtype="auto")
2083
        self.assertEqual(model.config.torch_dtype, torch.float16)
2084
2085
        self.assertEqual(model.dtype, torch.float16)

2086
2087
2088
2089
2090
        # tests `config.torch_dtype` saving
        with open(f"{model_path}/config.json") as f:
            config_dict = json.load(f)
        self.assertEqual(config_dict["torch_dtype"], "float16")

2091
2092
2093
2094
        # test fp16 save_pretrained, loaded with the explicit fp16
        model = T5ForConditionalGeneration.from_pretrained(model_path, torch_dtype=torch.float16)
        self.assertEqual(model.dtype, torch.float16)

2095
2096
2097
2098
2099
2100
2101
2102
        # test AutoModel separately as it goes through a different path
        # test auto-detection
        model = AutoModel.from_pretrained(TINY_T5, torch_dtype="auto")
        self.assertEqual(model.dtype, torch.float32)
        # test forcing an explicit dtype
        model = AutoModel.from_pretrained(TINY_T5, torch_dtype=torch.float16)
        self.assertEqual(model.dtype, torch.float16)

2103
2104
2105
2106
2107
2108
2109
    def test_no_super_init_config_and_model(self):
        config = NoSuperInitConfig(attribute=32)
        model = NoSuperInitModel(config)

        with tempfile.TemporaryDirectory() as tmp_dir:
            model.save_pretrained(tmp_dir)

2110
2111
2112
2113
            new_model = NoSuperInitModel.from_pretrained(tmp_dir)

        for p1, p2 in zip(model.parameters(), new_model.parameters()):
            self.assertTrue(torch.equal(p1, p2))
2114

Sylvain Gugger's avatar
Sylvain Gugger committed
2115
2116
2117
2118
2119
2120

@require_torch
@is_staging_test
class ModelPushToHubTester(unittest.TestCase):
    @classmethod
    def setUpClass(cls):
2121
        cls._token = login(username=USER, password=PASS)
Sylvain Gugger's avatar
Sylvain Gugger committed
2122
2123
2124
2125

    @classmethod
    def tearDownClass(cls):
        try:
2126
            delete_repo(token=cls._token, name="test-model")
Sylvain Gugger's avatar
Sylvain Gugger committed
2127
2128
2129
2130
        except HTTPError:
            pass

        try:
2131
            delete_repo(token=cls._token, name="test-model-org", organization="valid_org")
Sylvain Gugger's avatar
Sylvain Gugger committed
2132
2133
2134
        except HTTPError:
            pass

2135
        try:
2136
            delete_repo(token=cls._token, name="test-dynamic-model")
2137
2138
2139
        except HTTPError:
            pass

2140
2141
2142
2143
2144
        try:
            delete_repo(token=cls._token, name="test-dynamic-model-config")
        except HTTPError:
            pass

Sylvain Gugger's avatar
Sylvain Gugger committed
2145
2146
2147
2148
2149
2150
    def test_push_to_hub(self):
        config = BertConfig(
            vocab_size=99, hidden_size=32, num_hidden_layers=5, num_attention_heads=4, intermediate_size=37
        )
        model = BertModel(config)
        with tempfile.TemporaryDirectory() as tmp_dir:
2151
            model.save_pretrained(os.path.join(tmp_dir, "test-model"), push_to_hub=True, use_auth_token=self._token)
Sylvain Gugger's avatar
Sylvain Gugger committed
2152
2153
2154
2155
2156
2157
2158
2159
2160
2161
2162
2163

            new_model = BertModel.from_pretrained(f"{USER}/test-model")
            for p1, p2 in zip(model.parameters(), new_model.parameters()):
                self.assertTrue(torch.equal(p1, p2))

    def test_push_to_hub_in_organization(self):
        config = BertConfig(
            vocab_size=99, hidden_size=32, num_hidden_layers=5, num_attention_heads=4, intermediate_size=37
        )
        model = BertModel(config)
        with tempfile.TemporaryDirectory() as tmp_dir:
            model.save_pretrained(
2164
                os.path.join(tmp_dir, "test-model-org"),
Sylvain Gugger's avatar
Sylvain Gugger committed
2165
2166
2167
2168
2169
2170
2171
2172
                push_to_hub=True,
                use_auth_token=self._token,
                organization="valid_org",
            )

            new_model = BertModel.from_pretrained("valid_org/test-model-org")
            for p1, p2 in zip(model.parameters(), new_model.parameters()):
                self.assertTrue(torch.equal(p1, p2))
2173
2174

    def test_push_to_hub_dynamic_model(self):
2175
2176
2177
2178
2179
        CustomConfig.register_for_auto_class()
        CustomModel.register_for_auto_class()

        config = CustomConfig(hidden_size=32)
        model = CustomModel(config)
2180
2181
2182
2183

        with tempfile.TemporaryDirectory() as tmp_dir:
            repo = Repository(tmp_dir, clone_from=f"{USER}/test-dynamic-model", use_auth_token=self._token)
            model.save_pretrained(tmp_dir)
2184
2185
2186
2187
2188
            # checks
            self.assertDictEqual(
                config.auto_map,
                {"AutoConfig": "custom_configuration.CustomConfig", "AutoModel": "custom_modeling.CustomModel"},
            )
2189
2190
2191
2192

            repo.push_to_hub()

        new_model = AutoModel.from_pretrained(f"{USER}/test-dynamic-model", trust_remote_code=True)
2193
2194
        # Can't make an isinstance check because the new_model is from the CustomModel class of a dynamic module
        self.assertEqual(new_model.__class__.__name__, "CustomModel")
2195
2196
        for p1, p2 in zip(model.parameters(), new_model.parameters()):
            self.assertTrue(torch.equal(p1, p2))
2197

2198
        config = AutoConfig.from_pretrained(f"{USER}/test-dynamic-model", trust_remote_code=True)
2199
        new_model = AutoModel.from_config(config, trust_remote_code=True)
2200
        self.assertEqual(new_model.__class__.__name__, "CustomModel")