test_modeling_common.py 40.7 KB
Newer Older
thomwolf's avatar
thomwolf committed
1
2
3
4
5
6
7
8
9
10
11
12
13
14
# coding=utf-8
# Copyright 2019 HuggingFace Inc.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
#     http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
Aymeric Augustin's avatar
Aymeric Augustin committed
15

16
import copy
Aymeric Augustin's avatar
Aymeric Augustin committed
17
import logging
18
import os.path
Aymeric Augustin's avatar
Aymeric Augustin committed
19
import random
20
import tempfile
thomwolf's avatar
thomwolf committed
21
import unittest
22
from typing import List
thomwolf's avatar
thomwolf committed
23

24
from transformers import is_torch_available
25

26
from .utils import require_multigpu, require_torch, slow, torch_device
27

Aymeric Augustin's avatar
Aymeric Augustin committed
28

29
if is_torch_available():
thomwolf's avatar
thomwolf committed
30
    import torch
31
    import numpy as np
thomwolf's avatar
thomwolf committed
32

33
34
35
36
37
38
    from transformers import (
        AdaptiveEmbedding,
        PretrainedConfig,
        PreTrainedModel,
        BertModel,
        BertConfig,
39
        BERT_PRETRAINED_MODEL_ARCHIVE_LIST,
40
        MODEL_FOR_MULTIPLE_CHOICE_MAPPING,
41
        MODEL_FOR_QUESTION_ANSWERING_MAPPING,
42
        top_k_top_p_filtering,
43
    )
thomwolf's avatar
thomwolf committed
44

45

46
47
48
def _config_zero_init(config):
    configs_no_init = copy.deepcopy(config)
    for key in configs_no_init.__dict__.keys():
49
        if "_range" in key or "_std" in key or "initializer_factor" in key:
Lysandre Debut's avatar
Lysandre Debut committed
50
            setattr(configs_no_init, key, 1e-10)
51
52
    return configs_no_init

thomwolf's avatar
thomwolf committed
53

54
55
56
57
58
@require_torch
class ModelTesterMixin:

    model_tester = None
    all_model_classes = ()
59
    all_generative_model_classes = ()
Patrick von Platen's avatar
Patrick von Platen committed
60
61
62
63
    test_torchscript = True
    test_pruning = True
    test_resize_embeddings = True
    test_head_masking = True
64
    test_missing_keys = True
65
66
    is_encoder_decoder = False

67
68
69
70
    def _prepare_for_class(self, inputs_dict, model_class):
        if model_class in MODEL_FOR_MULTIPLE_CHOICE_MAPPING.values():
            return {
                k: v.unsqueeze(1).expand(-1, self.model_tester.num_choices, -1).contiguous()
Sylvain Gugger's avatar
Sylvain Gugger committed
71
72
                if isinstance(v, torch.Tensor) and v.ndim != 0
                else v
73
74
75
76
                for k, v in inputs_dict.items()
            }
        return inputs_dict

Patrick von Platen's avatar
Patrick von Platen committed
77
    def test_save_load(self):
78
79
80
81
82
83
84
        config, inputs_dict = self.model_tester.prepare_config_and_inputs_for_common()

        for model_class in self.all_model_classes:
            model = model_class(config)
            model.to(torch_device)
            model.eval()
            with torch.no_grad():
85
                outputs = model(**self._prepare_for_class(inputs_dict, model_class))
86
            out_2 = outputs[0].cpu().numpy()
87
            out_2[np.isnan(out_2)] = 0
88

89
            with tempfile.TemporaryDirectory() as tmpdirname:
90
91
                model.save_pretrained(tmpdirname)
                model = model_class.from_pretrained(tmpdirname)
92
                model.to(torch_device)
93
                with torch.no_grad():
94
                    after_outputs = model(**self._prepare_for_class(inputs_dict, model_class))
thomwolf's avatar
thomwolf committed
95

96
97
98
                # Make sure we don't have nans
                out_1 = after_outputs[0].cpu().numpy()
                out_1[np.isnan(out_1)] = 0
thomwolf's avatar
thomwolf committed
99
100
                max_diff = np.amax(np.abs(out_1 - out_2))
                self.assertLessEqual(max_diff, 1e-5)
101

Patrick von Platen's avatar
Patrick von Platen committed
102
    def test_initialization(self):
103
104
105
106
107
108
109
110
        config, inputs_dict = self.model_tester.prepare_config_and_inputs_for_common()

        configs_no_init = _config_zero_init(config)
        for model_class in self.all_model_classes:
            model = model_class(config=configs_no_init)
            for name, param in model.named_parameters():
                if param.requires_grad:
                    self.assertIn(
Lysandre Debut's avatar
Lysandre Debut committed
111
                        ((param.data.mean() * 1e9).round() / 1e9).item(),
112
113
114
                        [0.0, 1.0],
                        msg="Parameter {} of model {} seems not properly initialized".format(name, model_class),
                    )
thomwolf's avatar
thomwolf committed
115

Patrick von Platen's avatar
Patrick von Platen committed
116
    def test_determinism(self):
117
118
119
120
121
122
123
        config, inputs_dict = self.model_tester.prepare_config_and_inputs_for_common()

        for model_class in self.all_model_classes:
            model = model_class(config)
            model.to(torch_device)
            model.eval()
            with torch.no_grad():
124
125
                first = model(**self._prepare_for_class(inputs_dict, model_class))[0]
                second = model(**self._prepare_for_class(inputs_dict, model_class))[0]
126
127
128
129
130
131
132
            out_1 = first.cpu().numpy()
            out_2 = second.cpu().numpy()
            out_1 = out_1[~np.isnan(out_1)]
            out_2 = out_2[~np.isnan(out_2)]
            max_diff = np.amax(np.abs(out_1 - out_2))
            self.assertLessEqual(max_diff, 1e-5)

Patrick von Platen's avatar
Patrick von Platen committed
133
    def test_attention_outputs(self):
134
        config, inputs_dict = self.model_tester.prepare_config_and_inputs_for_common()
sshleifer's avatar
sshleifer committed
135
        seq_len = getattr(self.model_tester, "seq_length", None)
sshleifer's avatar
sshleifer committed
136
137
        decoder_seq_length = getattr(self.model_tester, "decoder_seq_length", seq_len)
        encoder_seq_length = getattr(self.model_tester, "encoder_seq_length", seq_len)
138
139
        decoder_key_length = getattr(self.model_tester, "key_length", decoder_seq_length)
        encoder_key_length = getattr(self.model_tester, "key_length", encoder_seq_length)
Patrick von Platen's avatar
Patrick von Platen committed
140
141
142
        chunk_length = getattr(self.model_tester, "chunk_length", None)
        if chunk_length is not None and hasattr(self.model_tester, "num_hashes"):
            encoder_seq_length = encoder_seq_length * self.model_tester.num_hashes
143
144

        for model_class in self.all_model_classes:
145
            inputs_dict["output_attentions"] = True
146
147
148
149
150
            config.output_hidden_states = False
            model = model_class(config)
            model.to(torch_device)
            model.eval()
            with torch.no_grad():
151
                outputs = model(**self._prepare_for_class(inputs_dict, model_class))
152
            attentions = outputs[-1]
153
154
155
156
157
158
159
160
161
162
            self.assertEqual(model.config.output_hidden_states, False)
            self.assertEqual(len(attentions), self.model_tester.num_hidden_layers)

            # check that output_attentions also work using config
            del inputs_dict["output_attentions"]
            config.output_attentions = True
            model = model_class(config)
            model.to(torch_device)
            model.eval()
            with torch.no_grad():
Sylvain Gugger's avatar
Sylvain Gugger committed
163
                outputs = model(**self._prepare_for_class(inputs_dict, model_class))
164
            attentions = outputs[-1]
165
166
            self.assertEqual(model.config.output_hidden_states, False)
            self.assertEqual(len(attentions), self.model_tester.num_hidden_layers)
Patrick von Platen's avatar
Patrick von Platen committed
167
168
169
170
171
172
173
174
175
176
177

            if chunk_length is not None:
                self.assertListEqual(
                    list(attentions[0].shape[-4:]),
                    [self.model_tester.num_attention_heads, encoder_seq_length, chunk_length, encoder_key_length],
                )
            else:
                self.assertListEqual(
                    list(attentions[0].shape[-3:]),
                    [self.model_tester.num_attention_heads, encoder_seq_length, encoder_key_length],
                )
178
            out_len = len(outputs)
thomwolf's avatar
thomwolf committed
179

180
            if self.is_encoder_decoder:
181
                correct_outlen = 4
Sam Shleifer's avatar
Sam Shleifer committed
182
                decoder_attention_idx = 1
183

184
185
186
187
188
189
190
                # loss is at first position
                if "labels" in inputs_dict:
                    correct_outlen += 1  # loss is added to beginning
                    decoder_attention_idx += 1
                # Question Answering model returns start_logits and end_logits
                if model_class in MODEL_FOR_QUESTION_ANSWERING_MAPPING.values():
                    correct_outlen += 1  # start_logits and end_logits instead of only 1 output
Sam Shleifer's avatar
Sam Shleifer committed
191
192
193
194
195
                    decoder_attention_idx += 1
                self.assertEqual(out_len, correct_outlen)

                decoder_attentions = outputs[decoder_attention_idx]
                self.assertIsInstance(decoder_attentions, (list, tuple))
196
                self.assertEqual(len(decoder_attentions), self.model_tester.num_hidden_layers)
thomwolf's avatar
thomwolf committed
197
                self.assertListEqual(
198
199
                    list(decoder_attentions[0].shape[-3:]),
                    [self.model_tester.num_attention_heads, decoder_seq_length, decoder_key_length],
200
                )
thomwolf's avatar
thomwolf committed
201

202
            # Check attention is always last and order is fine
203
            inputs_dict["output_attentions"] = True
thomwolf's avatar
thomwolf committed
204
            config.output_hidden_states = True
205
206
207
208
            model = model_class(config)
            model.to(torch_device)
            model.eval()
            with torch.no_grad():
209
                outputs = model(**self._prepare_for_class(inputs_dict, model_class))
210
211
212
213
214
            self.assertEqual(out_len + (2 if self.is_encoder_decoder else 1), len(outputs))
            self.assertEqual(model.config.output_hidden_states, True)

            self_attentions = outputs[-1]
            self.assertEqual(len(self_attentions), self.model_tester.num_hidden_layers)
Patrick von Platen's avatar
Patrick von Platen committed
215
216
217
218
219
220
221
222
223
224
            if chunk_length is not None:
                self.assertListEqual(
                    list(self_attentions[0].shape[-4:]),
                    [self.model_tester.num_attention_heads, encoder_seq_length, chunk_length, encoder_key_length],
                )
            else:
                self.assertListEqual(
                    list(self_attentions[0].shape[-3:]),
                    [self.model_tester.num_attention_heads, encoder_seq_length, encoder_key_length],
                )
thomwolf's avatar
thomwolf committed
225

Patrick von Platen's avatar
Patrick von Platen committed
226
    def test_torchscript(self):
227
        config, inputs_dict = self.model_tester.prepare_config_and_inputs_for_common()
thomwolf's avatar
thomwolf committed
228

229
        self._create_and_check_torchscript(config, inputs_dict)
thomwolf's avatar
thomwolf committed
230

Patrick von Platen's avatar
Patrick von Platen committed
231
    def test_torchscript_output_attentions(self):
232
233
234
        config, inputs_dict = self.model_tester.prepare_config_and_inputs_for_common()
        config.output_attentions = True
        self._create_and_check_torchscript(config, inputs_dict)
thomwolf's avatar
thomwolf committed
235

Patrick von Platen's avatar
Patrick von Platen committed
236
    def test_torchscript_output_hidden_state(self):
237
        config, inputs_dict = self.model_tester.prepare_config_and_inputs_for_common()
238

239
240
        config.output_hidden_states = True
        self._create_and_check_torchscript(config, inputs_dict)
thomwolf's avatar
thomwolf committed
241

242
    def _create_and_check_torchscript(self, config, inputs_dict):
Patrick von Platen's avatar
Patrick von Platen committed
243
        if not self.test_torchscript:
244
            return
245

246
247
248
249
250
251
        configs_no_init = _config_zero_init(config)  # To be sure we have no Nan
        configs_no_init.torchscript = True
        for model_class in self.all_model_classes:
            model = model_class(config=configs_no_init)
            model.to(torch_device)
            model.eval()
252
            inputs = self._prepare_for_class(inputs_dict, model_class)["input_ids"]  # Let's keep only input_ids
thomwolf's avatar
thomwolf committed
253

254
255
256
257
            try:
                traced_gpt2 = torch.jit.trace(model, inputs)
            except RuntimeError:
                self.fail("Couldn't trace module.")
thomwolf's avatar
thomwolf committed
258

259
            with tempfile.TemporaryDirectory() as tmp_dir_name:
260
                pt_file_name = os.path.join(tmp_dir_name, "traced_model.pt")
thomwolf's avatar
thomwolf committed
261

262
263
264
265
                try:
                    torch.jit.save(traced_gpt2, pt_file_name)
                except Exception:
                    self.fail("Couldn't save module.")
thomwolf's avatar
thomwolf committed
266

267
268
269
270
                try:
                    loaded_model = torch.jit.load(pt_file_name)
                except Exception:
                    self.fail("Couldn't load module.")
LysandreJik's avatar
LysandreJik committed
271

272
273
            model.to(torch_device)
            model.eval()
thomwolf's avatar
thomwolf committed
274

275
276
            loaded_model.to(torch_device)
            loaded_model.eval()
thomwolf's avatar
thomwolf committed
277

278
279
280
281
            model_state_dict = model.state_dict()
            loaded_model_state_dict = loaded_model.state_dict()

            self.assertEqual(set(model_state_dict.keys()), set(loaded_model_state_dict.keys()))
thomwolf's avatar
thomwolf committed
282

283
            models_equal = True
284
285
            for layer_name, p1 in model_state_dict.items():
                p2 = loaded_model_state_dict[layer_name]
286
287
                if p1.data.ne(p2.data).sum() > 0:
                    models_equal = False
thomwolf's avatar
thomwolf committed
288

289
            self.assertTrue(models_equal)
thomwolf's avatar
thomwolf committed
290

Patrick von Platen's avatar
Patrick von Platen committed
291
292
    def test_headmasking(self):
        if not self.test_head_masking:
293
            return
294

295
296
297
        global_rng.seed(42)
        config, inputs_dict = self.model_tester.prepare_config_and_inputs_for_common()
        global_rng.seed()
LysandreJik's avatar
LysandreJik committed
298

299
        inputs_dict["output_attentions"] = True
300
301
302
303
304
305
        config.output_hidden_states = True
        configs_no_init = _config_zero_init(config)  # To be sure we have no Nan
        for model_class in self.all_model_classes:
            model = model_class(config=configs_no_init)
            model.to(torch_device)
            model.eval()
LysandreJik's avatar
LysandreJik committed
306

307
308
309
            # Prepare head_mask
            # Set require_grad after having prepared the tensor to avoid error (leaf variable has been moved into the graph interior)
            head_mask = torch.ones(
310
                self.model_tester.num_hidden_layers, self.model_tester.num_attention_heads, device=torch_device,
311
312
313
314
            )
            head_mask[0, 0] = 0
            head_mask[-1, :-1] = 0
            head_mask.requires_grad_(requires_grad=True)
315
            inputs = self._prepare_for_class(inputs_dict, model_class).copy()
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
            inputs["head_mask"] = head_mask

            outputs = model(**inputs)

            # Test that we can get a gradient back for importance score computation
            output = sum(t.sum() for t in outputs[0])
            output = output.sum()
            output.backward()
            multihead_outputs = head_mask.grad

            attentions = outputs[-1]

            # Remove Nan
            for t in attentions:
                self.assertLess(
                    torch.sum(torch.isnan(t)), t.numel() / 4
                )  # Check we don't have more than 25% nans (arbitrary)
            attentions = [
                t.masked_fill(torch.isnan(t), 0.0) for t in attentions
            ]  # remove them (the test is less complete)

            self.assertIsNotNone(multihead_outputs)
            self.assertEqual(len(multihead_outputs), self.model_tester.num_hidden_layers)
            self.assertAlmostEqual(attentions[0][..., 0, :, :].flatten().sum().item(), 0.0)
            self.assertNotEqual(attentions[0][..., -1, :, :].flatten().sum().item(), 0.0)
            self.assertNotEqual(attentions[1][..., 0, :, :].flatten().sum().item(), 0.0)
            self.assertAlmostEqual(attentions[-1][..., -2, :, :].flatten().sum().item(), 0.0)
            self.assertNotEqual(attentions[-1][..., -1, :, :].flatten().sum().item(), 0.0)

Patrick von Platen's avatar
Patrick von Platen committed
345
346
    def test_head_pruning(self):
        if not self.test_pruning:
347
348
349
            return

        for model_class in self.all_model_classes:
350
            (config, inputs_dict,) = self.model_tester.prepare_config_and_inputs_for_common()
351

352
353
            if "head_mask" in inputs_dict:
                del inputs_dict["head_mask"]
354

355
            inputs_dict["output_attentions"] = True
356
357
358
359
            config.output_hidden_states = False
            model = model_class(config=config)
            model.to(torch_device)
            model.eval()
360
361
362
363
            heads_to_prune = {
                0: list(range(1, self.model_tester.num_attention_heads)),
                -1: [0],
            }
364
365
            model.prune_heads(heads_to_prune)
            with torch.no_grad():
366
                outputs = model(**self._prepare_for_class(inputs_dict, model_class))
367

368
            attentions = outputs[-1]
369

370
371
372
            self.assertEqual(attentions[0].shape[-3], 1)
            self.assertEqual(attentions[1].shape[-3], self.model_tester.num_attention_heads)
            self.assertEqual(attentions[-1].shape[-3], self.model_tester.num_attention_heads - 1)
LysandreJik's avatar
LysandreJik committed
373

Patrick von Platen's avatar
Patrick von Platen committed
374
375
    def test_head_pruning_save_load_from_pretrained(self):
        if not self.test_pruning:
376
            return
LysandreJik's avatar
LysandreJik committed
377

378
        for model_class in self.all_model_classes:
379
            (config, inputs_dict,) = self.model_tester.prepare_config_and_inputs_for_common()
380
381
382

            if "head_mask" in inputs_dict:
                del inputs_dict["head_mask"]
383

384
            inputs_dict["output_attentions"] = True
385
386
387
388
            config.output_hidden_states = False
            model = model_class(config=config)
            model.to(torch_device)
            model.eval()
389
390
391
392
            heads_to_prune = {
                0: list(range(1, self.model_tester.num_attention_heads)),
                -1: [0],
            }
393
            model.prune_heads(heads_to_prune)
394

395
            with tempfile.TemporaryDirectory() as temp_dir_name:
396
397
                model.save_pretrained(temp_dir_name)
                model = model_class.from_pretrained(temp_dir_name)
398
                model.to(torch_device)
399

400
            with torch.no_grad():
401
                outputs = model(**self._prepare_for_class(inputs_dict, model_class))
402
403
404
405
            attentions = outputs[-1]
            self.assertEqual(attentions[0].shape[-3], 1)
            self.assertEqual(attentions[1].shape[-3], self.model_tester.num_attention_heads)
            self.assertEqual(attentions[-1].shape[-3], self.model_tester.num_attention_heads - 1)
406

Patrick von Platen's avatar
Patrick von Platen committed
407
408
    def test_head_pruning_save_load_from_config_init(self):
        if not self.test_pruning:
409
            return
410

411
        for model_class in self.all_model_classes:
412
            (config, inputs_dict,) = self.model_tester.prepare_config_and_inputs_for_common()
413

414
415
            if "head_mask" in inputs_dict:
                del inputs_dict["head_mask"]
416

417
            inputs_dict["output_attentions"] = True
418
            config.output_hidden_states = False
419

420
421
422
423
            heads_to_prune = {
                0: list(range(1, self.model_tester.num_attention_heads)),
                -1: [0],
            }
424
            config.pruned_heads = heads_to_prune
425

426
427
428
            model = model_class(config=config)
            model.to(torch_device)
            model.eval()
429

430
            with torch.no_grad():
431
                outputs = model(**self._prepare_for_class(inputs_dict, model_class))
432
            attentions = outputs[-1]
433

434
435
436
            self.assertEqual(attentions[0].shape[-3], 1)
            self.assertEqual(attentions[1].shape[-3], self.model_tester.num_attention_heads)
            self.assertEqual(attentions[-1].shape[-3], self.model_tester.num_attention_heads - 1)
437

Patrick von Platen's avatar
Patrick von Platen committed
438
439
    def test_head_pruning_integration(self):
        if not self.test_pruning:
440
            return
441

442
        for model_class in self.all_model_classes:
443
            (config, inputs_dict,) = self.model_tester.prepare_config_and_inputs_for_common()
444

445
446
            if "head_mask" in inputs_dict:
                del inputs_dict["head_mask"]
447

448
            inputs_dict["output_attentions"] = True
449
            config.output_hidden_states = False
450

451
452
            heads_to_prune = {0: [0], 1: [1, 2]}
            config.pruned_heads = heads_to_prune
453

454
455
456
            model = model_class(config=config)
            model.to(torch_device)
            model.eval()
457

458
            with torch.no_grad():
459
                outputs = model(**self._prepare_for_class(inputs_dict, model_class))
460
            attentions = outputs[-1]
461

462
463
464
465
            self.assertEqual(attentions[0].shape[-3], self.model_tester.num_attention_heads - 1)
            self.assertEqual(attentions[1].shape[-3], self.model_tester.num_attention_heads - 2)
            self.assertEqual(attentions[2].shape[-3], self.model_tester.num_attention_heads)
            self.assertEqual(attentions[3].shape[-3], self.model_tester.num_attention_heads)
thomwolf's avatar
thomwolf committed
466

467
            with tempfile.TemporaryDirectory() as temp_dir_name:
468
469
                model.save_pretrained(temp_dir_name)
                model = model_class.from_pretrained(temp_dir_name)
470
                model.to(torch_device)
thomwolf's avatar
thomwolf committed
471

472
            with torch.no_grad():
473
                outputs = model(**self._prepare_for_class(inputs_dict, model_class))
474
            attentions = outputs[-1]
LysandreJik's avatar
LysandreJik committed
475

476
477
478
479
            self.assertEqual(attentions[0].shape[-3], self.model_tester.num_attention_heads - 1)
            self.assertEqual(attentions[1].shape[-3], self.model_tester.num_attention_heads - 2)
            self.assertEqual(attentions[2].shape[-3], self.model_tester.num_attention_heads)
            self.assertEqual(attentions[3].shape[-3], self.model_tester.num_attention_heads)
thomwolf's avatar
thomwolf committed
480

481
482
            heads_to_prune = {0: [0], 2: [1, 2]}
            model.prune_heads(heads_to_prune)
483

484
            with torch.no_grad():
485
                outputs = model(**self._prepare_for_class(inputs_dict, model_class))
486
            attentions = outputs[-1]
487

488
489
490
491
            self.assertEqual(attentions[0].shape[-3], self.model_tester.num_attention_heads - 1)
            self.assertEqual(attentions[1].shape[-3], self.model_tester.num_attention_heads - 2)
            self.assertEqual(attentions[2].shape[-3], self.model_tester.num_attention_heads - 2)
            self.assertEqual(attentions[3].shape[-3], self.model_tester.num_attention_heads)
492

493
            self.assertDictEqual(model.config.pruned_heads, {0: [0], 1: [1, 2], 2: [1, 2]})
thomwolf's avatar
thomwolf committed
494

Patrick von Platen's avatar
Patrick von Platen committed
495
    def test_hidden_states_output(self):
496
        config, inputs_dict = self.model_tester.prepare_config_and_inputs_for_common()
thomwolf's avatar
thomwolf committed
497

498
499
500
        for model_class in self.all_model_classes:
            config.output_hidden_states = True
            model = model_class(config)
501
            model.to(torch_device)
thomwolf's avatar
thomwolf committed
502
            model.eval()
thomwolf's avatar
thomwolf committed
503
            with torch.no_grad():
504
                outputs = model(**self._prepare_for_class(inputs_dict, model_class))
505
506
507
            hidden_states = outputs[-1]
            self.assertEqual(model.config.output_hidden_states, True)
            self.assertEqual(len(hidden_states), self.model_tester.num_hidden_layers + 1)
Patrick von Platen's avatar
Patrick von Platen committed
508
509
510
511
512
513
514
515

            if hasattr(self.model_tester, "encoder_seq_length"):
                seq_length = self.model_tester.encoder_seq_length
                if hasattr(self.model_tester, "chunk_length") and self.model_tester.chunk_length > 1:
                    seq_length = seq_length * self.model_tester.chunk_length
            else:
                seq_length = self.model_tester.seq_length

516
            self.assertListEqual(
Patrick von Platen's avatar
Patrick von Platen committed
517
                list(hidden_states[0].shape[-2:]), [seq_length, self.model_tester.hidden_size],
518
            )
thomwolf's avatar
thomwolf committed
519

Patrick von Platen's avatar
Patrick von Platen committed
520
    def test_resize_tokens_embeddings(self):
521
        (original_config, inputs_dict,) = self.model_tester.prepare_config_and_inputs_for_common()
Patrick von Platen's avatar
Patrick von Platen committed
522
        if not self.test_resize_embeddings:
523
524
525
526
527
            return

        for model_class in self.all_model_classes:
            config = copy.deepcopy(original_config)
            model = model_class(config)
528
            model.to(torch_device)
529

Patrick von Platen's avatar
Patrick von Platen committed
530
531
532
            if self.model_tester.is_training is False:
                model.eval()

533
534
535
536
537
538
539
540
541
542
            model_vocab_size = config.vocab_size
            # Retrieve the embeddings and clone theme
            model_embed = model.resize_token_embeddings(model_vocab_size)
            cloned_embeddings = model_embed.weight.clone()

            # Check that resizing the token embeddings with a larger vocab size increases the model's vocab size
            model_embed = model.resize_token_embeddings(model_vocab_size + 10)
            self.assertEqual(model.config.vocab_size, model_vocab_size + 10)
            # Check that it actually resizes the embeddings matrix
            self.assertEqual(model_embed.weight.shape[0], cloned_embeddings.shape[0] + 10)
543
            # Check that the model can still do a forward pass successfully (every parameter should be resized)
544
            model(**self._prepare_for_class(inputs_dict, model_class))
545
546
547
548
549
550
551

            # Check that resizing the token embeddings with a smaller vocab size decreases the model's vocab size
            model_embed = model.resize_token_embeddings(model_vocab_size - 15)
            self.assertEqual(model.config.vocab_size, model_vocab_size - 15)
            # Check that it actually resizes the embeddings matrix
            self.assertEqual(model_embed.weight.shape[0], cloned_embeddings.shape[0] - 15)

552
553
554
            # Check that the model can still do a forward pass successfully (every parameter should be resized)
            # Input ids should be clamped to the maximum size of the vocabulary
            inputs_dict["input_ids"].clamp_(max=model_vocab_size - 15 - 1)
555
            model(**self._prepare_for_class(inputs_dict, model_class))
556

557
558
559
560
561
562
563
564
            # Check that adding and removing tokens has not modified the first part of the embedding matrix.
            models_equal = True
            for p1, p2 in zip(cloned_embeddings, model_embed.weight):
                if p1.data.ne(p2.data).sum() > 0:
                    models_equal = False

            self.assertTrue(models_equal)

Patrick von Platen's avatar
Patrick von Platen committed
565
    def test_model_common_attributes(self):
566
567
568
569
570
571
572
573
574
        config, inputs_dict = self.model_tester.prepare_config_and_inputs_for_common()

        for model_class in self.all_model_classes:
            model = model_class(config)
            self.assertIsInstance(model.get_input_embeddings(), (torch.nn.Embedding, AdaptiveEmbedding))
            model.set_input_embeddings(torch.nn.Embedding(10, 10))
            x = model.get_output_embeddings()
            self.assertTrue(x is None or isinstance(x, torch.nn.Linear))

575
    def test_correct_missing_keys(self):
576
577
        if not self.test_missing_keys:
            return
578
579
580
581
582
583
584
585
586
587
588
589
590
591
        config, _ = self.model_tester.prepare_config_and_inputs_for_common()

        for model_class in self.all_model_classes:
            model = model_class(config)
            base_model_prefix = model.base_model_prefix

            if hasattr(model, base_model_prefix):
                with tempfile.TemporaryDirectory() as temp_dir_name:
                    model.base_model.save_pretrained(temp_dir_name)
                    model, loading_info = model_class.from_pretrained(temp_dir_name, output_loading_info=True)

                    with self.subTest(msg="Missing keys for {}".format(model.__class__.__name__)):
                        self.assertGreater(len(loading_info["missing_keys"]), 0)

592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
    def test_tie_model_weights(self):
        if not self.test_torchscript:
            return

        config, inputs_dict = self.model_tester.prepare_config_and_inputs_for_common()

        def check_same_values(layer_1, layer_2):
            equal = True
            for p1, p2 in zip(layer_1.weight, layer_2.weight):
                if p1.data.ne(p2.data).sum() > 0:
                    equal = False
            return equal

        for model_class in self.all_model_classes:
            config.torchscript = True
            model_not_tied = model_class(config)
            if model_not_tied.get_output_embeddings() is None:
                continue

            params_not_tied = list(model_not_tied.parameters())

            config_tied = copy.deepcopy(config)
            config_tied.torchscript = False
            model_tied = model_class(config_tied)
            params_tied = list(model_tied.parameters())

            # Check that the embedding layer and decoding layer are the same in size and in value
            self.assertGreater(len(params_not_tied), len(params_tied))
            # self.assertTrue(check_same_values(embeddings, decoding))

            # # Check that after modification, they remain the same.
            # embeddings.weight.data.div_(2)
            # # Check that the embedding layer and decoding layer are the same in size and in value
            # self.assertTrue(embeddings.weight.shape, decoding.weight.shape)
            # self.assertTrue(check_same_values(embeddings, decoding))

            # # Check that after modification, they remain the same.
            # decoding.weight.data.div_(4)
            # # Check that the embedding layer and decoding layer are the same in size and in value
            # self.assertTrue(embeddings.weight.shape, decoding.weight.shape)
            # self.assertTrue(check_same_values(embeddings, decoding))

            # Check that after resize they remain tied.
            model_tied.resize_token_embeddings(config.vocab_size + 10)
            params_tied_2 = list(model_tied.parameters())
            self.assertGreater(len(params_not_tied), len(params_tied))
            self.assertEqual(len(params_tied_2), len(params_tied))

            # decoding.weight.data.mul_(20)
            # # Check that the embedding layer and decoding layer are the same in size and in value
            # self.assertTrue(model.transformer.wte.weight.shape, model.lm_head.weight.shape)
            # self.assertTrue(check_same_values(model.transformer.wte, model.lm_head))

Patrick von Platen's avatar
Patrick von Platen committed
645
    def test_inputs_embeds(self):
Sam Shleifer's avatar
Sam Shleifer committed
646

647
648
649
650
        config, inputs_dict = self.model_tester.prepare_config_and_inputs_for_common()

        for model_class in self.all_model_classes:
            model = model_class(config)
651
            model.to(torch_device)
thomwolf's avatar
thomwolf committed
652
            model.eval()
653

654
655
656
657
658
659
660
661
662
663
            inputs = copy.deepcopy(self._prepare_for_class(inputs_dict, model_class))
            if not self.is_encoder_decoder:
                input_ids = inputs["input_ids"]
                del inputs["input_ids"]
            else:
                encoder_input_ids = inputs["input_ids"]
                decoder_input_ids = inputs.get("decoder_input_ids", encoder_input_ids)
                del inputs["input_ids"]
                inputs.pop("decoder_input_ids", None)

664
665
            wte = model.get_input_embeddings()
            if not self.is_encoder_decoder:
666
                inputs["inputs_embeds"] = wte(input_ids)
667
            else:
668
669
                inputs["inputs_embeds"] = wte(encoder_input_ids)
                inputs["decoder_inputs_embeds"] = wte(decoder_input_ids)
670

thomwolf's avatar
thomwolf committed
671
            with torch.no_grad():
672
                model(**inputs)
673

674
    def test_lm_head_model_random_no_beam_search_generate(self):
675
        config, inputs_dict = self.model_tester.prepare_config_and_inputs_for_common()
676
        input_ids = inputs_dict["input_ids"] if "input_ids" in inputs_dict else inputs_dict["inputs"]
677

Patrick von Platen's avatar
Patrick von Platen committed
678
679
680
        # make sure that input_ids is at most of size 15
        input_ids = input_ids[..., :15]

681
        # iterate over all generative models
682
        for model_class in self.all_generative_model_classes:
683
            model = model_class(config).to(torch_device)
Patrick von Platen's avatar
Patrick von Platen committed
684
            model.eval()
685
686

            if config.bos_token_id is None:
687
                # if bos token id is not defined, model needs input_ids
688
                with self.assertRaises(AssertionError):
689
                    model.generate(do_sample=True, max_length=5)
690
                # num_return_sequences = 1
691
                self._check_generated_ids(model.generate(input_ids, do_sample=True))
692
            else:
693
                # num_return_sequences = 1
694
                self._check_generated_ids(model.generate(do_sample=True, max_length=5))
695

696
            with self.assertRaises(AssertionError):
697
                # generating multiple sequences when no beam search generation
698
699
700
                # is not allowed as it would always generate the same sequences
                model.generate(input_ids, do_sample=False, num_return_sequences=2)

701
702
            # num_return_sequences > 1, sample
            self._check_generated_ids(model.generate(input_ids, do_sample=True, num_return_sequences=2))
703
704

            # check bad words tokens language generation
705
            # create list of 1-seq bad token and list of 2-seq of bad tokens
706
707
708
709
            bad_words_ids = [
                self._generate_random_bad_tokens(1, model.config),
                self._generate_random_bad_tokens(2, model.config),
            ]
710
            output_tokens = model.generate(
711
                input_ids, do_sample=True, bad_words_ids=bad_words_ids, num_return_sequences=2
712
            )
713
            # only count generated tokens
714
715
            generated_ids = output_tokens[:, input_ids.shape[-1] :]
            self.assertFalse(self._check_match_tokens(generated_ids.tolist(), bad_words_ids))
716

717
718
    def test_lm_head_model_random_beam_search_generate(self):
        config, inputs_dict = self.model_tester.prepare_config_and_inputs_for_common()
719
720
721
        input_ids = (inputs_dict["input_ids"] if "input_ids" in inputs_dict else inputs_dict["inputs"]).to(
            torch_device
        )
722

Patrick von Platen's avatar
Patrick von Platen committed
723
724
725
        # make sure that input_ids is at most of size 15
        input_ids = input_ids[..., :15]

726
        for model_class in self.all_generative_model_classes:
727
            model = model_class(config).to(torch_device)
Patrick von Platen's avatar
Patrick von Platen committed
728
            model.eval()
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747

            if config.bos_token_id is None:
                # if bos token id is not defined mobel needs input_ids, num_return_sequences = 1
                self._check_generated_ids(model.generate(input_ids, do_sample=True, num_beams=2))
            else:
                # num_return_sequences = 1
                self._check_generated_ids(model.generate(do_sample=True, max_length=5, num_beams=2))

            with self.assertRaises(AssertionError):
                # generating more sequences than having beams leads is not possible
                model.generate(input_ids, do_sample=False, num_return_sequences=3, num_beams=2)

            # num_return_sequences > 1, sample
            self._check_generated_ids(model.generate(input_ids, do_sample=True, num_beams=2, num_return_sequences=2,))
            # num_return_sequences > 1, greedy
            self._check_generated_ids(model.generate(input_ids, do_sample=False, num_beams=2, num_return_sequences=2))

            # check bad words tokens language generation
            # create list of 1-seq bad token and list of 2-seq of bad tokens
748
749
750
751
            bad_words_ids = [
                self._generate_random_bad_tokens(1, model.config),
                self._generate_random_bad_tokens(2, model.config),
            ]
752
            output_tokens = model.generate(
753
                input_ids, do_sample=False, bad_words_ids=bad_words_ids, num_beams=2, num_return_sequences=2
754
            )
755
            # only count generated tokens
756
757
758
            generated_ids = output_tokens[:, input_ids.shape[-1] :]
            self.assertFalse(self._check_match_tokens(generated_ids.tolist(), bad_words_ids))

759
    def _generate_random_bad_tokens(self, num_bad_tokens: int, config) -> List[int]:
760
        # special tokens cannot be bad tokens
761
        special_tokens = [x for x in [config.bos_token_id, config.eos_token_id, config.pad_token_id] if x is not None]
762
763
764
        # create random bad tokens that are not special tokens
        bad_tokens = []
        while len(bad_tokens) < num_bad_tokens:
765
            token = ids_tensor((1, 1), self.model_tester.vocab_size).squeeze(0).cpu().numpy()[0]
766
767
768
769
            if token not in special_tokens:
                bad_tokens.append(token)
        return bad_tokens

770
    def _check_generated_ids(self, output_ids):
771
772
773
774
        for token_id in output_ids[0].tolist():
            self.assertGreaterEqual(token_id, 0)
            self.assertLess(token_id, self.model_tester.vocab_size)

775
776
777
778
779
780
781
782
783
784
785
786
    def _check_match_tokens(self, generated_ids, bad_words_ids):
        # for all bad word tokens
        for bad_word_ids in bad_words_ids:
            # for all slices in batch
            for generated_ids_slice in generated_ids:
                # for all word idx
                for i in range(len(bad_word_ids), len(generated_ids_slice)):
                    # if tokens match
                    if generated_ids_slice[i - len(bad_word_ids) : i] == bad_word_ids:
                        return True
        return False

787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
    @require_multigpu
    def test_multigpu_data_parallel_forward(self):
        config, inputs_dict = self.model_tester.prepare_config_and_inputs_for_common()

        # some params shouldn't be scattered by nn.DataParallel
        # so just remove them if they are present.
        blacklist_non_batched_params = ["head_mask"]
        for k in blacklist_non_batched_params:
            inputs_dict.pop(k, None)

        # move input tensors to cuda:O
        for k, v in inputs_dict.items():
            if torch.is_tensor(v):
                inputs_dict[k] = v.to(0)

        for model_class in self.all_model_classes:
            model = model_class(config=config)
            model.to(0)
            model.eval()

            # Wrap model in nn.DataParallel
            model = torch.nn.DataParallel(model)
            with torch.no_grad():
                _ = model(**inputs_dict)

812

813
global_rng = random.Random()
thomwolf's avatar
thomwolf committed
814
815


thomwolf's avatar
thomwolf committed
816
def ids_tensor(shape, vocab_size, rng=None, name=None):
817
    #  Creates a random int32 tensor of the shape within the vocab size
thomwolf's avatar
thomwolf committed
818
    if rng is None:
819
        rng = global_rng
thomwolf's avatar
thomwolf committed
820

thomwolf's avatar
thomwolf committed
821
822
823
    total_dims = 1
    for dim in shape:
        total_dims *= dim
thomwolf's avatar
thomwolf committed
824

thomwolf's avatar
thomwolf committed
825
826
827
    values = []
    for _ in range(total_dims):
        values.append(rng.randint(0, vocab_size - 1))
thomwolf's avatar
thomwolf committed
828

829
    return torch.tensor(data=values, dtype=torch.long, device=torch_device).view(shape).contiguous()
thomwolf's avatar
thomwolf committed
830
831


832
def floats_tensor(shape, scale=1.0, rng=None, name=None):
Patrick von Platen's avatar
Patrick von Platen committed
833
    """Creates a random float32 tensor"""
834
835
836
837
838
839
840
841
842
843
844
    if rng is None:
        rng = global_rng

    total_dims = 1
    for dim in shape:
        total_dims *= dim

    values = []
    for _ in range(total_dims):
        values.append(rng.random() * scale)

845
    return torch.tensor(data=values, dtype=torch.float, device=torch_device).view(shape).contiguous()
846
847


848
@require_torch
thomwolf's avatar
thomwolf committed
849
class ModelUtilsTest(unittest.TestCase):
850
    @slow
Patrick von Platen's avatar
Patrick von Platen committed
851
    def test_model_from_pretrained(self):
thomwolf's avatar
thomwolf committed
852
        logging.basicConfig(level=logging.INFO)
853
        for model_name in BERT_PRETRAINED_MODEL_ARCHIVE_LIST[:1]:
thomwolf's avatar
thomwolf committed
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
            config = BertConfig.from_pretrained(model_name)
            self.assertIsNotNone(config)
            self.assertIsInstance(config, PretrainedConfig)

            model = BertModel.from_pretrained(model_name)
            model, loading_info = BertModel.from_pretrained(model_name, output_loading_info=True)
            self.assertIsNotNone(model)
            self.assertIsInstance(model, PreTrainedModel)
            for value in loading_info.values():
                self.assertEqual(len(value), 0)

            config = BertConfig.from_pretrained(model_name, output_attentions=True, output_hidden_states=True)
            model = BertModel.from_pretrained(model_name, output_attentions=True, output_hidden_states=True)
            self.assertEqual(model.config.output_hidden_states, True)
            self.assertEqual(model.config, config)
869
870
871
872
873
874


@require_torch
class UtilsFunctionsTest(unittest.TestCase):

    # tests whether the top_k_top_p function behaves as expected
Patrick von Platen's avatar
Patrick von Platen committed
875
    def test_top_k_top_p_filtering(self):
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
        logits = torch.tensor(
            [
                [
                    8.2220991,  # 3rd highest value; idx. 0
                    -0.5620044,
                    5.23229752,
                    4.0386393,
                    -6.8798378,
                    -0.54785802,
                    -3.2012153,
                    2.92777176,
                    1.88171953,
                    7.35341276,  # 5th highest value; idx. 9
                    8.43207833,  # 2nd highest value; idx. 10
                    -9.85711836,
                    -5.96209236,
                    -1.13039161,
                    -7.1115294,
                    -0.8369633,
                    -5.3186408,
                    7.06427407,
                    0.81369344,
                    -0.82023817,
                    -5.9179796,
                    0.58813443,
                    -6.99778438,
                    4.71551189,
                    -0.18771637,
                    7.44020759,  # 4th highest value; idx. 25
                    9.38450987,  # 1st highest value; idx. 26
                    2.12662941,
                    -9.32562038,
                    2.35652522,
                ],  # cummulative prob of 5 highest values <= 0.6
                [
                    0.58425518,
                    4.53139238,
                    -5.57510464,
                    -6.28030699,
                    -7.19529503,
                    -4.02122551,
                    1.39337037,
                    -6.06707057,
                    1.59480517,
                    -9.643119,
                    0.03907799,
                    0.67231762,
                    -8.88206726,
                    6.27115922,  # 4th highest value; idx. 13
                    2.28520723,
                    4.82767506,
                    4.30421368,
                    8.8275313,  # 2nd highest value; idx. 17
                    5.44029958,  # 5th highest value; idx. 18
                    -4.4735794,
                    7.38579536,  # 3rd highest value; idx. 20
                    -2.91051663,
                    2.61946077,
                    -2.5674762,
                    -9.48959302,
                    -4.02922645,
                    -1.35416918,
                    9.67702323,  # 1st highest value; idx. 27
                    -5.89478553,
                    1.85370467,
                ],  # cummulative prob of 5 highest values <= 0.6
            ],
            dtype=torch.float,
            device=torch_device,
        )

        non_inf_expected_idx = torch.tensor(
            [[0, 0], [0, 9], [0, 10], [0, 25], [0, 26], [1, 13], [1, 17], [1, 18], [1, 20], [1, 27]],
            dtype=torch.long,
            device=torch_device,
        )  # expected non filtered idx as noted above

        non_inf_expected_output = torch.tensor(
            [
                8.2221,
                7.3534,
                8.4321,
                7.4402,
                9.3845,
                6.2712,
                8.8275,
                5.4403,
                7.3858,
                9.6770,
            ],  # expected non filtered values as noted above
            dtype=torch.float,
            device=torch_device,
        )

        output = top_k_top_p_filtering(logits, top_k=10, top_p=0.6, min_tokens_to_keep=4)
        non_inf_output = output[output != -float("inf")].to(device=torch_device)
        non_inf_idx = (output != -float("inf")).nonzero().to(device=torch_device)

        self.assertTrue(torch.allclose(non_inf_expected_output, non_inf_output, atol=1e-12))
        self.assertTrue(torch.all(torch.eq(non_inf_expected_idx, non_inf_idx)))