test_modeling_common.py 143 KB
Newer Older
thomwolf's avatar
thomwolf committed
1
2
3
4
5
6
7
8
9
10
11
12
13
14
# coding=utf-8
# Copyright 2019 HuggingFace Inc.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
#     http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
Aymeric Augustin's avatar
Aymeric Augustin committed
15

16
import copy
17
import gc
18
import inspect
19
import json
20
import os
21
import os.path
22
import pickle
Aymeric Augustin's avatar
Aymeric Augustin committed
23
import random
24
import sys
25
import tempfile
thomwolf's avatar
thomwolf committed
26
import unittest
27
import unittest.mock as mock
28
import warnings
29
from pathlib import Path
NielsRogge's avatar
NielsRogge committed
30
from typing import Dict, List, Tuple
thomwolf's avatar
thomwolf committed
31

32
33
34
import numpy as np

import transformers
35
from huggingface_hub import HfFolder, delete_repo, set_access_token
36
from huggingface_hub.file_download import http_get
Sylvain Gugger's avatar
Sylvain Gugger committed
37
from requests.exceptions import HTTPError
38
39
40
41
42
43
44
45
from transformers import (
    AutoConfig,
    AutoModel,
    AutoModelForSequenceClassification,
    PretrainedConfig,
    is_torch_available,
    logging,
)
46
from transformers.models.auto import get_values
Sylvain Gugger's avatar
Sylvain Gugger committed
47
from transformers.testing_utils import (
48
    TOKEN,
Sylvain Gugger's avatar
Sylvain Gugger committed
49
50
    USER,
    CaptureLogger,
51
    TestCasePlus,
52
    is_flaky,
53
54
    is_pt_flax_cross_test,
    is_pt_tf_cross_test,
Sylvain Gugger's avatar
Sylvain Gugger committed
55
    is_staging_test,
56
    require_accelerate,
57
    require_safetensors,
Sylvain Gugger's avatar
Sylvain Gugger committed
58
    require_torch,
59
    require_torch_gpu,
Sylvain Gugger's avatar
Sylvain Gugger committed
60
    require_torch_multi_gpu,
61
    require_usr_bin_time,
Sylvain Gugger's avatar
Sylvain Gugger committed
62
63
64
    slow,
    torch_device,
)
65
from transformers.utils import (
66
67
    SAFE_WEIGHTS_INDEX_NAME,
    SAFE_WEIGHTS_NAME,
68
69
    WEIGHTS_INDEX_NAME,
    WEIGHTS_NAME,
70
    is_accelerate_available,
71
72
73
74
75
    is_flax_available,
    is_tf_available,
    is_torch_fx_available,
)
from transformers.utils.generic import ModelOutput
76

Aymeric Augustin's avatar
Aymeric Augustin committed
77

78
79
sys.path.append(str(Path(__file__).parent.parent / "utils"))

80
from test_module.custom_configuration import CustomConfig, NoSuperInitConfig  # noqa E402
81
82


83
84
85
86
if is_accelerate_available():
    from accelerate.utils import compute_module_sizes


87
if is_torch_available():
88
    import torch
89
    from torch import nn
thomwolf's avatar
thomwolf committed
90

91
    from test_module.custom_modeling import CustomModel, NoSuperInitModel
92
    from transformers import (
93
        BERT_PRETRAINED_MODEL_ARCHIVE_LIST,
94
        MODEL_FOR_AUDIO_CLASSIFICATION_MAPPING,
95
        MODEL_FOR_AUDIO_XVECTOR_MAPPING,
NielsRogge's avatar
NielsRogge committed
96
        MODEL_FOR_CAUSAL_IMAGE_MODELING_MAPPING,
97
        MODEL_FOR_CAUSAL_LM_MAPPING,
98
        MODEL_FOR_DOCUMENT_QUESTION_ANSWERING_MAPPING,
99
        MODEL_FOR_IMAGE_CLASSIFICATION_MAPPING,
NielsRogge's avatar
NielsRogge committed
100
        MODEL_FOR_MASKED_IMAGE_MODELING_MAPPING,
101
        MODEL_FOR_MASKED_LM_MAPPING,
102
        MODEL_FOR_MULTIPLE_CHOICE_MAPPING,
103
        MODEL_FOR_NEXT_SENTENCE_PREDICTION_MAPPING,
104
        MODEL_FOR_QUESTION_ANSWERING_MAPPING,
NielsRogge's avatar
NielsRogge committed
105
        MODEL_FOR_SEMANTIC_SEGMENTATION_MAPPING,
106
107
108
        MODEL_FOR_SEQ_TO_SEQ_CAUSAL_LM_MAPPING,
        MODEL_FOR_SEQUENCE_CLASSIFICATION_MAPPING,
        MODEL_FOR_TOKEN_CLASSIFICATION_MAPPING,
NielsRogge's avatar
NielsRogge committed
109
        MODEL_FOR_VIDEO_CLASSIFICATION_MAPPING,
110
        MODEL_MAPPING,
111
        AdaptiveEmbedding,
112
113
        AutoModelForCausalLM,
        AutoTokenizer,
114
115
116
        BertConfig,
        BertModel,
        PreTrainedModel,
117
        T5Config,
118
        T5ForConditionalGeneration,
119
    )
Sylvain Gugger's avatar
Sylvain Gugger committed
120
    from transformers.modeling_utils import shard_checkpoint
thomwolf's avatar
thomwolf committed
121

Sylvain Gugger's avatar
Sylvain Gugger committed
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
    # Fake pretrained models for tests
    class BaseModel(PreTrainedModel):
        config_class = PretrainedConfig

        def __init__(self, config):
            super().__init__(config)
            self.linear = nn.Linear(4, 5)
            self.linear_2 = nn.Linear(5, 6)

        def forward(self, x):
            return self.linear_2(self.linear(x))

    class ModelWithHead(PreTrainedModel):
        base_model_prefix = "base"
        config_class = PretrainedConfig

        def _init_weights(self, module):
            pass

        def __init__(self, config):
            super().__init__(config)
            self.base = BaseModel(config)
            # linear is a common name between Base and Head on purpose.
            self.linear = nn.Linear(6, 3)
            self.linear2 = nn.Linear(3, 5)

        def forward(self, x):
            return self.linear2(self.linear(self.base(x)))


152
153
154
if is_tf_available():
    import tensorflow as tf

155
156
157
158
159
160
161
if is_flax_available():
    import jax.numpy as jnp
    from transformers.modeling_flax_pytorch_utils import (
        convert_pytorch_state_dict_to_flax,
        load_flax_weights_in_pytorch_model,
    )

162
if is_torch_fx_available():
163
    from transformers.utils.fx import symbolic_trace
164

165

166
167
168
def _config_zero_init(config):
    configs_no_init = copy.deepcopy(config)
    for key in configs_no_init.__dict__.keys():
169
        if "_range" in key or "_std" in key or "initializer_factor" in key or "layer_scale" in key:
Lysandre Debut's avatar
Lysandre Debut committed
170
            setattr(configs_no_init, key, 1e-10)
171
172
    return configs_no_init

thomwolf's avatar
thomwolf committed
173

174
TINY_T5 = "patrickvonplaten/t5-tiny-random"
175
TINY_BERT_FOR_TOKEN_CLASSIFICATION = "hf-internal-testing/tiny-bert-for-token-classification"
176
177


178
179
180
181
182
@require_torch
class ModelTesterMixin:

    model_tester = None
    all_model_classes = ()
183
    all_generative_model_classes = ()
184
    fx_compatible = False
Patrick von Platen's avatar
Patrick von Platen committed
185
186
187
    test_torchscript = True
    test_pruning = True
    test_resize_embeddings = True
188
    test_resize_position_embeddings = False
Patrick von Platen's avatar
Patrick von Platen committed
189
    test_head_masking = True
190
    test_mismatched_shapes = True
191
    test_missing_keys = True
192
    test_model_parallel = False
193
    is_encoder_decoder = False
194
    has_attentions = True
195
    model_split_percents = [0.5, 0.7, 0.9]
196

197
198
    def _prepare_for_class(self, inputs_dict, model_class, return_labels=False):
        inputs_dict = copy.deepcopy(inputs_dict)
199
        if model_class in get_values(MODEL_FOR_MULTIPLE_CHOICE_MAPPING):
200
            inputs_dict = {
201
                k: v.unsqueeze(1).expand(-1, self.model_tester.num_choices, -1).contiguous()
202
                if isinstance(v, torch.Tensor) and v.ndim > 1
Sylvain Gugger's avatar
Sylvain Gugger committed
203
                else v
204
205
                for k, v in inputs_dict.items()
            }
206
207
        elif model_class in get_values(MODEL_FOR_AUDIO_XVECTOR_MAPPING):
            inputs_dict.pop("attention_mask")
208
209

        if return_labels:
210
            if model_class in get_values(MODEL_FOR_MULTIPLE_CHOICE_MAPPING):
211
                inputs_dict["labels"] = torch.ones(self.model_tester.batch_size, dtype=torch.long, device=torch_device)
212
213
214
215
            elif model_class in [
                *get_values(MODEL_FOR_QUESTION_ANSWERING_MAPPING),
                *get_values(MODEL_FOR_DOCUMENT_QUESTION_ANSWERING_MAPPING),
            ]:
216
217
218
219
220
221
                inputs_dict["start_positions"] = torch.zeros(
                    self.model_tester.batch_size, dtype=torch.long, device=torch_device
                )
                inputs_dict["end_positions"] = torch.zeros(
                    self.model_tester.batch_size, dtype=torch.long, device=torch_device
                )
222
            elif model_class in [
223
224
225
                *get_values(MODEL_FOR_SEQUENCE_CLASSIFICATION_MAPPING),
                *get_values(MODEL_FOR_NEXT_SENTENCE_PREDICTION_MAPPING),
                *get_values(MODEL_FOR_IMAGE_CLASSIFICATION_MAPPING),
NielsRogge's avatar
NielsRogge committed
226
                *get_values(MODEL_FOR_VIDEO_CLASSIFICATION_MAPPING),
227
                *get_values(MODEL_FOR_AUDIO_CLASSIFICATION_MAPPING),
228
            ]:
229
230
231
232
                inputs_dict["labels"] = torch.zeros(
                    self.model_tester.batch_size, dtype=torch.long, device=torch_device
                )
            elif model_class in [
233
234
                *get_values(MODEL_FOR_TOKEN_CLASSIFICATION_MAPPING),
                *get_values(MODEL_FOR_CAUSAL_LM_MAPPING),
NielsRogge's avatar
NielsRogge committed
235
                *get_values(MODEL_FOR_CAUSAL_IMAGE_MODELING_MAPPING),
236
237
                *get_values(MODEL_FOR_MASKED_LM_MAPPING),
                *get_values(MODEL_FOR_SEQ_TO_SEQ_CAUSAL_LM_MAPPING),
238
239
240
241
            ]:
                inputs_dict["labels"] = torch.zeros(
                    (self.model_tester.batch_size, self.model_tester.seq_length), dtype=torch.long, device=torch_device
                )
NielsRogge's avatar
NielsRogge committed
242
243
244
245
246
            elif model_class in get_values(MODEL_FOR_MASKED_IMAGE_MODELING_MAPPING):
                num_patches = self.model_tester.image_size // self.model_tester.patch_size
                inputs_dict["bool_masked_pos"] = torch.zeros(
                    (self.model_tester.batch_size, num_patches**2), dtype=torch.long, device=torch_device
                )
NielsRogge's avatar
NielsRogge committed
247
248
249
250
251
            elif model_class in get_values(MODEL_FOR_SEMANTIC_SEGMENTATION_MAPPING):
                batch_size, num_channels, height, width = inputs_dict["pixel_values"].shape
                inputs_dict["labels"] = torch.zeros(
                    [self.model_tester.batch_size, height, width], device=torch_device
                ).long()
252

253
254
        return inputs_dict

Patrick von Platen's avatar
Patrick von Platen committed
255
    def test_save_load(self):
256
257
258
259
260
261
262
        config, inputs_dict = self.model_tester.prepare_config_and_inputs_for_common()

        for model_class in self.all_model_classes:
            model = model_class(config)
            model.to(torch_device)
            model.eval()
            with torch.no_grad():
263
                outputs = model(**self._prepare_for_class(inputs_dict, model_class))
Weizhen's avatar
Weizhen committed
264

265
            out_2 = outputs[0].cpu().numpy()
266
            out_2[np.isnan(out_2)] = 0
267

268
            with tempfile.TemporaryDirectory() as tmpdirname:
269
270
                model.save_pretrained(tmpdirname)
                model = model_class.from_pretrained(tmpdirname)
271
                model.to(torch_device)
272
                with torch.no_grad():
273
                    after_outputs = model(**self._prepare_for_class(inputs_dict, model_class))
thomwolf's avatar
thomwolf committed
274

275
276
277
                # Make sure we don't have nans
                out_1 = after_outputs[0].cpu().numpy()
                out_1[np.isnan(out_1)] = 0
thomwolf's avatar
thomwolf committed
278
279
                max_diff = np.amax(np.abs(out_1 - out_2))
                self.assertLessEqual(max_diff, 1e-5)
280

281
    def test_save_load_keys_to_ignore_on_save(self):
282
283
284
285
        config, inputs_dict = self.model_tester.prepare_config_and_inputs_for_common()

        for model_class in self.all_model_classes:
            model = model_class(config)
286
287
            _keys_to_ignore_on_save = getattr(model, "_keys_to_ignore_on_save", None)
            if _keys_to_ignore_on_save is None:
288
289
290
                continue

            # check the keys are in the original state_dict
291
            for k in _keys_to_ignore_on_save:
292
                self.assertIn(k, model.state_dict().keys(), "\n".join(model.state_dict().keys()))
293
294
295
296
297
298

            # check that certain keys didn't get saved with the model
            with tempfile.TemporaryDirectory() as tmpdirname:
                model.save_pretrained(tmpdirname)
                output_model_file = os.path.join(tmpdirname, WEIGHTS_NAME)
                state_dict_saved = torch.load(output_model_file)
299
                for k in _keys_to_ignore_on_save:
300
                    self.assertNotIn(k, state_dict_saved.keys(), "\n".join(state_dict_saved.keys()))
301

Sylvain Gugger's avatar
Sylvain Gugger committed
302
303
304
                # Test we can load the state dict in the model, necessary for the checkpointing API in Trainer.
                load_result = model.load_state_dict(state_dict_saved, strict=False)
                self.assertTrue(
305
306
                    len(load_result.missing_keys) == 0
                    or set(load_result.missing_keys) == set(model._keys_to_ignore_on_save)
Sylvain Gugger's avatar
Sylvain Gugger committed
307
308
309
                )
                self.assertTrue(len(load_result.unexpected_keys) == 0)

310
311
312
313
314
315
316
317
318
319
320
    def test_gradient_checkpointing_backward_compatibility(self):
        config, inputs_dict = self.model_tester.prepare_config_and_inputs_for_common()

        for model_class in self.all_model_classes:
            if not model_class.supports_gradient_checkpointing:
                continue

            config.gradient_checkpointing = True
            model = model_class(config)
            self.assertTrue(model.is_gradient_checkpointing)

321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
    def test_gradient_checkpointing_enable_disable(self):
        config, inputs_dict = self.model_tester.prepare_config_and_inputs_for_common()

        for model_class in self.all_model_classes:
            if not model_class.supports_gradient_checkpointing:
                continue

            # at init model should have gradient checkpointing disabled
            model = model_class(config)
            self.assertFalse(model.is_gradient_checkpointing)

            # check enable works
            model.gradient_checkpointing_enable()
            self.assertTrue(model.is_gradient_checkpointing)

            # check disable works
            model.gradient_checkpointing_disable()
            self.assertFalse(model.is_gradient_checkpointing)

340
341
342
343
344
345
    def _mock_init_weights(self, module):
        if hasattr(module, "weight") and module.weight is not None:
            module.weight.data.fill_(3)
        if hasattr(module, "bias") and module.bias is not None:
            module.bias.data.fill_(3)

346
    @is_flaky()
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
    def test_save_load_fast_init_from_base(self):
        config, inputs_dict = self.model_tester.prepare_config_and_inputs_for_common()
        base_class = MODEL_MAPPING[config.__class__]

        if isinstance(base_class, tuple):
            base_class = base_class[0]

        for model_class in self.all_model_classes:
            if model_class == base_class:
                continue

            # make a copy of model class to not break future tests
            # from https://stackoverflow.com/questions/9541025/how-to-copy-a-python-class
            class CopyClass(model_class):
                pass

            model_class_copy = CopyClass

            # make sure that all keys are expected for test
            model_class_copy._keys_to_ignore_on_load_missing = []

            # make init deterministic, but make sure that
            # non-initialized weights throw errors nevertheless
            model_class_copy._init_weights = self._mock_init_weights

            model = base_class(config)
            state_dict = model.state_dict()

            # this will often delete a single weight of a multi-weight module
            # to test an edge case
            random_key_to_del = random.choice(list(state_dict.keys()))
            del state_dict[random_key_to_del]

            # check that certain keys didn't get saved with the model
            with tempfile.TemporaryDirectory() as tmpdirname:
                model.save_pretrained(tmpdirname)
                torch.save(state_dict, os.path.join(tmpdirname, "pytorch_model.bin"))

                model_fast_init = model_class_copy.from_pretrained(tmpdirname)
                model_slow_init = model_class_copy.from_pretrained(tmpdirname, _fast_init=False)

                for key in model_fast_init.state_dict().keys():
                    max_diff = (model_slow_init.state_dict()[key] - model_fast_init.state_dict()[key]).sum().item()
                    self.assertLessEqual(max_diff, 1e-3, msg=f"{key} not identical")

    def test_save_load_fast_init_to_base(self):
        config, inputs_dict = self.model_tester.prepare_config_and_inputs_for_common()
        base_class = MODEL_MAPPING[config.__class__]

        if isinstance(base_class, tuple):
            base_class = base_class[0]

        for model_class in self.all_model_classes:

            if model_class == base_class:
                continue

            # make a copy of model class to not break future tests
            # from https://stackoverflow.com/questions/9541025/how-to-copy-a-python-class
            class CopyClass(base_class):
                pass

            base_class_copy = CopyClass

            # make sure that all keys are expected for test
            base_class_copy._keys_to_ignore_on_load_missing = []

            # make init deterministic, but make sure that
            # non-initialized weights throw errors nevertheless
            base_class_copy._init_weights = self._mock_init_weights

            model = model_class(config)
            state_dict = model.state_dict()

            # this will often delete a single weight of a multi-weight module
            # to test an edge case
            random_key_to_del = random.choice(list(state_dict.keys()))
            del state_dict[random_key_to_del]

            # check that certain keys didn't get saved with the model
            with tempfile.TemporaryDirectory() as tmpdirname:
                model.config.save_pretrained(tmpdirname)
                torch.save(state_dict, os.path.join(tmpdirname, "pytorch_model.bin"))

                model_fast_init = base_class_copy.from_pretrained(tmpdirname)
                model_slow_init = base_class_copy.from_pretrained(tmpdirname, _fast_init=False)

                for key in model_fast_init.state_dict().keys():
435
436
437
                    max_diff = torch.max(
                        torch.abs(model_slow_init.state_dict()[key] - model_fast_init.state_dict()[key])
                    ).item()
438
439
                    self.assertLessEqual(max_diff, 1e-3, msg=f"{key} not identical")

Patrick von Platen's avatar
Patrick von Platen committed
440
    def test_initialization(self):
441
442
443
444
445
446
447
448
        config, inputs_dict = self.model_tester.prepare_config_and_inputs_for_common()

        configs_no_init = _config_zero_init(config)
        for model_class in self.all_model_classes:
            model = model_class(config=configs_no_init)
            for name, param in model.named_parameters():
                if param.requires_grad:
                    self.assertIn(
Lysandre Debut's avatar
Lysandre Debut committed
449
                        ((param.data.mean() * 1e9).round() / 1e9).item(),
450
                        [0.0, 1.0],
451
                        msg=f"Parameter {name} of model {model_class} seems not properly initialized",
452
                    )
thomwolf's avatar
thomwolf committed
453

Patrick von Platen's avatar
Patrick von Platen committed
454
    def test_determinism(self):
455
456
457
458
459
460
        config, inputs_dict = self.model_tester.prepare_config_and_inputs_for_common()
        for model_class in self.all_model_classes:
            model = model_class(config)
            model.to(torch_device)
            model.eval()
            with torch.no_grad():
461
462
                first = model(**self._prepare_for_class(inputs_dict, model_class))[0]
                second = model(**self._prepare_for_class(inputs_dict, model_class))[0]
Weizhen's avatar
Weizhen committed
463

464
465
466
467
468
469
470
            out_1 = first.cpu().numpy()
            out_2 = second.cpu().numpy()
            out_1 = out_1[~np.isnan(out_1)]
            out_2 = out_2[~np.isnan(out_2)]
            max_diff = np.amax(np.abs(out_1 - out_2))
            self.assertLessEqual(max_diff, 1e-5)

471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
    def test_forward_signature(self):
        config, _ = self.model_tester.prepare_config_and_inputs_for_common()

        for model_class in self.all_model_classes:
            model = model_class(config)
            signature = inspect.signature(model.forward)
            # signature.parameters is an OrderedDict => so arg_names order is deterministic
            arg_names = [*signature.parameters.keys()]

            if model.config.is_encoder_decoder:
                expected_arg_names = [
                    "input_ids",
                    "attention_mask",
                    "decoder_input_ids",
                    "decoder_attention_mask",
                ]
487
                expected_arg_names.extend(
488
489
                    ["head_mask", "decoder_head_mask", "cross_attn_head_mask", "encoder_outputs"]
                    if "head_mask" and "decoder_head_mask" and "cross_attn_head_mask" in arg_names
490
491
492
                    else ["encoder_outputs"]
                )
                self.assertListEqual(arg_names[: len(expected_arg_names)], expected_arg_names)
493
494
495
496
            else:
                expected_arg_names = ["input_ids"]
                self.assertListEqual(arg_names[:1], expected_arg_names)

497
498
499
500
501
    def test_training(self):
        if not self.model_tester.is_training:
            return

        for model_class in self.all_model_classes:
502
503
504
            config, inputs_dict = self.model_tester.prepare_config_and_inputs_for_common()
            config.return_dict = True

505
            if model_class in get_values(MODEL_MAPPING):
506
                continue
507

508
509
510
511
512
513
514
515
            model = model_class(config)
            model.to(torch_device)
            model.train()
            inputs = self._prepare_for_class(inputs_dict, model_class, return_labels=True)
            loss = model(**inputs).loss
            loss.backward()

    def test_training_gradient_checkpointing(self):
516
        if not self.model_tester.is_training:
517
518
519
            return

        for model_class in self.all_model_classes:
520
521
522
523
            config, inputs_dict = self.model_tester.prepare_config_and_inputs_for_common()
            config.use_cache = False
            config.return_dict = True

524
            if model_class in get_values(MODEL_MAPPING) or not model_class.supports_gradient_checkpointing:
525
526
527
                continue
            model = model_class(config)
            model.to(torch_device)
528
            model.gradient_checkpointing_enable()
529
530
531
532
533
            model.train()
            inputs = self._prepare_for_class(inputs_dict, model_class, return_labels=True)
            loss = model(**inputs).loss
            loss.backward()

Patrick von Platen's avatar
Patrick von Platen committed
534
    def test_attention_outputs(self):
535
536
        config, inputs_dict = self.model_tester.prepare_config_and_inputs_for_common()
        config.return_dict = True
537

538
539
540
541
542
543
544
545
546
547
548
549
        seq_len = getattr(self.model_tester, "seq_length", None)
        decoder_seq_length = getattr(self.model_tester, "decoder_seq_length", seq_len)
        encoder_seq_length = getattr(self.model_tester, "encoder_seq_length", seq_len)
        decoder_key_length = getattr(self.model_tester, "decoder_key_length", decoder_seq_length)
        encoder_key_length = getattr(self.model_tester, "key_length", encoder_seq_length)
        chunk_length = getattr(self.model_tester, "chunk_length", None)
        if chunk_length is not None and hasattr(self.model_tester, "num_hashes"):
            encoder_seq_length = encoder_seq_length * self.model_tester.num_hashes

        for model_class in self.all_model_classes:
            inputs_dict["output_attentions"] = True
            inputs_dict["output_hidden_states"] = False
550
            config.return_dict = True
551
552
553
554
555
556
557
            model = model_class(config)
            model.to(torch_device)
            model.eval()
            with torch.no_grad():
                outputs = model(**self._prepare_for_class(inputs_dict, model_class))
            attentions = outputs.encoder_attentions if config.is_encoder_decoder else outputs.attentions
            self.assertEqual(len(attentions), self.model_tester.num_hidden_layers)
558

559
560
561
562
563
564
565
566
567
568
            # check that output_attentions also work using config
            del inputs_dict["output_attentions"]
            config.output_attentions = True
            model = model_class(config)
            model.to(torch_device)
            model.eval()
            with torch.no_grad():
                outputs = model(**self._prepare_for_class(inputs_dict, model_class))
            attentions = outputs.encoder_attentions if config.is_encoder_decoder else outputs.attentions
            self.assertEqual(len(attentions), self.model_tester.num_hidden_layers)
thomwolf's avatar
thomwolf committed
569

570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
            if chunk_length is not None:
                self.assertListEqual(
                    list(attentions[0].shape[-4:]),
                    [self.model_tester.num_attention_heads, encoder_seq_length, chunk_length, encoder_key_length],
                )
            else:
                self.assertListEqual(
                    list(attentions[0].shape[-3:]),
                    [self.model_tester.num_attention_heads, encoder_seq_length, encoder_key_length],
                )
            out_len = len(outputs)

            if self.is_encoder_decoder:
                correct_outlen = 5

                # loss is at first position
                if "labels" in inputs_dict:
                    correct_outlen += 1  # loss is added to beginning
                # Question Answering model returns start_logits and end_logits
589
590
591
592
                if model_class in [
                    *get_values(MODEL_FOR_QUESTION_ANSWERING_MAPPING),
                    *get_values(MODEL_FOR_DOCUMENT_QUESTION_ANSWERING_MAPPING),
                ]:
593
594
595
596
597
598
599
600
601
602
603
604
605
606
                    correct_outlen += 1  # start_logits and end_logits instead of only 1 output
                if "past_key_values" in outputs:
                    correct_outlen += 1  # past_key_values have been returned

                self.assertEqual(out_len, correct_outlen)

                # decoder attentions
                decoder_attentions = outputs.decoder_attentions
                self.assertIsInstance(decoder_attentions, (list, tuple))
                self.assertEqual(len(decoder_attentions), self.model_tester.num_hidden_layers)
                self.assertListEqual(
                    list(decoder_attentions[0].shape[-3:]),
                    [self.model_tester.num_attention_heads, decoder_seq_length, decoder_key_length],
                )
607

608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
                # cross attentions
                cross_attentions = outputs.cross_attentions
                self.assertIsInstance(cross_attentions, (list, tuple))
                self.assertEqual(len(cross_attentions), self.model_tester.num_hidden_layers)
                self.assertListEqual(
                    list(cross_attentions[0].shape[-3:]),
                    [
                        self.model_tester.num_attention_heads,
                        decoder_seq_length,
                        encoder_key_length,
                    ],
                )

            # Check attention is always last and order is fine
            inputs_dict["output_attentions"] = True
            inputs_dict["output_hidden_states"] = True
            model = model_class(config)
            model.to(torch_device)
            model.eval()
            with torch.no_grad():
                outputs = model(**self._prepare_for_class(inputs_dict, model_class))

            if hasattr(self.model_tester, "num_hidden_states_types"):
                added_hidden_states = self.model_tester.num_hidden_states_types
            elif self.is_encoder_decoder:
                added_hidden_states = 2
            else:
                added_hidden_states = 1
            self.assertEqual(out_len + added_hidden_states, len(outputs))

            self_attentions = outputs.encoder_attentions if config.is_encoder_decoder else outputs.attentions

            self.assertEqual(len(self_attentions), self.model_tester.num_hidden_layers)
            if chunk_length is not None:
                self.assertListEqual(
                    list(self_attentions[0].shape[-4:]),
                    [self.model_tester.num_attention_heads, encoder_seq_length, chunk_length, encoder_key_length],
                )
            else:
                self.assertListEqual(
                    list(self_attentions[0].shape[-3:]),
                    [self.model_tester.num_attention_heads, encoder_seq_length, encoder_key_length],
                )
thomwolf's avatar
thomwolf committed
651

652
    @slow
653
    def test_torchscript_simple(self):
654
655
        config, inputs_dict = self.model_tester.prepare_config_and_inputs_for_common()
        self._create_and_check_torchscript(config, inputs_dict)
thomwolf's avatar
thomwolf committed
656

657
    @slow
Patrick von Platen's avatar
Patrick von Platen committed
658
    def test_torchscript_output_attentions(self):
659
660
661
        config, inputs_dict = self.model_tester.prepare_config_and_inputs_for_common()
        config.output_attentions = True
        self._create_and_check_torchscript(config, inputs_dict)
thomwolf's avatar
thomwolf committed
662

663
    @slow
Patrick von Platen's avatar
Patrick von Platen committed
664
    def test_torchscript_output_hidden_state(self):
665
666
667
        config, inputs_dict = self.model_tester.prepare_config_and_inputs_for_common()
        config.output_hidden_states = True
        self._create_and_check_torchscript(config, inputs_dict)
thomwolf's avatar
thomwolf committed
668

669
670
671
672
673
674
675
    # This is copied from `torch/testing/_internal/jit_utils.py::clear_class_registry`
    def clear_torch_jit_class_registry(self):

        torch._C._jit_clear_class_registry()
        torch.jit._recursive.concrete_type_store = torch.jit._recursive.ConcreteTypeStore()
        torch.jit._state._clear_class_state()

676
    def _create_and_check_torchscript(self, config, inputs_dict):
Patrick von Platen's avatar
Patrick von Platen committed
677
        if not self.test_torchscript:
678
            return
679

680
681
682
683
684
685
        configs_no_init = _config_zero_init(config)  # To be sure we have no Nan
        configs_no_init.torchscript = True
        for model_class in self.all_model_classes:
            model = model_class(config=configs_no_init)
            model.to(torch_device)
            model.eval()
686
            inputs = self._prepare_for_class(inputs_dict, model_class)
thomwolf's avatar
thomwolf committed
687

688
689
            main_input_name = model_class.main_input_name

690
            try:
691
                if model.config.is_encoder_decoder:
692
                    model.config.use_cache = False  # FSTM still requires this hack -> FSTM should probably be refactored similar to BART afterward
693
                    main_input = inputs[main_input_name]
694
695
696
                    attention_mask = inputs["attention_mask"]
                    decoder_input_ids = inputs["decoder_input_ids"]
                    decoder_attention_mask = inputs["decoder_attention_mask"]
697
                    model(main_input, attention_mask, decoder_input_ids, decoder_attention_mask)
698
                    traced_model = torch.jit.trace(
699
                        model, (main_input, attention_mask, decoder_input_ids, decoder_attention_mask)
700
                    )
701
702
703
704
                elif "bbox" in inputs and "image" in inputs:  # LayoutLMv2 requires additional inputs
                    input_ids = inputs["input_ids"]
                    bbox = inputs["bbox"]
                    image = inputs["image"].tensor
705
                    model(input_ids, bbox, image)
706
707
708
                    traced_model = torch.jit.trace(
                        model, (input_ids, bbox, image), check_trace=False
                    )  # when traced model is checked, an error is produced due to name mangling
709
                else:
710
                    main_input = inputs[main_input_name]
711
                    model(main_input)
712
                    traced_model = torch.jit.trace(model, main_input)
713
714
            except RuntimeError:
                self.fail("Couldn't trace module.")
thomwolf's avatar
thomwolf committed
715

716
            with tempfile.TemporaryDirectory() as tmp_dir_name:
717
                pt_file_name = os.path.join(tmp_dir_name, "traced_model.pt")
thomwolf's avatar
thomwolf committed
718

719
                try:
720
                    torch.jit.save(traced_model, pt_file_name)
721
722
                except Exception:
                    self.fail("Couldn't save module.")
thomwolf's avatar
thomwolf committed
723

724
725
726
727
                try:
                    loaded_model = torch.jit.load(pt_file_name)
                except Exception:
                    self.fail("Couldn't load module.")
LysandreJik's avatar
LysandreJik committed
728

729
730
            model.to(torch_device)
            model.eval()
thomwolf's avatar
thomwolf committed
731

732
733
            loaded_model.to(torch_device)
            loaded_model.eval()
thomwolf's avatar
thomwolf committed
734

735
736
737
            model_state_dict = model.state_dict()
            loaded_model_state_dict = loaded_model.state_dict()

738
739
740
741
742
743
744
745
746
            non_persistent_buffers = {}
            for key in loaded_model_state_dict.keys():
                if key not in model_state_dict.keys():
                    non_persistent_buffers[key] = loaded_model_state_dict[key]

            loaded_model_state_dict = {
                key: value for key, value in loaded_model_state_dict.items() if key not in non_persistent_buffers
            }

747
            self.assertEqual(set(model_state_dict.keys()), set(loaded_model_state_dict.keys()))
thomwolf's avatar
thomwolf committed
748

749
750
751
752
753
754
755
756
757
758
759
            model_buffers = list(model.buffers())
            for non_persistent_buffer in non_persistent_buffers.values():
                found_buffer = False
                for i, model_buffer in enumerate(model_buffers):
                    if torch.equal(non_persistent_buffer, model_buffer):
                        found_buffer = True
                        break

                self.assertTrue(found_buffer)
                model_buffers.pop(i)

760
            models_equal = True
761
            for layer_name, p1 in model_state_dict.items():
762
763
764
765
                if layer_name in loaded_model_state_dict:
                    p2 = loaded_model_state_dict[layer_name]
                    if p1.data.ne(p2.data).sum() > 0:
                        models_equal = False
thomwolf's avatar
thomwolf committed
766

767
            self.assertTrue(models_equal)
thomwolf's avatar
thomwolf committed
768

769
770
771
772
            # Avoid memory leak. Without this, each call increase RAM usage by ~20MB.
            # (Even with this call, there are still memory leak by ~0.04MB)
            self.clear_torch_jit_class_registry()

773
774
775
776
777
778
779
780
    def test_torch_fx(self):
        config, inputs_dict = self.model_tester.prepare_config_and_inputs_for_common()
        self._create_and_check_torch_fx_tracing(config, inputs_dict)

    def test_torch_fx_output_loss(self):
        config, inputs_dict = self.model_tester.prepare_config_and_inputs_for_common()
        self._create_and_check_torch_fx_tracing(config, inputs_dict, output_loss=True)

781
782
    def _create_and_check_torch_fx_tracing(self, config, inputs_dict, output_loss=False):
        if not is_torch_fx_available() or not self.fx_compatible:
783
784
785
786
787
            return

        configs_no_init = _config_zero_init(config)  # To be sure we have no Nan
        configs_no_init.return_dict = False

788
        for model_class in self.all_model_classes:
789
790
791
792
793
794
795
796
797
            model = model_class(config=configs_no_init)
            model.to(torch_device)
            model.eval()
            inputs = self._prepare_for_class(inputs_dict, model_class, return_labels=output_loss)

            try:
                if model.config.is_encoder_decoder:
                    model.config.use_cache = False  # FSTM still requires this hack -> FSTM should probably be refactored similar to BART afterward
                    labels = inputs.get("labels", None)
798
799
800
                    input_names = [
                        "attention_mask",
                        "decoder_attention_mask",
801
                        "decoder_input_ids",
802
                        "input_features",
803
804
                        "input_ids",
                        "input_values",
805
                    ]
806
807
                    if labels is not None:
                        input_names.append("labels")
808

809
                    filtered_inputs = {k: v for (k, v) in inputs.items() if k in input_names}
810
                    input_names = list(filtered_inputs.keys())
811

812
                    model_output = model(**filtered_inputs)
813

814
                    traced_model = symbolic_trace(model, input_names)
815
                    traced_output = traced_model(**filtered_inputs)
816
                else:
817
818
819
820
                    input_names = [
                        "attention_mask",
                        "bbox",
                        "input_features",
821
822
823
824
825
826
                        "input_ids",
                        "input_values",
                        "pixel_values",
                        "token_type_ids",
                        "visual_feats",
                        "visual_pos",
827
                    ]
828

829
                    labels = inputs.get("labels", None)
830
831
                    start_positions = inputs.get("start_positions", None)
                    end_positions = inputs.get("end_positions", None)
832
833
                    if labels is not None:
                        input_names.append("labels")
834
835
836
837
                    if start_positions is not None:
                        input_names.append("start_positions")
                    if end_positions is not None:
                        input_names.append("end_positions")
838

839
                    filtered_inputs = {k: v for (k, v) in inputs.items() if k in input_names}
840
                    input_names = list(filtered_inputs.keys())
841

842
843
                    if isinstance(model, tuple(MODEL_FOR_SEQUENCE_CLASSIFICATION_MAPPING.values())) and (
                        not hasattr(model.config, "problem_type") or model.config.problem_type is None
844
845
846
                    ):
                        model.config.problem_type = "single_label_classification"

847
                    traced_model = symbolic_trace(model, input_names)
848
                    traced_output = traced_model(**filtered_inputs)
849
                    model_output = model(**filtered_inputs)
850

851
            except Exception as e:
852
                self.fail(f"Couldn't trace module: {e}")
853

854
855
856
857
858
859
860
861
862
863
864
865
866
            def flatten_output(output):
                flatten = []
                for x in output:
                    if isinstance(x, (tuple, list)):
                        flatten += flatten_output(x)
                    elif not isinstance(x, torch.Tensor):
                        continue
                    else:
                        flatten.append(x)
                return flatten

            model_output = flatten_output(model_output)
            traced_output = flatten_output(traced_output)
867
            num_outputs = len(model_output)
868
869
870
871
872
873

            for i in range(num_outputs):
                self.assertTrue(
                    torch.allclose(model_output[i], traced_output[i]),
                    f"traced {i}th output doesn't match model {i}th output for {model_class}",
                )
874

875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
            # Test that the model can be serialized and restored properly
            with tempfile.TemporaryDirectory() as tmp_dir_name:
                pkl_file_name = os.path.join(tmp_dir_name, "model.pkl")
                try:
                    with open(pkl_file_name, "wb") as f:
                        pickle.dump(traced_model, f)
                    with open(pkl_file_name, "rb") as f:
                        loaded = pickle.load(f)
                except Exception as e:
                    self.fail(f"Couldn't serialize / deserialize the traced model: {e}")

                loaded_output = loaded(**filtered_inputs)
                loaded_output = flatten_output(loaded_output)

                for i in range(num_outputs):
                    self.assertTrue(
                        torch.allclose(model_output[i], loaded_output[i]),
                        f"serialized model {i}th output doesn't match model {i}th output for {model_class}",
                    )

895
896
897
898
            # Avoid memory leak. Without this, each call increase RAM usage by ~20MB.
            # (Even with this call, there are still memory leak by ~0.04MB)
            self.clear_torch_jit_class_registry()

Patrick von Platen's avatar
Patrick von Platen committed
899
900
    def test_headmasking(self):
        if not self.test_head_masking:
901
            return
902

903
904
905
        global_rng.seed(42)
        config, inputs_dict = self.model_tester.prepare_config_and_inputs_for_common()
        global_rng.seed()
LysandreJik's avatar
LysandreJik committed
906

907
        inputs_dict["output_attentions"] = True
908
909
910
911
912
913
        config.output_hidden_states = True
        configs_no_init = _config_zero_init(config)  # To be sure we have no Nan
        for model_class in self.all_model_classes:
            model = model_class(config=configs_no_init)
            model.to(torch_device)
            model.eval()
LysandreJik's avatar
LysandreJik committed
914

915
916
917
            # Prepare head_mask
            # Set require_grad after having prepared the tensor to avoid error (leaf variable has been moved into the graph interior)
            head_mask = torch.ones(
Lysandre's avatar
Lysandre committed
918
919
920
                self.model_tester.num_hidden_layers,
                self.model_tester.num_attention_heads,
                device=torch_device,
921
922
923
924
            )
            head_mask[0, 0] = 0
            head_mask[-1, :-1] = 0
            head_mask.requires_grad_(requires_grad=True)
925
            inputs = self._prepare_for_class(inputs_dict, model_class).copy()
926
            inputs["head_mask"] = head_mask
927
928
929
930
931
            if model.config.is_encoder_decoder:
                signature = inspect.signature(model.forward)
                arg_names = [*signature.parameters.keys()]
                if "decoder_head_mask" in arg_names:  # necessary diferentiation because of T5 model
                    inputs["decoder_head_mask"] = head_mask
932
933
                if "cross_attn_head_mask" in arg_names:
                    inputs["cross_attn_head_mask"] = head_mask
934
            outputs = model(**inputs, return_dict=True)
935
936
937
938
939
940
941
942
943

            # Test that we can get a gradient back for importance score computation
            output = sum(t.sum() for t in outputs[0])
            output = output.sum()
            output.backward()
            multihead_outputs = head_mask.grad

            self.assertIsNotNone(multihead_outputs)
            self.assertEqual(len(multihead_outputs), self.model_tester.num_hidden_layers)
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964

            def check_attentions_validity(attentions):
                # Remove Nan
                for t in attentions:
                    self.assertLess(
                        torch.sum(torch.isnan(t)), t.numel() / 4
                    )  # Check we don't have more than 25% nans (arbitrary)
                attentions = [
                    t.masked_fill(torch.isnan(t), 0.0) for t in attentions
                ]  # remove them (the test is less complete)

                self.assertAlmostEqual(attentions[0][..., 0, :, :].flatten().sum().item(), 0.0)
                self.assertNotEqual(attentions[0][..., -1, :, :].flatten().sum().item(), 0.0)
                if len(attentions) > 2:  # encoder-decoder models have only 2 layers in each module
                    self.assertNotEqual(attentions[1][..., 0, :, :].flatten().sum().item(), 0.0)
                self.assertAlmostEqual(attentions[-1][..., -2, :, :].flatten().sum().item(), 0.0)
                self.assertNotEqual(attentions[-1][..., -1, :, :].flatten().sum().item(), 0.0)

            if model.config.is_encoder_decoder:
                check_attentions_validity(outputs.encoder_attentions)
                check_attentions_validity(outputs.decoder_attentions)
965
                check_attentions_validity(outputs.cross_attentions)
966
967
            else:
                check_attentions_validity(outputs.attentions)
968

Patrick von Platen's avatar
Patrick von Platen committed
969
970
    def test_head_pruning(self):
        if not self.test_pruning:
971
972
973
            return

        for model_class in self.all_model_classes:
Lysandre's avatar
Lysandre committed
974
975
976
977
            (
                config,
                inputs_dict,
            ) = self.model_tester.prepare_config_and_inputs_for_common()
978

979
980
            if "head_mask" in inputs_dict:
                del inputs_dict["head_mask"]
981

982
            inputs_dict["output_attentions"] = True
983
984
985
986
            config.output_hidden_states = False
            model = model_class(config=config)
            model.to(torch_device)
            model.eval()
987
988
989
990
            heads_to_prune = {
                0: list(range(1, self.model_tester.num_attention_heads)),
                -1: [0],
            }
991
992
            model.prune_heads(heads_to_prune)
            with torch.no_grad():
993
                outputs = model(**self._prepare_for_class(inputs_dict, model_class))
994

995
            attentions = outputs[-1]
996

997
998
999
            self.assertEqual(attentions[0].shape[-3], 1)
            self.assertEqual(attentions[1].shape[-3], self.model_tester.num_attention_heads)
            self.assertEqual(attentions[-1].shape[-3], self.model_tester.num_attention_heads - 1)
LysandreJik's avatar
LysandreJik committed
1000

Patrick von Platen's avatar
Patrick von Platen committed
1001
1002
    def test_head_pruning_save_load_from_pretrained(self):
        if not self.test_pruning:
1003
            return
LysandreJik's avatar
LysandreJik committed
1004

1005
        for model_class in self.all_model_classes:
Lysandre's avatar
Lysandre committed
1006
1007
1008
1009
            (
                config,
                inputs_dict,
            ) = self.model_tester.prepare_config_and_inputs_for_common()
1010
1011
1012

            if "head_mask" in inputs_dict:
                del inputs_dict["head_mask"]
1013

1014
            inputs_dict["output_attentions"] = True
1015
1016
1017
1018
            config.output_hidden_states = False
            model = model_class(config=config)
            model.to(torch_device)
            model.eval()
1019
1020
1021
1022
            heads_to_prune = {
                0: list(range(1, self.model_tester.num_attention_heads)),
                -1: [0],
            }
1023
            model.prune_heads(heads_to_prune)
1024

1025
            with tempfile.TemporaryDirectory() as temp_dir_name:
1026
1027
                model.save_pretrained(temp_dir_name)
                model = model_class.from_pretrained(temp_dir_name)
1028
                model.to(torch_device)
1029

1030
            with torch.no_grad():
1031
                outputs = model(**self._prepare_for_class(inputs_dict, model_class))
1032
1033
1034
1035
            attentions = outputs[-1]
            self.assertEqual(attentions[0].shape[-3], 1)
            self.assertEqual(attentions[1].shape[-3], self.model_tester.num_attention_heads)
            self.assertEqual(attentions[-1].shape[-3], self.model_tester.num_attention_heads - 1)
1036

Patrick von Platen's avatar
Patrick von Platen committed
1037
1038
    def test_head_pruning_save_load_from_config_init(self):
        if not self.test_pruning:
1039
            return
1040

1041
        for model_class in self.all_model_classes:
Lysandre's avatar
Lysandre committed
1042
1043
1044
1045
            (
                config,
                inputs_dict,
            ) = self.model_tester.prepare_config_and_inputs_for_common()
1046

1047
1048
            if "head_mask" in inputs_dict:
                del inputs_dict["head_mask"]
1049

1050
            inputs_dict["output_attentions"] = True
1051
            config.output_hidden_states = False
1052

1053
1054
1055
1056
            heads_to_prune = {
                0: list(range(1, self.model_tester.num_attention_heads)),
                -1: [0],
            }
1057
            config.pruned_heads = heads_to_prune
1058

1059
1060
1061
            model = model_class(config=config)
            model.to(torch_device)
            model.eval()
1062

1063
            with torch.no_grad():
1064
                outputs = model(**self._prepare_for_class(inputs_dict, model_class))
1065
            attentions = outputs[-1]
1066

1067
1068
1069
            self.assertEqual(attentions[0].shape[-3], 1)
            self.assertEqual(attentions[1].shape[-3], self.model_tester.num_attention_heads)
            self.assertEqual(attentions[-1].shape[-3], self.model_tester.num_attention_heads - 1)
1070

Patrick von Platen's avatar
Patrick von Platen committed
1071
1072
    def test_head_pruning_integration(self):
        if not self.test_pruning:
1073
            return
1074

1075
        for model_class in self.all_model_classes:
Lysandre's avatar
Lysandre committed
1076
1077
1078
1079
            (
                config,
                inputs_dict,
            ) = self.model_tester.prepare_config_and_inputs_for_common()
1080

1081
1082
            if "head_mask" in inputs_dict:
                del inputs_dict["head_mask"]
1083

1084
            inputs_dict["output_attentions"] = True
1085
            config.output_hidden_states = False
1086

1087
1088
            heads_to_prune = {0: [0], 1: [1, 2]}
            config.pruned_heads = heads_to_prune
1089

1090
1091
1092
            model = model_class(config=config)
            model.to(torch_device)
            model.eval()
1093

1094
            with torch.no_grad():
1095
                outputs = model(**self._prepare_for_class(inputs_dict, model_class))
1096
            attentions = outputs[-1]
1097

1098
1099
1100
1101
            self.assertEqual(attentions[0].shape[-3], self.model_tester.num_attention_heads - 1)
            self.assertEqual(attentions[1].shape[-3], self.model_tester.num_attention_heads - 2)
            self.assertEqual(attentions[2].shape[-3], self.model_tester.num_attention_heads)
            self.assertEqual(attentions[3].shape[-3], self.model_tester.num_attention_heads)
thomwolf's avatar
thomwolf committed
1102

1103
            with tempfile.TemporaryDirectory() as temp_dir_name:
1104
1105
                model.save_pretrained(temp_dir_name)
                model = model_class.from_pretrained(temp_dir_name)
1106
                model.to(torch_device)
thomwolf's avatar
thomwolf committed
1107

1108
            with torch.no_grad():
1109
                outputs = model(**self._prepare_for_class(inputs_dict, model_class))
1110
            attentions = outputs[-1]
LysandreJik's avatar
LysandreJik committed
1111

1112
1113
1114
1115
            self.assertEqual(attentions[0].shape[-3], self.model_tester.num_attention_heads - 1)
            self.assertEqual(attentions[1].shape[-3], self.model_tester.num_attention_heads - 2)
            self.assertEqual(attentions[2].shape[-3], self.model_tester.num_attention_heads)
            self.assertEqual(attentions[3].shape[-3], self.model_tester.num_attention_heads)
thomwolf's avatar
thomwolf committed
1116

1117
1118
            heads_to_prune = {0: [0], 2: [1, 2]}
            model.prune_heads(heads_to_prune)
1119

1120
            with torch.no_grad():
1121
                outputs = model(**self._prepare_for_class(inputs_dict, model_class))
1122
            attentions = outputs[-1]
1123

1124
1125
1126
1127
            self.assertEqual(attentions[0].shape[-3], self.model_tester.num_attention_heads - 1)
            self.assertEqual(attentions[1].shape[-3], self.model_tester.num_attention_heads - 2)
            self.assertEqual(attentions[2].shape[-3], self.model_tester.num_attention_heads - 2)
            self.assertEqual(attentions[3].shape[-3], self.model_tester.num_attention_heads)
1128

1129
            self.assertDictEqual(model.config.pruned_heads, {0: [0], 1: [1, 2], 2: [1, 2]})
thomwolf's avatar
thomwolf committed
1130

Patrick von Platen's avatar
Patrick von Platen committed
1131
    def test_hidden_states_output(self):
Joseph Liu's avatar
Joseph Liu committed
1132
        def check_hidden_states_output(inputs_dict, config, model_class):
1133
            model = model_class(config)
1134
            model.to(torch_device)
thomwolf's avatar
thomwolf committed
1135
            model.eval()
Joseph Liu's avatar
Joseph Liu committed
1136

thomwolf's avatar
thomwolf committed
1137
            with torch.no_grad():
1138
                outputs = model(**self._prepare_for_class(inputs_dict, model_class))
1139
1140

            hidden_states = outputs.encoder_hidden_states if config.is_encoder_decoder else outputs.hidden_states
Patrick von Platen's avatar
Patrick von Platen committed
1141

Sylvain Gugger's avatar
Sylvain Gugger committed
1142
1143
1144
1145
            expected_num_layers = getattr(
                self.model_tester, "expected_num_hidden_layers", self.model_tester.num_hidden_layers + 1
            )
            self.assertEqual(len(hidden_states), expected_num_layers)
1146

Patrick von Platen's avatar
Patrick von Platen committed
1147
1148
1149
1150
1151
1152
1153
            if hasattr(self.model_tester, "encoder_seq_length"):
                seq_length = self.model_tester.encoder_seq_length
                if hasattr(self.model_tester, "chunk_length") and self.model_tester.chunk_length > 1:
                    seq_length = seq_length * self.model_tester.chunk_length
            else:
                seq_length = self.model_tester.seq_length

1154
            self.assertListEqual(
Lysandre's avatar
Lysandre committed
1155
1156
                list(hidden_states[0].shape[-2:]),
                [seq_length, self.model_tester.hidden_size],
1157
            )
thomwolf's avatar
thomwolf committed
1158

1159
1160
1161
1162
1163
1164
1165
1166
1167
1168
1169
1170
1171
            if config.is_encoder_decoder:
                hidden_states = outputs.decoder_hidden_states

                self.assertIsInstance(hidden_states, (list, tuple))
                self.assertEqual(len(hidden_states), expected_num_layers)
                seq_len = getattr(self.model_tester, "seq_length", None)
                decoder_seq_length = getattr(self.model_tester, "decoder_seq_length", seq_len)

                self.assertListEqual(
                    list(hidden_states[0].shape[-2:]),
                    [decoder_seq_length, self.model_tester.hidden_size],
                )

Joseph Liu's avatar
Joseph Liu committed
1172
1173
1174
1175
1176
1177
1178
1179
1180
1181
1182
1183
        config, inputs_dict = self.model_tester.prepare_config_and_inputs_for_common()

        for model_class in self.all_model_classes:
            inputs_dict["output_hidden_states"] = True
            check_hidden_states_output(inputs_dict, config, model_class)

            # check that output_hidden_states also work using config
            del inputs_dict["output_hidden_states"]
            config.output_hidden_states = True

            check_hidden_states_output(inputs_dict, config, model_class)

1184
1185
1186
    def test_retain_grad_hidden_states_attentions(self):
        config, inputs_dict = self.model_tester.prepare_config_and_inputs_for_common()
        config.output_hidden_states = True
1187
        config.output_attentions = self.has_attentions
1188
1189
1190
1191
1192
1193
1194
1195
1196

        # no need to test all models as different heads yield the same functionality
        model_class = self.all_model_classes[0]
        model = model_class(config)
        model.to(torch_device)

        inputs = self._prepare_for_class(inputs_dict, model_class)

        outputs = model(**inputs)
1197

1198
1199
1200
1201
1202
1203
1204
1205
1206
1207
        output = outputs[0]

        if config.is_encoder_decoder:
            # Seq2Seq models
            encoder_hidden_states = outputs.encoder_hidden_states[0]
            encoder_hidden_states.retain_grad()

            decoder_hidden_states = outputs.decoder_hidden_states[0]
            decoder_hidden_states.retain_grad()

1208
1209
1210
1211
1212
1213
1214
1215
1216
            if self.has_attentions:
                encoder_attentions = outputs.encoder_attentions[0]
                encoder_attentions.retain_grad()

                decoder_attentions = outputs.decoder_attentions[0]
                decoder_attentions.retain_grad()

                cross_attentions = outputs.cross_attentions[0]
                cross_attentions.retain_grad()
1217
1218
1219
1220
1221

            output.flatten()[0].backward(retain_graph=True)

            self.assertIsNotNone(encoder_hidden_states.grad)
            self.assertIsNotNone(decoder_hidden_states.grad)
1222
1223
1224
1225
1226

            if self.has_attentions:
                self.assertIsNotNone(encoder_attentions.grad)
                self.assertIsNotNone(decoder_attentions.grad)
                self.assertIsNotNone(cross_attentions.grad)
1227
1228
1229
1230
        else:
            # Encoder-/Decoder-only models
            hidden_states = outputs.hidden_states[0]
            hidden_states.retain_grad()
1231
1232
1233
1234

            if self.has_attentions:
                attentions = outputs.attentions[0]
                attentions.retain_grad()
1235
1236
1237
1238

            output.flatten()[0].backward(retain_graph=True)

            self.assertIsNotNone(hidden_states.grad)
1239
1240
1241

            if self.has_attentions:
                self.assertIsNotNone(attentions.grad)
1242

Pradhy729's avatar
Pradhy729 committed
1243
    def test_feed_forward_chunking(self):
Lysandre's avatar
Lysandre committed
1244
1245
1246
1247
        (
            original_config,
            inputs_dict,
        ) = self.model_tester.prepare_config_and_inputs_for_common()
Pradhy729's avatar
Pradhy729 committed
1248
1249
1250
1251
1252
1253
1254
1255
1256
1257
1258
1259
1260
1261
1262
1263
1264
1265
        for model_class in self.all_model_classes:
            torch.manual_seed(0)
            config = copy.deepcopy(original_config)
            model = model_class(config)
            model.to(torch_device)
            model.eval()

            hidden_states_no_chunk = model(**self._prepare_for_class(inputs_dict, model_class))[0]

            torch.manual_seed(0)
            config.chunk_size_feed_forward = 1
            model = model_class(config)
            model.to(torch_device)
            model.eval()

            hidden_states_with_chunk = model(**self._prepare_for_class(inputs_dict, model_class))[0]
            self.assertTrue(torch.allclose(hidden_states_no_chunk, hidden_states_with_chunk, atol=1e-3))

1266
1267
1268
1269
1270
1271
1272
1273
1274
1275
1276
1277
1278
1279
1280
1281
1282
1283
1284
1285
1286
1287
1288
1289
1290
1291
1292
1293
1294
1295
1296
1297
1298
1299
1300
1301
1302
1303
1304
1305
1306
1307
1308
1309
1310
1311
1312
1313
1314
1315
1316
1317
1318
1319
1320
1321
1322
1323
1324
1325
1326
1327
1328
1329
1330
1331
1332
1333
1334
1335
1336
1337
1338
1339
1340
1341
1342
1343
1344
    def test_resize_position_vector_embeddings(self):
        if not self.test_resize_position_embeddings:
            return

        (
            original_config,
            inputs_dict,
        ) = self.model_tester.prepare_config_and_inputs_for_common()

        for model_class in self.all_model_classes:
            config = copy.deepcopy(original_config)
            model = model_class(config)
            model.to(torch_device)

            if self.model_tester.is_training is False:
                model.eval()

            max_position_embeddings = config.max_position_embeddings

            # Retrieve the embeddings and clone theme
            if model.config.is_encoder_decoder:
                encoder_model_embed, decoder_model_embed = model.get_position_embeddings()
                encoder_cloned_embeddings = encoder_model_embed.weight.clone()
                decoder_cloned_embeddings = decoder_model_embed.weight.clone()
            else:
                model_embed = model.get_position_embeddings()
                cloned_embeddings = model_embed.weight.clone()

            # Check that resizing the position embeddings with a larger max_position_embeddings increases
            # the model's postion embeddings size
            model.resize_position_embeddings(max_position_embeddings + 10)
            self.assertEqual(model.config.max_position_embeddings, max_position_embeddings + 10)

            # Check that it actually resizes the embeddings matrix
            if model.config.is_encoder_decoder:
                encoder_model_embed, decoder_model_embed = model.get_position_embeddings()
                self.assertEqual(encoder_model_embed.weight.shape[0], encoder_cloned_embeddings.shape[0] + 10)
                self.assertEqual(decoder_model_embed.weight.shape[0], decoder_cloned_embeddings.shape[0] + 10)
            else:
                model_embed = model.get_position_embeddings()
                self.assertEqual(model_embed.weight.shape[0], cloned_embeddings.shape[0] + 10)

            # Check that the model can still do a forward pass successfully (every parameter should be resized)
            model(**self._prepare_for_class(inputs_dict, model_class))

            # Check that resizing the position embeddings with a smaller max_position_embeddings decreases
            # the model's max_position_embeddings
            model.resize_position_embeddings(max_position_embeddings - 5)
            self.assertEqual(model.config.max_position_embeddings, max_position_embeddings - 5)

            # Check that it actually resizes the embeddings matrix
            if model.config.is_encoder_decoder:
                encoder_model_embed, decoder_model_embed = model.get_position_embeddings()
                self.assertEqual(encoder_model_embed.weight.shape[0], encoder_cloned_embeddings.shape[0] - 5)
                self.assertEqual(decoder_model_embed.weight.shape[0], decoder_cloned_embeddings.shape[0] - 5)
            else:
                model_embed = model.get_position_embeddings()
                self.assertEqual(model_embed.weight.shape[0], cloned_embeddings.shape[0] - 5)

            # Check that the model can still do a forward pass successfully (every parameter should be resized)
            model(**self._prepare_for_class(inputs_dict, model_class))

            # Check that adding and removing tokens has not modified the first part of the embedding matrix.
            models_equal = True

            if model.config.is_encoder_decoder:
                for p1, p2 in zip(encoder_cloned_embeddings, encoder_model_embed.weight):
                    if p1.data.ne(p2.data).sum() > 0:
                        models_equal = False
                for p1, p2 in zip(decoder_cloned_embeddings, decoder_model_embed.weight):
                    if p1.data.ne(p2.data).sum() > 0:
                        models_equal = False
            else:
                for p1, p2 in zip(cloned_embeddings, model_embed.weight):
                    if p1.data.ne(p2.data).sum() > 0:
                        models_equal = False

            self.assertTrue(models_equal)

Patrick von Platen's avatar
Patrick von Platen committed
1345
    def test_resize_tokens_embeddings(self):
Lysandre's avatar
Lysandre committed
1346
1347
1348
1349
        (
            original_config,
            inputs_dict,
        ) = self.model_tester.prepare_config_and_inputs_for_common()
Patrick von Platen's avatar
Patrick von Platen committed
1350
        if not self.test_resize_embeddings:
1351
1352
1353
1354
1355
            return

        for model_class in self.all_model_classes:
            config = copy.deepcopy(original_config)
            model = model_class(config)
1356
            model.to(torch_device)
1357

Patrick von Platen's avatar
Patrick von Platen committed
1358
1359
1360
            if self.model_tester.is_training is False:
                model.eval()

1361
1362
1363
1364
1365
1366
1367
1368
1369
1370
            model_vocab_size = config.vocab_size
            # Retrieve the embeddings and clone theme
            model_embed = model.resize_token_embeddings(model_vocab_size)
            cloned_embeddings = model_embed.weight.clone()

            # Check that resizing the token embeddings with a larger vocab size increases the model's vocab size
            model_embed = model.resize_token_embeddings(model_vocab_size + 10)
            self.assertEqual(model.config.vocab_size, model_vocab_size + 10)
            # Check that it actually resizes the embeddings matrix
            self.assertEqual(model_embed.weight.shape[0], cloned_embeddings.shape[0] + 10)
1371
            # Check that the model can still do a forward pass successfully (every parameter should be resized)
1372
            model(**self._prepare_for_class(inputs_dict, model_class))
1373
1374
1375
1376
1377
1378
1379

            # Check that resizing the token embeddings with a smaller vocab size decreases the model's vocab size
            model_embed = model.resize_token_embeddings(model_vocab_size - 15)
            self.assertEqual(model.config.vocab_size, model_vocab_size - 15)
            # Check that it actually resizes the embeddings matrix
            self.assertEqual(model_embed.weight.shape[0], cloned_embeddings.shape[0] - 15)

1380
1381
1382
            # Check that the model can still do a forward pass successfully (every parameter should be resized)
            # Input ids should be clamped to the maximum size of the vocabulary
            inputs_dict["input_ids"].clamp_(max=model_vocab_size - 15 - 1)
1383
1384
1385
1386

            # make sure that decoder_input_ids are resized as well
            if "decoder_input_ids" in inputs_dict:
                inputs_dict["decoder_input_ids"].clamp_(max=model_vocab_size - 15 - 1)
1387
            model(**self._prepare_for_class(inputs_dict, model_class))
1388

1389
1390
1391
1392
1393
1394
1395
1396
            # Check that adding and removing tokens has not modified the first part of the embedding matrix.
            models_equal = True
            for p1, p2 in zip(cloned_embeddings, model_embed.weight):
                if p1.data.ne(p2.data).sum() > 0:
                    models_equal = False

            self.assertTrue(models_equal)

1397
1398
1399
1400
1401
1402
1403
1404
1405
1406
1407
1408
1409
1410
1411
1412
1413
1414
1415
1416
1417
1418
1419
1420
1421
1422
1423
1424
1425
1426
1427
1428
1429
1430
1431
1432
1433
1434
1435
1436
1437
1438
1439
1440
1441
1442
1443
1444
1445
1446
1447
    def test_resize_embeddings_untied(self):
        (
            original_config,
            inputs_dict,
        ) = self.model_tester.prepare_config_and_inputs_for_common()
        if not self.test_resize_embeddings:
            return

        original_config.tie_word_embeddings = False

        # if model cannot untied embeddings -> leave test
        if original_config.tie_word_embeddings:
            return

        for model_class in self.all_model_classes:
            config = copy.deepcopy(original_config)
            model = model_class(config).to(torch_device)

            # if no output embeddings -> leave test
            if model.get_output_embeddings() is None:
                continue

            # Check that resizing the token embeddings with a larger vocab size increases the model's vocab size
            model_vocab_size = config.vocab_size
            model.resize_token_embeddings(model_vocab_size + 10)
            self.assertEqual(model.config.vocab_size, model_vocab_size + 10)
            output_embeds = model.get_output_embeddings()
            self.assertEqual(output_embeds.weight.shape[0], model_vocab_size + 10)
            # Check bias if present
            if output_embeds.bias is not None:
                self.assertEqual(output_embeds.bias.shape[0], model_vocab_size + 10)
            # Check that the model can still do a forward pass successfully (every parameter should be resized)
            model(**self._prepare_for_class(inputs_dict, model_class))

            # Check that resizing the token embeddings with a smaller vocab size decreases the model's vocab size
            model.resize_token_embeddings(model_vocab_size - 15)
            self.assertEqual(model.config.vocab_size, model_vocab_size - 15)
            # Check that it actually resizes the embeddings matrix
            output_embeds = model.get_output_embeddings()
            self.assertEqual(output_embeds.weight.shape[0], model_vocab_size - 15)
            # Check bias if present
            if output_embeds.bias is not None:
                self.assertEqual(output_embeds.bias.shape[0], model_vocab_size - 15)
            # Check that the model can still do a forward pass successfully (every parameter should be resized)
            # Input ids should be clamped to the maximum size of the vocabulary
            inputs_dict["input_ids"].clamp_(max=model_vocab_size - 15 - 1)
            if "decoder_input_ids" in inputs_dict:
                inputs_dict["decoder_input_ids"].clamp_(max=model_vocab_size - 15 - 1)
            # Check that the model can still do a forward pass successfully (every parameter should be resized)
            model(**self._prepare_for_class(inputs_dict, model_class))

Patrick von Platen's avatar
Patrick von Platen committed
1448
    def test_model_common_attributes(self):
1449
1450
1451
1452
        config, inputs_dict = self.model_tester.prepare_config_and_inputs_for_common()

        for model_class in self.all_model_classes:
            model = model_class(config)
1453
1454
            self.assertIsInstance(model.get_input_embeddings(), (nn.Embedding, AdaptiveEmbedding))
            model.set_input_embeddings(nn.Embedding(10, 10))
1455
            x = model.get_output_embeddings()
1456
            self.assertTrue(x is None or isinstance(x, nn.Linear))
1457

1458
1459
1460
1461
1462
1463
1464
    def test_model_main_input_name(self):
        for model_class in self.all_model_classes:
            model_signature = inspect.signature(getattr(model_class, "forward"))
            # The main input is the name of the argument after `self`
            observed_main_input_name = list(model_signature.parameters.keys())[1]
            self.assertEqual(model_class.main_input_name, observed_main_input_name)

1465
    def test_correct_missing_keys(self):
1466
1467
        if not self.test_missing_keys:
            return
1468
1469
1470
1471
1472
1473
1474
        config, _ = self.model_tester.prepare_config_and_inputs_for_common()

        for model_class in self.all_model_classes:
            model = model_class(config)
            base_model_prefix = model.base_model_prefix

            if hasattr(model, base_model_prefix):
1475
1476
1477
1478
1479
1480
1481
1482
1483
1484
1485
1486
1487
1488

                extra_params = {k: v for k, v in model.named_parameters() if not k.startswith(base_model_prefix)}
                extra_params.update({k: v for k, v in model.named_buffers() if not k.startswith(base_model_prefix)})
                # Some models define this as None
                if model._keys_to_ignore_on_load_missing:
                    for key in model._keys_to_ignore_on_load_missing:
                        extra_params.pop(key, None)

                if not extra_params:
                    # In that case, we *are* on a head model, but every
                    # single key is not actual parameters and this is
                    # tested in `test_tied_model_weights_key_ignore` test.
                    continue

1489
1490
1491
                with tempfile.TemporaryDirectory() as temp_dir_name:
                    model.base_model.save_pretrained(temp_dir_name)
                    model, loading_info = model_class.from_pretrained(temp_dir_name, output_loading_info=True)
1492
                    self.assertGreater(len(loading_info["missing_keys"]), 0, model.__class__.__name__)
1493

1494
1495
1496
1497
1498
1499
1500
1501
1502
1503
1504
1505
1506
1507
1508
1509
1510
1511
1512
1513
1514
1515
1516
1517
1518
1519
1520
1521
1522
1523
1524
1525
1526
1527
1528
1529
1530
1531
1532
1533
1534
1535
1536
1537
1538
1539
1540
1541
    def test_tie_model_weights(self):
        if not self.test_torchscript:
            return

        config, inputs_dict = self.model_tester.prepare_config_and_inputs_for_common()

        def check_same_values(layer_1, layer_2):
            equal = True
            for p1, p2 in zip(layer_1.weight, layer_2.weight):
                if p1.data.ne(p2.data).sum() > 0:
                    equal = False
            return equal

        for model_class in self.all_model_classes:
            config.torchscript = True
            model_not_tied = model_class(config)
            if model_not_tied.get_output_embeddings() is None:
                continue

            config_tied = copy.deepcopy(config)
            config_tied.torchscript = False
            model_tied = model_class(config_tied)
            params_tied = list(model_tied.parameters())
            # Check that the embedding layer and decoding layer are the same in size and in value
            # self.assertTrue(check_same_values(embeddings, decoding))

            # # Check that after modification, they remain the same.
            # embeddings.weight.data.div_(2)
            # # Check that the embedding layer and decoding layer are the same in size and in value
            # self.assertTrue(embeddings.weight.shape, decoding.weight.shape)
            # self.assertTrue(check_same_values(embeddings, decoding))

            # # Check that after modification, they remain the same.
            # decoding.weight.data.div_(4)
            # # Check that the embedding layer and decoding layer are the same in size and in value
            # self.assertTrue(embeddings.weight.shape, decoding.weight.shape)
            # self.assertTrue(check_same_values(embeddings, decoding))

            # Check that after resize they remain tied.
            model_tied.resize_token_embeddings(config.vocab_size + 10)
            params_tied_2 = list(model_tied.parameters())
            self.assertEqual(len(params_tied_2), len(params_tied))

            # decoding.weight.data.mul_(20)
            # # Check that the embedding layer and decoding layer are the same in size and in value
            # self.assertTrue(model.transformer.wte.weight.shape, model.lm_head.weight.shape)
            # self.assertTrue(check_same_values(model.transformer.wte, model.lm_head))

1542
1543
1544
1545
1546
1547
1548
1549
1550
1551
1552
1553
1554
1555
1556
1557
1558
1559
1560
1561
1562
1563
1564
1565
1566
1567
1568
1569
1570
1571
1572
1573
1574
1575
1576
1577
1578
1579
1580
1581
1582
1583
1584
1585
1586
1587
1588
1589
    def test_tied_model_weights_key_ignore(self):
        config, inputs_dict = self.model_tester.prepare_config_and_inputs_for_common()
        for model_class in self.all_model_classes:
            model_tied = model_class(config)
            with tempfile.TemporaryDirectory() as d:
                model_tied.save_pretrained(d)

                # We are nuking ALL weights on file, so every parameter should
                # yell on load. We're going to detect if we yell too much, or too little.
                with open(os.path.join(d, "pytorch_model.bin"), "wb") as f:
                    torch.save({}, f)
                model_reloaded, infos = model_class.from_pretrained(d, output_loading_info=True)

                # ! Actually we could use `state_dict()` and check iteratively the tensors which are the same (for instance using `tensor.data_ptr()`). to detect the duplicates.
                # ```python
                # model = GPT2LMHeadModel.from_pretrained("gpt2")
                # "lm_head.weight" in model.state_dict().keys()  # True
                # "lm_head.weight" in model.named_parameters() # False
                # In [6]: model.lm_head.weight.data_ptr()
                # Out[6]: 139901378371648
                # In [9]: model.transformer.wte.weight.data_ptr()
                # Out[9]: 139901378371648  # Same PTR, it's the same DATA ! we would need to check for stride too to be 100% accurate.
                # ```

                prefix = f"{model_reloaded.base_model_prefix}."
                params = dict(model_reloaded.named_parameters())
                params.update(dict(model_reloaded.named_buffers()))
                # param_names = set(k[len(prefix) :] if k.startswith(prefix) else k for k in params.keys())
                param_names = set(k[len(prefix) :] if k.startswith(prefix) else k for k in params.keys())

                missing_keys = set(infos["missing_keys"])

                extra_missing = missing_keys - param_names
                # missed_missing = param_names - missing_keys

                self.assertEqual(
                    extra_missing,
                    set(),
                    f"This model {model_class.__name__} might be missing some `keys_to_ignore`: {extra_missing}",
                )

                # self.assertEqual(
                #     missed_missing,
                #     set(),
                #     f"This model {model_class.__name__} ignores keys {missed_missing} but they look like real"
                #     " parameters",
                # )

1590
1591
1592
    def test_model_outputs_equivalence(self):
        config, inputs_dict = self.model_tester.prepare_config_and_inputs_for_common()

Sam Shleifer's avatar
Sam Shleifer committed
1593
1594
1595
1596
        def set_nan_tensor_to_zero(t):
            t[t != t] = 0
            return t

1597
1598
1599
1600
1601
1602
1603
1604
1605
        def check_equivalence(model, tuple_inputs, dict_inputs, additional_kwargs={}):
            with torch.no_grad():
                tuple_output = model(**tuple_inputs, return_dict=False, **additional_kwargs)
                dict_output = model(**dict_inputs, return_dict=True, **additional_kwargs).to_tuple()

                def recursive_check(tuple_object, dict_object):
                    if isinstance(tuple_object, (List, Tuple)):
                        for tuple_iterable_value, dict_iterable_value in zip(tuple_object, dict_object):
                            recursive_check(tuple_iterable_value, dict_iterable_value)
NielsRogge's avatar
NielsRogge committed
1606
1607
1608
1609
1610
                    elif isinstance(tuple_object, Dict):
                        for tuple_iterable_value, dict_iterable_value in zip(
                            tuple_object.values(), dict_object.values()
                        ):
                            recursive_check(tuple_iterable_value, dict_iterable_value)
1611
1612
1613
1614
                    elif tuple_object is None:
                        return
                    else:
                        self.assertTrue(
Sam Shleifer's avatar
Sam Shleifer committed
1615
1616
1617
                            torch.allclose(
                                set_nan_tensor_to_zero(tuple_object), set_nan_tensor_to_zero(dict_object), atol=1e-5
                            ),
Sylvain Gugger's avatar
Sylvain Gugger committed
1618
1619
1620
1621
1622
1623
                            msg=(
                                "Tuple and dict output are not equal. Difference:"
                                f" {torch.max(torch.abs(tuple_object - dict_object))}. Tuple has `nan`:"
                                f" {torch.isnan(tuple_object).any()} and `inf`: {torch.isinf(tuple_object)}. Dict has"
                                f" `nan`: {torch.isnan(dict_object).any()} and `inf`: {torch.isinf(dict_object)}."
                            ),
1624
1625
1626
1627
1628
1629
1630
1631
1632
1633
1634
1635
1636
1637
1638
1639
1640
1641
1642
1643
1644
1645
1646
1647
1648
                        )

                recursive_check(tuple_output, dict_output)

        for model_class in self.all_model_classes:
            model = model_class(config)
            model.to(torch_device)
            model.eval()

            tuple_inputs = self._prepare_for_class(inputs_dict, model_class)
            dict_inputs = self._prepare_for_class(inputs_dict, model_class)
            check_equivalence(model, tuple_inputs, dict_inputs)

            tuple_inputs = self._prepare_for_class(inputs_dict, model_class, return_labels=True)
            dict_inputs = self._prepare_for_class(inputs_dict, model_class, return_labels=True)
            check_equivalence(model, tuple_inputs, dict_inputs)

            tuple_inputs = self._prepare_for_class(inputs_dict, model_class)
            dict_inputs = self._prepare_for_class(inputs_dict, model_class)
            check_equivalence(model, tuple_inputs, dict_inputs, {"output_hidden_states": True})

            tuple_inputs = self._prepare_for_class(inputs_dict, model_class, return_labels=True)
            dict_inputs = self._prepare_for_class(inputs_dict, model_class, return_labels=True)
            check_equivalence(model, tuple_inputs, dict_inputs, {"output_hidden_states": True})

1649
1650
1651
1652
            if self.has_attentions:
                tuple_inputs = self._prepare_for_class(inputs_dict, model_class)
                dict_inputs = self._prepare_for_class(inputs_dict, model_class)
                check_equivalence(model, tuple_inputs, dict_inputs, {"output_attentions": True})
1653

1654
1655
1656
1657
1658
1659
1660
1661
1662
                tuple_inputs = self._prepare_for_class(inputs_dict, model_class, return_labels=True)
                dict_inputs = self._prepare_for_class(inputs_dict, model_class, return_labels=True)
                check_equivalence(model, tuple_inputs, dict_inputs, {"output_attentions": True})

                tuple_inputs = self._prepare_for_class(inputs_dict, model_class, return_labels=True)
                dict_inputs = self._prepare_for_class(inputs_dict, model_class, return_labels=True)
                check_equivalence(
                    model, tuple_inputs, dict_inputs, {"output_hidden_states": True, "output_attentions": True}
                )
1663

1664
1665
1666
1667
    # Don't copy this method to model specific test file!
    # TODO: remove this method once the issues are all fixed!
    def _make_attention_mask_non_null(self, inputs_dict):
        """Make sure no sequence has all zeros as attention mask"""
1668

1669
1670
1671
        for k in ["attention_mask", "encoder_attention_mask", "decoder_attention_mask"]:
            if k in inputs_dict:
                attention_mask = inputs_dict[k]
1672

1673
1674
1675
1676
1677
1678
                # Make sure no all 0s attention masks - to avoid failure at this moment.
                # Put `1` at the beginning of sequences to make it still work when combining causal attention masks.
                # TODO: remove this line once a fix regarding large negative values for attention mask is done.
                attention_mask = torch.cat(
                    [torch.ones_like(attention_mask[:, :1], dtype=attention_mask.dtype), attention_mask[:, 1:]], dim=-1
                )
1679

1680
1681
1682
1683
1684
1685
1686
1687
1688
1689
1690
1691
1692
1693
1694
1695
1696
1697
1698
1699
1700
1701
1702
1703
1704
1705
1706
1707
1708
1709
1710
1711
1712
1713
1714
1715
1716
1717
1718
1719
1720
1721
1722
1723
1724
1725
                # Here we make the first sequence with all 0s as attention mask.
                # Currently, this will fail for `TFWav2Vec2Model`. This is caused by the different large negative
                # values, like `1e-4`, `1e-9`, `1e-30` and `-inf` for attention mask across models/frameworks.
                # TODO: enable this block once the large negative values thing is cleaned up.
                # (see https://github.com/huggingface/transformers/issues/14859)
                # attention_mask = torch.cat(
                #     [torch.zeros_like(attention_mask[:1], dtype=attention_mask.dtype), attention_mask[1:]],
                #     dim=0
                # )

                inputs_dict[k] = attention_mask

    # Don't copy this method to model specific test file!
    # TODO: remove this method once the issues are all fixed!
    def _postprocessing_to_ignore_test_cases(self, tf_outputs, pt_outputs, model_class):
        """For temporarily ignoring some failed test cases (issues to be fixed)"""

        tf_keys = set([k for k, v in tf_outputs.items() if v is not None])
        pt_keys = set([k for k, v in pt_outputs.items() if v is not None])

        key_differences = tf_keys.symmetric_difference(pt_keys)

        if model_class.__name__ in [
            "FlaubertWithLMHeadModel",
            "FunnelForPreTraining",
            "ElectraForPreTraining",
            "XLMWithLMHeadModel",
            "TransfoXLLMHeadModel",
        ]:
            for k in key_differences:
                if k in ["loss", "losses"]:
                    tf_keys.discard(k)
                    pt_keys.discard(k)
        elif model_class.__name__.startswith("GPT2"):
            # `TFGPT2` has `past_key_values` as a tensor while `GPT2` has it as a tuple.
            tf_keys.discard("past_key_values")
            pt_keys.discard("past_key_values")

        # create new outputs from the remaining fields
        new_tf_outputs = type(tf_outputs)(**{k: tf_outputs[k] for k in tf_keys})
        new_pt_outputs = type(pt_outputs)(**{k: pt_outputs[k] for k in pt_keys})

        return new_tf_outputs, new_pt_outputs

    # Copied from tests.test_modeling_tf_common.TFModelTesterMixin.check_pt_tf_outputs
    def check_pt_tf_outputs(self, tf_outputs, pt_outputs, model_class, tol=1e-5, name="outputs", attributes=None):
1726
        """Check the outputs from PyTorch and TensorFlow models are close enough. Checks are done in a recursive way.
1727

1728
1729
1730
1731
1732
1733
1734
1735
        Args:
            model_class: The class of the model that is currently testing. For example, `TFBertModel`,
                TFBertForMaskedLM`, `TFBertForSequenceClassification`, etc. Mainly used for providing more informative
                error messages.
            name (`str`): The name of the output. For example, `output.hidden_states`, `output.attentions`, etc.
            attributes (`Tuple[str]`): The names of the output's element if the output is a tuple/list with each element
                being a named field in the output.
        """
1736

1737
1738
1739
        self.assertEqual(type(name), str)
        if attributes is not None:
            self.assertEqual(type(attributes), tuple, f"{name}: The argument `attributes` should be a `tuple`")
1740

1741
1742
1743
1744
1745
1746
        # Allow `ModelOutput` (e.g. `CLIPOutput` has `text_model_output` and `vision_model_output`).
        if isinstance(tf_outputs, ModelOutput):
            self.assertTrue(
                isinstance(pt_outputs, ModelOutput),
                f"{name}: `pt_outputs` should an instance of `ModelOutput` when `tf_outputs` is",
            )
1747

1748
1749
1750
            # Don't copy this block to model specific test file!
            # TODO: remove this method and this line after issues are fixed
            tf_outputs, pt_outputs = self._postprocessing_to_ignore_test_cases(tf_outputs, pt_outputs, model_class)
1751

1752
1753
            tf_keys = [k for k, v in tf_outputs.items() if v is not None]
            pt_keys = [k for k, v in pt_outputs.items() if v is not None]
1754

1755
            self.assertEqual(tf_keys, pt_keys, f"{name}: Output keys differ between TF and PyTorch")
1756

1757
            # convert to the case of `tuple`
1758
            # appending each key to the current (string) `name`
1759
1760
1761
1762
            attributes = tuple([f"{name}.{k}" for k in tf_keys])
            self.check_pt_tf_outputs(
                tf_outputs.to_tuple(), pt_outputs.to_tuple(), model_class, tol=tol, name=name, attributes=attributes
            )
1763

1764
1765
1766
1767
1768
1769
1770
1771
1772
1773
        # Allow `list` (e.g. `TransfoXLModelOutput.mems` is a list of tensors.)
        elif type(tf_outputs) in [tuple, list]:
            self.assertEqual(type(tf_outputs), type(pt_outputs), f"{name}: Output types differ between TF and PyTorch")
            self.assertEqual(len(tf_outputs), len(pt_outputs), f"{name}: Output lengths differ between TF and PyTorch")

            if attributes is not None:
                # case 1: each output has assigned name (e.g. a tuple form of a `ModelOutput`)
                self.assertEqual(
                    len(attributes),
                    len(tf_outputs),
1774
                    f"{name}: The tuple `attributes` should have the same length as `tf_outputs`",
1775
                )
1776
            else:
1777
                # case 2: each output has no assigned name (e.g. hidden states of each layer) -> add an index to `name`
1778
                attributes = tuple([f"{name}_{idx}" for idx in range(len(tf_outputs))])
1779

1780
1781
            for tf_output, pt_output, attr in zip(tf_outputs, pt_outputs, attributes):
                self.check_pt_tf_outputs(tf_output, pt_output, model_class, tol=tol, name=attr)
1782

1783
1784
1785
1786
        elif isinstance(tf_outputs, tf.Tensor):
            self.assertTrue(
                isinstance(pt_outputs, torch.Tensor), f"{name}: `pt_outputs` should a tensor when `tf_outputs` is"
            )
1787

1788
1789
            tf_outputs = tf_outputs.numpy()
            pt_outputs = pt_outputs.detach().to("cpu").numpy()
1790

1791
1792
1793
            self.assertEqual(
                tf_outputs.shape, pt_outputs.shape, f"{name}: Output shapes differ between TF and PyTorch"
            )
1794

1795
1796
1797
1798
            # deal with NumPy's scalars to make replacing nan values by 0 work.
            if np.isscalar(tf_outputs):
                tf_outputs = np.array([tf_outputs])
                pt_outputs = np.array([pt_outputs])
1799

1800
1801
            tf_nans = np.isnan(tf_outputs)
            pt_nans = np.isnan(pt_outputs)
1802

1803
1804
1805
1806
            pt_outputs[tf_nans] = 0
            tf_outputs[tf_nans] = 0
            pt_outputs[pt_nans] = 0
            tf_outputs[pt_nans] = 0
1807

1808
            max_diff = np.amax(np.abs(tf_outputs - pt_outputs))
1809
            self.assertLessEqual(max_diff, tol, f"{name}: Difference between PyTorch and TF is {max_diff} (>= {tol}).")
1810
1811
        else:
            raise ValueError(
1812
                "`tf_outputs` should be an instance of `ModelOutput`, a `tuple`, or an instance of `tf.Tensor`. Got"
Sylvain Gugger's avatar
Sylvain Gugger committed
1813
                f" {type(tf_outputs)} instead."
1814
1815
            )

1816
1817
1818
1819
1820
1821
1822
1823
1824
1825
1826
1827
1828
1829
1830
1831
1832
1833
    def prepare_tf_inputs_from_pt_inputs(self, pt_inputs_dict):

        tf_inputs_dict = {}
        for key, tensor in pt_inputs_dict.items():
            # skip key that does not exist in tf
            if type(tensor) == bool:
                tf_inputs_dict[key] = tensor
            elif key == "input_values":
                tf_inputs_dict[key] = tf.convert_to_tensor(tensor.cpu().numpy(), dtype=tf.float32)
            elif key == "pixel_values":
                tf_inputs_dict[key] = tf.convert_to_tensor(tensor.cpu().numpy(), dtype=tf.float32)
            elif key == "input_features":
                tf_inputs_dict[key] = tf.convert_to_tensor(tensor.cpu().numpy(), dtype=tf.float32)
            # other general float inputs
            elif tensor.is_floating_point():
                tf_inputs_dict[key] = tf.convert_to_tensor(tensor.cpu().numpy(), dtype=tf.float32)
            else:
                tf_inputs_dict[key] = tf.convert_to_tensor(tensor.cpu().numpy(), dtype=tf.int32)
1834

1835
        return tf_inputs_dict
1836

1837
    def check_pt_tf_models(self, tf_model, pt_model, pt_inputs_dict):
1838

1839
        tf_inputs_dict = self.prepare_tf_inputs_from_pt_inputs(pt_inputs_dict)
1840

1841
1842
1843
1844
        # send pytorch inputs to the correct device
        pt_inputs_dict = {
            k: v.to(device=torch_device) if isinstance(v, torch.Tensor) else v for k, v in pt_inputs_dict.items()
        }
1845

1846
1847
        # send pytorch model to the correct device
        pt_model.to(torch_device)
1848

1849
1850
        # Check predictions on first output (logits/hidden-states) are close enough given low-level computational differences
        pt_model.eval()
1851

1852
1853
1854
1855
1856
1857
1858
1859
1860
1861
1862
1863
1864
1865
1866
1867
        with torch.no_grad():
            pt_outputs = pt_model(**pt_inputs_dict)
        tf_outputs = tf_model(tf_inputs_dict)

        # tf models returned loss is usually a tensor rather than a scalar.
        # (see `hf_compute_loss`: it uses `tf.keras.losses.Reduction.NONE`)
        # Change it here to a scalar to match PyTorch models' loss
        tf_loss = getattr(tf_outputs, "loss", None)
        if tf_loss is not None:
            tf_outputs.loss = tf.math.reduce_mean(tf_loss)

        self.check_pt_tf_outputs(tf_outputs, pt_outputs, type(pt_model))

    @is_pt_tf_cross_test
    def test_pt_tf_model_equivalence(self):
        import transformers
1868
1869
1870

        for model_class in self.all_model_classes:

1871
1872
1873
            config, inputs_dict = self.model_tester.prepare_config_and_inputs_for_common()

            tf_model_class_name = "TF" + model_class.__name__  # Add the "TF" at the beginning
1874
            if not hasattr(transformers, tf_model_class_name):
1875
                # transformers does not have this model in TF version yet
1876
1877
                return

1878
1879
1880
            # Output all for aggressive testing
            config.output_hidden_states = True
            config.output_attentions = self.has_attentions
1881

1882
1883
1884
1885
            # Make sure no sequence has all zeros as attention mask, otherwise some tests fail due to the inconsistency
            # of the usage `1e-4`, `1e-9`, `1e-30`, `-inf`.
            # TODO: Use a uniform value for all models, make sure all tests pass without this processing, and remove it.
            self._make_attention_mask_non_null(inputs_dict)
1886
1887

            tf_model_class = getattr(transformers, tf_model_class_name)
1888
1889

            pt_model = model_class(config)
1890
1891
1892
1893
1894
1895
1896
1897
1898
            tf_model = tf_model_class(config)

            pt_inputs_dict = self._prepare_for_class(inputs_dict, model_class)
            pt_inputs_dict_with_labels = self._prepare_for_class(
                inputs_dict,
                model_class,
                # Not all models accept "labels" in the forward pass (yet :) )
                return_labels=True if "labels" in inspect.signature(model_class.forward).parameters.keys() else False,
            )
1899
1900
1901
1902
1903
1904
1905
1906
1907

            # make sure only tf inputs are forward that actually exist in function args
            tf_input_keys = set(inspect.signature(tf_model.call).parameters.keys())

            # remove all head masks
            tf_input_keys.discard("head_mask")
            tf_input_keys.discard("cross_attn_head_mask")
            tf_input_keys.discard("decoder_head_mask")

1908
            pt_inputs_dict = {k: v for k, v in pt_inputs_dict.items() if k in tf_input_keys}
1909
1910
1911
1912
1913
1914
            pt_inputs_dict_with_labels = {k: v for k, v in pt_inputs_dict_with_labels.items() if k in tf_input_keys}

            # For some models (e.g. base models), there is no label returned.
            # Set the input dict to `None` to avoid check outputs twice for the same input dicts.
            if set(pt_inputs_dict_with_labels.keys()).symmetric_difference(pt_inputs_dict.keys()):
                pt_inputs_dict_with_labels = None
1915
1916

            # Check we can load pt model in tf and vice-versa with model => model functions
1917
1918
            # Here requires `tf_inputs_dict` to build `tf_model`
            tf_inputs_dict = self.prepare_tf_inputs_from_pt_inputs(pt_inputs_dict)
1919
            tf_model = transformers.load_pytorch_model_in_tf2_model(tf_model, pt_model, tf_inputs=tf_inputs_dict)
1920
            pt_model = transformers.load_tf2_model_in_pytorch_model(pt_model, tf_model)
1921

1922
1923
1924
1925
1926
            # Original test: check without `labels`
            self.check_pt_tf_models(tf_model, pt_model, pt_inputs_dict)
            # check with `labels`
            if pt_inputs_dict_with_labels:
                self.check_pt_tf_models(tf_model, pt_model, pt_inputs_dict_with_labels)
1927
1928
1929
1930
1931
1932
1933
1934
1935
1936
1937

            # Check we can load pt model in tf and vice-versa with checkpoint => model functions
            with tempfile.TemporaryDirectory() as tmpdirname:
                pt_checkpoint_path = os.path.join(tmpdirname, "pt_model.bin")
                torch.save(pt_model.state_dict(), pt_checkpoint_path)
                tf_model = transformers.load_pytorch_checkpoint_in_tf2_model(tf_model, pt_checkpoint_path)

                tf_checkpoint_path = os.path.join(tmpdirname, "tf_model.h5")
                tf_model.save_weights(tf_checkpoint_path)
                pt_model = transformers.load_tf2_checkpoint_in_pytorch_model(pt_model, tf_checkpoint_path)

1938
1939
1940
1941
1942
            # Original test: check without `labels`
            self.check_pt_tf_models(tf_model, pt_model, pt_inputs_dict)
            # check with `labels`
            if pt_inputs_dict_with_labels:
                self.check_pt_tf_models(tf_model, pt_model, pt_inputs_dict_with_labels)
1943
1944
1945
1946
1947

    def assert_almost_equals(self, a: np.ndarray, b: np.ndarray, tol: float):
        diff = np.abs((a - b)).max()
        self.assertLessEqual(diff, tol, f"Difference between torch and flax is {diff} (>= {tol}).")

1948
    def check_pt_flax_outputs(self, fx_outputs, pt_outputs, model_class, tol=1e-5, name="outputs", attributes=None):
1949
1950
1951
1952
1953
1954
1955
1956
1957
        """
        Args:
            model_class: The class of the model that is currently testing. For example, ..., etc.
            Currently unused, but it could make debugging easier and faster.

            names: A string, or a list of strings. These specify what fx_outputs/pt_outputs represent in the model outputs.
                Currently unused, but in the future, we could use this information to make the error message clearer
                by giving the name(s) of the output tensor(s) with large difference(s) between PT and Flax.
        """
1958
1959
1960
1961
1962
1963
1964
1965
1966
1967
1968
1969
1970
1971
1972
1973
1974
1975
1976
1977
1978
1979
1980
1981
1982
1983
1984
1985
1986
1987
1988
1989
1990
1991
1992
1993
1994
1995
1996
1997

        self.assertEqual(type(name), str)
        if attributes is not None:
            self.assertEqual(type(attributes), tuple, f"{name}: The argument `attributes` should be a `tuple`")

        # Allow `ModelOutput` (e.g. `CLIPOutput` has `text_model_output` and `vision_model_output`).
        if isinstance(fx_outputs, ModelOutput):
            self.assertTrue(
                isinstance(pt_outputs, ModelOutput),
                f"{name}: `pt_outputs` should an instance of `ModelOutput` when `fx_outputs` is",
            )

            fx_keys = tuple([k for k, v in fx_outputs.items() if v is not None])
            pt_keys = tuple([k for k, v in pt_outputs.items() if v is not None])

            self.assertEqual(fx_keys, pt_keys, f"{name}: Output keys differ between Flax and PyTorch")

            # convert to the case of `tuple`
            # appending each key to the current (string) `name`
            attributes = tuple([f"{name}.{k}" for k in fx_keys])
            self.check_pt_flax_outputs(
                fx_outputs.to_tuple(), pt_outputs.to_tuple(), model_class, tol=tol, name=name, attributes=attributes
            )

        # Allow `list` (e.g. `TransfoXLModelOutput.mems` is a list of tensors.)
        elif type(fx_outputs) in [tuple, list]:
            self.assertEqual(
                type(fx_outputs), type(pt_outputs), f"{name}: Output types differ between Flax and PyTorch"
            )
            self.assertEqual(
                len(fx_outputs), len(pt_outputs), f"{name}: Output lengths differ between Flax and PyTorch"
            )

            if attributes is not None:
                # case 1: each output has assigned name (e.g. a tuple form of a `ModelOutput`)
                self.assertEqual(
                    len(attributes),
                    len(fx_outputs),
                    f"{name}: The tuple `attributes` should have the same length as `fx_outputs`",
                )
1998
            else:
1999
2000
2001
2002
2003
2004
                # case 2: each output has no assigned name (e.g. hidden states of each layer) -> add an index to `name`
                attributes = tuple([f"{name}_{idx}" for idx in range(len(fx_outputs))])

            for fx_output, pt_output, attr in zip(fx_outputs, pt_outputs, attributes):
                self.check_pt_flax_outputs(fx_output, pt_output, model_class, tol=tol, name=attr)

2005
        elif isinstance(fx_outputs, jnp.ndarray):
2006
2007
2008
            self.assertTrue(
                isinstance(pt_outputs, torch.Tensor), f"{name}: `pt_outputs` should a tensor when `fx_outputs` is"
            )
2009
2010
2011
2012
2013

            # Using `np.asarray` gives `ValueError: assignment destination is read-only` at the line `fx_outputs[fx_nans] = 0`.
            fx_outputs = np.array(fx_outputs)
            pt_outputs = pt_outputs.detach().to("cpu").numpy()

2014
2015
2016
2017
2018
2019
2020
2021
2022
            self.assertEqual(
                fx_outputs.shape, pt_outputs.shape, f"{name}: Output shapes differ between Flax and PyTorch"
            )

            # deal with NumPy's scalars to make replacing nan values by 0 work.
            if np.isscalar(fx_outputs):
                fx_outputs = np.array([fx_outputs])
                pt_outputs = np.array([pt_outputs])

2023
2024
2025
2026
2027
2028
2029
2030
            fx_nans = np.isnan(fx_outputs)
            pt_nans = np.isnan(pt_outputs)

            pt_outputs[fx_nans] = 0
            fx_outputs[fx_nans] = 0
            pt_outputs[pt_nans] = 0
            fx_outputs[pt_nans] = 0

2031
2032
2033
2034
            max_diff = np.amax(np.abs(fx_outputs - pt_outputs))
            self.assertLessEqual(
                max_diff, tol, f"{name}: Difference between PyTorch and Flax is {max_diff} (>= {tol})."
            )
2035
2036
        else:
            raise ValueError(
2037
2038
                "`fx_outputs` should be an instance of `ModelOutput`, a `tuple`, or an instance of `jnp.ndarray`. Got"
                f" {type(fx_outputs)} instead."
2039
2040
            )

2041
2042
2043
2044
2045
2046
2047
2048
2049
    @is_pt_flax_cross_test
    def test_equivalence_pt_to_flax(self):
        config, inputs_dict = self.model_tester.prepare_config_and_inputs_for_common()

        for model_class in self.all_model_classes:
            with self.subTest(model_class.__name__):
                fx_model_class_name = "Flax" + model_class.__name__

                if not hasattr(transformers, fx_model_class_name):
2050
                    # no flax model exists for this class
2051
2052
                    return

2053
2054
2055
2056
                # Output all for aggressive testing
                config.output_hidden_states = True
                config.output_attentions = self.has_attentions

2057
2058
                fx_model_class = getattr(transformers, fx_model_class_name)

2059
2060
2061
2062
2063
2064
                # load PyTorch class
                pt_model = model_class(config).eval()
                # Flax models don't use the `use_cache` option and cache is not returned as a default.
                # So we disable `use_cache` here for PyTorch model.
                pt_model.config.use_cache = False

2065
2066
                # load Flax class
                fx_model = fx_model_class(config, dtype=jnp.float32)
2067

2068
2069
2070
2071
2072
2073
2074
2075
2076
                # make sure only flax inputs are forward that actually exist in function args
                fx_input_keys = inspect.signature(fx_model.__call__).parameters.keys()

                # prepare inputs
                pt_inputs = self._prepare_for_class(inputs_dict, model_class)

                # remove function args that don't exist in Flax
                pt_inputs = {k: v for k, v in pt_inputs.items() if k in fx_input_keys}

2077
2078
2079
2080
2081
2082
2083
2084
                # send pytorch inputs to the correct device
                pt_inputs = {
                    k: v.to(device=torch_device) if isinstance(v, torch.Tensor) else v for k, v in pt_inputs.items()
                }

                # convert inputs to Flax
                fx_inputs = {k: np.array(v) for k, v in pt_inputs.items() if torch.is_tensor(v)}

2085
2086
2087
                fx_state = convert_pytorch_state_dict_to_flax(pt_model.state_dict(), fx_model)
                fx_model.params = fx_state

2088
2089
2090
                # send pytorch model to the correct device
                pt_model.to(torch_device)

2091
                with torch.no_grad():
2092
2093
                    pt_outputs = pt_model(**pt_inputs)
                fx_outputs = fx_model(**fx_inputs)
2094

2095
2096
2097
2098
                fx_keys = tuple([k for k, v in fx_outputs.items() if v is not None])
                pt_keys = tuple([k for k, v in pt_outputs.items() if v is not None])

                self.assertEqual(fx_keys, pt_keys)
2099
                self.check_pt_flax_outputs(fx_outputs, pt_outputs, model_class)
2100
2101
2102
2103
2104

                with tempfile.TemporaryDirectory() as tmpdirname:
                    pt_model.save_pretrained(tmpdirname)
                    fx_model_loaded = fx_model_class.from_pretrained(tmpdirname, from_pt=True)

2105
2106
2107
2108
2109
2110
                fx_outputs_loaded = fx_model_loaded(**fx_inputs)

                fx_keys = tuple([k for k, v in fx_outputs_loaded.items() if v is not None])
                pt_keys = tuple([k for k, v in pt_outputs.items() if v is not None])

                self.assertEqual(fx_keys, pt_keys)
2111
                self.check_pt_flax_outputs(fx_outputs_loaded, pt_outputs, model_class)
2112
2113
2114
2115
2116
2117
2118
2119
2120
2121
2122
2123
2124

    @is_pt_flax_cross_test
    def test_equivalence_flax_to_pt(self):
        config, inputs_dict = self.model_tester.prepare_config_and_inputs_for_common()

        for model_class in self.all_model_classes:
            with self.subTest(model_class.__name__):
                fx_model_class_name = "Flax" + model_class.__name__

                if not hasattr(transformers, fx_model_class_name):
                    # no flax model exists for this class
                    return

2125
2126
2127
2128
                # Output all for aggressive testing
                config.output_hidden_states = True
                config.output_attentions = self.has_attentions

2129
2130
                fx_model_class = getattr(transformers, fx_model_class_name)

2131
2132
2133
2134
2135
2136
                # load PyTorch class
                pt_model = model_class(config).eval()
                # Flax models don't use the `use_cache` option and cache is not returned as a default.
                # So we disable `use_cache` here for PyTorch model.
                pt_model.config.use_cache = False

2137
2138
                # load Flax class
                fx_model = fx_model_class(config, dtype=jnp.float32)
2139

2140
2141
2142
2143
2144
2145
2146
2147
2148
                # make sure only flax inputs are forward that actually exist in function args
                fx_input_keys = inspect.signature(fx_model.__call__).parameters.keys()

                # prepare inputs
                pt_inputs = self._prepare_for_class(inputs_dict, model_class)

                # remove function args that don't exist in Flax
                pt_inputs = {k: v for k, v in pt_inputs.items() if k in fx_input_keys}

2149
2150
2151
2152
                # send pytorch inputs to the correct device
                pt_inputs = {
                    k: v.to(device=torch_device) if isinstance(v, torch.Tensor) else v for k, v in pt_inputs.items()
                }
2153

2154
                # convert inputs to Flax
2155
2156
                fx_inputs = {k: np.array(v) for k, v in pt_inputs.items() if torch.is_tensor(v)}

2157
2158
2159
2160
2161
2162
2163
                pt_model = load_flax_weights_in_pytorch_model(pt_model, fx_model.params)

                # make sure weights are tied in PyTorch
                pt_model.tie_weights()

                # send pytorch model to the correct device
                pt_model.to(torch_device)
2164

2165
2166
2167
2168
2169
2170
2171
2172
                with torch.no_grad():
                    pt_outputs = pt_model(**pt_inputs)
                fx_outputs = fx_model(**fx_inputs)

                fx_keys = tuple([k for k, v in fx_outputs.items() if v is not None])
                pt_keys = tuple([k for k, v in pt_outputs.items() if v is not None])

                self.assertEqual(fx_keys, pt_keys)
2173
                self.check_pt_flax_outputs(fx_outputs, pt_outputs, model_class)
2174
2175
2176
2177
2178

                with tempfile.TemporaryDirectory() as tmpdirname:
                    fx_model.save_pretrained(tmpdirname)
                    pt_model_loaded = model_class.from_pretrained(tmpdirname, from_flax=True)

2179
2180
2181
2182
                # send pytorch model to the correct device
                pt_model_loaded.to(torch_device)
                pt_model_loaded.eval()

2183
                with torch.no_grad():
2184
                    pt_outputs_loaded = pt_model_loaded(**pt_inputs)
2185

2186
2187
2188
2189
                fx_keys = tuple([k for k, v in fx_outputs.items() if v is not None])
                pt_keys = tuple([k for k, v in pt_outputs_loaded.items() if v is not None])

                self.assertEqual(fx_keys, pt_keys)
2190
                self.check_pt_flax_outputs(fx_outputs, pt_outputs_loaded, model_class)
2191

Patrick von Platen's avatar
Patrick von Platen committed
2192
    def test_inputs_embeds(self):
2193
2194
2195
2196
        config, inputs_dict = self.model_tester.prepare_config_and_inputs_for_common()

        for model_class in self.all_model_classes:
            model = model_class(config)
2197
            model.to(torch_device)
thomwolf's avatar
thomwolf committed
2198
            model.eval()
2199

2200
            inputs = copy.deepcopy(self._prepare_for_class(inputs_dict, model_class))
Weizhen's avatar
Weizhen committed
2201

2202
2203
2204
2205
2206
2207
2208
2209
2210
            if not self.is_encoder_decoder:
                input_ids = inputs["input_ids"]
                del inputs["input_ids"]
            else:
                encoder_input_ids = inputs["input_ids"]
                decoder_input_ids = inputs.get("decoder_input_ids", encoder_input_ids)
                del inputs["input_ids"]
                inputs.pop("decoder_input_ids", None)

2211
2212
            wte = model.get_input_embeddings()
            if not self.is_encoder_decoder:
2213
                inputs["inputs_embeds"] = wte(input_ids)
2214
            else:
2215
2216
                inputs["inputs_embeds"] = wte(encoder_input_ids)
                inputs["decoder_inputs_embeds"] = wte(decoder_input_ids)
2217

thomwolf's avatar
thomwolf committed
2218
            with torch.no_grad():
Weizhen's avatar
Weizhen committed
2219
                model(**inputs)[0]
2220

2221
2222
    @require_torch_multi_gpu
    def test_multi_gpu_data_parallel_forward(self):
2223
2224
2225
2226
        config, inputs_dict = self.model_tester.prepare_config_and_inputs_for_common()

        # some params shouldn't be scattered by nn.DataParallel
        # so just remove them if they are present.
2227
        blacklist_non_batched_params = ["head_mask", "decoder_head_mask", "cross_attn_head_mask"]
2228
2229
2230
2231
2232
2233
2234
2235
2236
2237
2238
2239
2240
2241
        for k in blacklist_non_batched_params:
            inputs_dict.pop(k, None)

        # move input tensors to cuda:O
        for k, v in inputs_dict.items():
            if torch.is_tensor(v):
                inputs_dict[k] = v.to(0)

        for model_class in self.all_model_classes:
            model = model_class(config=config)
            model.to(0)
            model.eval()

            # Wrap model in nn.DataParallel
2242
            model = nn.DataParallel(model)
2243
            with torch.no_grad():
2244
                _ = model(**self._prepare_for_class(inputs_dict, model_class))
2245

2246
2247
2248
    @require_torch_multi_gpu
    def test_model_parallelization(self):
        if not self.test_model_parallel:
2249
            return
2250

2251
        # a candidate for testing_utils
2252
        def get_current_gpu_memory_use():
Patrick von Platen's avatar
Patrick von Platen committed
2253
            """returns a list of cuda memory allocations per GPU in MBs"""
2254
2255
2256
2257
2258

            per_device_memory = []
            for id in range(torch.cuda.device_count()):
                with torch.cuda.device(id):
                    per_device_memory.append(torch.cuda.memory_allocated() >> 20)
2259
2260
2261
2262
2263
2264
2265
2266
2267

            return per_device_memory

        # Needs a large model to see the difference.
        config = self.model_tester.get_large_model_config()

        for model_class in self.all_parallelizable_model_classes:
            torch.cuda.empty_cache()

2268
2269
2270
            # 1. single gpu memory load + unload + memory measurements
            # Retrieve initial memory usage (can easily be ~0.6-1.5GB if cuda-kernels have been preloaded by previous tests)
            memory_at_start = get_current_gpu_memory_use()
2271

2272
2273
            # Put model on device 0 and take a memory snapshot
            model = model_class(config)
2274
2275
2276
            model.to("cuda:0")
            memory_after_model_load = get_current_gpu_memory_use()

2277
2278
2279
            # The memory use on device 0 should be higher than it was initially.
            self.assertGreater(memory_after_model_load[0], memory_at_start[0])

2280
            del model
2281
            gc.collect()
2282
2283
            torch.cuda.empty_cache()

2284
2285
2286
            # 2. MP test
            # it's essential to re-calibrate the usage before the next stage
            memory_at_start = get_current_gpu_memory_use()
2287
2288

            # Spread model layers over multiple devices
2289
            model = model_class(config)
2290
2291
2292
2293
            model.parallelize()
            memory_after_parallelization = get_current_gpu_memory_use()

            # Assert that the memory use on all devices is higher than it was when loaded only on CPU
2294
            for n in range(len(model.device_map.keys())):
2295
                self.assertGreater(memory_after_parallelization[n], memory_at_start[n])
2296

2297
            # Assert that the memory use of device 0 is lower than it was when the entire model was loaded on it
2298
2299
            self.assertLess(memory_after_parallelization[0], memory_after_model_load[0])

2300
2301
            # Assert that the memory use of device 1 is higher than it was when the entire model was loaded
            # on device 0 and device 1 wasn't used at all
2302
2303
2304
            self.assertGreater(memory_after_parallelization[1], memory_after_model_load[1])

            del model
2305
            gc.collect()
2306
2307
2308
2309
2310
            torch.cuda.empty_cache()

    @require_torch_multi_gpu
    def test_model_parallel_equal_results(self):
        if not self.test_model_parallel:
2311
            return
2312
2313
2314
2315
2316
2317

        config, inputs_dict = self.model_tester.prepare_config_and_inputs_for_common()

        for model_class in self.all_parallelizable_model_classes:
            inputs_dict = self._prepare_for_class(inputs_dict, model_class)

2318
            def cast_to_device(dictionary, device):
2319
2320
2321
                output = {}
                for k, v in dictionary.items():
                    if isinstance(v, torch.Tensor):
2322
                        output[k] = v.to(device)
2323
2324
2325
2326
2327
                    else:
                        output[k] = v

                return output

2328
2329
2330
2331
2332
2333
            model = model_class(config)
            output = model(**cast_to_device(inputs_dict, "cpu"))

            model.parallelize()

            parallel_output = model(**cast_to_device(inputs_dict, "cuda:0"))
2334
2335
2336
2337
2338
2339
2340
2341

            for value, parallel_value in zip(output, parallel_output):
                if isinstance(value, torch.Tensor):
                    self.assertTrue(torch.allclose(value, parallel_value.to("cpu"), atol=1e-7))
                elif isinstance(value, (Tuple, List)):
                    for value_, parallel_value_ in zip(value, parallel_value):
                        self.assertTrue(torch.allclose(value_, parallel_value_.to("cpu"), atol=1e-7))

2342
2343
2344
2345
2346
2347
2348
2349
2350
2351
2352
2353
2354
2355
2356
2357
2358
2359
2360
2361
2362
2363
2364
2365
2366
2367
2368
2369
    @require_torch_multi_gpu
    def test_model_parallel_beam_search(self):
        if not self.test_model_parallel:
            return

        all_generative_and_parallelizable_model_classes = tuple(
            set(self.all_generative_model_classes).intersection(self.all_parallelizable_model_classes)
        )

        config, inputs_dict = self.model_tester.prepare_config_and_inputs_for_common()

        for model_class in all_generative_and_parallelizable_model_classes:
            inputs_dict = self._prepare_for_class(inputs_dict, model_class)
            model = model_class(config)

            def cast_to_device(dictionary, device):
                output = {}
                for k, v in dictionary.items():
                    if isinstance(v, torch.Tensor):
                        output[k] = v.to(device)
                    else:
                        output[k] = v

                return output

            model.parallelize()
            model.generate(**cast_to_device(inputs_dict, "cuda:0"), num_beams=2)

2370
2371
2372
2373
2374
2375
2376
2377
2378
2379
2380
2381
2382
2383
    def check_device_map_is_respected(self, model, device_map):
        for param_name, param in model.named_parameters():
            # Find device in device_map
            while len(param_name) > 0 and param_name not in device_map:
                param_name = ".".join(param_name.split(".")[:-1])
            if param_name not in device_map:
                raise ValueError("device map is incomplete, it does not contain any device for `param_name`.")

            param_device = device_map[param_name]
            if param_device in ["cpu", "disk"]:
                self.assertEqual(param.device, torch.device("meta"))
            else:
                self.assertEqual(param.device, torch.device(param_device))

Sylvain Gugger's avatar
Sylvain Gugger committed
2384
2385
2386
2387
2388
2389
2390
2391
2392
    @require_accelerate
    @require_torch_gpu
    def test_disk_offload(self):
        config, inputs_dict = self.model_tester.prepare_config_and_inputs_for_common()

        for model_class in self.all_model_classes:
            if model_class._no_split_modules is None:
                continue

2393
            inputs_dict_class = self._prepare_for_class(inputs_dict, model_class)
Sylvain Gugger's avatar
Sylvain Gugger committed
2394
2395
            model = model_class(config).eval()
            model = model.to(torch_device)
2396
            torch.manual_seed(0)
2397
            base_output = model(**inputs_dict_class)
Sylvain Gugger's avatar
Sylvain Gugger committed
2398
2399

            model_size = compute_module_sizes(model)[""]
2400
            max_size = int(self.model_split_percents[0] * model_size)
Sylvain Gugger's avatar
Sylvain Gugger committed
2401
2402
2403
2404
2405
2406
2407
2408
2409
2410
2411
2412
2413
            with tempfile.TemporaryDirectory() as tmp_dir:
                model.cpu().save_pretrained(tmp_dir)

                max_memory = {0: max_size, "cpu": max_size}
                with self.assertRaises(ValueError):
                    # This errors out cause it's missing an offload folder
                    new_model = model_class.from_pretrained(tmp_dir, device_map="auto", max_memory=max_memory)

                new_model = model_class.from_pretrained(
                    tmp_dir, device_map="auto", max_memory=max_memory, offload_folder=tmp_dir
                )

                self.check_device_map_is_respected(new_model, new_model.hf_device_map)
2414
                torch.manual_seed(0)
2415
                new_output = new_model(**inputs_dict_class)
Sylvain Gugger's avatar
Sylvain Gugger committed
2416
2417
2418

                self.assertTrue(torch.allclose(base_output[0], new_output[0]))

2419
2420
2421
2422
2423
2424
2425
2426
2427
    @require_accelerate
    @require_torch_gpu
    def test_cpu_offload(self):
        config, inputs_dict = self.model_tester.prepare_config_and_inputs_for_common()

        for model_class in self.all_model_classes:
            if model_class._no_split_modules is None:
                continue

2428
            inputs_dict_class = self._prepare_for_class(inputs_dict, model_class)
2429
2430
            model = model_class(config).eval()
            model = model.to(torch_device)
2431
2432

            torch.manual_seed(0)
2433
            base_output = model(**inputs_dict_class)
2434
2435
2436

            model_size = compute_module_sizes(model)[""]
            # We test several splits of sizes to make sure it works.
2437
            max_gpu_sizes = [int(p * model_size) for p in self.model_split_percents]
2438
2439
2440
2441
2442
2443
2444
2445
2446
2447
            with tempfile.TemporaryDirectory() as tmp_dir:
                model.cpu().save_pretrained(tmp_dir)

                for max_size in max_gpu_sizes:
                    max_memory = {0: max_size, "cpu": model_size * 2}
                    new_model = model_class.from_pretrained(tmp_dir, device_map="auto", max_memory=max_memory)
                    # Making sure part of the model will actually end up offloaded
                    self.assertSetEqual(set(new_model.hf_device_map.values()), {0, "cpu"})

                    self.check_device_map_is_respected(new_model, new_model.hf_device_map)
2448
2449

                    torch.manual_seed(0)
2450
                    new_output = new_model(**inputs_dict_class)
2451
2452
2453
2454
2455
2456
2457
2458
2459
2460
2461
2462

                    self.assertTrue(torch.allclose(base_output[0], new_output[0]))

    @require_accelerate
    @require_torch_multi_gpu
    def test_model_parallelism(self):
        config, inputs_dict = self.model_tester.prepare_config_and_inputs_for_common()

        for model_class in self.all_model_classes:
            if model_class._no_split_modules is None:
                continue

2463
            inputs_dict_class = self._prepare_for_class(inputs_dict, model_class)
2464
2465
            model = model_class(config).eval()
            model = model.to(torch_device)
2466
2467

            torch.manual_seed(0)
2468
            base_output = model(**inputs_dict_class)
2469
2470
2471

            model_size = compute_module_sizes(model)[""]
            # We test several splits of sizes to make sure it works.
2472
            max_gpu_sizes = [int(p * model_size) for p in self.model_split_percents]
2473
2474
2475
2476
2477
2478
2479
2480
2481
2482
            with tempfile.TemporaryDirectory() as tmp_dir:
                model.cpu().save_pretrained(tmp_dir)

                for max_size in max_gpu_sizes:
                    max_memory = {0: max_size, 1: model_size * 2, "cpu": model_size * 2}
                    new_model = model_class.from_pretrained(tmp_dir, device_map="auto", max_memory=max_memory)
                    # Making sure part of the model will actually end up offloaded
                    self.assertSetEqual(set(new_model.hf_device_map.values()), {0, 1})

                    self.check_device_map_is_respected(new_model, new_model.hf_device_map)
2483
2484

                    torch.manual_seed(0)
2485
                    new_output = new_model(**inputs_dict_class)
2486
2487
2488

                    self.assertTrue(torch.allclose(base_output[0], new_output[0]))

2489
2490
2491
2492
2493
2494
2495
2496
2497
2498
    def test_problem_types(self):
        config, inputs_dict = self.model_tester.prepare_config_and_inputs_for_common()

        problem_types = [
            {"title": "multi_label_classification", "num_labels": 2, "dtype": torch.float},
            {"title": "single_label_classification", "num_labels": 1, "dtype": torch.long},
            {"title": "regression", "num_labels": 1, "dtype": torch.float},
        ]

        for model_class in self.all_model_classes:
2499
2500
2501
2502
            if model_class not in [
                *get_values(MODEL_FOR_SEQUENCE_CLASSIFICATION_MAPPING),
                *get_values(MODEL_FOR_IMAGE_CLASSIFICATION_MAPPING),
            ]:
2503
2504
2505
2506
2507
2508
2509
2510
2511
2512
2513
2514
2515
2516
2517
2518
2519
2520
2521
                continue

            for problem_type in problem_types:
                with self.subTest(msg=f"Testing {model_class} with {problem_type['title']}"):

                    config.problem_type = problem_type["title"]
                    config.num_labels = problem_type["num_labels"]

                    model = model_class(config)
                    model.to(torch_device)
                    model.train()

                    inputs = self._prepare_for_class(inputs_dict, model_class, return_labels=True)

                    if problem_type["num_labels"] > 1:
                        inputs["labels"] = inputs["labels"].unsqueeze(1).repeat(1, problem_type["num_labels"])

                    inputs["labels"] = inputs["labels"].to(problem_type["dtype"])

2522
2523
2524
2525
2526
2527
                    # This tests that we do not trigger the warning form PyTorch "Using a target size that is different
                    # to the input size. This will likely lead to incorrect results due to broadcasting. Please ensure
                    # they have the same size." which is a symptom something in wrong for the regression problem.
                    # See https://github.com/huggingface/transformers/issues/11780
                    with warnings.catch_warnings(record=True) as warning_list:
                        loss = model(**inputs).loss
2528
2529
2530
2531
2532
                    for w in warning_list:
                        if "Using a target size that is different to the input size" in str(w.message):
                            raise ValueError(
                                f"Something is going wrong in the regression problem: intercepted {w.message}"
                            )
2533

2534
2535
                    loss.backward()

2536
    def test_load_with_mismatched_shapes(self):
2537
2538
        if not self.test_mismatched_shapes:
            return
2539
2540
2541
2542
2543
2544
2545
2546
2547
2548
2549
2550
        config, inputs_dict = self.model_tester.prepare_config_and_inputs_for_common()

        for model_class in self.all_model_classes:
            if model_class not in get_values(MODEL_FOR_SEQUENCE_CLASSIFICATION_MAPPING):
                continue

            with self.subTest(msg=f"Testing {model_class}"):
                with tempfile.TemporaryDirectory() as tmp_dir:
                    model = model_class(config)
                    model.save_pretrained(tmp_dir)

                    # Fails when we don't set ignore_mismatched_sizes=True
2551
                    with self.assertRaises(RuntimeError):
2552
                        new_model = AutoModelForSequenceClassification.from_pretrained(tmp_dir, num_labels=42)
2553
2554
                    with self.assertRaises(RuntimeError):
                        new_model_without_prefix = AutoModel.from_pretrained(tmp_dir, vocab_size=10)
2555
2556

                    logger = logging.get_logger("transformers.modeling_utils")
2557

2558
2559
2560
2561
2562
2563
2564
2565
2566
2567
                    with CaptureLogger(logger) as cl:
                        new_model = AutoModelForSequenceClassification.from_pretrained(
                            tmp_dir, num_labels=42, ignore_mismatched_sizes=True
                        )
                    self.assertIn("the shapes did not match", cl.out)
                    new_model.to(torch_device)
                    inputs = self._prepare_for_class(inputs_dict, model_class)
                    logits = new_model(**inputs).logits
                    self.assertEqual(logits.shape[1], 42)

2568
2569
2570
2571
2572
2573
2574
2575
2576
2577
2578
2579
                    with CaptureLogger(logger) as cl:
                        new_model_without_prefix = AutoModel.from_pretrained(
                            tmp_dir, vocab_size=10, ignore_mismatched_sizes=True
                        )
                    self.assertIn("the shapes did not match", cl.out)
                    input_ids = ids_tensor((2, 8), 10)
                    new_model_without_prefix.to(torch_device)
                    if self.is_encoder_decoder:
                        new_model_without_prefix(input_ids, decoder_input_ids=input_ids)
                    else:
                        new_model_without_prefix(input_ids)

2580

2581
global_rng = random.Random()
thomwolf's avatar
thomwolf committed
2582
2583


thomwolf's avatar
thomwolf committed
2584
def ids_tensor(shape, vocab_size, rng=None, name=None):
2585
    #  Creates a random int32 tensor of the shape within the vocab size
thomwolf's avatar
thomwolf committed
2586
    if rng is None:
2587
        rng = global_rng
thomwolf's avatar
thomwolf committed
2588

thomwolf's avatar
thomwolf committed
2589
2590
2591
    total_dims = 1
    for dim in shape:
        total_dims *= dim
thomwolf's avatar
thomwolf committed
2592

thomwolf's avatar
thomwolf committed
2593
2594
2595
    values = []
    for _ in range(total_dims):
        values.append(rng.randint(0, vocab_size - 1))
thomwolf's avatar
thomwolf committed
2596

2597
    return torch.tensor(data=values, dtype=torch.long, device=torch_device).view(shape).contiguous()
thomwolf's avatar
thomwolf committed
2598
2599


2600
2601
2602
2603
2604
2605
2606
def random_attention_mask(shape, rng=None, name=None):
    attn_mask = ids_tensor(shape, vocab_size=2, rng=None, name=None)
    # make sure that at least one token is attended to for each batch
    attn_mask[:, -1] = 1
    return attn_mask


2607
def floats_tensor(shape, scale=1.0, rng=None, name=None):
Patrick von Platen's avatar
Patrick von Platen committed
2608
    """Creates a random float32 tensor"""
2609
2610
2611
2612
2613
2614
2615
2616
2617
2618
2619
    if rng is None:
        rng = global_rng

    total_dims = 1
    for dim in shape:
        total_dims *= dim

    values = []
    for _ in range(total_dims):
        values.append(rng.random() * scale)

2620
    return torch.tensor(data=values, dtype=torch.float, device=torch_device).view(shape).contiguous()
2621
2622


2623
2624
2625
2626
2627
2628
2629
2630
2631
def check_models_equal(model1, model2):
    models_are_equal = True
    for model1_p, model2_p in zip(model1.parameters(), model2.parameters()):
        if model1_p.data.ne(model2_p.data).sum() > 0:
            models_are_equal = False

    return models_are_equal


2632
@require_torch
2633
class ModelUtilsTest(TestCasePlus):
2634
    @slow
Patrick von Platen's avatar
Patrick von Platen committed
2635
    def test_model_from_pretrained(self):
2636
        for model_name in BERT_PRETRAINED_MODEL_ARCHIVE_LIST[:1]:
thomwolf's avatar
thomwolf committed
2637
2638
2639
2640
2641
2642
2643
2644
            config = BertConfig.from_pretrained(model_name)
            self.assertIsNotNone(config)
            self.assertIsInstance(config, PretrainedConfig)

            model = BertModel.from_pretrained(model_name)
            model, loading_info = BertModel.from_pretrained(model_name, output_loading_info=True)
            self.assertIsNotNone(model)
            self.assertIsInstance(model, PreTrainedModel)
Lysandre Debut's avatar
Lysandre Debut committed
2645
2646
2647
2648
2649

            self.assertEqual(len(loading_info["missing_keys"]), 0)
            self.assertEqual(len(loading_info["unexpected_keys"]), 8)
            self.assertEqual(len(loading_info["mismatched_keys"]), 0)
            self.assertEqual(len(loading_info["error_msgs"]), 0)
thomwolf's avatar
thomwolf committed
2650
2651

            config = BertConfig.from_pretrained(model_name, output_attentions=True, output_hidden_states=True)
Lysandre Debut's avatar
Lysandre Debut committed
2652
2653
2654
2655

            # Not sure this is the intended behavior. TODO fix Lysandre & Thom
            config.name_or_path = model_name

thomwolf's avatar
thomwolf committed
2656
2657
2658
            model = BertModel.from_pretrained(model_name, output_attentions=True, output_hidden_states=True)
            self.assertEqual(model.config.output_hidden_states, True)
            self.assertEqual(model.config, config)
2659

2660
2661
2662
2663
2664
2665
2666
2667
2668
2669
2670
2671
2672
2673
2674
2675
2676
2677
2678
2679
2680
2681
2682
2683
2684
2685
2686
2687
2688
2689
2690
2691
2692
2693
2694
2695
2696
2697
2698
2699
2700
2701
2702
2703
2704
2705
2706
2707
2708
2709
    def test_model_from_pretrained_subfolder(self):
        config = BertConfig.from_pretrained("hf-internal-testing/tiny-random-bert")
        model = BertModel(config)

        subfolder = "bert"
        with tempfile.TemporaryDirectory() as tmp_dir:
            model.save_pretrained(os.path.join(tmp_dir, subfolder))

            with self.assertRaises(OSError):
                _ = BertModel.from_pretrained(tmp_dir)

            model_loaded = BertModel.from_pretrained(tmp_dir, subfolder=subfolder)

        self.assertTrue(check_models_equal(model, model_loaded))

    def test_model_from_pretrained_subfolder_sharded(self):
        config = BertConfig.from_pretrained("hf-internal-testing/tiny-random-bert")
        model = BertModel(config)

        subfolder = "bert"
        with tempfile.TemporaryDirectory() as tmp_dir:
            model.save_pretrained(os.path.join(tmp_dir, subfolder), max_shard_size="10KB")

            with self.assertRaises(OSError):
                _ = BertModel.from_pretrained(tmp_dir)

            model_loaded = BertModel.from_pretrained(tmp_dir, subfolder=subfolder)

        self.assertTrue(check_models_equal(model, model_loaded))

    def test_model_from_pretrained_hub_subfolder(self):
        subfolder = "bert"
        model_id = "hf-internal-testing/tiny-random-bert-subfolder"
        with self.assertRaises(OSError):
            _ = BertModel.from_pretrained(model_id)

        model = BertModel.from_pretrained(model_id, subfolder=subfolder)

        self.assertIsNotNone(model)

    def test_model_from_pretrained_hub_subfolder_sharded(self):
        subfolder = "bert"
        model_id = "hf-internal-testing/tiny-random-bert-sharded-subfolder"
        with self.assertRaises(OSError):
            _ = BertModel.from_pretrained(model_id)

        model = BertModel.from_pretrained(model_id, subfolder=subfolder)

        self.assertIsNotNone(model)

2710
2711
2712
2713
    def test_model_from_pretrained_with_different_pretrained_model_name(self):
        model = T5ForConditionalGeneration.from_pretrained(TINY_T5)
        self.assertIsNotNone(model)

2714
2715
        logger = logging.get_logger("transformers.configuration_utils")
        with CaptureLogger(logger) as cl:
2716
            BertModel.from_pretrained(TINY_T5)
2717
        self.assertTrue("You are using a model of type t5 to instantiate a model of type bert" in cl.out)
Sylvain Gugger's avatar
Sylvain Gugger committed
2718

2719
2720
2721
2722
2723
2724
2725
2726
2727
2728
2729
2730
2731
2732
2733
2734
2735
2736
2737
2738
2739
2740
    @require_torch
    def test_model_from_config_torch_dtype(self):
        # test that the model can be instantiated with dtype of user's choice - as long as it's a
        # float dtype. To make it happen config.torch_dtype needs to be set before instantiating the
        # model from the config object.

        config = T5Config.from_pretrained(TINY_T5)
        model = AutoModel.from_config(config)
        # XXX: isn't supported
        # model = T5ForConditionalGeneration.from_config(config)
        self.assertEqual(model.dtype, torch.float32)

        model = AutoModel.from_config(config, torch_dtype=torch.float16)
        self.assertEqual(model.dtype, torch.float16)

        # torch.set_default_dtype() supports only float dtypes, so will fail with non-float type
        with self.assertRaises(ValueError):
            model = AutoModel.from_config(config, torch_dtype=torch.int64)

    @require_torch
    def test_model_from_pretrained_torch_dtype(self):
        # test that the model can be instantiated with dtype of either
2741
2742
        # 1. explicit from_pretrained's torch_dtype argument
        # 2. via autodiscovery by looking at model weights (torch_dtype="auto")
2743
        # so if a model.half() was saved, we want it to be instantiated as such.
2744
2745
        #
        # test an explicit model class, but also AutoModel separately as the latter goes through a different code path
2746
2747
2748
2749
2750
2751
2752
2753
2754
2755
2756
2757
2758
2759
2760
2761
2762
2763
2764
2765
2766
2767
        model_path = self.get_auto_remove_tmp_dir()

        # baseline - we know TINY_T5 is fp32 model
        model = T5ForConditionalGeneration.from_pretrained(TINY_T5)
        self.assertEqual(model.dtype, torch.float32)

        # test the default fp32 save_pretrained => from_pretrained cycle
        model.save_pretrained(model_path)
        model = T5ForConditionalGeneration.from_pretrained(model_path)
        self.assertEqual(model.dtype, torch.float32)
        # test with auto-detection
        model = T5ForConditionalGeneration.from_pretrained(model_path, torch_dtype="auto")
        self.assertEqual(model.dtype, torch.float32)

        # test forced loading in fp16 (even though the weights are in fp32)
        model = T5ForConditionalGeneration.from_pretrained(model_path, torch_dtype=torch.float16)
        self.assertEqual(model.dtype, torch.float16)

        # test fp16 save_pretrained, loaded with auto-detection
        model = model.half()
        model.save_pretrained(model_path)
        model = T5ForConditionalGeneration.from_pretrained(model_path, torch_dtype="auto")
2768
        self.assertEqual(model.config.torch_dtype, torch.float16)
2769
2770
        self.assertEqual(model.dtype, torch.float16)

2771
2772
2773
2774
2775
        # tests `config.torch_dtype` saving
        with open(f"{model_path}/config.json") as f:
            config_dict = json.load(f)
        self.assertEqual(config_dict["torch_dtype"], "float16")

2776
2777
2778
2779
        # test fp16 save_pretrained, loaded with the explicit fp16
        model = T5ForConditionalGeneration.from_pretrained(model_path, torch_dtype=torch.float16)
        self.assertEqual(model.dtype, torch.float16)

2780
2781
2782
2783
2784
2785
2786
2787
        # test AutoModel separately as it goes through a different path
        # test auto-detection
        model = AutoModel.from_pretrained(TINY_T5, torch_dtype="auto")
        self.assertEqual(model.dtype, torch.float32)
        # test forcing an explicit dtype
        model = AutoModel.from_pretrained(TINY_T5, torch_dtype=torch.float16)
        self.assertEqual(model.dtype, torch.float16)

2788
2789
2790
2791
        # test model whose first param is not of a floating type, but int
        model = AutoModel.from_pretrained(TINY_BERT_FOR_TOKEN_CLASSIFICATION, torch_dtype="auto")
        self.assertEqual(model.dtype, torch.float32)

2792
2793
2794
2795
2796
2797
2798
    def test_no_super_init_config_and_model(self):
        config = NoSuperInitConfig(attribute=32)
        model = NoSuperInitModel(config)

        with tempfile.TemporaryDirectory() as tmp_dir:
            model.save_pretrained(tmp_dir)

2799
2800
2801
2802
            new_model = NoSuperInitModel.from_pretrained(tmp_dir)

        for p1, p2 in zip(model.parameters(), new_model.parameters()):
            self.assertTrue(torch.equal(p1, p2))
2803

Sylvain Gugger's avatar
Sylvain Gugger committed
2804
2805
2806
2807
2808
2809
2810
2811
2812
2813
2814
2815
2816
2817
2818
2819
2820
2821
2822
2823
2824
2825
2826
2827
2828
2829
2830
2831
2832
2833
2834
2835
2836
2837
2838
2839
2840
2841
2842
2843
2844
2845
2846
2847
2848
2849
2850
2851
2852
2853
2854
2855
2856
2857
2858
2859
2860
2861
2862
2863
2864
2865
2866
2867
2868
2869
2870
2871
2872
2873
2874
2875
2876
2877
2878
2879
2880
2881
2882
2883
2884
2885
2886
2887
2888
2889
2890
2891
2892
2893
2894
2895
2896
2897
2898
2899
2900
2901
2902
2903
2904
2905
2906
2907
2908
2909
2910
2911
2912
2913
2914
2915
2916
2917
2918
2919
2920
    def test_shard_checkpoint(self):
        # This is the model we will use, total size 340,000 bytes.
        model = torch.nn.Sequential(
            torch.nn.Linear(100, 200, bias=False),  # size 80,000
            torch.nn.Linear(200, 200, bias=False),  # size 160,000
            torch.nn.Linear(200, 100, bias=False),  # size 80,000
            torch.nn.Linear(100, 50, bias=False),  # size 20,000
        )
        state_dict = model.state_dict()

        with self.subTest("No shard when max size is bigger than model size"):
            shards, index = shard_checkpoint(state_dict)
            self.assertIsNone(index)
            self.assertDictEqual(shards, {WEIGHTS_NAME: state_dict})

        with self.subTest("Test sharding, no weights bigger than max size"):
            shards, index = shard_checkpoint(state_dict, max_shard_size="300kB")
            # Split is first two layers then last two.
            self.assertDictEqual(
                index,
                {
                    "metadata": {"total_size": 340000},
                    "weight_map": {
                        "0.weight": "pytorch_model-00001-of-00002.bin",
                        "1.weight": "pytorch_model-00001-of-00002.bin",
                        "2.weight": "pytorch_model-00002-of-00002.bin",
                        "3.weight": "pytorch_model-00002-of-00002.bin",
                    },
                },
            )

            shard1 = {"0.weight": state_dict["0.weight"], "1.weight": state_dict["1.weight"]}
            shard2 = {"2.weight": state_dict["2.weight"], "3.weight": state_dict["3.weight"]}
            self.assertDictEqual(
                shards, {"pytorch_model-00001-of-00002.bin": shard1, "pytorch_model-00002-of-00002.bin": shard2}
            )

        with self.subTest("Test sharding with weights bigger than max size"):
            shards, index = shard_checkpoint(state_dict, max_shard_size="100kB")
            # Split is first layer, second layer then last 2.
            self.assertDictEqual(
                index,
                {
                    "metadata": {"total_size": 340000},
                    "weight_map": {
                        "0.weight": "pytorch_model-00001-of-00003.bin",
                        "1.weight": "pytorch_model-00002-of-00003.bin",
                        "2.weight": "pytorch_model-00003-of-00003.bin",
                        "3.weight": "pytorch_model-00003-of-00003.bin",
                    },
                },
            )

            shard1 = {"0.weight": state_dict["0.weight"]}
            shard2 = {"1.weight": state_dict["1.weight"]}
            shard3 = {"2.weight": state_dict["2.weight"], "3.weight": state_dict["3.weight"]}
            self.assertDictEqual(
                shards,
                {
                    "pytorch_model-00001-of-00003.bin": shard1,
                    "pytorch_model-00002-of-00003.bin": shard2,
                    "pytorch_model-00003-of-00003.bin": shard3,
                },
            )

    def test_checkpoint_sharding_local(self):
        model = BertModel.from_pretrained("hf-internal-testing/tiny-random-bert")

        with tempfile.TemporaryDirectory() as tmp_dir:
            # We use the same folder for various sizes to make sure a new save erases the old checkpoint.
            for max_size in ["50kB", "50kiB", "100kB", "100kiB", "200kB", "200kiB"]:
                model.save_pretrained(tmp_dir, max_shard_size=max_size)

                # Get each shard file and its size
                shard_to_size = {}
                for shard in os.listdir(tmp_dir):
                    if shard.endswith(".bin"):
                        shard_file = os.path.join(tmp_dir, shard)
                        shard_to_size[shard_file] = os.path.getsize(shard_file)

                index_file = os.path.join(tmp_dir, WEIGHTS_INDEX_NAME)
                # Check there is an index but no regular weight file
                self.assertTrue(os.path.isfile(index_file))
                self.assertFalse(os.path.isfile(os.path.join(tmp_dir, WEIGHTS_NAME)))

                # Check a file is bigger than max_size only when it has a single weight
                for shard_file, size in shard_to_size.items():
                    if max_size.endswith("kiB"):
                        max_size_int = int(max_size[:-3]) * 2**10
                    else:
                        max_size_int = int(max_size[:-2]) * 10**3
                    # Note: pickle adds some junk so the weight of the file can end up being slightly bigger than
                    # the size asked for (since we count parameters)
                    if size >= max_size_int + 50000:
                        state_dict = torch.load(shard_file)
                        self.assertEqual(len(state_dict), 1)

                # Check the index and the shard files found match
                with open(index_file, "r", encoding="utf-8") as f:
                    index = json.loads(f.read())

                all_shards = set(index["weight_map"].values())
                shards_found = set(f for f in os.listdir(tmp_dir) if f.endswith(".bin"))
                self.assertSetEqual(all_shards, shards_found)

                # Finally, check the model can be reloaded
                new_model = BertModel.from_pretrained(tmp_dir)
                for p1, p2 in zip(model.parameters(), new_model.parameters()):
                    self.assertTrue(torch.allclose(p1, p2))

    def test_checkpoint_sharding_from_hub(self):
        model = BertModel.from_pretrained("hf-internal-testing/tiny-random-bert-sharded")
        # the model above is the same as the model below, just a sharded version.
        ref_model = BertModel.from_pretrained("hf-internal-testing/tiny-random-bert")
        for p1, p2 in zip(model.parameters(), ref_model.parameters()):
            self.assertTrue(torch.allclose(p1, p2))

2921
    @require_accelerate
2922
2923
2924
2925
2926
2927
2928
2929
2930
2931
2932
2933
    def test_from_pretrained_low_cpu_mem_usage_functional(self):
        # test that we can use `from_pretrained(..., low_cpu_mem_usage=True)` with normal and
        # sharded models

        mnames = [
            "hf-internal-testing/tiny-random-bert-sharded",
            "hf-internal-testing/tiny-random-bert",
        ]
        for mname in mnames:
            _ = BertModel.from_pretrained(mname, low_cpu_mem_usage=True)

    @require_usr_bin_time
2934
    @require_accelerate
2935
2936
2937
2938
2939
2940
2941
2942
2943
2944
2945
2946
2947
2948
2949
2950
2951
2952
2953
2954
2955
2956
2957
2958
2959
2960
2961
2962
2963
2964
2965
2966
2967
2968
2969
2970
2971
2972
    def test_from_pretrained_low_cpu_mem_usage_measured(self):
        # test that `from_pretrained(..., low_cpu_mem_usage=True)` uses less cpu memory than default

        mname = "bert-base-cased"

        preamble = "from transformers import AutoModel"
        one_liner_str = f'{preamble}; AutoModel.from_pretrained("{mname}", low_cpu_mem_usage=False)'
        max_rss_normal = self.python_one_liner_max_rss(one_liner_str)
        # print(f"{max_rss_normal=}")

        one_liner_str = f'{preamble};  AutoModel.from_pretrained("{mname}", low_cpu_mem_usage=True)'
        max_rss_low_mem = self.python_one_liner_max_rss(one_liner_str)
        # print(f"{max_rss_low_mem=}")

        diff_bytes = max_rss_normal - max_rss_low_mem
        diff_percent = diff_bytes / max_rss_low_mem
        # print(f"{diff_bytes=}, {diff_percent=}")
        # ideally we would compare that the diff is close to ~1x checkpoint size in bytes, but
        # measuring cpu memory on linux is very tricky and inconsistent, so instead let's check that
        # it's at least 15% less cpu memory consumed

        self.assertGreater(
            diff_percent,
            0.15,
            "should use less CPU memory for low_cpu_mem_usage=True, "
            f"but got max_rss_normal={max_rss_normal} and max_rss_low_mem={max_rss_low_mem}",
        )

        # if you want to compare things manually, let's first look at the size of the model in bytes
        # model = BertModel.from_pretrained(mname, low_cpu_mem_usage=False)
        # total_numel = sum(dict((p.data_ptr(), p.numel()) for p in model.parameters()).values())
        # total_bytes = total_numel * 4  # 420MB
        # Now the diff_bytes should be very close to total_bytes, but the reports are inconsistent.
        # The easiest way to test this is to switch the model and torch.load to do all the work on
        # gpu - that way one can measure exactly the total and peak memory used. Perhaps once we add
        # functionality to load models directly on gpu, this test can be rewritten to use torch's
        # cuda memory tracking and then we should be able to do a much more precise test.

2973
    @require_accelerate
2974
2975
2976
2977
2978
2979
2980
2981
2982
2983
2984
2985
2986
2987
2988
2989
    @require_torch_multi_gpu
    @slow
    def test_model_parallelism_gpt2(self):
        device_map = {"transformer.wte": 0, "transformer.wpe": 0, "lm_head": 0, "transformer.ln_f": 1}
        for i in range(12):
            device_map[f"transformer.h.{i}"] = 0 if i <= 5 else 1

        model = AutoModelForCausalLM.from_pretrained("gpt2", device_map=device_map)

        tokenizer = AutoTokenizer.from_pretrained("gpt2")
        inputs = tokenizer("Hello, my name is", return_tensors="pt")
        output = model.generate(inputs["input_ids"].to(0))

        text_output = tokenizer.decode(output[0].tolist())
        self.assertEqual(text_output, "Hello, my name is John. I'm a writer, and I'm a writer. I'm")

Sylvain Gugger's avatar
Sylvain Gugger committed
2990
2991
2992
2993
2994
2995
2996
2997
2998
2999
3000
3001
3002
3003
3004
3005
3006
3007
3008
3009
3010
3011
3012
3013
3014
3015
3016
3017
3018
3019
3020
3021
3022
3023
3024
3025
3026
3027
3028
3029
3030
3031
    @require_accelerate
    @require_torch_gpu
    def test_from_pretrained_disk_offload_task_model(self):
        model = AutoModel.from_pretrained("hf-internal-testing/tiny-random-gpt2")
        device_map = {
            "transformer.wte": 0,
            "transformer.wpe": 0,
            "transformer.h.0": "cpu",
            "transformer.h.1": "cpu",
            "transformer.h.2": "cpu",
            "transformer.h.3": "disk",
            "transformer.h.4": "disk",
            "transformer.ln_f": 0,
            "lm_head": 0,
        }
        with tempfile.TemporaryDirectory() as tmp_dir:
            inputs = torch.tensor([[1, 2, 3]]).to(0)

            model.save_pretrained(tmp_dir)
            new_model = AutoModelForCausalLM.from_pretrained(tmp_dir).to(0)
            outputs1 = new_model.to(0)(inputs)

            offload_folder = os.path.join(tmp_dir, "offload")
            new_model_with_offload = AutoModelForCausalLM.from_pretrained(
                tmp_dir, device_map=device_map, offload_folder=offload_folder
            )
            outputs2 = new_model_with_offload(inputs)

            self.assertTrue(torch.allclose(outputs1.logits.cpu(), outputs2.logits.cpu()))

            # With state dict temp offload
            offload_folder = os.path.join(tmp_dir, "offload")
            new_model_with_offload = AutoModelForCausalLM.from_pretrained(
                tmp_dir,
                device_map=device_map,
                offload_folder=offload_folder,
                offload_state_dict=True,
            )
            outputs2 = new_model_with_offload(inputs)

            self.assertTrue(torch.allclose(outputs1.logits.cpu(), outputs2.logits.cpu()))

3032
3033
3034
3035
    def test_cached_files_are_used_when_internet_is_down(self):
        # A mock response for an HTTP head request to emulate server down
        response_mock = mock.Mock()
        response_mock.status_code = 500
3036
        response_mock.headers = {}
3037
        response_mock.raise_for_status.side_effect = HTTPError
3038
        response_mock.json.return_value = {}
3039
3040
3041
3042
3043

        # Download this model to make sure it's in the cache.
        _ = BertModel.from_pretrained("hf-internal-testing/tiny-random-bert")

        # Under the mock environment we get a 500 error when trying to reach the model.
3044
        with mock.patch("requests.request", return_value=response_mock) as mock_head:
3045
3046
3047
3048
            _ = BertModel.from_pretrained("hf-internal-testing/tiny-random-bert")
            # This check we did call the fake head request
            mock_head.assert_called()

3049
3050
3051
3052
3053
3054
3055
3056
3057
3058
3059
3060
3061
3062
3063
3064
3065
3066
3067
3068
    def test_load_from_one_file(self):
        try:
            tmp_file = tempfile.mktemp()
            with open(tmp_file, "wb") as f:
                http_get(
                    "https://huggingface.co/hf-internal-testing/tiny-random-bert/resolve/main/pytorch_model.bin", f
                )

            config = BertConfig.from_pretrained("hf-internal-testing/tiny-random-bert")
            _ = BertModel.from_pretrained(tmp_file, config=config)
        finally:
            os.remove(tmp_file)

    def test_legacy_load_from_url(self):
        # This test is for deprecated behavior and can be removed in v5
        config = BertConfig.from_pretrained("hf-internal-testing/tiny-random-bert")
        _ = BertModel.from_pretrained(
            "https://huggingface.co/hf-internal-testing/tiny-random-bert/resolve/main/pytorch_model.bin", config=config
        )

3069
3070
3071
3072
3073
3074
3075
3076
3077
3078
3079
3080
3081
3082
3083
3084
3085
3086
3087
3088
3089
3090
3091
3092
3093
3094
3095
3096
3097
3098
3099
3100
3101
3102
3103
3104
3105
3106
3107
3108
3109
3110
3111
3112
3113
3114
3115
3116
3117
3118
3119
    @require_safetensors
    def test_safetensors_save_and_load(self):
        model = BertModel.from_pretrained("hf-internal-testing/tiny-random-bert")
        with tempfile.TemporaryDirectory() as tmp_dir:
            model.save_pretrained(tmp_dir, safe_serialization=True)
            # No pytorch_model.bin file, only a model.safetensors
            self.assertTrue(os.path.isfile(os.path.join(tmp_dir, SAFE_WEIGHTS_NAME)))
            self.assertFalse(os.path.isfile(os.path.join(tmp_dir, WEIGHTS_NAME)))

            new_model = BertModel.from_pretrained(tmp_dir)

            # Check models are equal
            for p1, p2 in zip(model.parameters(), new_model.parameters()):
                self.assertTrue(torch.allclose(p1, p2))

    @require_safetensors
    def test_safetensors_load_from_hub(self):
        safetensors_model = BertModel.from_pretrained("hf-internal-testing/tiny-random-bert-safetensors")
        pytorch_model = BertModel.from_pretrained("hf-internal-testing/tiny-random-bert")

        # Check models are equal
        for p1, p2 in zip(safetensors_model.parameters(), pytorch_model.parameters()):
            self.assertTrue(torch.allclose(p1, p2))

    @require_safetensors
    def test_safetensors_save_and_load_sharded(self):
        model = BertModel.from_pretrained("hf-internal-testing/tiny-random-bert")
        with tempfile.TemporaryDirectory() as tmp_dir:
            model.save_pretrained(tmp_dir, safe_serialization=True, max_shard_size="100kB")
            # No pytorch_model.bin index file, only a model.safetensors index
            self.assertFalse(os.path.isfile(os.path.join(tmp_dir, WEIGHTS_INDEX_NAME)))
            self.assertTrue(os.path.isfile(os.path.join(tmp_dir, SAFE_WEIGHTS_INDEX_NAME)))
            # No regular weights file
            self.assertFalse(os.path.isfile(os.path.join(tmp_dir, WEIGHTS_NAME)))
            self.assertFalse(os.path.isfile(os.path.join(tmp_dir, SAFE_WEIGHTS_NAME)))

            new_model = BertModel.from_pretrained(tmp_dir)

            # Check models are equal
            for p1, p2 in zip(model.parameters(), new_model.parameters()):
                self.assertTrue(torch.allclose(p1, p2))

    @require_safetensors
    def test_safetensors_load_from_hub_sharded(self):
        safetensors_model = BertModel.from_pretrained("hf-internal-testing/tiny-random-bert-sharded-safetensors")
        pytorch_model = BertModel.from_pretrained("hf-internal-testing/tiny-random-bert-sharded")

        # Check models are equal
        for p1, p2 in zip(safetensors_model.parameters(), pytorch_model.parameters()):
            self.assertTrue(torch.allclose(p1, p2))

Sylvain Gugger's avatar
Sylvain Gugger committed
3120
3121
3122
3123
3124
3125
3126
3127
3128
3129
3130
3131
3132
3133
3134
3135
3136
3137
3138
3139
3140
3141
    def test_base_model_to_head_model_load(self):
        base_model = BaseModel(PretrainedConfig())
        with tempfile.TemporaryDirectory() as tmp_dir:
            base_model.save_pretrained(tmp_dir)

            # Can load a base model in a model with head
            model = ModelWithHead.from_pretrained(tmp_dir)
            for p1, p2 in zip(model.base.parameters(), base_model.parameters()):
                self.assertTrue(torch.allclose(p1, p2))

            # It doesn't work if the state dict has a mix of keys of the head and base without prefix though.
            base_state_dict = base_model.state_dict()
            head_state_dict = model.state_dict()
            base_state_dict["linear2.weight"] = head_state_dict["linear2.weight"]
            base_state_dict["linear2.bias"] = head_state_dict["linear2.bias"]
            torch.save(base_state_dict, os.path.join(tmp_dir, WEIGHTS_NAME))

            with self.assertRaisesRegex(
                ValueError, "The state dictionary of the model you are trying to load is corrupted."
            ):
                _ = ModelWithHead.from_pretrained(tmp_dir)

Sylvain Gugger's avatar
Sylvain Gugger committed
3142
3143
3144
3145
3146
3147

@require_torch
@is_staging_test
class ModelPushToHubTester(unittest.TestCase):
    @classmethod
    def setUpClass(cls):
3148
3149
3150
        cls._token = TOKEN
        set_access_token(TOKEN)
        HfFolder.save_token(TOKEN)
Sylvain Gugger's avatar
Sylvain Gugger committed
3151
3152
3153
3154

    @classmethod
    def tearDownClass(cls):
        try:
3155
            delete_repo(token=cls._token, repo_id="test-model")
Sylvain Gugger's avatar
Sylvain Gugger committed
3156
3157
3158
3159
        except HTTPError:
            pass

        try:
3160
            delete_repo(token=cls._token, repo_id="valid_org/test-model-org")
Sylvain Gugger's avatar
Sylvain Gugger committed
3161
3162
3163
        except HTTPError:
            pass

3164
        try:
3165
            delete_repo(token=cls._token, repo_id="test-dynamic-model")
3166
3167
3168
        except HTTPError:
            pass

Sylvain Gugger's avatar
Sylvain Gugger committed
3169
3170
3171
3172
3173
    def test_push_to_hub(self):
        config = BertConfig(
            vocab_size=99, hidden_size=32, num_hidden_layers=5, num_attention_heads=4, intermediate_size=37
        )
        model = BertModel(config)
3174
3175
3176
3177
3178
3179
3180
3181
3182
3183
        model.push_to_hub("test-model", use_auth_token=self._token)

        new_model = BertModel.from_pretrained(f"{USER}/test-model")
        for p1, p2 in zip(model.parameters(), new_model.parameters()):
            self.assertTrue(torch.equal(p1, p2))

        # Reset repo
        delete_repo(token=self._token, repo_id="test-model")

        # Push to hub via save_pretrained
Sylvain Gugger's avatar
Sylvain Gugger committed
3184
        with tempfile.TemporaryDirectory() as tmp_dir:
3185
            model.save_pretrained(tmp_dir, repo_id="test-model", push_to_hub=True, use_auth_token=self._token)
Sylvain Gugger's avatar
Sylvain Gugger committed
3186

3187
3188
3189
        new_model = BertModel.from_pretrained(f"{USER}/test-model")
        for p1, p2 in zip(model.parameters(), new_model.parameters()):
            self.assertTrue(torch.equal(p1, p2))
Sylvain Gugger's avatar
Sylvain Gugger committed
3190
3191
3192
3193
3194
3195

    def test_push_to_hub_in_organization(self):
        config = BertConfig(
            vocab_size=99, hidden_size=32, num_hidden_layers=5, num_attention_heads=4, intermediate_size=37
        )
        model = BertModel(config)
3196
3197
3198
3199
3200
3201
3202
3203
3204
3205
        model.push_to_hub("valid_org/test-model-org", use_auth_token=self._token)

        new_model = BertModel.from_pretrained("valid_org/test-model-org")
        for p1, p2 in zip(model.parameters(), new_model.parameters()):
            self.assertTrue(torch.equal(p1, p2))

        # Reset repo
        delete_repo(token=self._token, repo_id="valid_org/test-model-org")

        # Push to hub via save_pretrained
Sylvain Gugger's avatar
Sylvain Gugger committed
3206
3207
        with tempfile.TemporaryDirectory() as tmp_dir:
            model.save_pretrained(
3208
                tmp_dir, push_to_hub=True, use_auth_token=self._token, repo_id="valid_org/test-model-org"
Sylvain Gugger's avatar
Sylvain Gugger committed
3209
3210
            )

3211
3212
3213
        new_model = BertModel.from_pretrained("valid_org/test-model-org")
        for p1, p2 in zip(model.parameters(), new_model.parameters()):
            self.assertTrue(torch.equal(p1, p2))
3214
3215

    def test_push_to_hub_dynamic_model(self):
3216
3217
3218
3219
3220
        CustomConfig.register_for_auto_class()
        CustomModel.register_for_auto_class()

        config = CustomConfig(hidden_size=32)
        model = CustomModel(config)
3221

3222
3223
3224
3225
3226
3227
        model.push_to_hub("test-dynamic-model", use_auth_token=self._token)
        # checks
        self.assertDictEqual(
            config.auto_map,
            {"AutoConfig": "custom_configuration.CustomConfig", "AutoModel": "custom_modeling.CustomModel"},
        )
3228
3229

        new_model = AutoModel.from_pretrained(f"{USER}/test-dynamic-model", trust_remote_code=True)
3230
3231
        # Can't make an isinstance check because the new_model is from the CustomModel class of a dynamic module
        self.assertEqual(new_model.__class__.__name__, "CustomModel")
3232
3233
        for p1, p2 in zip(model.parameters(), new_model.parameters()):
            self.assertTrue(torch.equal(p1, p2))
3234

3235
        config = AutoConfig.from_pretrained(f"{USER}/test-dynamic-model", trust_remote_code=True)
3236
        new_model = AutoModel.from_config(config, trust_remote_code=True)
3237
        self.assertEqual(new_model.__class__.__name__, "CustomModel")