test_modeling_common.py 39.2 KB
Newer Older
thomwolf's avatar
thomwolf committed
1
2
3
4
5
6
7
8
9
10
11
12
13
14
# coding=utf-8
# Copyright 2019 HuggingFace Inc.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
#     http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
Aymeric Augustin's avatar
Aymeric Augustin committed
15

16
import copy
Aymeric Augustin's avatar
Aymeric Augustin committed
17
import logging
18
import os.path
Aymeric Augustin's avatar
Aymeric Augustin committed
19
import random
20
import tempfile
thomwolf's avatar
thomwolf committed
21
import unittest
22
from typing import List
thomwolf's avatar
thomwolf committed
23

24
from transformers import is_torch_available
25

26
from .utils import require_multigpu, require_torch, slow, torch_device
27

Aymeric Augustin's avatar
Aymeric Augustin committed
28

29
if is_torch_available():
thomwolf's avatar
thomwolf committed
30
    import torch
31
    import numpy as np
thomwolf's avatar
thomwolf committed
32

33
34
35
36
37
38
    from transformers import (
        AdaptiveEmbedding,
        PretrainedConfig,
        PreTrainedModel,
        BertModel,
        BertConfig,
39
        BERT_PRETRAINED_MODEL_ARCHIVE_LIST,
40
        top_k_top_p_filtering,
41
    )
thomwolf's avatar
thomwolf committed
42

43

44
45
46
def _config_zero_init(config):
    configs_no_init = copy.deepcopy(config)
    for key in configs_no_init.__dict__.keys():
47
        if "_range" in key or "_std" in key or "initializer_factor" in key:
Lysandre Debut's avatar
Lysandre Debut committed
48
            setattr(configs_no_init, key, 1e-10)
49
50
    return configs_no_init

thomwolf's avatar
thomwolf committed
51

52
53
54
55
56
@require_torch
class ModelTesterMixin:

    model_tester = None
    all_model_classes = ()
57
    all_generative_model_classes = ()
Patrick von Platen's avatar
Patrick von Platen committed
58
59
60
61
    test_torchscript = True
    test_pruning = True
    test_resize_embeddings = True
    test_head_masking = True
62
    test_missing_keys = True
63
64
    is_encoder_decoder = False

Patrick von Platen's avatar
Patrick von Platen committed
65
    def test_save_load(self):
66
67
68
69
70
71
72
73
        config, inputs_dict = self.model_tester.prepare_config_and_inputs_for_common()

        for model_class in self.all_model_classes:
            model = model_class(config)
            model.to(torch_device)
            model.eval()
            with torch.no_grad():
                outputs = model(**inputs_dict)
74
            out_2 = outputs[0].cpu().numpy()
75
            out_2[np.isnan(out_2)] = 0
76

77
            with tempfile.TemporaryDirectory() as tmpdirname:
78
79
                model.save_pretrained(tmpdirname)
                model = model_class.from_pretrained(tmpdirname)
80
                model.to(torch_device)
81
                with torch.no_grad():
82
                    after_outputs = model(**inputs_dict)
thomwolf's avatar
thomwolf committed
83

84
85
86
                # Make sure we don't have nans
                out_1 = after_outputs[0].cpu().numpy()
                out_1[np.isnan(out_1)] = 0
thomwolf's avatar
thomwolf committed
87
88
                max_diff = np.amax(np.abs(out_1 - out_2))
                self.assertLessEqual(max_diff, 1e-5)
89

Patrick von Platen's avatar
Patrick von Platen committed
90
    def test_initialization(self):
91
92
93
94
95
96
97
98
        config, inputs_dict = self.model_tester.prepare_config_and_inputs_for_common()

        configs_no_init = _config_zero_init(config)
        for model_class in self.all_model_classes:
            model = model_class(config=configs_no_init)
            for name, param in model.named_parameters():
                if param.requires_grad:
                    self.assertIn(
Lysandre Debut's avatar
Lysandre Debut committed
99
                        ((param.data.mean() * 1e9).round() / 1e9).item(),
100
101
102
                        [0.0, 1.0],
                        msg="Parameter {} of model {} seems not properly initialized".format(name, model_class),
                    )
thomwolf's avatar
thomwolf committed
103

Patrick von Platen's avatar
Patrick von Platen committed
104
    def test_determinism(self):
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
        config, inputs_dict = self.model_tester.prepare_config_and_inputs_for_common()

        for model_class in self.all_model_classes:
            model = model_class(config)
            model.to(torch_device)
            model.eval()
            with torch.no_grad():
                first = model(**inputs_dict)[0]
                second = model(**inputs_dict)[0]
            out_1 = first.cpu().numpy()
            out_2 = second.cpu().numpy()
            out_1 = out_1[~np.isnan(out_1)]
            out_2 = out_2[~np.isnan(out_2)]
            max_diff = np.amax(np.abs(out_1 - out_2))
            self.assertLessEqual(max_diff, 1e-5)

Patrick von Platen's avatar
Patrick von Platen committed
121
    def test_attention_outputs(self):
122
        config, inputs_dict = self.model_tester.prepare_config_and_inputs_for_common()
sshleifer's avatar
sshleifer committed
123
        seq_len = getattr(self.model_tester, "seq_length", None)
sshleifer's avatar
sshleifer committed
124
125
        decoder_seq_length = getattr(self.model_tester, "decoder_seq_length", seq_len)
        encoder_seq_length = getattr(self.model_tester, "encoder_seq_length", seq_len)
126
127
        decoder_key_length = getattr(self.model_tester, "key_length", decoder_seq_length)
        encoder_key_length = getattr(self.model_tester, "key_length", encoder_seq_length)
Patrick von Platen's avatar
Patrick von Platen committed
128
129
130
        chunk_length = getattr(self.model_tester, "chunk_length", None)
        if chunk_length is not None and hasattr(self.model_tester, "num_hashes"):
            encoder_seq_length = encoder_seq_length * self.model_tester.num_hashes
131
132

        for model_class in self.all_model_classes:
133
            inputs_dict["output_attentions"] = True
134
135
136
137
138
139
140
            config.output_hidden_states = False
            model = model_class(config)
            model.to(torch_device)
            model.eval()
            with torch.no_grad():
                outputs = model(**inputs_dict)
            attentions = outputs[-1]
141
142
143
144
145
146
147
148
149
150
151
152
            self.assertEqual(model.config.output_hidden_states, False)
            self.assertEqual(len(attentions), self.model_tester.num_hidden_layers)

            # check that output_attentions also work using config
            del inputs_dict["output_attentions"]
            config.output_attentions = True
            model = model_class(config)
            model.to(torch_device)
            model.eval()
            with torch.no_grad():
                outputs = model(**inputs_dict)
            attentions = outputs[-1]
153
154
            self.assertEqual(model.config.output_hidden_states, False)
            self.assertEqual(len(attentions), self.model_tester.num_hidden_layers)
Patrick von Platen's avatar
Patrick von Platen committed
155
156
157
158
159
160
161
162
163
164
165

            if chunk_length is not None:
                self.assertListEqual(
                    list(attentions[0].shape[-4:]),
                    [self.model_tester.num_attention_heads, encoder_seq_length, chunk_length, encoder_key_length],
                )
            else:
                self.assertListEqual(
                    list(attentions[0].shape[-3:]),
                    [self.model_tester.num_attention_heads, encoder_seq_length, encoder_key_length],
                )
166
            out_len = len(outputs)
thomwolf's avatar
thomwolf committed
167

168
            if self.is_encoder_decoder:
169
                correct_outlen = 4
Sam Shleifer's avatar
Sam Shleifer committed
170
                decoder_attention_idx = 1
171

172
                if "lm_labels" in inputs_dict:  # loss will come first
Sam Shleifer's avatar
Sam Shleifer committed
173
174
175
176
177
178
                    correct_outlen += 1  # compute loss
                    decoder_attention_idx += 1
                self.assertEqual(out_len, correct_outlen)

                decoder_attentions = outputs[decoder_attention_idx]
                self.assertIsInstance(decoder_attentions, (list, tuple))
179
                self.assertEqual(len(decoder_attentions), self.model_tester.num_hidden_layers)
thomwolf's avatar
thomwolf committed
180
                self.assertListEqual(
181
182
                    list(decoder_attentions[0].shape[-3:]),
                    [self.model_tester.num_attention_heads, decoder_seq_length, decoder_key_length],
183
                )
thomwolf's avatar
thomwolf committed
184

185
            # Check attention is always last and order is fine
186
            inputs_dict["output_attentions"] = True
thomwolf's avatar
thomwolf committed
187
            config.output_hidden_states = True
188
189
190
191
192
193
194
195
196
197
            model = model_class(config)
            model.to(torch_device)
            model.eval()
            with torch.no_grad():
                outputs = model(**inputs_dict)
            self.assertEqual(out_len + (2 if self.is_encoder_decoder else 1), len(outputs))
            self.assertEqual(model.config.output_hidden_states, True)

            self_attentions = outputs[-1]
            self.assertEqual(len(self_attentions), self.model_tester.num_hidden_layers)
Patrick von Platen's avatar
Patrick von Platen committed
198
199
200
201
202
203
204
205
206
207
            if chunk_length is not None:
                self.assertListEqual(
                    list(self_attentions[0].shape[-4:]),
                    [self.model_tester.num_attention_heads, encoder_seq_length, chunk_length, encoder_key_length],
                )
            else:
                self.assertListEqual(
                    list(self_attentions[0].shape[-3:]),
                    [self.model_tester.num_attention_heads, encoder_seq_length, encoder_key_length],
                )
thomwolf's avatar
thomwolf committed
208

Patrick von Platen's avatar
Patrick von Platen committed
209
    def test_torchscript(self):
210
        config, inputs_dict = self.model_tester.prepare_config_and_inputs_for_common()
thomwolf's avatar
thomwolf committed
211

212
        self._create_and_check_torchscript(config, inputs_dict)
thomwolf's avatar
thomwolf committed
213

Patrick von Platen's avatar
Patrick von Platen committed
214
    def test_torchscript_output_attentions(self):
215
216
217
        config, inputs_dict = self.model_tester.prepare_config_and_inputs_for_common()
        config.output_attentions = True
        self._create_and_check_torchscript(config, inputs_dict)
thomwolf's avatar
thomwolf committed
218

Patrick von Platen's avatar
Patrick von Platen committed
219
    def test_torchscript_output_hidden_state(self):
220
        config, inputs_dict = self.model_tester.prepare_config_and_inputs_for_common()
221

222
223
        config.output_hidden_states = True
        self._create_and_check_torchscript(config, inputs_dict)
thomwolf's avatar
thomwolf committed
224

225
    def _create_and_check_torchscript(self, config, inputs_dict):
Patrick von Platen's avatar
Patrick von Platen committed
226
        if not self.test_torchscript:
227
            return
228

229
230
231
232
233
234
235
        configs_no_init = _config_zero_init(config)  # To be sure we have no Nan
        configs_no_init.torchscript = True
        for model_class in self.all_model_classes:
            model = model_class(config=configs_no_init)
            model.to(torch_device)
            model.eval()
            inputs = inputs_dict["input_ids"]  # Let's keep only input_ids
thomwolf's avatar
thomwolf committed
236

237
238
239
240
            try:
                traced_gpt2 = torch.jit.trace(model, inputs)
            except RuntimeError:
                self.fail("Couldn't trace module.")
thomwolf's avatar
thomwolf committed
241

242
            with tempfile.TemporaryDirectory() as tmp_dir_name:
243
                pt_file_name = os.path.join(tmp_dir_name, "traced_model.pt")
thomwolf's avatar
thomwolf committed
244

245
246
247
248
                try:
                    torch.jit.save(traced_gpt2, pt_file_name)
                except Exception:
                    self.fail("Couldn't save module.")
thomwolf's avatar
thomwolf committed
249

250
251
252
253
                try:
                    loaded_model = torch.jit.load(pt_file_name)
                except Exception:
                    self.fail("Couldn't load module.")
LysandreJik's avatar
LysandreJik committed
254

255
256
            model.to(torch_device)
            model.eval()
thomwolf's avatar
thomwolf committed
257

258
259
            loaded_model.to(torch_device)
            loaded_model.eval()
thomwolf's avatar
thomwolf committed
260

261
262
263
264
            model_state_dict = model.state_dict()
            loaded_model_state_dict = loaded_model.state_dict()

            self.assertEqual(set(model_state_dict.keys()), set(loaded_model_state_dict.keys()))
thomwolf's avatar
thomwolf committed
265

266
            models_equal = True
267
268
            for layer_name, p1 in model_state_dict.items():
                p2 = loaded_model_state_dict[layer_name]
269
270
                if p1.data.ne(p2.data).sum() > 0:
                    models_equal = False
thomwolf's avatar
thomwolf committed
271

272
            self.assertTrue(models_equal)
thomwolf's avatar
thomwolf committed
273

Patrick von Platen's avatar
Patrick von Platen committed
274
275
    def test_headmasking(self):
        if not self.test_head_masking:
276
            return
277

278
279
280
        global_rng.seed(42)
        config, inputs_dict = self.model_tester.prepare_config_and_inputs_for_common()
        global_rng.seed()
LysandreJik's avatar
LysandreJik committed
281

282
        inputs_dict["output_attentions"] = True
283
284
285
286
287
288
        config.output_hidden_states = True
        configs_no_init = _config_zero_init(config)  # To be sure we have no Nan
        for model_class in self.all_model_classes:
            model = model_class(config=configs_no_init)
            model.to(torch_device)
            model.eval()
LysandreJik's avatar
LysandreJik committed
289

290
291
292
            # Prepare head_mask
            # Set require_grad after having prepared the tensor to avoid error (leaf variable has been moved into the graph interior)
            head_mask = torch.ones(
293
                self.model_tester.num_hidden_layers, self.model_tester.num_attention_heads, device=torch_device,
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
            )
            head_mask[0, 0] = 0
            head_mask[-1, :-1] = 0
            head_mask.requires_grad_(requires_grad=True)
            inputs = inputs_dict.copy()
            inputs["head_mask"] = head_mask

            outputs = model(**inputs)

            # Test that we can get a gradient back for importance score computation
            output = sum(t.sum() for t in outputs[0])
            output = output.sum()
            output.backward()
            multihead_outputs = head_mask.grad

            attentions = outputs[-1]

            # Remove Nan
            for t in attentions:
                self.assertLess(
                    torch.sum(torch.isnan(t)), t.numel() / 4
                )  # Check we don't have more than 25% nans (arbitrary)
            attentions = [
                t.masked_fill(torch.isnan(t), 0.0) for t in attentions
            ]  # remove them (the test is less complete)

            self.assertIsNotNone(multihead_outputs)
            self.assertEqual(len(multihead_outputs), self.model_tester.num_hidden_layers)
            self.assertAlmostEqual(attentions[0][..., 0, :, :].flatten().sum().item(), 0.0)
            self.assertNotEqual(attentions[0][..., -1, :, :].flatten().sum().item(), 0.0)
            self.assertNotEqual(attentions[1][..., 0, :, :].flatten().sum().item(), 0.0)
            self.assertAlmostEqual(attentions[-1][..., -2, :, :].flatten().sum().item(), 0.0)
            self.assertNotEqual(attentions[-1][..., -1, :, :].flatten().sum().item(), 0.0)

Patrick von Platen's avatar
Patrick von Platen committed
328
329
    def test_head_pruning(self):
        if not self.test_pruning:
330
331
332
            return

        for model_class in self.all_model_classes:
333
            (config, inputs_dict,) = self.model_tester.prepare_config_and_inputs_for_common()
334

335
336
            if "head_mask" in inputs_dict:
                del inputs_dict["head_mask"]
337

338
            inputs_dict["output_attentions"] = True
339
340
341
342
            config.output_hidden_states = False
            model = model_class(config=config)
            model.to(torch_device)
            model.eval()
343
344
345
346
            heads_to_prune = {
                0: list(range(1, self.model_tester.num_attention_heads)),
                -1: [0],
            }
347
348
349
            model.prune_heads(heads_to_prune)
            with torch.no_grad():
                outputs = model(**inputs_dict)
350

351
            attentions = outputs[-1]
352

353
354
355
            self.assertEqual(attentions[0].shape[-3], 1)
            self.assertEqual(attentions[1].shape[-3], self.model_tester.num_attention_heads)
            self.assertEqual(attentions[-1].shape[-3], self.model_tester.num_attention_heads - 1)
LysandreJik's avatar
LysandreJik committed
356

Patrick von Platen's avatar
Patrick von Platen committed
357
358
    def test_head_pruning_save_load_from_pretrained(self):
        if not self.test_pruning:
359
            return
LysandreJik's avatar
LysandreJik committed
360

361
        for model_class in self.all_model_classes:
362
            (config, inputs_dict,) = self.model_tester.prepare_config_and_inputs_for_common()
363
364
365

            if "head_mask" in inputs_dict:
                del inputs_dict["head_mask"]
366

367
            inputs_dict["output_attentions"] = True
368
369
370
371
            config.output_hidden_states = False
            model = model_class(config=config)
            model.to(torch_device)
            model.eval()
372
373
374
375
            heads_to_prune = {
                0: list(range(1, self.model_tester.num_attention_heads)),
                -1: [0],
            }
376
            model.prune_heads(heads_to_prune)
377

378
            with tempfile.TemporaryDirectory() as temp_dir_name:
379
380
                model.save_pretrained(temp_dir_name)
                model = model_class.from_pretrained(temp_dir_name)
381
                model.to(torch_device)
382

383
384
385
386
387
388
            with torch.no_grad():
                outputs = model(**inputs_dict)
            attentions = outputs[-1]
            self.assertEqual(attentions[0].shape[-3], 1)
            self.assertEqual(attentions[1].shape[-3], self.model_tester.num_attention_heads)
            self.assertEqual(attentions[-1].shape[-3], self.model_tester.num_attention_heads - 1)
389

Patrick von Platen's avatar
Patrick von Platen committed
390
391
    def test_head_pruning_save_load_from_config_init(self):
        if not self.test_pruning:
392
            return
393

394
        for model_class in self.all_model_classes:
395
            (config, inputs_dict,) = self.model_tester.prepare_config_and_inputs_for_common()
396

397
398
            if "head_mask" in inputs_dict:
                del inputs_dict["head_mask"]
399

400
            inputs_dict["output_attentions"] = True
401
            config.output_hidden_states = False
402

403
404
405
406
            heads_to_prune = {
                0: list(range(1, self.model_tester.num_attention_heads)),
                -1: [0],
            }
407
            config.pruned_heads = heads_to_prune
408

409
410
411
            model = model_class(config=config)
            model.to(torch_device)
            model.eval()
412

413
414
415
            with torch.no_grad():
                outputs = model(**inputs_dict)
            attentions = outputs[-1]
416

417
418
419
            self.assertEqual(attentions[0].shape[-3], 1)
            self.assertEqual(attentions[1].shape[-3], self.model_tester.num_attention_heads)
            self.assertEqual(attentions[-1].shape[-3], self.model_tester.num_attention_heads - 1)
420

Patrick von Platen's avatar
Patrick von Platen committed
421
422
    def test_head_pruning_integration(self):
        if not self.test_pruning:
423
            return
424

425
        for model_class in self.all_model_classes:
426
            (config, inputs_dict,) = self.model_tester.prepare_config_and_inputs_for_common()
427

428
429
            if "head_mask" in inputs_dict:
                del inputs_dict["head_mask"]
430

431
            inputs_dict["output_attentions"] = True
432
            config.output_hidden_states = False
433

434
435
            heads_to_prune = {0: [0], 1: [1, 2]}
            config.pruned_heads = heads_to_prune
436

437
438
439
            model = model_class(config=config)
            model.to(torch_device)
            model.eval()
440

441
442
443
            with torch.no_grad():
                outputs = model(**inputs_dict)
            attentions = outputs[-1]
444

445
446
447
448
            self.assertEqual(attentions[0].shape[-3], self.model_tester.num_attention_heads - 1)
            self.assertEqual(attentions[1].shape[-3], self.model_tester.num_attention_heads - 2)
            self.assertEqual(attentions[2].shape[-3], self.model_tester.num_attention_heads)
            self.assertEqual(attentions[3].shape[-3], self.model_tester.num_attention_heads)
thomwolf's avatar
thomwolf committed
449

450
            with tempfile.TemporaryDirectory() as temp_dir_name:
451
452
                model.save_pretrained(temp_dir_name)
                model = model_class.from_pretrained(temp_dir_name)
453
                model.to(torch_device)
thomwolf's avatar
thomwolf committed
454

455
456
457
            with torch.no_grad():
                outputs = model(**inputs_dict)
            attentions = outputs[-1]
LysandreJik's avatar
LysandreJik committed
458

459
460
461
462
            self.assertEqual(attentions[0].shape[-3], self.model_tester.num_attention_heads - 1)
            self.assertEqual(attentions[1].shape[-3], self.model_tester.num_attention_heads - 2)
            self.assertEqual(attentions[2].shape[-3], self.model_tester.num_attention_heads)
            self.assertEqual(attentions[3].shape[-3], self.model_tester.num_attention_heads)
thomwolf's avatar
thomwolf committed
463

464
465
            heads_to_prune = {0: [0], 2: [1, 2]}
            model.prune_heads(heads_to_prune)
466

467
468
469
            with torch.no_grad():
                outputs = model(**inputs_dict)
            attentions = outputs[-1]
470

471
472
473
474
            self.assertEqual(attentions[0].shape[-3], self.model_tester.num_attention_heads - 1)
            self.assertEqual(attentions[1].shape[-3], self.model_tester.num_attention_heads - 2)
            self.assertEqual(attentions[2].shape[-3], self.model_tester.num_attention_heads - 2)
            self.assertEqual(attentions[3].shape[-3], self.model_tester.num_attention_heads)
475

476
            self.assertDictEqual(model.config.pruned_heads, {0: [0], 1: [1, 2], 2: [1, 2]})
thomwolf's avatar
thomwolf committed
477

Patrick von Platen's avatar
Patrick von Platen committed
478
    def test_hidden_states_output(self):
479
        config, inputs_dict = self.model_tester.prepare_config_and_inputs_for_common()
thomwolf's avatar
thomwolf committed
480

481
482
483
        for model_class in self.all_model_classes:
            config.output_hidden_states = True
            model = model_class(config)
484
            model.to(torch_device)
thomwolf's avatar
thomwolf committed
485
            model.eval()
thomwolf's avatar
thomwolf committed
486
            with torch.no_grad():
487
488
489
490
                outputs = model(**inputs_dict)
            hidden_states = outputs[-1]
            self.assertEqual(model.config.output_hidden_states, True)
            self.assertEqual(len(hidden_states), self.model_tester.num_hidden_layers + 1)
Patrick von Platen's avatar
Patrick von Platen committed
491
492
493
494
495
496
497
498

            if hasattr(self.model_tester, "encoder_seq_length"):
                seq_length = self.model_tester.encoder_seq_length
                if hasattr(self.model_tester, "chunk_length") and self.model_tester.chunk_length > 1:
                    seq_length = seq_length * self.model_tester.chunk_length
            else:
                seq_length = self.model_tester.seq_length

499
            self.assertListEqual(
Patrick von Platen's avatar
Patrick von Platen committed
500
                list(hidden_states[0].shape[-2:]), [seq_length, self.model_tester.hidden_size],
501
            )
thomwolf's avatar
thomwolf committed
502

Patrick von Platen's avatar
Patrick von Platen committed
503
    def test_resize_tokens_embeddings(self):
504
        (original_config, inputs_dict,) = self.model_tester.prepare_config_and_inputs_for_common()
Patrick von Platen's avatar
Patrick von Platen committed
505
        if not self.test_resize_embeddings:
506
507
508
509
510
            return

        for model_class in self.all_model_classes:
            config = copy.deepcopy(original_config)
            model = model_class(config)
511
            model.to(torch_device)
512

Patrick von Platen's avatar
Patrick von Platen committed
513
514
515
            if self.model_tester.is_training is False:
                model.eval()

516
517
518
519
520
521
522
523
524
525
            model_vocab_size = config.vocab_size
            # Retrieve the embeddings and clone theme
            model_embed = model.resize_token_embeddings(model_vocab_size)
            cloned_embeddings = model_embed.weight.clone()

            # Check that resizing the token embeddings with a larger vocab size increases the model's vocab size
            model_embed = model.resize_token_embeddings(model_vocab_size + 10)
            self.assertEqual(model.config.vocab_size, model_vocab_size + 10)
            # Check that it actually resizes the embeddings matrix
            self.assertEqual(model_embed.weight.shape[0], cloned_embeddings.shape[0] + 10)
526
527
            # Check that the model can still do a forward pass successfully (every parameter should be resized)
            model(**inputs_dict)
528
529
530
531
532
533
534

            # Check that resizing the token embeddings with a smaller vocab size decreases the model's vocab size
            model_embed = model.resize_token_embeddings(model_vocab_size - 15)
            self.assertEqual(model.config.vocab_size, model_vocab_size - 15)
            # Check that it actually resizes the embeddings matrix
            self.assertEqual(model_embed.weight.shape[0], cloned_embeddings.shape[0] - 15)

535
536
537
538
539
            # Check that the model can still do a forward pass successfully (every parameter should be resized)
            # Input ids should be clamped to the maximum size of the vocabulary
            inputs_dict["input_ids"].clamp_(max=model_vocab_size - 15 - 1)
            model(**inputs_dict)

540
541
542
543
544
545
546
547
            # Check that adding and removing tokens has not modified the first part of the embedding matrix.
            models_equal = True
            for p1, p2 in zip(cloned_embeddings, model_embed.weight):
                if p1.data.ne(p2.data).sum() > 0:
                    models_equal = False

            self.assertTrue(models_equal)

Patrick von Platen's avatar
Patrick von Platen committed
548
    def test_model_common_attributes(self):
549
550
551
552
553
554
555
556
557
        config, inputs_dict = self.model_tester.prepare_config_and_inputs_for_common()

        for model_class in self.all_model_classes:
            model = model_class(config)
            self.assertIsInstance(model.get_input_embeddings(), (torch.nn.Embedding, AdaptiveEmbedding))
            model.set_input_embeddings(torch.nn.Embedding(10, 10))
            x = model.get_output_embeddings()
            self.assertTrue(x is None or isinstance(x, torch.nn.Linear))

558
    def test_correct_missing_keys(self):
559
560
        if not self.test_missing_keys:
            return
561
562
563
564
565
566
567
568
569
570
571
572
573
574
        config, _ = self.model_tester.prepare_config_and_inputs_for_common()

        for model_class in self.all_model_classes:
            model = model_class(config)
            base_model_prefix = model.base_model_prefix

            if hasattr(model, base_model_prefix):
                with tempfile.TemporaryDirectory() as temp_dir_name:
                    model.base_model.save_pretrained(temp_dir_name)
                    model, loading_info = model_class.from_pretrained(temp_dir_name, output_loading_info=True)

                    with self.subTest(msg="Missing keys for {}".format(model.__class__.__name__)):
                        self.assertGreater(len(loading_info["missing_keys"]), 0)

575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
    def test_tie_model_weights(self):
        if not self.test_torchscript:
            return

        config, inputs_dict = self.model_tester.prepare_config_and_inputs_for_common()

        def check_same_values(layer_1, layer_2):
            equal = True
            for p1, p2 in zip(layer_1.weight, layer_2.weight):
                if p1.data.ne(p2.data).sum() > 0:
                    equal = False
            return equal

        for model_class in self.all_model_classes:
            config.torchscript = True
            model_not_tied = model_class(config)
            if model_not_tied.get_output_embeddings() is None:
                continue

            params_not_tied = list(model_not_tied.parameters())

            config_tied = copy.deepcopy(config)
            config_tied.torchscript = False
            model_tied = model_class(config_tied)
            params_tied = list(model_tied.parameters())

            # Check that the embedding layer and decoding layer are the same in size and in value
            self.assertGreater(len(params_not_tied), len(params_tied))
            # self.assertTrue(check_same_values(embeddings, decoding))

            # # Check that after modification, they remain the same.
            # embeddings.weight.data.div_(2)
            # # Check that the embedding layer and decoding layer are the same in size and in value
            # self.assertTrue(embeddings.weight.shape, decoding.weight.shape)
            # self.assertTrue(check_same_values(embeddings, decoding))

            # # Check that after modification, they remain the same.
            # decoding.weight.data.div_(4)
            # # Check that the embedding layer and decoding layer are the same in size and in value
            # self.assertTrue(embeddings.weight.shape, decoding.weight.shape)
            # self.assertTrue(check_same_values(embeddings, decoding))

            # Check that after resize they remain tied.
            model_tied.resize_token_embeddings(config.vocab_size + 10)
            params_tied_2 = list(model_tied.parameters())
            self.assertGreater(len(params_not_tied), len(params_tied))
            self.assertEqual(len(params_tied_2), len(params_tied))

            # decoding.weight.data.mul_(20)
            # # Check that the embedding layer and decoding layer are the same in size and in value
            # self.assertTrue(model.transformer.wte.weight.shape, model.lm_head.weight.shape)
            # self.assertTrue(check_same_values(model.transformer.wte, model.lm_head))

Patrick von Platen's avatar
Patrick von Platen committed
628
    def test_inputs_embeds(self):
Sam Shleifer's avatar
Sam Shleifer committed
629

630
631
632
633
634
        config, inputs_dict = self.model_tester.prepare_config_and_inputs_for_common()
        if not self.is_encoder_decoder:
            input_ids = inputs_dict["input_ids"]
            del inputs_dict["input_ids"]
        else:
635
            encoder_input_ids = inputs_dict["input_ids"]
Sam Shleifer's avatar
Sam Shleifer committed
636
            decoder_input_ids = inputs_dict.get("decoder_input_ids", encoder_input_ids)
637
            del inputs_dict["input_ids"]
Sam Shleifer's avatar
Sam Shleifer committed
638
            inputs_dict.pop("decoder_input_ids", None)
639
640
641

        for model_class in self.all_model_classes:
            model = model_class(config)
642
            model.to(torch_device)
thomwolf's avatar
thomwolf committed
643
            model.eval()
644
645
646
647
648

            wte = model.get_input_embeddings()
            if not self.is_encoder_decoder:
                inputs_dict["inputs_embeds"] = wte(input_ids)
            else:
649
                inputs_dict["inputs_embeds"] = wte(encoder_input_ids)
650
651
                inputs_dict["decoder_inputs_embeds"] = wte(decoder_input_ids)

thomwolf's avatar
thomwolf committed
652
            with torch.no_grad():
653
                model(**inputs_dict)
654

655
    def test_lm_head_model_random_no_beam_search_generate(self):
656
        config, inputs_dict = self.model_tester.prepare_config_and_inputs_for_common()
657
        input_ids = inputs_dict["input_ids"] if "input_ids" in inputs_dict else inputs_dict["inputs"]
658

Patrick von Platen's avatar
Patrick von Platen committed
659
660
661
        # make sure that input_ids is at most of size 15
        input_ids = input_ids[..., :15]

662
        # iterate over all generative models
663
        for model_class in self.all_generative_model_classes:
664
            model = model_class(config).to(torch_device)
Patrick von Platen's avatar
Patrick von Platen committed
665
            model.eval()
666
667

            if config.bos_token_id is None:
668
                # if bos token id is not defined, model needs input_ids
669
                with self.assertRaises(AssertionError):
670
                    model.generate(do_sample=True, max_length=5)
671
                # num_return_sequences = 1
672
                self._check_generated_ids(model.generate(input_ids, do_sample=True))
673
            else:
674
                # num_return_sequences = 1
675
                self._check_generated_ids(model.generate(do_sample=True, max_length=5))
676

677
            with self.assertRaises(AssertionError):
678
                # generating multiple sequences when no beam search generation
679
680
681
                # is not allowed as it would always generate the same sequences
                model.generate(input_ids, do_sample=False, num_return_sequences=2)

682
683
            # num_return_sequences > 1, sample
            self._check_generated_ids(model.generate(input_ids, do_sample=True, num_return_sequences=2))
684
685

            # check bad words tokens language generation
686
            # create list of 1-seq bad token and list of 2-seq of bad tokens
687
688
689
690
            bad_words_ids = [
                self._generate_random_bad_tokens(1, model.config),
                self._generate_random_bad_tokens(2, model.config),
            ]
691
            output_tokens = model.generate(
692
                input_ids, do_sample=True, bad_words_ids=bad_words_ids, num_return_sequences=2
693
            )
694
            # only count generated tokens
695
696
            generated_ids = output_tokens[:, input_ids.shape[-1] :]
            self.assertFalse(self._check_match_tokens(generated_ids.tolist(), bad_words_ids))
697

698
699
    def test_lm_head_model_random_beam_search_generate(self):
        config, inputs_dict = self.model_tester.prepare_config_and_inputs_for_common()
700
701
702
        input_ids = (inputs_dict["input_ids"] if "input_ids" in inputs_dict else inputs_dict["inputs"]).to(
            torch_device
        )
703

Patrick von Platen's avatar
Patrick von Platen committed
704
705
706
        # make sure that input_ids is at most of size 15
        input_ids = input_ids[..., :15]

707
        for model_class in self.all_generative_model_classes:
708
            model = model_class(config).to(torch_device)
Patrick von Platen's avatar
Patrick von Platen committed
709
            model.eval()
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728

            if config.bos_token_id is None:
                # if bos token id is not defined mobel needs input_ids, num_return_sequences = 1
                self._check_generated_ids(model.generate(input_ids, do_sample=True, num_beams=2))
            else:
                # num_return_sequences = 1
                self._check_generated_ids(model.generate(do_sample=True, max_length=5, num_beams=2))

            with self.assertRaises(AssertionError):
                # generating more sequences than having beams leads is not possible
                model.generate(input_ids, do_sample=False, num_return_sequences=3, num_beams=2)

            # num_return_sequences > 1, sample
            self._check_generated_ids(model.generate(input_ids, do_sample=True, num_beams=2, num_return_sequences=2,))
            # num_return_sequences > 1, greedy
            self._check_generated_ids(model.generate(input_ids, do_sample=False, num_beams=2, num_return_sequences=2))

            # check bad words tokens language generation
            # create list of 1-seq bad token and list of 2-seq of bad tokens
729
730
731
732
            bad_words_ids = [
                self._generate_random_bad_tokens(1, model.config),
                self._generate_random_bad_tokens(2, model.config),
            ]
733
            output_tokens = model.generate(
734
                input_ids, do_sample=False, bad_words_ids=bad_words_ids, num_beams=2, num_return_sequences=2
735
            )
736
            # only count generated tokens
737
738
739
            generated_ids = output_tokens[:, input_ids.shape[-1] :]
            self.assertFalse(self._check_match_tokens(generated_ids.tolist(), bad_words_ids))

740
    def _generate_random_bad_tokens(self, num_bad_tokens: int, config) -> List[int]:
741
        # special tokens cannot be bad tokens
742
        special_tokens = [x for x in [config.bos_token_id, config.eos_token_id, config.pad_token_id] if x is not None]
743
744
745
        # create random bad tokens that are not special tokens
        bad_tokens = []
        while len(bad_tokens) < num_bad_tokens:
746
            token = ids_tensor((1, 1), self.model_tester.vocab_size).squeeze(0).cpu().numpy()[0]
747
748
749
750
            if token not in special_tokens:
                bad_tokens.append(token)
        return bad_tokens

751
    def _check_generated_ids(self, output_ids):
752
753
754
755
        for token_id in output_ids[0].tolist():
            self.assertGreaterEqual(token_id, 0)
            self.assertLess(token_id, self.model_tester.vocab_size)

756
757
758
759
760
761
762
763
764
765
766
767
    def _check_match_tokens(self, generated_ids, bad_words_ids):
        # for all bad word tokens
        for bad_word_ids in bad_words_ids:
            # for all slices in batch
            for generated_ids_slice in generated_ids:
                # for all word idx
                for i in range(len(bad_word_ids), len(generated_ids_slice)):
                    # if tokens match
                    if generated_ids_slice[i - len(bad_word_ids) : i] == bad_word_ids:
                        return True
        return False

768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
    @require_multigpu
    def test_multigpu_data_parallel_forward(self):
        config, inputs_dict = self.model_tester.prepare_config_and_inputs_for_common()

        # some params shouldn't be scattered by nn.DataParallel
        # so just remove them if they are present.
        blacklist_non_batched_params = ["head_mask"]
        for k in blacklist_non_batched_params:
            inputs_dict.pop(k, None)

        # move input tensors to cuda:O
        for k, v in inputs_dict.items():
            if torch.is_tensor(v):
                inputs_dict[k] = v.to(0)

        for model_class in self.all_model_classes:
            model = model_class(config=config)
            model.to(0)
            model.eval()

            # Wrap model in nn.DataParallel
            model = torch.nn.DataParallel(model)
            with torch.no_grad():
                _ = model(**inputs_dict)

793

794
global_rng = random.Random()
thomwolf's avatar
thomwolf committed
795
796


thomwolf's avatar
thomwolf committed
797
def ids_tensor(shape, vocab_size, rng=None, name=None):
798
    #  Creates a random int32 tensor of the shape within the vocab size
thomwolf's avatar
thomwolf committed
799
    if rng is None:
800
        rng = global_rng
thomwolf's avatar
thomwolf committed
801

thomwolf's avatar
thomwolf committed
802
803
804
    total_dims = 1
    for dim in shape:
        total_dims *= dim
thomwolf's avatar
thomwolf committed
805

thomwolf's avatar
thomwolf committed
806
807
808
    values = []
    for _ in range(total_dims):
        values.append(rng.randint(0, vocab_size - 1))
thomwolf's avatar
thomwolf committed
809

810
    return torch.tensor(data=values, dtype=torch.long, device=torch_device).view(shape).contiguous()
thomwolf's avatar
thomwolf committed
811
812


813
def floats_tensor(shape, scale=1.0, rng=None, name=None):
Patrick von Platen's avatar
Patrick von Platen committed
814
    """Creates a random float32 tensor"""
815
816
817
818
819
820
821
822
823
824
825
    if rng is None:
        rng = global_rng

    total_dims = 1
    for dim in shape:
        total_dims *= dim

    values = []
    for _ in range(total_dims):
        values.append(rng.random() * scale)

826
    return torch.tensor(data=values, dtype=torch.float, device=torch_device).view(shape).contiguous()
827
828


829
@require_torch
thomwolf's avatar
thomwolf committed
830
class ModelUtilsTest(unittest.TestCase):
831
    @slow
Patrick von Platen's avatar
Patrick von Platen committed
832
    def test_model_from_pretrained(self):
thomwolf's avatar
thomwolf committed
833
        logging.basicConfig(level=logging.INFO)
834
        for model_name in BERT_PRETRAINED_MODEL_ARCHIVE_LIST[:1]:
thomwolf's avatar
thomwolf committed
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
            config = BertConfig.from_pretrained(model_name)
            self.assertIsNotNone(config)
            self.assertIsInstance(config, PretrainedConfig)

            model = BertModel.from_pretrained(model_name)
            model, loading_info = BertModel.from_pretrained(model_name, output_loading_info=True)
            self.assertIsNotNone(model)
            self.assertIsInstance(model, PreTrainedModel)
            for value in loading_info.values():
                self.assertEqual(len(value), 0)

            config = BertConfig.from_pretrained(model_name, output_attentions=True, output_hidden_states=True)
            model = BertModel.from_pretrained(model_name, output_attentions=True, output_hidden_states=True)
            self.assertEqual(model.config.output_hidden_states, True)
            self.assertEqual(model.config, config)
850
851
852
853
854
855


@require_torch
class UtilsFunctionsTest(unittest.TestCase):

    # tests whether the top_k_top_p function behaves as expected
Patrick von Platen's avatar
Patrick von Platen committed
856
    def test_top_k_top_p_filtering(self):
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
        logits = torch.tensor(
            [
                [
                    8.2220991,  # 3rd highest value; idx. 0
                    -0.5620044,
                    5.23229752,
                    4.0386393,
                    -6.8798378,
                    -0.54785802,
                    -3.2012153,
                    2.92777176,
                    1.88171953,
                    7.35341276,  # 5th highest value; idx. 9
                    8.43207833,  # 2nd highest value; idx. 10
                    -9.85711836,
                    -5.96209236,
                    -1.13039161,
                    -7.1115294,
                    -0.8369633,
                    -5.3186408,
                    7.06427407,
                    0.81369344,
                    -0.82023817,
                    -5.9179796,
                    0.58813443,
                    -6.99778438,
                    4.71551189,
                    -0.18771637,
                    7.44020759,  # 4th highest value; idx. 25
                    9.38450987,  # 1st highest value; idx. 26
                    2.12662941,
                    -9.32562038,
                    2.35652522,
                ],  # cummulative prob of 5 highest values <= 0.6
                [
                    0.58425518,
                    4.53139238,
                    -5.57510464,
                    -6.28030699,
                    -7.19529503,
                    -4.02122551,
                    1.39337037,
                    -6.06707057,
                    1.59480517,
                    -9.643119,
                    0.03907799,
                    0.67231762,
                    -8.88206726,
                    6.27115922,  # 4th highest value; idx. 13
                    2.28520723,
                    4.82767506,
                    4.30421368,
                    8.8275313,  # 2nd highest value; idx. 17
                    5.44029958,  # 5th highest value; idx. 18
                    -4.4735794,
                    7.38579536,  # 3rd highest value; idx. 20
                    -2.91051663,
                    2.61946077,
                    -2.5674762,
                    -9.48959302,
                    -4.02922645,
                    -1.35416918,
                    9.67702323,  # 1st highest value; idx. 27
                    -5.89478553,
                    1.85370467,
                ],  # cummulative prob of 5 highest values <= 0.6
            ],
            dtype=torch.float,
            device=torch_device,
        )

        non_inf_expected_idx = torch.tensor(
            [[0, 0], [0, 9], [0, 10], [0, 25], [0, 26], [1, 13], [1, 17], [1, 18], [1, 20], [1, 27]],
            dtype=torch.long,
            device=torch_device,
        )  # expected non filtered idx as noted above

        non_inf_expected_output = torch.tensor(
            [
                8.2221,
                7.3534,
                8.4321,
                7.4402,
                9.3845,
                6.2712,
                8.8275,
                5.4403,
                7.3858,
                9.6770,
            ],  # expected non filtered values as noted above
            dtype=torch.float,
            device=torch_device,
        )

        output = top_k_top_p_filtering(logits, top_k=10, top_p=0.6, min_tokens_to_keep=4)
        non_inf_output = output[output != -float("inf")].to(device=torch_device)
        non_inf_idx = (output != -float("inf")).nonzero().to(device=torch_device)

        self.assertTrue(torch.allclose(non_inf_expected_output, non_inf_output, atol=1e-12))
        self.assertTrue(torch.all(torch.eq(non_inf_expected_idx, non_inf_idx)))