test_modeling_common.py 106 KB
Newer Older
thomwolf's avatar
thomwolf committed
1
2
3
4
5
6
7
8
9
10
11
12
13
14
# coding=utf-8
# Copyright 2019 HuggingFace Inc.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
#     http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
Aymeric Augustin's avatar
Aymeric Augustin committed
15

16
import copy
17
import gc
18
import inspect
19
import json
20
import os
21
import os.path
Aymeric Augustin's avatar
Aymeric Augustin committed
22
import random
23
import sys
24
import tempfile
thomwolf's avatar
thomwolf committed
25
import unittest
26
import unittest.mock as mock
27
import warnings
28
from pathlib import Path
NielsRogge's avatar
NielsRogge committed
29
from typing import Dict, List, Tuple
thomwolf's avatar
thomwolf committed
30

31
32
33
import numpy as np

import transformers
34
from huggingface_hub import Repository, delete_repo, login
Sylvain Gugger's avatar
Sylvain Gugger committed
35
from requests.exceptions import HTTPError
36
37
38
39
40
41
42
43
from transformers import (
    AutoConfig,
    AutoModel,
    AutoModelForSequenceClassification,
    PretrainedConfig,
    is_torch_available,
    logging,
)
44
from transformers.models.auto import get_values
Sylvain Gugger's avatar
Sylvain Gugger committed
45
46
47
48
from transformers.testing_utils import (
    PASS,
    USER,
    CaptureLogger,
49
    TestCasePlus,
50
51
    is_pt_flax_cross_test,
    is_pt_tf_cross_test,
Sylvain Gugger's avatar
Sylvain Gugger committed
52
53
54
55
56
57
    is_staging_test,
    require_torch,
    require_torch_multi_gpu,
    slow,
    torch_device,
)
58
from transformers.utils import WEIGHTS_NAME, is_flax_available, is_torch_fx_available
59

Aymeric Augustin's avatar
Aymeric Augustin committed
60

61
62
sys.path.append(str(Path(__file__).parent.parent / "utils"))

63
from test_module.custom_configuration import CustomConfig, NoSuperInitConfig  # noqa E402
64
65


66
if is_torch_available():
67
    import torch
68
    from torch import nn
thomwolf's avatar
thomwolf committed
69

70
    from test_module.custom_modeling import CustomModel, NoSuperInitModel
71
    from transformers import (
72
        BERT_PRETRAINED_MODEL_ARCHIVE_LIST,
73
        MODEL_FOR_AUDIO_XVECTOR_MAPPING,
NielsRogge's avatar
NielsRogge committed
74
        MODEL_FOR_CAUSAL_IMAGE_MODELING_MAPPING,
75
        MODEL_FOR_CAUSAL_LM_MAPPING,
76
        MODEL_FOR_IMAGE_CLASSIFICATION_MAPPING,
NielsRogge's avatar
NielsRogge committed
77
        MODEL_FOR_MASKED_IMAGE_MODELING_MAPPING,
78
        MODEL_FOR_MASKED_LM_MAPPING,
79
        MODEL_FOR_MULTIPLE_CHOICE_MAPPING,
80
        MODEL_FOR_NEXT_SENTENCE_PREDICTION_MAPPING,
81
        MODEL_FOR_QUESTION_ANSWERING_MAPPING,
82
83
84
        MODEL_FOR_SEQ_TO_SEQ_CAUSAL_LM_MAPPING,
        MODEL_FOR_SEQUENCE_CLASSIFICATION_MAPPING,
        MODEL_FOR_TOKEN_CLASSIFICATION_MAPPING,
85
        MODEL_MAPPING,
86
87
88
89
        AdaptiveEmbedding,
        BertConfig,
        BertModel,
        PreTrainedModel,
90
        T5Config,
91
        T5ForConditionalGeneration,
92
    )
thomwolf's avatar
thomwolf committed
93

94
95
96
97
98
99
100
if is_flax_available():
    import jax.numpy as jnp
    from transformers.modeling_flax_pytorch_utils import (
        convert_pytorch_state_dict_to_flax,
        load_flax_weights_in_pytorch_model,
    )

101
if is_torch_fx_available():
102
    from transformers.utils.fx import symbolic_trace
103

104

105
106
107
def _config_zero_init(config):
    configs_no_init = copy.deepcopy(config)
    for key in configs_no_init.__dict__.keys():
108
        if "_range" in key or "_std" in key or "initializer_factor" in key or "layer_scale" in key:
Lysandre Debut's avatar
Lysandre Debut committed
109
            setattr(configs_no_init, key, 1e-10)
110
111
    return configs_no_init

thomwolf's avatar
thomwolf committed
112

113
114
115
TINY_T5 = "patrickvonplaten/t5-tiny-random"


116
117
118
119
120
@require_torch
class ModelTesterMixin:

    model_tester = None
    all_model_classes = ()
121
    all_generative_model_classes = ()
122
    fx_compatible = False
Patrick von Platen's avatar
Patrick von Platen committed
123
124
125
    test_torchscript = True
    test_pruning = True
    test_resize_embeddings = True
126
    test_resize_position_embeddings = False
Patrick von Platen's avatar
Patrick von Platen committed
127
    test_head_masking = True
128
    test_mismatched_shapes = True
129
    test_missing_keys = True
130
    test_model_parallel = False
131
    is_encoder_decoder = False
132
    has_attentions = True
133

134
135
    def _prepare_for_class(self, inputs_dict, model_class, return_labels=False):
        inputs_dict = copy.deepcopy(inputs_dict)
136
        if model_class in get_values(MODEL_FOR_MULTIPLE_CHOICE_MAPPING):
137
            inputs_dict = {
138
                k: v.unsqueeze(1).expand(-1, self.model_tester.num_choices, -1).contiguous()
139
                if isinstance(v, torch.Tensor) and v.ndim > 1
Sylvain Gugger's avatar
Sylvain Gugger committed
140
                else v
141
142
                for k, v in inputs_dict.items()
            }
143
144
        elif model_class in get_values(MODEL_FOR_AUDIO_XVECTOR_MAPPING):
            inputs_dict.pop("attention_mask")
145
146

        if return_labels:
147
            if model_class in get_values(MODEL_FOR_MULTIPLE_CHOICE_MAPPING):
148
                inputs_dict["labels"] = torch.ones(self.model_tester.batch_size, dtype=torch.long, device=torch_device)
149
            elif model_class in get_values(MODEL_FOR_QUESTION_ANSWERING_MAPPING):
150
151
152
153
154
155
                inputs_dict["start_positions"] = torch.zeros(
                    self.model_tester.batch_size, dtype=torch.long, device=torch_device
                )
                inputs_dict["end_positions"] = torch.zeros(
                    self.model_tester.batch_size, dtype=torch.long, device=torch_device
                )
156
            elif model_class in [
157
158
159
                *get_values(MODEL_FOR_SEQUENCE_CLASSIFICATION_MAPPING),
                *get_values(MODEL_FOR_NEXT_SENTENCE_PREDICTION_MAPPING),
                *get_values(MODEL_FOR_IMAGE_CLASSIFICATION_MAPPING),
160
            ]:
161
162
163
164
                inputs_dict["labels"] = torch.zeros(
                    self.model_tester.batch_size, dtype=torch.long, device=torch_device
                )
            elif model_class in [
165
166
                *get_values(MODEL_FOR_TOKEN_CLASSIFICATION_MAPPING),
                *get_values(MODEL_FOR_CAUSAL_LM_MAPPING),
NielsRogge's avatar
NielsRogge committed
167
                *get_values(MODEL_FOR_CAUSAL_IMAGE_MODELING_MAPPING),
168
169
                *get_values(MODEL_FOR_MASKED_LM_MAPPING),
                *get_values(MODEL_FOR_SEQ_TO_SEQ_CAUSAL_LM_MAPPING),
170
171
172
173
            ]:
                inputs_dict["labels"] = torch.zeros(
                    (self.model_tester.batch_size, self.model_tester.seq_length), dtype=torch.long, device=torch_device
                )
NielsRogge's avatar
NielsRogge committed
174
175
176
177
178
            elif model_class in get_values(MODEL_FOR_MASKED_IMAGE_MODELING_MAPPING):
                num_patches = self.model_tester.image_size // self.model_tester.patch_size
                inputs_dict["bool_masked_pos"] = torch.zeros(
                    (self.model_tester.batch_size, num_patches**2), dtype=torch.long, device=torch_device
                )
179

180
181
        return inputs_dict

Patrick von Platen's avatar
Patrick von Platen committed
182
    def test_save_load(self):
183
184
185
186
187
188
189
        config, inputs_dict = self.model_tester.prepare_config_and_inputs_for_common()

        for model_class in self.all_model_classes:
            model = model_class(config)
            model.to(torch_device)
            model.eval()
            with torch.no_grad():
190
                outputs = model(**self._prepare_for_class(inputs_dict, model_class))
Weizhen's avatar
Weizhen committed
191

192
            out_2 = outputs[0].cpu().numpy()
193
            out_2[np.isnan(out_2)] = 0
194

195
            with tempfile.TemporaryDirectory() as tmpdirname:
196
197
                model.save_pretrained(tmpdirname)
                model = model_class.from_pretrained(tmpdirname)
198
                model.to(torch_device)
199
                with torch.no_grad():
200
                    after_outputs = model(**self._prepare_for_class(inputs_dict, model_class))
thomwolf's avatar
thomwolf committed
201

202
203
204
                # Make sure we don't have nans
                out_1 = after_outputs[0].cpu().numpy()
                out_1[np.isnan(out_1)] = 0
thomwolf's avatar
thomwolf committed
205
206
                max_diff = np.amax(np.abs(out_1 - out_2))
                self.assertLessEqual(max_diff, 1e-5)
207

208
    def test_save_load_keys_to_ignore_on_save(self):
209
210
211
212
        config, inputs_dict = self.model_tester.prepare_config_and_inputs_for_common()

        for model_class in self.all_model_classes:
            model = model_class(config)
213
214
            _keys_to_ignore_on_save = getattr(model, "_keys_to_ignore_on_save", None)
            if _keys_to_ignore_on_save is None:
215
216
217
                continue

            # check the keys are in the original state_dict
218
            for k in _keys_to_ignore_on_save:
219
                self.assertIn(k, model.state_dict().keys(), "\n".join(model.state_dict().keys()))
220
221
222
223
224
225

            # check that certain keys didn't get saved with the model
            with tempfile.TemporaryDirectory() as tmpdirname:
                model.save_pretrained(tmpdirname)
                output_model_file = os.path.join(tmpdirname, WEIGHTS_NAME)
                state_dict_saved = torch.load(output_model_file)
226
                for k in _keys_to_ignore_on_save:
227
                    self.assertNotIn(k, state_dict_saved.keys(), "\n".join(state_dict_saved.keys()))
228

Sylvain Gugger's avatar
Sylvain Gugger committed
229
230
231
                # Test we can load the state dict in the model, necessary for the checkpointing API in Trainer.
                load_result = model.load_state_dict(state_dict_saved, strict=False)
                self.assertTrue(
232
233
                    len(load_result.missing_keys) == 0
                    or set(load_result.missing_keys) == set(model._keys_to_ignore_on_save)
Sylvain Gugger's avatar
Sylvain Gugger committed
234
235
236
                )
                self.assertTrue(len(load_result.unexpected_keys) == 0)

237
238
239
240
241
242
243
244
245
246
247
    def test_gradient_checkpointing_backward_compatibility(self):
        config, inputs_dict = self.model_tester.prepare_config_and_inputs_for_common()

        for model_class in self.all_model_classes:
            if not model_class.supports_gradient_checkpointing:
                continue

            config.gradient_checkpointing = True
            model = model_class(config)
            self.assertTrue(model.is_gradient_checkpointing)

248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
    def test_gradient_checkpointing_enable_disable(self):
        config, inputs_dict = self.model_tester.prepare_config_and_inputs_for_common()

        for model_class in self.all_model_classes:
            if not model_class.supports_gradient_checkpointing:
                continue

            # at init model should have gradient checkpointing disabled
            model = model_class(config)
            self.assertFalse(model.is_gradient_checkpointing)

            # check enable works
            model.gradient_checkpointing_enable()
            self.assertTrue(model.is_gradient_checkpointing)

            # check disable works
            model.gradient_checkpointing_disable()
            self.assertFalse(model.is_gradient_checkpointing)

267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
    def _mock_init_weights(self, module):
        if hasattr(module, "weight") and module.weight is not None:
            module.weight.data.fill_(3)
        if hasattr(module, "bias") and module.bias is not None:
            module.bias.data.fill_(3)

    def test_save_load_fast_init_from_base(self):
        config, inputs_dict = self.model_tester.prepare_config_and_inputs_for_common()
        base_class = MODEL_MAPPING[config.__class__]

        if isinstance(base_class, tuple):
            base_class = base_class[0]

        for model_class in self.all_model_classes:
            if model_class == base_class:
                continue

            # make a copy of model class to not break future tests
            # from https://stackoverflow.com/questions/9541025/how-to-copy-a-python-class
            class CopyClass(model_class):
                pass

            model_class_copy = CopyClass

            # make sure that all keys are expected for test
            model_class_copy._keys_to_ignore_on_load_missing = []

            # make init deterministic, but make sure that
            # non-initialized weights throw errors nevertheless
            model_class_copy._init_weights = self._mock_init_weights

            model = base_class(config)
            state_dict = model.state_dict()

            # this will often delete a single weight of a multi-weight module
            # to test an edge case
            random_key_to_del = random.choice(list(state_dict.keys()))
            del state_dict[random_key_to_del]

            # check that certain keys didn't get saved with the model
            with tempfile.TemporaryDirectory() as tmpdirname:
                model.save_pretrained(tmpdirname)
                torch.save(state_dict, os.path.join(tmpdirname, "pytorch_model.bin"))

                model_fast_init = model_class_copy.from_pretrained(tmpdirname)
                model_slow_init = model_class_copy.from_pretrained(tmpdirname, _fast_init=False)

                for key in model_fast_init.state_dict().keys():
                    max_diff = (model_slow_init.state_dict()[key] - model_fast_init.state_dict()[key]).sum().item()
                    self.assertLessEqual(max_diff, 1e-3, msg=f"{key} not identical")

    def test_save_load_fast_init_to_base(self):
        config, inputs_dict = self.model_tester.prepare_config_and_inputs_for_common()
        base_class = MODEL_MAPPING[config.__class__]

        if isinstance(base_class, tuple):
            base_class = base_class[0]

        for model_class in self.all_model_classes:

            if model_class == base_class:
                continue

            # make a copy of model class to not break future tests
            # from https://stackoverflow.com/questions/9541025/how-to-copy-a-python-class
            class CopyClass(base_class):
                pass

            base_class_copy = CopyClass

            # make sure that all keys are expected for test
            base_class_copy._keys_to_ignore_on_load_missing = []

            # make init deterministic, but make sure that
            # non-initialized weights throw errors nevertheless
            base_class_copy._init_weights = self._mock_init_weights

            model = model_class(config)
            state_dict = model.state_dict()

            # this will often delete a single weight of a multi-weight module
            # to test an edge case
            random_key_to_del = random.choice(list(state_dict.keys()))
            del state_dict[random_key_to_del]

            # check that certain keys didn't get saved with the model
            with tempfile.TemporaryDirectory() as tmpdirname:
                model.config.save_pretrained(tmpdirname)
                torch.save(state_dict, os.path.join(tmpdirname, "pytorch_model.bin"))

                model_fast_init = base_class_copy.from_pretrained(tmpdirname)
                model_slow_init = base_class_copy.from_pretrained(tmpdirname, _fast_init=False)

                for key in model_fast_init.state_dict().keys():
                    max_diff = (model_slow_init.state_dict()[key] - model_fast_init.state_dict()[key]).sum().item()
                    self.assertLessEqual(max_diff, 1e-3, msg=f"{key} not identical")

Patrick von Platen's avatar
Patrick von Platen committed
364
    def test_initialization(self):
365
366
367
368
369
370
371
372
        config, inputs_dict = self.model_tester.prepare_config_and_inputs_for_common()

        configs_no_init = _config_zero_init(config)
        for model_class in self.all_model_classes:
            model = model_class(config=configs_no_init)
            for name, param in model.named_parameters():
                if param.requires_grad:
                    self.assertIn(
Lysandre Debut's avatar
Lysandre Debut committed
373
                        ((param.data.mean() * 1e9).round() / 1e9).item(),
374
                        [0.0, 1.0],
375
                        msg=f"Parameter {name} of model {model_class} seems not properly initialized",
376
                    )
thomwolf's avatar
thomwolf committed
377

Patrick von Platen's avatar
Patrick von Platen committed
378
    def test_determinism(self):
379
380
381
382
383
384
        config, inputs_dict = self.model_tester.prepare_config_and_inputs_for_common()
        for model_class in self.all_model_classes:
            model = model_class(config)
            model.to(torch_device)
            model.eval()
            with torch.no_grad():
385
386
                first = model(**self._prepare_for_class(inputs_dict, model_class))[0]
                second = model(**self._prepare_for_class(inputs_dict, model_class))[0]
Weizhen's avatar
Weizhen committed
387

388
389
390
391
392
393
394
            out_1 = first.cpu().numpy()
            out_2 = second.cpu().numpy()
            out_1 = out_1[~np.isnan(out_1)]
            out_2 = out_2[~np.isnan(out_2)]
            max_diff = np.amax(np.abs(out_1 - out_2))
            self.assertLessEqual(max_diff, 1e-5)

395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
    def test_forward_signature(self):
        config, _ = self.model_tester.prepare_config_and_inputs_for_common()

        for model_class in self.all_model_classes:
            model = model_class(config)
            signature = inspect.signature(model.forward)
            # signature.parameters is an OrderedDict => so arg_names order is deterministic
            arg_names = [*signature.parameters.keys()]

            if model.config.is_encoder_decoder:
                expected_arg_names = [
                    "input_ids",
                    "attention_mask",
                    "decoder_input_ids",
                    "decoder_attention_mask",
                ]
411
                expected_arg_names.extend(
412
413
                    ["head_mask", "decoder_head_mask", "cross_attn_head_mask", "encoder_outputs"]
                    if "head_mask" and "decoder_head_mask" and "cross_attn_head_mask" in arg_names
414
415
416
                    else ["encoder_outputs"]
                )
                self.assertListEqual(arg_names[: len(expected_arg_names)], expected_arg_names)
417
418
419
420
            else:
                expected_arg_names = ["input_ids"]
                self.assertListEqual(arg_names[:1], expected_arg_names)

421
422
423
424
425
    def test_training(self):
        if not self.model_tester.is_training:
            return

        for model_class in self.all_model_classes:
426
427
428
            config, inputs_dict = self.model_tester.prepare_config_and_inputs_for_common()
            config.return_dict = True

429
            if model_class in get_values(MODEL_MAPPING):
430
                continue
431

432
433
434
435
436
437
438
439
            model = model_class(config)
            model.to(torch_device)
            model.train()
            inputs = self._prepare_for_class(inputs_dict, model_class, return_labels=True)
            loss = model(**inputs).loss
            loss.backward()

    def test_training_gradient_checkpointing(self):
440
        if not self.model_tester.is_training:
441
442
443
            return

        for model_class in self.all_model_classes:
444
445
446
447
            config, inputs_dict = self.model_tester.prepare_config_and_inputs_for_common()
            config.use_cache = False
            config.return_dict = True

448
            if model_class in get_values(MODEL_MAPPING) or not model_class.supports_gradient_checkpointing:
449
450
451
                continue
            model = model_class(config)
            model.to(torch_device)
452
            model.gradient_checkpointing_enable()
453
454
455
456
457
            model.train()
            inputs = self._prepare_for_class(inputs_dict, model_class, return_labels=True)
            loss = model(**inputs).loss
            loss.backward()

Patrick von Platen's avatar
Patrick von Platen committed
458
    def test_attention_outputs(self):
459
460
        if not self.has_attentions:
            pass
461

462
463
        else:
            config, inputs_dict = self.model_tester.prepare_config_and_inputs_for_common()
464
            config.return_dict = True
465

466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
            seq_len = getattr(self.model_tester, "seq_length", None)
            decoder_seq_length = getattr(self.model_tester, "decoder_seq_length", seq_len)
            encoder_seq_length = getattr(self.model_tester, "encoder_seq_length", seq_len)
            decoder_key_length = getattr(self.model_tester, "decoder_key_length", decoder_seq_length)
            encoder_key_length = getattr(self.model_tester, "key_length", encoder_seq_length)
            chunk_length = getattr(self.model_tester, "chunk_length", None)
            if chunk_length is not None and hasattr(self.model_tester, "num_hashes"):
                encoder_seq_length = encoder_seq_length * self.model_tester.num_hashes

            for model_class in self.all_model_classes:
                inputs_dict["output_attentions"] = True
                inputs_dict["output_hidden_states"] = False
                config.return_dict = True
                model = model_class(config)
                model.to(torch_device)
                model.eval()
                with torch.no_grad():
                    outputs = model(**self._prepare_for_class(inputs_dict, model_class))
                attentions = outputs.encoder_attentions if config.is_encoder_decoder else outputs.attentions
                self.assertEqual(len(attentions), self.model_tester.num_hidden_layers)

                # check that output_attentions also work using config
                del inputs_dict["output_attentions"]
                config.output_attentions = True
                model = model_class(config)
                model.to(torch_device)
                model.eval()
                with torch.no_grad():
                    outputs = model(**self._prepare_for_class(inputs_dict, model_class))
                attentions = outputs.encoder_attentions if config.is_encoder_decoder else outputs.attentions
                self.assertEqual(len(attentions), self.model_tester.num_hidden_layers)

                if chunk_length is not None:
                    self.assertListEqual(
                        list(attentions[0].shape[-4:]),
                        [self.model_tester.num_attention_heads, encoder_seq_length, chunk_length, encoder_key_length],
                    )
                else:
                    self.assertListEqual(
                        list(attentions[0].shape[-3:]),
                        [self.model_tester.num_attention_heads, encoder_seq_length, encoder_key_length],
                    )
                out_len = len(outputs)

                if self.is_encoder_decoder:
                    correct_outlen = 5

                    # loss is at first position
                    if "labels" in inputs_dict:
                        correct_outlen += 1  # loss is added to beginning
                    # Question Answering model returns start_logits and end_logits
                    if model_class in get_values(MODEL_FOR_QUESTION_ANSWERING_MAPPING):
                        correct_outlen += 1  # start_logits and end_logits instead of only 1 output
                    if "past_key_values" in outputs:
                        correct_outlen += 1  # past_key_values have been returned

                    self.assertEqual(out_len, correct_outlen)

                    # decoder attentions
                    decoder_attentions = outputs.decoder_attentions
                    self.assertIsInstance(decoder_attentions, (list, tuple))
                    self.assertEqual(len(decoder_attentions), self.model_tester.num_hidden_layers)
                    self.assertListEqual(
                        list(decoder_attentions[0].shape[-3:]),
                        [self.model_tester.num_attention_heads, decoder_seq_length, decoder_key_length],
                    )
thomwolf's avatar
thomwolf committed
532

533
534
535
536
537
538
539
540
541
542
543
544
                    # cross attentions
                    cross_attentions = outputs.cross_attentions
                    self.assertIsInstance(cross_attentions, (list, tuple))
                    self.assertEqual(len(cross_attentions), self.model_tester.num_hidden_layers)
                    self.assertListEqual(
                        list(cross_attentions[0].shape[-3:]),
                        [
                            self.model_tester.num_attention_heads,
                            decoder_seq_length,
                            encoder_key_length,
                        ],
                    )
545

546
547
548
549
550
551
552
553
                # Check attention is always last and order is fine
                inputs_dict["output_attentions"] = True
                inputs_dict["output_hidden_states"] = True
                model = model_class(config)
                model.to(torch_device)
                model.eval()
                with torch.no_grad():
                    outputs = model(**self._prepare_for_class(inputs_dict, model_class))
554

555
556
557
558
559
560
561
                if hasattr(self.model_tester, "num_hidden_states_types"):
                    added_hidden_states = self.model_tester.num_hidden_states_types
                elif self.is_encoder_decoder:
                    added_hidden_states = 2
                else:
                    added_hidden_states = 1
                self.assertEqual(out_len + added_hidden_states, len(outputs))
Weizhen's avatar
Weizhen committed
562

563
                self_attentions = outputs.encoder_attentions if config.is_encoder_decoder else outputs.attentions
564

565
566
567
568
569
570
571
572
573
574
575
                self.assertEqual(len(self_attentions), self.model_tester.num_hidden_layers)
                if chunk_length is not None:
                    self.assertListEqual(
                        list(self_attentions[0].shape[-4:]),
                        [self.model_tester.num_attention_heads, encoder_seq_length, chunk_length, encoder_key_length],
                    )
                else:
                    self.assertListEqual(
                        list(self_attentions[0].shape[-3:]),
                        [self.model_tester.num_attention_heads, encoder_seq_length, encoder_key_length],
                    )
thomwolf's avatar
thomwolf committed
576

577
    @slow
Patrick von Platen's avatar
Patrick von Platen committed
578
    def test_torchscript(self):
579
580
        config, inputs_dict = self.model_tester.prepare_config_and_inputs_for_common()
        self._create_and_check_torchscript(config, inputs_dict)
thomwolf's avatar
thomwolf committed
581

582
    @slow
Patrick von Platen's avatar
Patrick von Platen committed
583
    def test_torchscript_output_attentions(self):
584
585
586
        config, inputs_dict = self.model_tester.prepare_config_and_inputs_for_common()
        config.output_attentions = True
        self._create_and_check_torchscript(config, inputs_dict)
thomwolf's avatar
thomwolf committed
587

588
    @slow
Patrick von Platen's avatar
Patrick von Platen committed
589
    def test_torchscript_output_hidden_state(self):
590
591
592
        config, inputs_dict = self.model_tester.prepare_config_and_inputs_for_common()
        config.output_hidden_states = True
        self._create_and_check_torchscript(config, inputs_dict)
thomwolf's avatar
thomwolf committed
593

594
    def _create_and_check_torchscript(self, config, inputs_dict):
Patrick von Platen's avatar
Patrick von Platen committed
595
        if not self.test_torchscript:
596
            return
597

598
599
600
601
602
603
        configs_no_init = _config_zero_init(config)  # To be sure we have no Nan
        configs_no_init.torchscript = True
        for model_class in self.all_model_classes:
            model = model_class(config=configs_no_init)
            model.to(torch_device)
            model.eval()
604
            inputs = self._prepare_for_class(inputs_dict, model_class)
thomwolf's avatar
thomwolf committed
605

606
            try:
607
                if model.config.is_encoder_decoder:
608
                    model.config.use_cache = False  # FSTM still requires this hack -> FSTM should probably be refactored similar to BART afterward
609
610
611
612
613
614
615
616
617
618
                    input_ids = inputs["input_ids"]
                    attention_mask = inputs["attention_mask"]
                    decoder_input_ids = inputs["decoder_input_ids"]
                    decoder_attention_mask = inputs["decoder_attention_mask"]
                    traced_model = torch.jit.trace(
                        model, (input_ids, attention_mask, decoder_input_ids, decoder_attention_mask)
                    )
                else:
                    input_ids = inputs["input_ids"]
                    traced_model = torch.jit.trace(model, input_ids)
619
620
            except RuntimeError:
                self.fail("Couldn't trace module.")
thomwolf's avatar
thomwolf committed
621

622
            with tempfile.TemporaryDirectory() as tmp_dir_name:
623
                pt_file_name = os.path.join(tmp_dir_name, "traced_model.pt")
thomwolf's avatar
thomwolf committed
624

625
                try:
626
                    torch.jit.save(traced_model, pt_file_name)
627
628
                except Exception:
                    self.fail("Couldn't save module.")
thomwolf's avatar
thomwolf committed
629

630
631
632
633
                try:
                    loaded_model = torch.jit.load(pt_file_name)
                except Exception:
                    self.fail("Couldn't load module.")
LysandreJik's avatar
LysandreJik committed
634

635
636
            model.to(torch_device)
            model.eval()
thomwolf's avatar
thomwolf committed
637

638
639
            loaded_model.to(torch_device)
            loaded_model.eval()
thomwolf's avatar
thomwolf committed
640

641
642
643
            model_state_dict = model.state_dict()
            loaded_model_state_dict = loaded_model.state_dict()

644
645
646
647
648
649
650
651
652
            non_persistent_buffers = {}
            for key in loaded_model_state_dict.keys():
                if key not in model_state_dict.keys():
                    non_persistent_buffers[key] = loaded_model_state_dict[key]

            loaded_model_state_dict = {
                key: value for key, value in loaded_model_state_dict.items() if key not in non_persistent_buffers
            }

653
            self.assertEqual(set(model_state_dict.keys()), set(loaded_model_state_dict.keys()))
thomwolf's avatar
thomwolf committed
654

655
656
657
658
659
660
661
662
663
664
665
            model_buffers = list(model.buffers())
            for non_persistent_buffer in non_persistent_buffers.values():
                found_buffer = False
                for i, model_buffer in enumerate(model_buffers):
                    if torch.equal(non_persistent_buffer, model_buffer):
                        found_buffer = True
                        break

                self.assertTrue(found_buffer)
                model_buffers.pop(i)

666
            models_equal = True
667
            for layer_name, p1 in model_state_dict.items():
668
669
670
671
                if layer_name in loaded_model_state_dict:
                    p2 = loaded_model_state_dict[layer_name]
                    if p1.data.ne(p2.data).sum() > 0:
                        models_equal = False
thomwolf's avatar
thomwolf committed
672

673
            self.assertTrue(models_equal)
thomwolf's avatar
thomwolf committed
674

675
676
677
678
679
680
681
682
    def test_torch_fx(self):
        config, inputs_dict = self.model_tester.prepare_config_and_inputs_for_common()
        self._create_and_check_torch_fx_tracing(config, inputs_dict)

    def test_torch_fx_output_loss(self):
        config, inputs_dict = self.model_tester.prepare_config_and_inputs_for_common()
        self._create_and_check_torch_fx_tracing(config, inputs_dict, output_loss=True)

683
684
    def _create_and_check_torch_fx_tracing(self, config, inputs_dict, output_loss=False):
        if not is_torch_fx_available() or not self.fx_compatible:
685
686
687
688
689
            return

        configs_no_init = _config_zero_init(config)  # To be sure we have no Nan
        configs_no_init.return_dict = False

690
        for model_class in self.all_model_classes:
691
692
693
694
695
696
697
698
699
700
701
702
            model = model_class(config=configs_no_init)
            model.to(torch_device)
            model.eval()
            inputs = self._prepare_for_class(inputs_dict, model_class, return_labels=output_loss)

            try:
                if model.config.is_encoder_decoder:
                    model.config.use_cache = False  # FSTM still requires this hack -> FSTM should probably be refactored similar to BART afterward
                    labels = inputs.get("labels", None)
                    input_names = ["input_ids", "attention_mask", "decoder_input_ids", "decoder_attention_mask"]
                    if labels is not None:
                        input_names.append("labels")
703
                    filtered_inputs = {k: v for (k, v) in inputs.items() if k in input_names}
704

705
                    model_output = model(**filtered_inputs)
706

707
                    traced_model = symbolic_trace(model, input_names)
708
                    traced_output = traced_model(**filtered_inputs)
709
                else:
710
                    input_names = ["input_ids", "attention_mask", "token_type_ids"]
711
                    input_ids = inputs["input_ids"]
712

713
                    labels = inputs.get("labels", None)
714
715
                    start_positions = inputs.get("start_positions", None)
                    end_positions = inputs.get("end_positions", None)
716
717
                    if labels is not None:
                        input_names.append("labels")
718
719
720
721
                    if start_positions is not None:
                        input_names.append("start_positions")
                    if end_positions is not None:
                        input_names.append("end_positions")
722

723
724
                    filtered_inputs = {k: v for (k, v) in inputs.items() if k in input_names}
                    input_names = filtered_inputs.keys()
725

726
                    model_output = model(**filtered_inputs)
727

728
                    rank = len(input_ids.shape)
729
                    if rank not in [2, 3]:
730
731
732
                        raise NotImplementedError(
                            f"symbolic_trace automatic parameters inference not implemented for input of rank {rank}."
                        )
733

734
                    traced_model = symbolic_trace(model, input_names)
735
                    traced_output = traced_model(**filtered_inputs)
736
737
738
739

            except RuntimeError:
                self.fail("Couldn't trace module.")

740
741
742
743
744
745
746
747
748
749
750
751
752
            def flatten_output(output):
                flatten = []
                for x in output:
                    if isinstance(x, (tuple, list)):
                        flatten += flatten_output(x)
                    elif not isinstance(x, torch.Tensor):
                        continue
                    else:
                        flatten.append(x)
                return flatten

            model_output = flatten_output(model_output)
            traced_output = flatten_output(traced_output)
753
            num_outputs = len(model_output)
754
755
756
757
758
759

            for i in range(num_outputs):
                self.assertTrue(
                    torch.allclose(model_output[i], traced_output[i]),
                    f"traced {i}th output doesn't match model {i}th output for {model_class}",
                )
760

Patrick von Platen's avatar
Patrick von Platen committed
761
762
    def test_headmasking(self):
        if not self.test_head_masking:
763
            return
764

765
766
767
        global_rng.seed(42)
        config, inputs_dict = self.model_tester.prepare_config_and_inputs_for_common()
        global_rng.seed()
LysandreJik's avatar
LysandreJik committed
768

769
        inputs_dict["output_attentions"] = True
770
771
772
773
774
775
        config.output_hidden_states = True
        configs_no_init = _config_zero_init(config)  # To be sure we have no Nan
        for model_class in self.all_model_classes:
            model = model_class(config=configs_no_init)
            model.to(torch_device)
            model.eval()
LysandreJik's avatar
LysandreJik committed
776

777
778
779
            # Prepare head_mask
            # Set require_grad after having prepared the tensor to avoid error (leaf variable has been moved into the graph interior)
            head_mask = torch.ones(
Lysandre's avatar
Lysandre committed
780
781
782
                self.model_tester.num_hidden_layers,
                self.model_tester.num_attention_heads,
                device=torch_device,
783
784
785
786
            )
            head_mask[0, 0] = 0
            head_mask[-1, :-1] = 0
            head_mask.requires_grad_(requires_grad=True)
787
            inputs = self._prepare_for_class(inputs_dict, model_class).copy()
788
            inputs["head_mask"] = head_mask
789
790
791
792
793
            if model.config.is_encoder_decoder:
                signature = inspect.signature(model.forward)
                arg_names = [*signature.parameters.keys()]
                if "decoder_head_mask" in arg_names:  # necessary diferentiation because of T5 model
                    inputs["decoder_head_mask"] = head_mask
794
795
                if "cross_attn_head_mask" in arg_names:
                    inputs["cross_attn_head_mask"] = head_mask
796
            outputs = model(**inputs, return_dict=True)
797
798
799
800
801
802
803
804
805

            # Test that we can get a gradient back for importance score computation
            output = sum(t.sum() for t in outputs[0])
            output = output.sum()
            output.backward()
            multihead_outputs = head_mask.grad

            self.assertIsNotNone(multihead_outputs)
            self.assertEqual(len(multihead_outputs), self.model_tester.num_hidden_layers)
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826

            def check_attentions_validity(attentions):
                # Remove Nan
                for t in attentions:
                    self.assertLess(
                        torch.sum(torch.isnan(t)), t.numel() / 4
                    )  # Check we don't have more than 25% nans (arbitrary)
                attentions = [
                    t.masked_fill(torch.isnan(t), 0.0) for t in attentions
                ]  # remove them (the test is less complete)

                self.assertAlmostEqual(attentions[0][..., 0, :, :].flatten().sum().item(), 0.0)
                self.assertNotEqual(attentions[0][..., -1, :, :].flatten().sum().item(), 0.0)
                if len(attentions) > 2:  # encoder-decoder models have only 2 layers in each module
                    self.assertNotEqual(attentions[1][..., 0, :, :].flatten().sum().item(), 0.0)
                self.assertAlmostEqual(attentions[-1][..., -2, :, :].flatten().sum().item(), 0.0)
                self.assertNotEqual(attentions[-1][..., -1, :, :].flatten().sum().item(), 0.0)

            if model.config.is_encoder_decoder:
                check_attentions_validity(outputs.encoder_attentions)
                check_attentions_validity(outputs.decoder_attentions)
827
                check_attentions_validity(outputs.cross_attentions)
828
829
            else:
                check_attentions_validity(outputs.attentions)
830

Patrick von Platen's avatar
Patrick von Platen committed
831
832
    def test_head_pruning(self):
        if not self.test_pruning:
833
834
835
            return

        for model_class in self.all_model_classes:
Lysandre's avatar
Lysandre committed
836
837
838
839
            (
                config,
                inputs_dict,
            ) = self.model_tester.prepare_config_and_inputs_for_common()
840

841
842
            if "head_mask" in inputs_dict:
                del inputs_dict["head_mask"]
843

844
            inputs_dict["output_attentions"] = True
845
846
847
848
            config.output_hidden_states = False
            model = model_class(config=config)
            model.to(torch_device)
            model.eval()
849
850
851
852
            heads_to_prune = {
                0: list(range(1, self.model_tester.num_attention_heads)),
                -1: [0],
            }
853
854
            model.prune_heads(heads_to_prune)
            with torch.no_grad():
855
                outputs = model(**self._prepare_for_class(inputs_dict, model_class))
856

857
            attentions = outputs[-1]
858

859
860
861
            self.assertEqual(attentions[0].shape[-3], 1)
            self.assertEqual(attentions[1].shape[-3], self.model_tester.num_attention_heads)
            self.assertEqual(attentions[-1].shape[-3], self.model_tester.num_attention_heads - 1)
LysandreJik's avatar
LysandreJik committed
862

Patrick von Platen's avatar
Patrick von Platen committed
863
864
    def test_head_pruning_save_load_from_pretrained(self):
        if not self.test_pruning:
865
            return
LysandreJik's avatar
LysandreJik committed
866

867
        for model_class in self.all_model_classes:
Lysandre's avatar
Lysandre committed
868
869
870
871
            (
                config,
                inputs_dict,
            ) = self.model_tester.prepare_config_and_inputs_for_common()
872
873
874

            if "head_mask" in inputs_dict:
                del inputs_dict["head_mask"]
875

876
            inputs_dict["output_attentions"] = True
877
878
879
880
            config.output_hidden_states = False
            model = model_class(config=config)
            model.to(torch_device)
            model.eval()
881
882
883
884
            heads_to_prune = {
                0: list(range(1, self.model_tester.num_attention_heads)),
                -1: [0],
            }
885
            model.prune_heads(heads_to_prune)
886

887
            with tempfile.TemporaryDirectory() as temp_dir_name:
888
889
                model.save_pretrained(temp_dir_name)
                model = model_class.from_pretrained(temp_dir_name)
890
                model.to(torch_device)
891

892
            with torch.no_grad():
893
                outputs = model(**self._prepare_for_class(inputs_dict, model_class))
894
895
896
897
            attentions = outputs[-1]
            self.assertEqual(attentions[0].shape[-3], 1)
            self.assertEqual(attentions[1].shape[-3], self.model_tester.num_attention_heads)
            self.assertEqual(attentions[-1].shape[-3], self.model_tester.num_attention_heads - 1)
898

Patrick von Platen's avatar
Patrick von Platen committed
899
900
    def test_head_pruning_save_load_from_config_init(self):
        if not self.test_pruning:
901
            return
902

903
        for model_class in self.all_model_classes:
Lysandre's avatar
Lysandre committed
904
905
906
907
            (
                config,
                inputs_dict,
            ) = self.model_tester.prepare_config_and_inputs_for_common()
908

909
910
            if "head_mask" in inputs_dict:
                del inputs_dict["head_mask"]
911

912
            inputs_dict["output_attentions"] = True
913
            config.output_hidden_states = False
914

915
916
917
918
            heads_to_prune = {
                0: list(range(1, self.model_tester.num_attention_heads)),
                -1: [0],
            }
919
            config.pruned_heads = heads_to_prune
920

921
922
923
            model = model_class(config=config)
            model.to(torch_device)
            model.eval()
924

925
            with torch.no_grad():
926
                outputs = model(**self._prepare_for_class(inputs_dict, model_class))
927
            attentions = outputs[-1]
928

929
930
931
            self.assertEqual(attentions[0].shape[-3], 1)
            self.assertEqual(attentions[1].shape[-3], self.model_tester.num_attention_heads)
            self.assertEqual(attentions[-1].shape[-3], self.model_tester.num_attention_heads - 1)
932

Patrick von Platen's avatar
Patrick von Platen committed
933
934
    def test_head_pruning_integration(self):
        if not self.test_pruning:
935
            return
936

937
        for model_class in self.all_model_classes:
Lysandre's avatar
Lysandre committed
938
939
940
941
            (
                config,
                inputs_dict,
            ) = self.model_tester.prepare_config_and_inputs_for_common()
942

943
944
            if "head_mask" in inputs_dict:
                del inputs_dict["head_mask"]
945

946
            inputs_dict["output_attentions"] = True
947
            config.output_hidden_states = False
948

949
950
            heads_to_prune = {0: [0], 1: [1, 2]}
            config.pruned_heads = heads_to_prune
951

952
953
954
            model = model_class(config=config)
            model.to(torch_device)
            model.eval()
955

956
            with torch.no_grad():
957
                outputs = model(**self._prepare_for_class(inputs_dict, model_class))
958
            attentions = outputs[-1]
959

960
961
962
963
            self.assertEqual(attentions[0].shape[-3], self.model_tester.num_attention_heads - 1)
            self.assertEqual(attentions[1].shape[-3], self.model_tester.num_attention_heads - 2)
            self.assertEqual(attentions[2].shape[-3], self.model_tester.num_attention_heads)
            self.assertEqual(attentions[3].shape[-3], self.model_tester.num_attention_heads)
thomwolf's avatar
thomwolf committed
964

965
            with tempfile.TemporaryDirectory() as temp_dir_name:
966
967
                model.save_pretrained(temp_dir_name)
                model = model_class.from_pretrained(temp_dir_name)
968
                model.to(torch_device)
thomwolf's avatar
thomwolf committed
969

970
            with torch.no_grad():
971
                outputs = model(**self._prepare_for_class(inputs_dict, model_class))
972
            attentions = outputs[-1]
LysandreJik's avatar
LysandreJik committed
973

974
975
976
977
            self.assertEqual(attentions[0].shape[-3], self.model_tester.num_attention_heads - 1)
            self.assertEqual(attentions[1].shape[-3], self.model_tester.num_attention_heads - 2)
            self.assertEqual(attentions[2].shape[-3], self.model_tester.num_attention_heads)
            self.assertEqual(attentions[3].shape[-3], self.model_tester.num_attention_heads)
thomwolf's avatar
thomwolf committed
978

979
980
            heads_to_prune = {0: [0], 2: [1, 2]}
            model.prune_heads(heads_to_prune)
981

982
            with torch.no_grad():
983
                outputs = model(**self._prepare_for_class(inputs_dict, model_class))
984
            attentions = outputs[-1]
985

986
987
988
989
            self.assertEqual(attentions[0].shape[-3], self.model_tester.num_attention_heads - 1)
            self.assertEqual(attentions[1].shape[-3], self.model_tester.num_attention_heads - 2)
            self.assertEqual(attentions[2].shape[-3], self.model_tester.num_attention_heads - 2)
            self.assertEqual(attentions[3].shape[-3], self.model_tester.num_attention_heads)
990

991
            self.assertDictEqual(model.config.pruned_heads, {0: [0], 1: [1, 2], 2: [1, 2]})
thomwolf's avatar
thomwolf committed
992

Patrick von Platen's avatar
Patrick von Platen committed
993
    def test_hidden_states_output(self):
Joseph Liu's avatar
Joseph Liu committed
994
        def check_hidden_states_output(inputs_dict, config, model_class):
995
            model = model_class(config)
996
            model.to(torch_device)
thomwolf's avatar
thomwolf committed
997
            model.eval()
Joseph Liu's avatar
Joseph Liu committed
998

thomwolf's avatar
thomwolf committed
999
            with torch.no_grad():
1000
                outputs = model(**self._prepare_for_class(inputs_dict, model_class))
1001
1002

            hidden_states = outputs.encoder_hidden_states if config.is_encoder_decoder else outputs.hidden_states
Patrick von Platen's avatar
Patrick von Platen committed
1003

Sylvain Gugger's avatar
Sylvain Gugger committed
1004
1005
1006
1007
            expected_num_layers = getattr(
                self.model_tester, "expected_num_hidden_layers", self.model_tester.num_hidden_layers + 1
            )
            self.assertEqual(len(hidden_states), expected_num_layers)
1008

Patrick von Platen's avatar
Patrick von Platen committed
1009
1010
1011
1012
1013
1014
1015
            if hasattr(self.model_tester, "encoder_seq_length"):
                seq_length = self.model_tester.encoder_seq_length
                if hasattr(self.model_tester, "chunk_length") and self.model_tester.chunk_length > 1:
                    seq_length = seq_length * self.model_tester.chunk_length
            else:
                seq_length = self.model_tester.seq_length

1016
            self.assertListEqual(
Lysandre's avatar
Lysandre committed
1017
1018
                list(hidden_states[0].shape[-2:]),
                [seq_length, self.model_tester.hidden_size],
1019
            )
thomwolf's avatar
thomwolf committed
1020

1021
1022
1023
1024
1025
1026
1027
1028
1029
1030
1031
1032
1033
            if config.is_encoder_decoder:
                hidden_states = outputs.decoder_hidden_states

                self.assertIsInstance(hidden_states, (list, tuple))
                self.assertEqual(len(hidden_states), expected_num_layers)
                seq_len = getattr(self.model_tester, "seq_length", None)
                decoder_seq_length = getattr(self.model_tester, "decoder_seq_length", seq_len)

                self.assertListEqual(
                    list(hidden_states[0].shape[-2:]),
                    [decoder_seq_length, self.model_tester.hidden_size],
                )

Joseph Liu's avatar
Joseph Liu committed
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
        config, inputs_dict = self.model_tester.prepare_config_and_inputs_for_common()

        for model_class in self.all_model_classes:
            inputs_dict["output_hidden_states"] = True
            check_hidden_states_output(inputs_dict, config, model_class)

            # check that output_hidden_states also work using config
            del inputs_dict["output_hidden_states"]
            config.output_hidden_states = True

            check_hidden_states_output(inputs_dict, config, model_class)

1046
1047
1048
    def test_retain_grad_hidden_states_attentions(self):
        config, inputs_dict = self.model_tester.prepare_config_and_inputs_for_common()
        config.output_hidden_states = True
1049
        config.output_attentions = self.has_attentions
1050
1051
1052
1053
1054
1055
1056
1057
1058

        # no need to test all models as different heads yield the same functionality
        model_class = self.all_model_classes[0]
        model = model_class(config)
        model.to(torch_device)

        inputs = self._prepare_for_class(inputs_dict, model_class)

        outputs = model(**inputs)
1059

1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
        output = outputs[0]

        if config.is_encoder_decoder:
            # Seq2Seq models
            encoder_hidden_states = outputs.encoder_hidden_states[0]
            encoder_hidden_states.retain_grad()

            decoder_hidden_states = outputs.decoder_hidden_states[0]
            decoder_hidden_states.retain_grad()

1070
1071
1072
1073
1074
1075
1076
1077
1078
            if self.has_attentions:
                encoder_attentions = outputs.encoder_attentions[0]
                encoder_attentions.retain_grad()

                decoder_attentions = outputs.decoder_attentions[0]
                decoder_attentions.retain_grad()

                cross_attentions = outputs.cross_attentions[0]
                cross_attentions.retain_grad()
1079
1080
1081
1082
1083

            output.flatten()[0].backward(retain_graph=True)

            self.assertIsNotNone(encoder_hidden_states.grad)
            self.assertIsNotNone(decoder_hidden_states.grad)
1084
1085
1086
1087
1088

            if self.has_attentions:
                self.assertIsNotNone(encoder_attentions.grad)
                self.assertIsNotNone(decoder_attentions.grad)
                self.assertIsNotNone(cross_attentions.grad)
1089
1090
1091
1092
        else:
            # Encoder-/Decoder-only models
            hidden_states = outputs.hidden_states[0]
            hidden_states.retain_grad()
1093
1094
1095
1096

            if self.has_attentions:
                attentions = outputs.attentions[0]
                attentions.retain_grad()
1097
1098
1099
1100

            output.flatten()[0].backward(retain_graph=True)

            self.assertIsNotNone(hidden_states.grad)
1101
1102
1103

            if self.has_attentions:
                self.assertIsNotNone(attentions.grad)
1104

Pradhy729's avatar
Pradhy729 committed
1105
    def test_feed_forward_chunking(self):
Lysandre's avatar
Lysandre committed
1106
1107
1108
1109
        (
            original_config,
            inputs_dict,
        ) = self.model_tester.prepare_config_and_inputs_for_common()
Pradhy729's avatar
Pradhy729 committed
1110
1111
1112
1113
1114
1115
1116
1117
1118
1119
1120
1121
1122
1123
1124
1125
1126
1127
        for model_class in self.all_model_classes:
            torch.manual_seed(0)
            config = copy.deepcopy(original_config)
            model = model_class(config)
            model.to(torch_device)
            model.eval()

            hidden_states_no_chunk = model(**self._prepare_for_class(inputs_dict, model_class))[0]

            torch.manual_seed(0)
            config.chunk_size_feed_forward = 1
            model = model_class(config)
            model.to(torch_device)
            model.eval()

            hidden_states_with_chunk = model(**self._prepare_for_class(inputs_dict, model_class))[0]
            self.assertTrue(torch.allclose(hidden_states_no_chunk, hidden_states_with_chunk, atol=1e-3))

1128
1129
1130
1131
1132
1133
1134
1135
1136
1137
1138
1139
1140
1141
1142
1143
1144
1145
1146
1147
1148
1149
1150
1151
1152
1153
1154
1155
1156
1157
1158
1159
1160
1161
1162
1163
1164
1165
1166
1167
1168
1169
1170
1171
1172
1173
1174
1175
1176
1177
1178
1179
1180
1181
1182
1183
1184
1185
1186
1187
1188
1189
1190
1191
1192
1193
1194
1195
1196
1197
1198
1199
1200
1201
1202
1203
1204
1205
1206
    def test_resize_position_vector_embeddings(self):
        if not self.test_resize_position_embeddings:
            return

        (
            original_config,
            inputs_dict,
        ) = self.model_tester.prepare_config_and_inputs_for_common()

        for model_class in self.all_model_classes:
            config = copy.deepcopy(original_config)
            model = model_class(config)
            model.to(torch_device)

            if self.model_tester.is_training is False:
                model.eval()

            max_position_embeddings = config.max_position_embeddings

            # Retrieve the embeddings and clone theme
            if model.config.is_encoder_decoder:
                encoder_model_embed, decoder_model_embed = model.get_position_embeddings()
                encoder_cloned_embeddings = encoder_model_embed.weight.clone()
                decoder_cloned_embeddings = decoder_model_embed.weight.clone()
            else:
                model_embed = model.get_position_embeddings()
                cloned_embeddings = model_embed.weight.clone()

            # Check that resizing the position embeddings with a larger max_position_embeddings increases
            # the model's postion embeddings size
            model.resize_position_embeddings(max_position_embeddings + 10)
            self.assertEqual(model.config.max_position_embeddings, max_position_embeddings + 10)

            # Check that it actually resizes the embeddings matrix
            if model.config.is_encoder_decoder:
                encoder_model_embed, decoder_model_embed = model.get_position_embeddings()
                self.assertEqual(encoder_model_embed.weight.shape[0], encoder_cloned_embeddings.shape[0] + 10)
                self.assertEqual(decoder_model_embed.weight.shape[0], decoder_cloned_embeddings.shape[0] + 10)
            else:
                model_embed = model.get_position_embeddings()
                self.assertEqual(model_embed.weight.shape[0], cloned_embeddings.shape[0] + 10)

            # Check that the model can still do a forward pass successfully (every parameter should be resized)
            model(**self._prepare_for_class(inputs_dict, model_class))

            # Check that resizing the position embeddings with a smaller max_position_embeddings decreases
            # the model's max_position_embeddings
            model.resize_position_embeddings(max_position_embeddings - 5)
            self.assertEqual(model.config.max_position_embeddings, max_position_embeddings - 5)

            # Check that it actually resizes the embeddings matrix
            if model.config.is_encoder_decoder:
                encoder_model_embed, decoder_model_embed = model.get_position_embeddings()
                self.assertEqual(encoder_model_embed.weight.shape[0], encoder_cloned_embeddings.shape[0] - 5)
                self.assertEqual(decoder_model_embed.weight.shape[0], decoder_cloned_embeddings.shape[0] - 5)
            else:
                model_embed = model.get_position_embeddings()
                self.assertEqual(model_embed.weight.shape[0], cloned_embeddings.shape[0] - 5)

            # Check that the model can still do a forward pass successfully (every parameter should be resized)
            model(**self._prepare_for_class(inputs_dict, model_class))

            # Check that adding and removing tokens has not modified the first part of the embedding matrix.
            models_equal = True

            if model.config.is_encoder_decoder:
                for p1, p2 in zip(encoder_cloned_embeddings, encoder_model_embed.weight):
                    if p1.data.ne(p2.data).sum() > 0:
                        models_equal = False
                for p1, p2 in zip(decoder_cloned_embeddings, decoder_model_embed.weight):
                    if p1.data.ne(p2.data).sum() > 0:
                        models_equal = False
            else:
                for p1, p2 in zip(cloned_embeddings, model_embed.weight):
                    if p1.data.ne(p2.data).sum() > 0:
                        models_equal = False

            self.assertTrue(models_equal)

Patrick von Platen's avatar
Patrick von Platen committed
1207
    def test_resize_tokens_embeddings(self):
Lysandre's avatar
Lysandre committed
1208
1209
1210
1211
        (
            original_config,
            inputs_dict,
        ) = self.model_tester.prepare_config_and_inputs_for_common()
Patrick von Platen's avatar
Patrick von Platen committed
1212
        if not self.test_resize_embeddings:
1213
1214
1215
1216
1217
            return

        for model_class in self.all_model_classes:
            config = copy.deepcopy(original_config)
            model = model_class(config)
1218
            model.to(torch_device)
1219

Patrick von Platen's avatar
Patrick von Platen committed
1220
1221
1222
            if self.model_tester.is_training is False:
                model.eval()

1223
1224
1225
1226
1227
1228
1229
1230
1231
1232
            model_vocab_size = config.vocab_size
            # Retrieve the embeddings and clone theme
            model_embed = model.resize_token_embeddings(model_vocab_size)
            cloned_embeddings = model_embed.weight.clone()

            # Check that resizing the token embeddings with a larger vocab size increases the model's vocab size
            model_embed = model.resize_token_embeddings(model_vocab_size + 10)
            self.assertEqual(model.config.vocab_size, model_vocab_size + 10)
            # Check that it actually resizes the embeddings matrix
            self.assertEqual(model_embed.weight.shape[0], cloned_embeddings.shape[0] + 10)
1233
            # Check that the model can still do a forward pass successfully (every parameter should be resized)
1234
            model(**self._prepare_for_class(inputs_dict, model_class))
1235
1236
1237
1238
1239
1240
1241

            # Check that resizing the token embeddings with a smaller vocab size decreases the model's vocab size
            model_embed = model.resize_token_embeddings(model_vocab_size - 15)
            self.assertEqual(model.config.vocab_size, model_vocab_size - 15)
            # Check that it actually resizes the embeddings matrix
            self.assertEqual(model_embed.weight.shape[0], cloned_embeddings.shape[0] - 15)

1242
1243
1244
            # Check that the model can still do a forward pass successfully (every parameter should be resized)
            # Input ids should be clamped to the maximum size of the vocabulary
            inputs_dict["input_ids"].clamp_(max=model_vocab_size - 15 - 1)
1245
1246
1247
1248

            # make sure that decoder_input_ids are resized as well
            if "decoder_input_ids" in inputs_dict:
                inputs_dict["decoder_input_ids"].clamp_(max=model_vocab_size - 15 - 1)
1249
            model(**self._prepare_for_class(inputs_dict, model_class))
1250

1251
1252
1253
1254
1255
1256
1257
1258
            # Check that adding and removing tokens has not modified the first part of the embedding matrix.
            models_equal = True
            for p1, p2 in zip(cloned_embeddings, model_embed.weight):
                if p1.data.ne(p2.data).sum() > 0:
                    models_equal = False

            self.assertTrue(models_equal)

1259
1260
1261
1262
1263
1264
1265
1266
1267
1268
1269
1270
1271
1272
1273
1274
1275
1276
1277
1278
1279
1280
1281
1282
1283
1284
1285
1286
1287
1288
1289
1290
1291
1292
1293
1294
1295
1296
1297
1298
1299
1300
1301
1302
1303
1304
1305
1306
1307
1308
1309
    def test_resize_embeddings_untied(self):
        (
            original_config,
            inputs_dict,
        ) = self.model_tester.prepare_config_and_inputs_for_common()
        if not self.test_resize_embeddings:
            return

        original_config.tie_word_embeddings = False

        # if model cannot untied embeddings -> leave test
        if original_config.tie_word_embeddings:
            return

        for model_class in self.all_model_classes:
            config = copy.deepcopy(original_config)
            model = model_class(config).to(torch_device)

            # if no output embeddings -> leave test
            if model.get_output_embeddings() is None:
                continue

            # Check that resizing the token embeddings with a larger vocab size increases the model's vocab size
            model_vocab_size = config.vocab_size
            model.resize_token_embeddings(model_vocab_size + 10)
            self.assertEqual(model.config.vocab_size, model_vocab_size + 10)
            output_embeds = model.get_output_embeddings()
            self.assertEqual(output_embeds.weight.shape[0], model_vocab_size + 10)
            # Check bias if present
            if output_embeds.bias is not None:
                self.assertEqual(output_embeds.bias.shape[0], model_vocab_size + 10)
            # Check that the model can still do a forward pass successfully (every parameter should be resized)
            model(**self._prepare_for_class(inputs_dict, model_class))

            # Check that resizing the token embeddings with a smaller vocab size decreases the model's vocab size
            model.resize_token_embeddings(model_vocab_size - 15)
            self.assertEqual(model.config.vocab_size, model_vocab_size - 15)
            # Check that it actually resizes the embeddings matrix
            output_embeds = model.get_output_embeddings()
            self.assertEqual(output_embeds.weight.shape[0], model_vocab_size - 15)
            # Check bias if present
            if output_embeds.bias is not None:
                self.assertEqual(output_embeds.bias.shape[0], model_vocab_size - 15)
            # Check that the model can still do a forward pass successfully (every parameter should be resized)
            # Input ids should be clamped to the maximum size of the vocabulary
            inputs_dict["input_ids"].clamp_(max=model_vocab_size - 15 - 1)
            if "decoder_input_ids" in inputs_dict:
                inputs_dict["decoder_input_ids"].clamp_(max=model_vocab_size - 15 - 1)
            # Check that the model can still do a forward pass successfully (every parameter should be resized)
            model(**self._prepare_for_class(inputs_dict, model_class))

Patrick von Platen's avatar
Patrick von Platen committed
1310
    def test_model_common_attributes(self):
1311
1312
1313
1314
        config, inputs_dict = self.model_tester.prepare_config_and_inputs_for_common()

        for model_class in self.all_model_classes:
            model = model_class(config)
1315
1316
            self.assertIsInstance(model.get_input_embeddings(), (nn.Embedding, AdaptiveEmbedding))
            model.set_input_embeddings(nn.Embedding(10, 10))
1317
            x = model.get_output_embeddings()
1318
            self.assertTrue(x is None or isinstance(x, nn.Linear))
1319

1320
1321
1322
1323
1324
1325
1326
    def test_model_main_input_name(self):
        for model_class in self.all_model_classes:
            model_signature = inspect.signature(getattr(model_class, "forward"))
            # The main input is the name of the argument after `self`
            observed_main_input_name = list(model_signature.parameters.keys())[1]
            self.assertEqual(model_class.main_input_name, observed_main_input_name)

1327
    def test_correct_missing_keys(self):
1328
1329
        if not self.test_missing_keys:
            return
1330
1331
1332
1333
1334
1335
1336
1337
1338
1339
        config, _ = self.model_tester.prepare_config_and_inputs_for_common()

        for model_class in self.all_model_classes:
            model = model_class(config)
            base_model_prefix = model.base_model_prefix

            if hasattr(model, base_model_prefix):
                with tempfile.TemporaryDirectory() as temp_dir_name:
                    model.base_model.save_pretrained(temp_dir_name)
                    model, loading_info = model_class.from_pretrained(temp_dir_name, output_loading_info=True)
1340
                    with self.subTest(msg=f"Missing keys for {model.__class__.__name__}"):
1341
1342
                        self.assertGreater(len(loading_info["missing_keys"]), 0)

1343
1344
1345
1346
1347
1348
1349
1350
1351
1352
1353
1354
1355
1356
1357
1358
1359
1360
1361
1362
1363
1364
1365
1366
1367
1368
1369
1370
1371
1372
1373
1374
1375
1376
1377
1378
1379
1380
1381
1382
1383
1384
1385
1386
1387
1388
1389
1390
    def test_tie_model_weights(self):
        if not self.test_torchscript:
            return

        config, inputs_dict = self.model_tester.prepare_config_and_inputs_for_common()

        def check_same_values(layer_1, layer_2):
            equal = True
            for p1, p2 in zip(layer_1.weight, layer_2.weight):
                if p1.data.ne(p2.data).sum() > 0:
                    equal = False
            return equal

        for model_class in self.all_model_classes:
            config.torchscript = True
            model_not_tied = model_class(config)
            if model_not_tied.get_output_embeddings() is None:
                continue

            config_tied = copy.deepcopy(config)
            config_tied.torchscript = False
            model_tied = model_class(config_tied)
            params_tied = list(model_tied.parameters())
            # Check that the embedding layer and decoding layer are the same in size and in value
            # self.assertTrue(check_same_values(embeddings, decoding))

            # # Check that after modification, they remain the same.
            # embeddings.weight.data.div_(2)
            # # Check that the embedding layer and decoding layer are the same in size and in value
            # self.assertTrue(embeddings.weight.shape, decoding.weight.shape)
            # self.assertTrue(check_same_values(embeddings, decoding))

            # # Check that after modification, they remain the same.
            # decoding.weight.data.div_(4)
            # # Check that the embedding layer and decoding layer are the same in size and in value
            # self.assertTrue(embeddings.weight.shape, decoding.weight.shape)
            # self.assertTrue(check_same_values(embeddings, decoding))

            # Check that after resize they remain tied.
            model_tied.resize_token_embeddings(config.vocab_size + 10)
            params_tied_2 = list(model_tied.parameters())
            self.assertEqual(len(params_tied_2), len(params_tied))

            # decoding.weight.data.mul_(20)
            # # Check that the embedding layer and decoding layer are the same in size and in value
            # self.assertTrue(model.transformer.wte.weight.shape, model.lm_head.weight.shape)
            # self.assertTrue(check_same_values(model.transformer.wte, model.lm_head))

1391
1392
1393
    def test_model_outputs_equivalence(self):
        config, inputs_dict = self.model_tester.prepare_config_and_inputs_for_common()

Sam Shleifer's avatar
Sam Shleifer committed
1394
1395
1396
1397
        def set_nan_tensor_to_zero(t):
            t[t != t] = 0
            return t

1398
1399
1400
1401
1402
1403
1404
1405
1406
        def check_equivalence(model, tuple_inputs, dict_inputs, additional_kwargs={}):
            with torch.no_grad():
                tuple_output = model(**tuple_inputs, return_dict=False, **additional_kwargs)
                dict_output = model(**dict_inputs, return_dict=True, **additional_kwargs).to_tuple()

                def recursive_check(tuple_object, dict_object):
                    if isinstance(tuple_object, (List, Tuple)):
                        for tuple_iterable_value, dict_iterable_value in zip(tuple_object, dict_object):
                            recursive_check(tuple_iterable_value, dict_iterable_value)
NielsRogge's avatar
NielsRogge committed
1407
1408
1409
1410
1411
                    elif isinstance(tuple_object, Dict):
                        for tuple_iterable_value, dict_iterable_value in zip(
                            tuple_object.values(), dict_object.values()
                        ):
                            recursive_check(tuple_iterable_value, dict_iterable_value)
1412
1413
1414
1415
                    elif tuple_object is None:
                        return
                    else:
                        self.assertTrue(
Sam Shleifer's avatar
Sam Shleifer committed
1416
1417
1418
                            torch.allclose(
                                set_nan_tensor_to_zero(tuple_object), set_nan_tensor_to_zero(dict_object), atol=1e-5
                            ),
1419
                            msg=f"Tuple and dict output are not equal. Difference: {torch.max(torch.abs(tuple_object - dict_object))}. Tuple has `nan`: {torch.isnan(tuple_object).any()} and `inf`: {torch.isinf(tuple_object)}. Dict has `nan`: {torch.isnan(dict_object).any()} and `inf`: {torch.isinf(dict_object)}.",
1420
1421
1422
1423
1424
1425
1426
1427
1428
1429
1430
1431
1432
1433
1434
1435
1436
1437
1438
1439
1440
1441
1442
1443
1444
                        )

                recursive_check(tuple_output, dict_output)

        for model_class in self.all_model_classes:
            model = model_class(config)
            model.to(torch_device)
            model.eval()

            tuple_inputs = self._prepare_for_class(inputs_dict, model_class)
            dict_inputs = self._prepare_for_class(inputs_dict, model_class)
            check_equivalence(model, tuple_inputs, dict_inputs)

            tuple_inputs = self._prepare_for_class(inputs_dict, model_class, return_labels=True)
            dict_inputs = self._prepare_for_class(inputs_dict, model_class, return_labels=True)
            check_equivalence(model, tuple_inputs, dict_inputs)

            tuple_inputs = self._prepare_for_class(inputs_dict, model_class)
            dict_inputs = self._prepare_for_class(inputs_dict, model_class)
            check_equivalence(model, tuple_inputs, dict_inputs, {"output_hidden_states": True})

            tuple_inputs = self._prepare_for_class(inputs_dict, model_class, return_labels=True)
            dict_inputs = self._prepare_for_class(inputs_dict, model_class, return_labels=True)
            check_equivalence(model, tuple_inputs, dict_inputs, {"output_hidden_states": True})

1445
1446
1447
1448
            if self.has_attentions:
                tuple_inputs = self._prepare_for_class(inputs_dict, model_class)
                dict_inputs = self._prepare_for_class(inputs_dict, model_class)
                check_equivalence(model, tuple_inputs, dict_inputs, {"output_attentions": True})
1449

1450
1451
1452
1453
1454
1455
1456
1457
1458
                tuple_inputs = self._prepare_for_class(inputs_dict, model_class, return_labels=True)
                dict_inputs = self._prepare_for_class(inputs_dict, model_class, return_labels=True)
                check_equivalence(model, tuple_inputs, dict_inputs, {"output_attentions": True})

                tuple_inputs = self._prepare_for_class(inputs_dict, model_class, return_labels=True)
                dict_inputs = self._prepare_for_class(inputs_dict, model_class, return_labels=True)
                check_equivalence(
                    model, tuple_inputs, dict_inputs, {"output_hidden_states": True, "output_attentions": True}
                )
1459

1460
1461
1462
1463
1464
1465
1466
    @is_pt_tf_cross_test
    def test_pt_tf_model_equivalence(self):
        import numpy as np
        import tensorflow as tf

        import transformers

1467
1468
1469
1470
1471
1472
1473
1474
1475
1476
1477
1478
1479
1480
1481
1482
1483
1484
1485
1486
1487
1488
1489
1490
1491
1492
1493
1494
1495
1496
1497
1498
1499
1500
1501
1502
1503
1504
1505
1506
1507
1508
1509
1510
1511
1512
1513
1514
1515
1516
1517
1518
1519
1520
1521
1522
1523
1524
1525
1526
1527
1528
1529
1530
1531
1532
1533
1534
1535
1536
1537
1538
1539
1540
1541
1542
1543
1544
1545
1546
1547
1548
1549
1550
1551
1552
1553
1554
1555
1556
1557
1558
1559
1560
1561
1562
1563
1564
1565
1566
1567
1568
1569
1570
1571
1572
1573
1574
1575
1576
1577
1578
1579
1580
1581
1582
1583
1584
1585
1586
1587
1588
1589
1590
1591
1592
1593
1594
1595
1596
1597
1598
1599
1600
1601
1602
1603
1604
1605
1606
1607
1608
1609
1610
1611
1612
1613
1614
1615
1616
1617
1618
1619
1620
1621
1622
1623
1624
1625
1626
1627
1628
1629
1630
1631
1632
1633
1634
1635
1636
1637
1638
1639
1640
1641
1642
1643
1644
1645
1646
1647
1648
1649
1650
1651
1652
1653
        def prepare_tf_inputs_from_pt_inputs(pt_inputs_dict):

            tf_inputs_dict = {}
            for key, tensor in pt_inputs_dict.items():
                # skip key that does not exist in tf
                if type(tensor) == bool:
                    tf_inputs_dict[key] = tensor
                elif key == "input_values":
                    tf_inputs_dict[key] = tf.convert_to_tensor(tensor.cpu().numpy(), dtype=tf.float32)
                elif key == "pixel_values":
                    tf_inputs_dict[key] = tf.convert_to_tensor(tensor.cpu().numpy(), dtype=tf.float32)
                elif key == "input_features":
                    tf_inputs_dict[key] = tf.convert_to_tensor(tensor.cpu().numpy(), dtype=tf.float32)
                # To deal with the edge cases from `TFTapasForQuestionAnswering`.
                # PyTorch can deal with type casting automatically, but TensorFlow is more strict!
                # TODO: find a clean/better way to deal with these extra keys that are not common.
                elif key in ["float_answer", "numeric_values", "numeric_values_scale"]:
                    tf_inputs_dict[key] = tf.convert_to_tensor(tensor.cpu().numpy(), dtype=tf.float32)
                else:
                    tf_inputs_dict[key] = tf.convert_to_tensor(tensor.cpu().numpy(), dtype=tf.int32)

            return tf_inputs_dict

        def check_outputs(tf_outputs, pt_outputs, model_class, names):
            """
            Args:
                model_class: The class of the model that is currently testing. For example, `TFBertModel`,
                    TFBertForMaskedLM`, `TFBertForSequenceClassification`, etc. Currently unused, but it could make
                    debugging easier and faster.

                names: A string, or a tuple of strings. These specify what tf_outputs/pt_outputs represent in the model outputs.
                    Currently unused, but in the future, we could use this information to make the error message clearer
                    by giving the name(s) of the output tensor(s) with large difference(s) between PT and TF.
            """

            # Some issue (`about past_key_values`) to solve (e.g. `TFPegasusForConditionalGeneration`) in a separate PR.
            if names == "past_key_values":
                return

            # Allow `list` because `(TF)TransfoXLModelOutput.mems` is a list of tensors.
            if type(tf_outputs) in [tuple, list]:
                self.assertEqual(type(tf_outputs), type(pt_outputs))
                self.assertEqual(len(tf_outputs), len(pt_outputs))
                if type(names) == tuple:
                    for tf_output, pt_output, name in zip(tf_outputs, pt_outputs, names):
                        check_outputs(tf_output, pt_output, model_class, names=name)
                elif type(names) == str:
                    for idx, (tf_output, pt_output) in enumerate(zip(tf_outputs, pt_outputs)):
                        check_outputs(tf_output, pt_output, model_class, names=f"{names}_{idx}")
                else:
                    raise ValueError(f"`names` should be a `tuple` or a string. Got {type(names)} instead.")
            elif isinstance(tf_outputs, tf.Tensor):
                self.assertTrue(isinstance(pt_outputs, torch.Tensor))

                tf_outputs = tf_outputs.numpy()
                pt_outputs = pt_outputs.detach().to("cpu").numpy()

                tf_nans = np.isnan(tf_outputs)
                pt_nans = np.isnan(pt_outputs)

                pt_outputs[tf_nans] = 0
                tf_outputs[tf_nans] = 0
                pt_outputs[pt_nans] = 0
                tf_outputs[pt_nans] = 0

                max_diff = np.amax(np.abs(tf_outputs - pt_outputs))
                self.assertLessEqual(max_diff, 1e-5)
            else:
                raise ValueError(
                    f"`tf_outputs` should be a `tuple` or an instance of `tf.Tensor`. Got {type(tf_outputs)} instead."
                )

        def check_pt_tf_models(tf_model, pt_model, pt_inputs_dict, pt_inputs_dict_maybe_with_labels):

            # send pytorch model to the correct device
            pt_model.to(torch_device)

            # Check predictions on first output (logits/hidden-states) are close enough given low-level computational differences
            pt_model.eval()

            tf_inputs_dict = prepare_tf_inputs_from_pt_inputs(pt_inputs_dict)
            tf_inputs_dict_maybe_with_labels = prepare_tf_inputs_from_pt_inputs(pt_inputs_dict_maybe_with_labels)

            # send pytorch inputs to the correct device
            pt_inputs_dict = {
                k: v.to(device=torch_device) if isinstance(v, torch.Tensor) else v for k, v in pt_inputs_dict.items()
            }
            pt_inputs_dict_maybe_with_labels = {
                k: v.to(device=torch_device) if isinstance(v, torch.Tensor) else v
                for k, v in pt_inputs_dict_maybe_with_labels.items()
            }

            # Original test: check without `labels`
            with torch.no_grad():
                pt_outputs = pt_model(**pt_inputs_dict)
            tf_outputs = tf_model(tf_inputs_dict)

            tf_keys = tuple([k for k, v in tf_outputs.items() if v is not None])
            pt_keys = tuple([k for k, v in pt_outputs.items() if v is not None])

            self.assertEqual(tf_keys, pt_keys)
            check_outputs(tf_outputs.to_tuple(), pt_outputs.to_tuple(), model_class, names=tf_keys)

            # check the case where `labels` is passed
            has_labels = any(
                x in tf_inputs_dict_maybe_with_labels for x in ["labels", "next_sentence_label", "start_positions"]
            )
            if has_labels:

                with torch.no_grad():
                    pt_outputs = pt_model(**pt_inputs_dict_maybe_with_labels)
                tf_outputs = tf_model(tf_inputs_dict_maybe_with_labels)

                # Some models' output class don't have `loss` attribute despite `labels` is used.
                # TODO: identify which models
                tf_loss = getattr(tf_outputs, "loss", None)
                pt_loss = getattr(pt_outputs, "loss", None)

                # Some PT models return loss while the corresponding TF models don't (i.e. `None` for `loss`).
                #   - FlaubertWithLMHeadModel
                #   - FunnelForPreTraining
                #   - ElectraForPreTraining
                #   - XLMWithLMHeadModel
                # TODO: Fix PT/TF diff -> remove this condition to fail the test if a diff occurs
                if not ((tf_loss is None and pt_loss is None) or (tf_loss is not None and pt_loss is not None)):
                    if model_class.__name__ not in [
                        "FlaubertWithLMHeadModel",
                        "FunnelForPreTraining",
                        "ElectraForPreTraining",
                        "XLMWithLMHeadModel",
                        "TransfoXLLMHeadModel",
                    ]:
                        self.assertEqual(tf_loss is None, pt_loss is None)

                tf_keys = tuple([k for k, v in tf_outputs.items() if v is not None])
                pt_keys = tuple([k for k, v in pt_outputs.items() if v is not None])

                # TODO: remove these 2 conditions once the above TODOs (above loss) are implemented
                # (Also, `TFTransfoXLLMHeadModel` has no `loss` while `TransfoXLLMHeadModel` return `losses`)
                if tf_keys != pt_keys:
                    if model_class.__name__ not in [
                        "FlaubertWithLMHeadModel",
                        "FunnelForPreTraining",
                        "ElectraForPreTraining",
                        "XLMWithLMHeadModel",
                        "TransfoXLLMHeadModel",
                    ]:
                        self.assertEqual(tf_keys, pt_keys)

                # Since we deliberately make some tests pass above (regarding the `loss`), let's still try to test
                # some remaining attributes in the outputs.
                # TODO: remove this block of `index` computing once the above TODOs (above loss) are implemented
                # compute the 1st `index` where `tf_keys` and `pt_keys` is different
                index = 0
                for _ in range(min(len(tf_keys), len(pt_keys))):
                    if tf_keys[index] == pt_keys[index]:
                        index += 1
                    else:
                        break
                if tf_keys[:index] != pt_keys[:index]:
                    self.assertEqual(tf_keys, pt_keys)

                # Some models require extra condition to return loss. For example, `(TF)BertForPreTraining` requires
                # both`labels` and `next_sentence_label`.
                if tf_loss is not None and pt_loss is not None:

                    # check anything else than `loss`
                    keys = tuple([k for k in tf_keys])
                    check_outputs(tf_outputs[1:index], pt_outputs[1:index], model_class, names=keys[1:index])

                    # check `loss`

                    # tf models returned loss is usually a tensor rather than a scalar.
                    # (see `hf_compute_loss`: it uses `tf.keras.losses.Reduction.NONE`)
                    # Change it here to a scalar to match PyTorch models' loss
                    tf_loss = tf.math.reduce_mean(tf_loss).numpy()
                    pt_loss = pt_loss.detach().to("cpu").numpy()

                    tf_nans = np.isnan(tf_loss)
                    pt_nans = np.isnan(pt_loss)
                    # the 2 losses need to be both nan or both not nan
                    self.assertEqual(tf_nans, pt_nans)

                    if not tf_nans:
                        max_diff = np.amax(np.abs(tf_loss - pt_loss))
                        self.assertLessEqual(max_diff, 1e-5)

1654
1655
1656
1657
1658
1659
1660
1661
1662
        config, inputs_dict = self.model_tester.prepare_config_and_inputs_for_common()

        for model_class in self.all_model_classes:
            tf_model_class_name = "TF" + model_class.__name__  # Add the "TF" at the beginning

            if not hasattr(transformers, tf_model_class_name):
                # transformers does not have TF version yet
                return

1663
1664
            if self.has_attentions:
                config.output_attentions = True
1665

1666
1667
1668
1669
1670
1671
1672
1673
1674
1675
1676
1677
1678
1679
1680
1681
1682
1683
1684
1685
1686
            for k in ["attention_mask", "encoder_attention_mask", "decoder_attention_mask"]:
                if k in inputs_dict:
                    attention_mask = inputs_dict[k]
                    # make sure no all 0s attention masks - to avoid failure at this moment.
                    # TODO: remove this line once the TODO below is implemented.
                    attention_mask = torch.ones_like(attention_mask, dtype=torch.int32)
                    # Here we make the first sequence with all 0s as attention mask.
                    # Currently, this will fail for `TFWav2Vec2Model`. This is caused by the different large negative
                    # values, like `1e-4`, `1e-9`, `1e-30` and `-inf` for attention mask across models/frameworks.
                    # TODO: enable this block once the large negative values thing is cleaned up.
                    # (see https://github.com/huggingface/transformers/issues/14859)
                    # attention_mask = torch.cat(
                    #     [
                    #         torch.zeros_like(attention_mask[:1], dtype=torch.int32),
                    #         attention_mask[1:].type(dtype=torch.int32)
                    #     ],
                    #     dim=0
                    # )
                    inputs_dict[k] = attention_mask

            tf_model_class = getattr(transformers, tf_model_class_name)
1687
1688
1689
1690
1691
1692
1693
1694
1695
1696
1697
1698

            tf_model = tf_model_class(config)
            pt_model = model_class(config)

            # make sure only tf inputs are forward that actually exist in function args
            tf_input_keys = set(inspect.signature(tf_model.call).parameters.keys())

            # remove all head masks
            tf_input_keys.discard("head_mask")
            tf_input_keys.discard("cross_attn_head_mask")
            tf_input_keys.discard("decoder_head_mask")

1699
1700
            pt_inputs_dict = self._prepare_for_class(inputs_dict, model_class)
            pt_inputs_dict_maybe_with_labels = self._prepare_for_class(inputs_dict, model_class, return_labels=True)
1701

1702
1703
1704
1705
            pt_inputs_dict = {k: v for k, v in pt_inputs_dict.items() if k in tf_input_keys}
            pt_inputs_dict_maybe_with_labels = {
                k: v for k, v in pt_inputs_dict_maybe_with_labels.items() if k in tf_input_keys
            }
1706
1707

            # Check we can load pt model in tf and vice-versa with model => model functions
1708
            tf_inputs_dict = prepare_tf_inputs_from_pt_inputs(pt_inputs_dict)
1709
            tf_model = transformers.load_pytorch_model_in_tf2_model(tf_model, pt_model, tf_inputs=tf_inputs_dict)
1710
            pt_model = transformers.load_tf2_model_in_pytorch_model(pt_model, tf_model)
1711

1712
            check_pt_tf_models(tf_model, pt_model, pt_inputs_dict, pt_inputs_dict_maybe_with_labels)
1713
1714
1715
1716
1717
1718
1719
1720
1721
1722

            # Check we can load pt model in tf and vice-versa with checkpoint => model functions
            with tempfile.TemporaryDirectory() as tmpdirname:
                pt_checkpoint_path = os.path.join(tmpdirname, "pt_model.bin")
                torch.save(pt_model.state_dict(), pt_checkpoint_path)
                tf_model = transformers.load_pytorch_checkpoint_in_tf2_model(tf_model, pt_checkpoint_path)

                tf_checkpoint_path = os.path.join(tmpdirname, "tf_model.h5")
                tf_model.save_weights(tf_checkpoint_path)
                pt_model = transformers.load_tf2_checkpoint_in_pytorch_model(pt_model, tf_checkpoint_path)
1723
                pt_model = pt_model.to(torch_device)
1724

1725
            check_pt_tf_models(tf_model, pt_model, pt_inputs_dict, pt_inputs_dict_maybe_with_labels)
1726
1727
1728
1729
1730
1731
1732
1733
1734
1735
1736
1737
1738
1739
1740
1741
1742
1743
1744
1745
1746
1747
1748
1749
1750
1751
1752
1753
1754
1755
1756
1757
1758
1759
1760
1761
1762
1763
1764
1765
1766
1767
1768
1769
1770
1771
1772
1773
1774
1775
1776
1777
1778
1779
1780
1781
1782
1783
1784
1785
1786
1787
1788
1789
1790
1791
1792
1793
1794
1795
1796
1797
1798
1799
1800
1801
1802
1803
1804
1805
1806
1807
1808
1809
1810
1811
1812
1813
1814
1815
1816
1817
1818
1819
1820
1821
1822
1823
1824
1825
1826
1827
1828
1829
1830
1831
1832
1833
1834
1835
1836
1837
1838
1839
1840
1841
1842
1843
1844
1845

    def assert_almost_equals(self, a: np.ndarray, b: np.ndarray, tol: float):
        diff = np.abs((a - b)).max()
        self.assertLessEqual(diff, tol, f"Difference between torch and flax is {diff} (>= {tol}).")

    @is_pt_flax_cross_test
    def test_equivalence_pt_to_flax(self):
        config, inputs_dict = self.model_tester.prepare_config_and_inputs_for_common()

        for model_class in self.all_model_classes:
            with self.subTest(model_class.__name__):

                # load PyTorch class
                pt_model = model_class(config).eval()
                # Flax models don't use the `use_cache` option and cache is not returned as a default.
                # So we disable `use_cache` here for PyTorch model.
                pt_model.config.use_cache = False

                fx_model_class_name = "Flax" + model_class.__name__

                if not hasattr(transformers, fx_model_class_name):
                    return

                fx_model_class = getattr(transformers, fx_model_class_name)

                # load Flax class
                fx_model = fx_model_class(config, dtype=jnp.float32)
                # make sure only flax inputs are forward that actually exist in function args
                fx_input_keys = inspect.signature(fx_model.__call__).parameters.keys()

                # prepare inputs
                pt_inputs = self._prepare_for_class(inputs_dict, model_class)

                # remove function args that don't exist in Flax
                pt_inputs = {k: v for k, v in pt_inputs.items() if k in fx_input_keys}

                fx_state = convert_pytorch_state_dict_to_flax(pt_model.state_dict(), fx_model)
                fx_model.params = fx_state

                with torch.no_grad():
                    pt_outputs = pt_model(**pt_inputs).to_tuple()

                # convert inputs to Flax
                fx_inputs = {k: np.array(v) for k, v in pt_inputs.items() if torch.is_tensor(v)}
                fx_outputs = fx_model(**fx_inputs).to_tuple()
                self.assertEqual(len(fx_outputs), len(pt_outputs), "Output lengths differ between Flax and PyTorch")
                for fx_output, pt_output in zip(fx_outputs, pt_outputs):
                    self.assert_almost_equals(fx_output, pt_output.numpy(), 4e-2)

                with tempfile.TemporaryDirectory() as tmpdirname:
                    pt_model.save_pretrained(tmpdirname)
                    fx_model_loaded = fx_model_class.from_pretrained(tmpdirname, from_pt=True)

                fx_outputs_loaded = fx_model_loaded(**fx_inputs).to_tuple()
                self.assertEqual(
                    len(fx_outputs_loaded), len(pt_outputs), "Output lengths differ between Flax and PyTorch"
                )
                for fx_output_loaded, pt_output in zip(fx_outputs_loaded, pt_outputs):
                    self.assert_almost_equals(fx_output_loaded, pt_output.numpy(), 4e-2)

    @is_pt_flax_cross_test
    def test_equivalence_flax_to_pt(self):
        config, inputs_dict = self.model_tester.prepare_config_and_inputs_for_common()

        for model_class in self.all_model_classes:
            with self.subTest(model_class.__name__):
                # load corresponding PyTorch class
                pt_model = model_class(config).eval()

                # So we disable `use_cache` here for PyTorch model.
                pt_model.config.use_cache = False

                fx_model_class_name = "Flax" + model_class.__name__

                if not hasattr(transformers, fx_model_class_name):
                    # no flax model exists for this class
                    return

                fx_model_class = getattr(transformers, fx_model_class_name)

                # load Flax class
                fx_model = fx_model_class(config, dtype=jnp.float32)
                # make sure only flax inputs are forward that actually exist in function args
                fx_input_keys = inspect.signature(fx_model.__call__).parameters.keys()

                pt_model = load_flax_weights_in_pytorch_model(pt_model, fx_model.params)

                # make sure weights are tied in PyTorch
                pt_model.tie_weights()

                # prepare inputs
                pt_inputs = self._prepare_for_class(inputs_dict, model_class)

                # remove function args that don't exist in Flax
                pt_inputs = {k: v for k, v in pt_inputs.items() if k in fx_input_keys}

                with torch.no_grad():
                    pt_outputs = pt_model(**pt_inputs).to_tuple()

                fx_inputs = {k: np.array(v) for k, v in pt_inputs.items() if torch.is_tensor(v)}

                fx_outputs = fx_model(**fx_inputs).to_tuple()
                self.assertEqual(len(fx_outputs), len(pt_outputs), "Output lengths differ between Flax and PyTorch")

                for fx_output, pt_output in zip(fx_outputs, pt_outputs):
                    self.assert_almost_equals(fx_output, pt_output.numpy(), 4e-2)

                with tempfile.TemporaryDirectory() as tmpdirname:
                    fx_model.save_pretrained(tmpdirname)
                    pt_model_loaded = model_class.from_pretrained(tmpdirname, from_flax=True)

                with torch.no_grad():
                    pt_outputs_loaded = pt_model_loaded(**pt_inputs).to_tuple()

                self.assertEqual(
                    len(fx_outputs), len(pt_outputs_loaded), "Output lengths differ between Flax and PyTorch"
                )
                for fx_output, pt_output in zip(fx_outputs, pt_outputs_loaded):
                    self.assert_almost_equals(fx_output, pt_output.numpy(), 4e-2)

Patrick von Platen's avatar
Patrick von Platen committed
1846
    def test_inputs_embeds(self):
1847
1848
1849
1850
        config, inputs_dict = self.model_tester.prepare_config_and_inputs_for_common()

        for model_class in self.all_model_classes:
            model = model_class(config)
1851
            model.to(torch_device)
thomwolf's avatar
thomwolf committed
1852
            model.eval()
1853

1854
            inputs = copy.deepcopy(self._prepare_for_class(inputs_dict, model_class))
Weizhen's avatar
Weizhen committed
1855

1856
1857
1858
1859
1860
1861
1862
1863
1864
            if not self.is_encoder_decoder:
                input_ids = inputs["input_ids"]
                del inputs["input_ids"]
            else:
                encoder_input_ids = inputs["input_ids"]
                decoder_input_ids = inputs.get("decoder_input_ids", encoder_input_ids)
                del inputs["input_ids"]
                inputs.pop("decoder_input_ids", None)

1865
1866
            wte = model.get_input_embeddings()
            if not self.is_encoder_decoder:
1867
                inputs["inputs_embeds"] = wte(input_ids)
1868
            else:
1869
1870
                inputs["inputs_embeds"] = wte(encoder_input_ids)
                inputs["decoder_inputs_embeds"] = wte(decoder_input_ids)
1871

thomwolf's avatar
thomwolf committed
1872
            with torch.no_grad():
Weizhen's avatar
Weizhen committed
1873
                model(**inputs)[0]
1874

1875
1876
    @require_torch_multi_gpu
    def test_multi_gpu_data_parallel_forward(self):
1877
1878
1879
1880
        config, inputs_dict = self.model_tester.prepare_config_and_inputs_for_common()

        # some params shouldn't be scattered by nn.DataParallel
        # so just remove them if they are present.
1881
        blacklist_non_batched_params = ["head_mask", "decoder_head_mask", "cross_attn_head_mask"]
1882
1883
1884
1885
1886
1887
1888
1889
1890
1891
1892
1893
1894
1895
        for k in blacklist_non_batched_params:
            inputs_dict.pop(k, None)

        # move input tensors to cuda:O
        for k, v in inputs_dict.items():
            if torch.is_tensor(v):
                inputs_dict[k] = v.to(0)

        for model_class in self.all_model_classes:
            model = model_class(config=config)
            model.to(0)
            model.eval()

            # Wrap model in nn.DataParallel
1896
            model = nn.DataParallel(model)
1897
            with torch.no_grad():
1898
                _ = model(**self._prepare_for_class(inputs_dict, model_class))
1899

1900
1901
1902
    @require_torch_multi_gpu
    def test_model_parallelization(self):
        if not self.test_model_parallel:
1903
            return
1904

1905
        # a candidate for testing_utils
1906
        def get_current_gpu_memory_use():
Patrick von Platen's avatar
Patrick von Platen committed
1907
            """returns a list of cuda memory allocations per GPU in MBs"""
1908
1909
1910
1911
1912

            per_device_memory = []
            for id in range(torch.cuda.device_count()):
                with torch.cuda.device(id):
                    per_device_memory.append(torch.cuda.memory_allocated() >> 20)
1913
1914
1915
1916
1917
1918
1919
1920
1921

            return per_device_memory

        # Needs a large model to see the difference.
        config = self.model_tester.get_large_model_config()

        for model_class in self.all_parallelizable_model_classes:
            torch.cuda.empty_cache()

1922
1923
1924
            # 1. single gpu memory load + unload + memory measurements
            # Retrieve initial memory usage (can easily be ~0.6-1.5GB if cuda-kernels have been preloaded by previous tests)
            memory_at_start = get_current_gpu_memory_use()
1925

1926
1927
            # Put model on device 0 and take a memory snapshot
            model = model_class(config)
1928
1929
1930
            model.to("cuda:0")
            memory_after_model_load = get_current_gpu_memory_use()

1931
1932
1933
            # The memory use on device 0 should be higher than it was initially.
            self.assertGreater(memory_after_model_load[0], memory_at_start[0])

1934
            del model
1935
            gc.collect()
1936
1937
            torch.cuda.empty_cache()

1938
1939
1940
            # 2. MP test
            # it's essential to re-calibrate the usage before the next stage
            memory_at_start = get_current_gpu_memory_use()
1941
1942

            # Spread model layers over multiple devices
1943
            model = model_class(config)
1944
1945
1946
1947
1948
            model.parallelize()
            memory_after_parallelization = get_current_gpu_memory_use()

            # Assert that the memory use on all devices is higher than it was when loaded only on CPU
            for n in range(torch.cuda.device_count()):
1949
                self.assertGreater(memory_after_parallelization[n], memory_at_start[n])
1950

1951
            # Assert that the memory use of device 0 is lower than it was when the entire model was loaded on it
1952
1953
            self.assertLess(memory_after_parallelization[0], memory_after_model_load[0])

1954
1955
            # Assert that the memory use of device 1 is higher than it was when the entire model was loaded
            # on device 0 and device 1 wasn't used at all
1956
1957
1958
            self.assertGreater(memory_after_parallelization[1], memory_after_model_load[1])

            del model
1959
            gc.collect()
1960
1961
1962
1963
1964
            torch.cuda.empty_cache()

    @require_torch_multi_gpu
    def test_model_parallel_equal_results(self):
        if not self.test_model_parallel:
1965
            return
1966
1967
1968
1969
1970
1971

        config, inputs_dict = self.model_tester.prepare_config_and_inputs_for_common()

        for model_class in self.all_parallelizable_model_classes:
            inputs_dict = self._prepare_for_class(inputs_dict, model_class)

1972
            def cast_to_device(dictionary, device):
1973
1974
1975
                output = {}
                for k, v in dictionary.items():
                    if isinstance(v, torch.Tensor):
1976
                        output[k] = v.to(device)
1977
1978
1979
1980
1981
                    else:
                        output[k] = v

                return output

1982
1983
1984
1985
1986
1987
            model = model_class(config)
            output = model(**cast_to_device(inputs_dict, "cpu"))

            model.parallelize()

            parallel_output = model(**cast_to_device(inputs_dict, "cuda:0"))
1988
1989
1990
1991
1992
1993
1994
1995

            for value, parallel_value in zip(output, parallel_output):
                if isinstance(value, torch.Tensor):
                    self.assertTrue(torch.allclose(value, parallel_value.to("cpu"), atol=1e-7))
                elif isinstance(value, (Tuple, List)):
                    for value_, parallel_value_ in zip(value, parallel_value):
                        self.assertTrue(torch.allclose(value_, parallel_value_.to("cpu"), atol=1e-7))

1996
1997
1998
1999
2000
2001
2002
2003
2004
2005
2006
2007
2008
2009
2010
2011
2012
2013
2014
2015
2016
2017
2018
2019
2020
2021
2022
2023
    @require_torch_multi_gpu
    def test_model_parallel_beam_search(self):
        if not self.test_model_parallel:
            return

        all_generative_and_parallelizable_model_classes = tuple(
            set(self.all_generative_model_classes).intersection(self.all_parallelizable_model_classes)
        )

        config, inputs_dict = self.model_tester.prepare_config_and_inputs_for_common()

        for model_class in all_generative_and_parallelizable_model_classes:
            inputs_dict = self._prepare_for_class(inputs_dict, model_class)
            model = model_class(config)

            def cast_to_device(dictionary, device):
                output = {}
                for k, v in dictionary.items():
                    if isinstance(v, torch.Tensor):
                        output[k] = v.to(device)
                    else:
                        output[k] = v

                return output

            model.parallelize()
            model.generate(**cast_to_device(inputs_dict, "cuda:0"), num_beams=2)

2024
2025
2026
2027
2028
2029
2030
2031
2032
2033
    def test_problem_types(self):
        config, inputs_dict = self.model_tester.prepare_config_and_inputs_for_common()

        problem_types = [
            {"title": "multi_label_classification", "num_labels": 2, "dtype": torch.float},
            {"title": "single_label_classification", "num_labels": 1, "dtype": torch.long},
            {"title": "regression", "num_labels": 1, "dtype": torch.float},
        ]

        for model_class in self.all_model_classes:
2034
2035
2036
2037
            if model_class not in [
                *get_values(MODEL_FOR_SEQUENCE_CLASSIFICATION_MAPPING),
                *get_values(MODEL_FOR_IMAGE_CLASSIFICATION_MAPPING),
            ]:
2038
2039
2040
2041
2042
2043
2044
2045
2046
2047
2048
2049
2050
2051
2052
2053
2054
2055
2056
                continue

            for problem_type in problem_types:
                with self.subTest(msg=f"Testing {model_class} with {problem_type['title']}"):

                    config.problem_type = problem_type["title"]
                    config.num_labels = problem_type["num_labels"]

                    model = model_class(config)
                    model.to(torch_device)
                    model.train()

                    inputs = self._prepare_for_class(inputs_dict, model_class, return_labels=True)

                    if problem_type["num_labels"] > 1:
                        inputs["labels"] = inputs["labels"].unsqueeze(1).repeat(1, problem_type["num_labels"])

                    inputs["labels"] = inputs["labels"].to(problem_type["dtype"])

2057
2058
2059
2060
2061
2062
                    # This tests that we do not trigger the warning form PyTorch "Using a target size that is different
                    # to the input size. This will likely lead to incorrect results due to broadcasting. Please ensure
                    # they have the same size." which is a symptom something in wrong for the regression problem.
                    # See https://github.com/huggingface/transformers/issues/11780
                    with warnings.catch_warnings(record=True) as warning_list:
                        loss = model(**inputs).loss
2063
2064
2065
2066
2067
                    for w in warning_list:
                        if "Using a target size that is different to the input size" in str(w.message):
                            raise ValueError(
                                f"Something is going wrong in the regression problem: intercepted {w.message}"
                            )
2068

2069
2070
                    loss.backward()

2071
    def test_load_with_mismatched_shapes(self):
2072
2073
        if not self.test_mismatched_shapes:
            return
2074
2075
2076
2077
2078
2079
2080
2081
2082
2083
2084
2085
        config, inputs_dict = self.model_tester.prepare_config_and_inputs_for_common()

        for model_class in self.all_model_classes:
            if model_class not in get_values(MODEL_FOR_SEQUENCE_CLASSIFICATION_MAPPING):
                continue

            with self.subTest(msg=f"Testing {model_class}"):
                with tempfile.TemporaryDirectory() as tmp_dir:
                    model = model_class(config)
                    model.save_pretrained(tmp_dir)

                    # Fails when we don't set ignore_mismatched_sizes=True
2086
                    with self.assertRaises(RuntimeError):
2087
                        new_model = AutoModelForSequenceClassification.from_pretrained(tmp_dir, num_labels=42)
2088
2089
                    with self.assertRaises(RuntimeError):
                        new_model_without_prefix = AutoModel.from_pretrained(tmp_dir, vocab_size=10)
2090
2091

                    logger = logging.get_logger("transformers.modeling_utils")
2092

2093
2094
2095
2096
2097
2098
2099
2100
2101
2102
                    with CaptureLogger(logger) as cl:
                        new_model = AutoModelForSequenceClassification.from_pretrained(
                            tmp_dir, num_labels=42, ignore_mismatched_sizes=True
                        )
                    self.assertIn("the shapes did not match", cl.out)
                    new_model.to(torch_device)
                    inputs = self._prepare_for_class(inputs_dict, model_class)
                    logits = new_model(**inputs).logits
                    self.assertEqual(logits.shape[1], 42)

2103
2104
2105
2106
2107
2108
2109
2110
2111
2112
2113
2114
                    with CaptureLogger(logger) as cl:
                        new_model_without_prefix = AutoModel.from_pretrained(
                            tmp_dir, vocab_size=10, ignore_mismatched_sizes=True
                        )
                    self.assertIn("the shapes did not match", cl.out)
                    input_ids = ids_tensor((2, 8), 10)
                    new_model_without_prefix.to(torch_device)
                    if self.is_encoder_decoder:
                        new_model_without_prefix(input_ids, decoder_input_ids=input_ids)
                    else:
                        new_model_without_prefix(input_ids)

2115

2116
global_rng = random.Random()
thomwolf's avatar
thomwolf committed
2117
2118


thomwolf's avatar
thomwolf committed
2119
def ids_tensor(shape, vocab_size, rng=None, name=None):
2120
    #  Creates a random int32 tensor of the shape within the vocab size
thomwolf's avatar
thomwolf committed
2121
    if rng is None:
2122
        rng = global_rng
thomwolf's avatar
thomwolf committed
2123

thomwolf's avatar
thomwolf committed
2124
2125
2126
    total_dims = 1
    for dim in shape:
        total_dims *= dim
thomwolf's avatar
thomwolf committed
2127

thomwolf's avatar
thomwolf committed
2128
2129
2130
    values = []
    for _ in range(total_dims):
        values.append(rng.randint(0, vocab_size - 1))
thomwolf's avatar
thomwolf committed
2131

2132
    return torch.tensor(data=values, dtype=torch.long, device=torch_device).view(shape).contiguous()
thomwolf's avatar
thomwolf committed
2133
2134


2135
2136
2137
2138
2139
2140
2141
def random_attention_mask(shape, rng=None, name=None):
    attn_mask = ids_tensor(shape, vocab_size=2, rng=None, name=None)
    # make sure that at least one token is attended to for each batch
    attn_mask[:, -1] = 1
    return attn_mask


2142
def floats_tensor(shape, scale=1.0, rng=None, name=None):
Patrick von Platen's avatar
Patrick von Platen committed
2143
    """Creates a random float32 tensor"""
2144
2145
2146
2147
2148
2149
2150
2151
2152
2153
2154
    if rng is None:
        rng = global_rng

    total_dims = 1
    for dim in shape:
        total_dims *= dim

    values = []
    for _ in range(total_dims):
        values.append(rng.random() * scale)

2155
    return torch.tensor(data=values, dtype=torch.float, device=torch_device).view(shape).contiguous()
2156
2157


2158
@require_torch
2159
class ModelUtilsTest(TestCasePlus):
2160
    @slow
Patrick von Platen's avatar
Patrick von Platen committed
2161
    def test_model_from_pretrained(self):
2162
        for model_name in BERT_PRETRAINED_MODEL_ARCHIVE_LIST[:1]:
thomwolf's avatar
thomwolf committed
2163
2164
2165
2166
2167
2168
2169
2170
            config = BertConfig.from_pretrained(model_name)
            self.assertIsNotNone(config)
            self.assertIsInstance(config, PretrainedConfig)

            model = BertModel.from_pretrained(model_name)
            model, loading_info = BertModel.from_pretrained(model_name, output_loading_info=True)
            self.assertIsNotNone(model)
            self.assertIsInstance(model, PreTrainedModel)
Lysandre Debut's avatar
Lysandre Debut committed
2171
2172
2173
2174
2175

            self.assertEqual(len(loading_info["missing_keys"]), 0)
            self.assertEqual(len(loading_info["unexpected_keys"]), 8)
            self.assertEqual(len(loading_info["mismatched_keys"]), 0)
            self.assertEqual(len(loading_info["error_msgs"]), 0)
thomwolf's avatar
thomwolf committed
2176
2177

            config = BertConfig.from_pretrained(model_name, output_attentions=True, output_hidden_states=True)
Lysandre Debut's avatar
Lysandre Debut committed
2178
2179
2180
2181

            # Not sure this is the intended behavior. TODO fix Lysandre & Thom
            config.name_or_path = model_name

thomwolf's avatar
thomwolf committed
2182
2183
2184
            model = BertModel.from_pretrained(model_name, output_attentions=True, output_hidden_states=True)
            self.assertEqual(model.config.output_hidden_states, True)
            self.assertEqual(model.config, config)
2185
2186
2187
2188
2189

    def test_model_from_pretrained_with_different_pretrained_model_name(self):
        model = T5ForConditionalGeneration.from_pretrained(TINY_T5)
        self.assertIsNotNone(model)

2190
2191
        logger = logging.get_logger("transformers.configuration_utils")
        with CaptureLogger(logger) as cl:
2192
            BertModel.from_pretrained(TINY_T5)
2193
        self.assertTrue("You are using a model of type t5 to instantiate a model of type bert" in cl.out)
Sylvain Gugger's avatar
Sylvain Gugger committed
2194

2195
2196
2197
2198
2199
2200
2201
2202
2203
2204
2205
2206
2207
2208
2209
2210
2211
2212
2213
2214
2215
2216
    @require_torch
    def test_model_from_config_torch_dtype(self):
        # test that the model can be instantiated with dtype of user's choice - as long as it's a
        # float dtype. To make it happen config.torch_dtype needs to be set before instantiating the
        # model from the config object.

        config = T5Config.from_pretrained(TINY_T5)
        model = AutoModel.from_config(config)
        # XXX: isn't supported
        # model = T5ForConditionalGeneration.from_config(config)
        self.assertEqual(model.dtype, torch.float32)

        model = AutoModel.from_config(config, torch_dtype=torch.float16)
        self.assertEqual(model.dtype, torch.float16)

        # torch.set_default_dtype() supports only float dtypes, so will fail with non-float type
        with self.assertRaises(ValueError):
            model = AutoModel.from_config(config, torch_dtype=torch.int64)

    @require_torch
    def test_model_from_pretrained_torch_dtype(self):
        # test that the model can be instantiated with dtype of either
2217
2218
        # 1. explicit from_pretrained's torch_dtype argument
        # 2. via autodiscovery by looking at model weights (torch_dtype="auto")
2219
        # so if a model.half() was saved, we want it to be instantiated as such.
2220
2221
        #
        # test an explicit model class, but also AutoModel separately as the latter goes through a different code path
2222
2223
2224
2225
2226
2227
2228
2229
2230
2231
2232
2233
2234
2235
2236
2237
2238
2239
2240
2241
2242
2243
        model_path = self.get_auto_remove_tmp_dir()

        # baseline - we know TINY_T5 is fp32 model
        model = T5ForConditionalGeneration.from_pretrained(TINY_T5)
        self.assertEqual(model.dtype, torch.float32)

        # test the default fp32 save_pretrained => from_pretrained cycle
        model.save_pretrained(model_path)
        model = T5ForConditionalGeneration.from_pretrained(model_path)
        self.assertEqual(model.dtype, torch.float32)
        # test with auto-detection
        model = T5ForConditionalGeneration.from_pretrained(model_path, torch_dtype="auto")
        self.assertEqual(model.dtype, torch.float32)

        # test forced loading in fp16 (even though the weights are in fp32)
        model = T5ForConditionalGeneration.from_pretrained(model_path, torch_dtype=torch.float16)
        self.assertEqual(model.dtype, torch.float16)

        # test fp16 save_pretrained, loaded with auto-detection
        model = model.half()
        model.save_pretrained(model_path)
        model = T5ForConditionalGeneration.from_pretrained(model_path, torch_dtype="auto")
2244
        self.assertEqual(model.config.torch_dtype, torch.float16)
2245
2246
        self.assertEqual(model.dtype, torch.float16)

2247
2248
2249
2250
2251
        # tests `config.torch_dtype` saving
        with open(f"{model_path}/config.json") as f:
            config_dict = json.load(f)
        self.assertEqual(config_dict["torch_dtype"], "float16")

2252
2253
2254
2255
        # test fp16 save_pretrained, loaded with the explicit fp16
        model = T5ForConditionalGeneration.from_pretrained(model_path, torch_dtype=torch.float16)
        self.assertEqual(model.dtype, torch.float16)

2256
2257
2258
2259
2260
2261
2262
2263
        # test AutoModel separately as it goes through a different path
        # test auto-detection
        model = AutoModel.from_pretrained(TINY_T5, torch_dtype="auto")
        self.assertEqual(model.dtype, torch.float32)
        # test forcing an explicit dtype
        model = AutoModel.from_pretrained(TINY_T5, torch_dtype=torch.float16)
        self.assertEqual(model.dtype, torch.float16)

2264
2265
2266
2267
2268
2269
2270
    def test_no_super_init_config_and_model(self):
        config = NoSuperInitConfig(attribute=32)
        model = NoSuperInitModel(config)

        with tempfile.TemporaryDirectory() as tmp_dir:
            model.save_pretrained(tmp_dir)

2271
2272
2273
2274
            new_model = NoSuperInitModel.from_pretrained(tmp_dir)

        for p1, p2 in zip(model.parameters(), new_model.parameters()):
            self.assertTrue(torch.equal(p1, p2))
2275

2276
2277
2278
2279
2280
2281
2282
2283
2284
2285
2286
2287
2288
2289
2290
2291
    def test_cached_files_are_used_when_internet_is_down(self):
        # A mock response for an HTTP head request to emulate server down
        response_mock = mock.Mock()
        response_mock.status_code = 500
        response_mock.headers = []
        response_mock.raise_for_status.side_effect = HTTPError

        # Download this model to make sure it's in the cache.
        _ = BertModel.from_pretrained("hf-internal-testing/tiny-random-bert")

        # Under the mock environment we get a 500 error when trying to reach the model.
        with mock.patch("transformers.utils.hub.requests.head", return_value=response_mock) as mock_head:
            _ = BertModel.from_pretrained("hf-internal-testing/tiny-random-bert")
            # This check we did call the fake head request
            mock_head.assert_called()

Sylvain Gugger's avatar
Sylvain Gugger committed
2292
2293
2294
2295
2296
2297

@require_torch
@is_staging_test
class ModelPushToHubTester(unittest.TestCase):
    @classmethod
    def setUpClass(cls):
2298
        cls._token = login(username=USER, password=PASS)
Sylvain Gugger's avatar
Sylvain Gugger committed
2299
2300
2301
2302

    @classmethod
    def tearDownClass(cls):
        try:
2303
            delete_repo(token=cls._token, name="test-model")
Sylvain Gugger's avatar
Sylvain Gugger committed
2304
2305
2306
2307
        except HTTPError:
            pass

        try:
2308
            delete_repo(token=cls._token, name="test-model-org", organization="valid_org")
Sylvain Gugger's avatar
Sylvain Gugger committed
2309
2310
2311
        except HTTPError:
            pass

2312
        try:
2313
            delete_repo(token=cls._token, name="test-dynamic-model")
2314
2315
2316
        except HTTPError:
            pass

2317
2318
2319
2320
2321
        try:
            delete_repo(token=cls._token, name="test-dynamic-model-config")
        except HTTPError:
            pass

Sylvain Gugger's avatar
Sylvain Gugger committed
2322
2323
2324
2325
2326
2327
    def test_push_to_hub(self):
        config = BertConfig(
            vocab_size=99, hidden_size=32, num_hidden_layers=5, num_attention_heads=4, intermediate_size=37
        )
        model = BertModel(config)
        with tempfile.TemporaryDirectory() as tmp_dir:
2328
            model.save_pretrained(os.path.join(tmp_dir, "test-model"), push_to_hub=True, use_auth_token=self._token)
Sylvain Gugger's avatar
Sylvain Gugger committed
2329
2330
2331
2332
2333
2334
2335
2336
2337
2338
2339
2340

            new_model = BertModel.from_pretrained(f"{USER}/test-model")
            for p1, p2 in zip(model.parameters(), new_model.parameters()):
                self.assertTrue(torch.equal(p1, p2))

    def test_push_to_hub_in_organization(self):
        config = BertConfig(
            vocab_size=99, hidden_size=32, num_hidden_layers=5, num_attention_heads=4, intermediate_size=37
        )
        model = BertModel(config)
        with tempfile.TemporaryDirectory() as tmp_dir:
            model.save_pretrained(
2341
                os.path.join(tmp_dir, "test-model-org"),
Sylvain Gugger's avatar
Sylvain Gugger committed
2342
2343
2344
2345
2346
2347
2348
2349
                push_to_hub=True,
                use_auth_token=self._token,
                organization="valid_org",
            )

            new_model = BertModel.from_pretrained("valid_org/test-model-org")
            for p1, p2 in zip(model.parameters(), new_model.parameters()):
                self.assertTrue(torch.equal(p1, p2))
2350
2351

    def test_push_to_hub_dynamic_model(self):
2352
2353
2354
2355
2356
        CustomConfig.register_for_auto_class()
        CustomModel.register_for_auto_class()

        config = CustomConfig(hidden_size=32)
        model = CustomModel(config)
2357
2358
2359
2360

        with tempfile.TemporaryDirectory() as tmp_dir:
            repo = Repository(tmp_dir, clone_from=f"{USER}/test-dynamic-model", use_auth_token=self._token)
            model.save_pretrained(tmp_dir)
2361
2362
2363
2364
2365
            # checks
            self.assertDictEqual(
                config.auto_map,
                {"AutoConfig": "custom_configuration.CustomConfig", "AutoModel": "custom_modeling.CustomModel"},
            )
2366
2367
2368
2369

            repo.push_to_hub()

        new_model = AutoModel.from_pretrained(f"{USER}/test-dynamic-model", trust_remote_code=True)
2370
2371
        # Can't make an isinstance check because the new_model is from the CustomModel class of a dynamic module
        self.assertEqual(new_model.__class__.__name__, "CustomModel")
2372
2373
        for p1, p2 in zip(model.parameters(), new_model.parameters()):
            self.assertTrue(torch.equal(p1, p2))
2374

2375
        config = AutoConfig.from_pretrained(f"{USER}/test-dynamic-model", trust_remote_code=True)
2376
        new_model = AutoModel.from_config(config, trust_remote_code=True)
2377
        self.assertEqual(new_model.__class__.__name__, "CustomModel")