test_modeling_common.py 146 KB
Newer Older
thomwolf's avatar
thomwolf committed
1
2
3
4
5
6
7
8
9
10
11
12
13
14
# coding=utf-8
# Copyright 2019 HuggingFace Inc.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
#     http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
Aymeric Augustin's avatar
Aymeric Augustin committed
15

16
import copy
17
import gc
18
import inspect
19
import json
20
import os
21
import os.path
22
import pickle
Aymeric Augustin's avatar
Aymeric Augustin committed
23
import random
24
import sys
25
import tempfile
thomwolf's avatar
thomwolf committed
26
import unittest
27
import unittest.mock as mock
28
import warnings
29
from pathlib import Path
NielsRogge's avatar
NielsRogge committed
30
from typing import Dict, List, Tuple
thomwolf's avatar
thomwolf committed
31

32
33
34
import numpy as np

import transformers
35
from huggingface_hub import HfFolder, delete_repo, set_access_token
36
from huggingface_hub.file_download import http_get
Sylvain Gugger's avatar
Sylvain Gugger committed
37
from requests.exceptions import HTTPError
38
39
40
41
42
43
44
45
from transformers import (
    AutoConfig,
    AutoModel,
    AutoModelForSequenceClassification,
    PretrainedConfig,
    is_torch_available,
    logging,
)
46
from transformers.models.auto import get_values
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
from transformers.models.auto.modeling_auto import (
    MODEL_FOR_AUDIO_CLASSIFICATION_MAPPING_NAMES,
    MODEL_FOR_AUDIO_XVECTOR_MAPPING_NAMES,
    MODEL_FOR_BACKBONE_MAPPING_NAMES,
    MODEL_FOR_CAUSAL_IMAGE_MODELING_MAPPING_NAMES,
    MODEL_FOR_CAUSAL_LM_MAPPING_NAMES,
    MODEL_FOR_DOCUMENT_QUESTION_ANSWERING_MAPPING_NAMES,
    MODEL_FOR_IMAGE_CLASSIFICATION_MAPPING_NAMES,
    MODEL_FOR_MASKED_IMAGE_MODELING_MAPPING_NAMES,
    MODEL_FOR_MASKED_LM_MAPPING_NAMES,
    MODEL_FOR_MULTIPLE_CHOICE_MAPPING_NAMES,
    MODEL_FOR_NEXT_SENTENCE_PREDICTION_MAPPING_NAMES,
    MODEL_FOR_QUESTION_ANSWERING_MAPPING_NAMES,
    MODEL_FOR_SEMANTIC_SEGMENTATION_MAPPING_NAMES,
    MODEL_FOR_SEQ_TO_SEQ_CAUSAL_LM_MAPPING_NAMES,
    MODEL_FOR_SEQUENCE_CLASSIFICATION_MAPPING_NAMES,
    MODEL_FOR_TOKEN_CLASSIFICATION_MAPPING_NAMES,
    MODEL_FOR_VIDEO_CLASSIFICATION_MAPPING_NAMES,
    MODEL_MAPPING_NAMES,
)
Sylvain Gugger's avatar
Sylvain Gugger committed
67
from transformers.testing_utils import (
68
    TOKEN,
Sylvain Gugger's avatar
Sylvain Gugger committed
69
70
    USER,
    CaptureLogger,
71
    TestCasePlus,
72
    is_flaky,
73
74
    is_pt_flax_cross_test,
    is_pt_tf_cross_test,
Sylvain Gugger's avatar
Sylvain Gugger committed
75
    is_staging_test,
76
    require_accelerate,
77
    require_safetensors,
Sylvain Gugger's avatar
Sylvain Gugger committed
78
    require_torch,
79
    require_torch_gpu,
Sylvain Gugger's avatar
Sylvain Gugger committed
80
    require_torch_multi_gpu,
81
    require_usr_bin_time,
Sylvain Gugger's avatar
Sylvain Gugger committed
82
83
84
    slow,
    torch_device,
)
85
from transformers.utils import (
86
87
    CONFIG_NAME,
    GENERATION_CONFIG_NAME,
88
89
    SAFE_WEIGHTS_INDEX_NAME,
    SAFE_WEIGHTS_NAME,
90
91
    WEIGHTS_INDEX_NAME,
    WEIGHTS_NAME,
92
    is_accelerate_available,
93
94
95
96
97
    is_flax_available,
    is_tf_available,
    is_torch_fx_available,
)
from transformers.utils.generic import ModelOutput
98

Aymeric Augustin's avatar
Aymeric Augustin committed
99

100
101
sys.path.append(str(Path(__file__).parent.parent / "utils"))

102
from test_module.custom_configuration import CustomConfig, NoSuperInitConfig  # noqa E402
103
104


105
106
107
108
if is_accelerate_available():
    from accelerate.utils import compute_module_sizes


109
if is_torch_available():
110
    import torch
111
    from torch import nn
thomwolf's avatar
thomwolf committed
112

113
    from test_module.custom_modeling import CustomModel, NoSuperInitModel
114
    from transformers import (
115
        BERT_PRETRAINED_MODEL_ARCHIVE_LIST,
116
        MODEL_MAPPING,
117
        AdaptiveEmbedding,
118
119
        AutoModelForCausalLM,
        AutoTokenizer,
120
121
122
        BertConfig,
        BertModel,
        PreTrainedModel,
123
        T5Config,
124
        T5ForConditionalGeneration,
125
    )
Sylvain Gugger's avatar
Sylvain Gugger committed
126
    from transformers.modeling_utils import shard_checkpoint
thomwolf's avatar
thomwolf committed
127

Sylvain Gugger's avatar
Sylvain Gugger committed
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
    # Fake pretrained models for tests
    class BaseModel(PreTrainedModel):
        config_class = PretrainedConfig

        def __init__(self, config):
            super().__init__(config)
            self.linear = nn.Linear(4, 5)
            self.linear_2 = nn.Linear(5, 6)

        def forward(self, x):
            return self.linear_2(self.linear(x))

    class ModelWithHead(PreTrainedModel):
        base_model_prefix = "base"
        config_class = PretrainedConfig

        def _init_weights(self, module):
            pass

        def __init__(self, config):
            super().__init__(config)
            self.base = BaseModel(config)
            # linear is a common name between Base and Head on purpose.
            self.linear = nn.Linear(6, 3)
            self.linear2 = nn.Linear(3, 5)

        def forward(self, x):
            return self.linear2(self.linear(self.base(x)))


158
159
160
if is_tf_available():
    import tensorflow as tf

161
162
163
164
165
166
167
if is_flax_available():
    import jax.numpy as jnp
    from transformers.modeling_flax_pytorch_utils import (
        convert_pytorch_state_dict_to_flax,
        load_flax_weights_in_pytorch_model,
    )

168
if is_torch_fx_available():
169
    from transformers.utils.fx import symbolic_trace
170

171

172
173
174
def _config_zero_init(config):
    configs_no_init = copy.deepcopy(config)
    for key in configs_no_init.__dict__.keys():
175
        if "_range" in key or "_std" in key or "initializer_factor" in key or "layer_scale" in key:
Lysandre Debut's avatar
Lysandre Debut committed
176
            setattr(configs_no_init, key, 1e-10)
177
178
    return configs_no_init

thomwolf's avatar
thomwolf committed
179

180
TINY_T5 = "patrickvonplaten/t5-tiny-random"
181
TINY_BERT_FOR_TOKEN_CLASSIFICATION = "hf-internal-testing/tiny-bert-for-token-classification"
182
183


184
185
186
187
188
@require_torch
class ModelTesterMixin:

    model_tester = None
    all_model_classes = ()
189
    all_generative_model_classes = ()
190
    fx_compatible = False
Patrick von Platen's avatar
Patrick von Platen committed
191
192
193
    test_torchscript = True
    test_pruning = True
    test_resize_embeddings = True
194
    test_resize_position_embeddings = False
Patrick von Platen's avatar
Patrick von Platen committed
195
    test_head_masking = True
196
    test_mismatched_shapes = True
197
    test_missing_keys = True
198
    test_model_parallel = False
199
    is_encoder_decoder = False
200
    has_attentions = True
201
    model_split_percents = [0.5, 0.7, 0.9]
202

203
204
    def _prepare_for_class(self, inputs_dict, model_class, return_labels=False):
        inputs_dict = copy.deepcopy(inputs_dict)
205
        if model_class.__name__ in get_values(MODEL_FOR_MULTIPLE_CHOICE_MAPPING_NAMES):
206
            inputs_dict = {
207
                k: v.unsqueeze(1).expand(-1, self.model_tester.num_choices, -1).contiguous()
208
                if isinstance(v, torch.Tensor) and v.ndim > 1
Sylvain Gugger's avatar
Sylvain Gugger committed
209
                else v
210
211
                for k, v in inputs_dict.items()
            }
212
        elif model_class.__name__ in get_values(MODEL_FOR_AUDIO_XVECTOR_MAPPING_NAMES):
213
            inputs_dict.pop("attention_mask")
214
215

        if return_labels:
216
            if model_class.__name__ in get_values(MODEL_FOR_MULTIPLE_CHOICE_MAPPING_NAMES):
217
                inputs_dict["labels"] = torch.ones(self.model_tester.batch_size, dtype=torch.long, device=torch_device)
218
219
220
            elif model_class.__name__ in [
                *get_values(MODEL_FOR_QUESTION_ANSWERING_MAPPING_NAMES),
                *get_values(MODEL_FOR_DOCUMENT_QUESTION_ANSWERING_MAPPING_NAMES),
221
            ]:
222
223
224
225
226
227
                inputs_dict["start_positions"] = torch.zeros(
                    self.model_tester.batch_size, dtype=torch.long, device=torch_device
                )
                inputs_dict["end_positions"] = torch.zeros(
                    self.model_tester.batch_size, dtype=torch.long, device=torch_device
                )
228
229
230
231
232
233
            elif model_class.__name__ in [
                *get_values(MODEL_FOR_SEQUENCE_CLASSIFICATION_MAPPING_NAMES),
                *get_values(MODEL_FOR_NEXT_SENTENCE_PREDICTION_MAPPING_NAMES),
                *get_values(MODEL_FOR_IMAGE_CLASSIFICATION_MAPPING_NAMES),
                *get_values(MODEL_FOR_VIDEO_CLASSIFICATION_MAPPING_NAMES),
                *get_values(MODEL_FOR_AUDIO_CLASSIFICATION_MAPPING_NAMES),
234
            ]:
235
236
237
                inputs_dict["labels"] = torch.zeros(
                    self.model_tester.batch_size, dtype=torch.long, device=torch_device
                )
238
239
240
241
242
243
            elif model_class.__name__ in [
                *get_values(MODEL_FOR_TOKEN_CLASSIFICATION_MAPPING_NAMES),
                *get_values(MODEL_FOR_CAUSAL_LM_MAPPING_NAMES),
                *get_values(MODEL_FOR_CAUSAL_IMAGE_MODELING_MAPPING_NAMES),
                *get_values(MODEL_FOR_MASKED_LM_MAPPING_NAMES),
                *get_values(MODEL_FOR_SEQ_TO_SEQ_CAUSAL_LM_MAPPING_NAMES),
244
245
246
247
            ]:
                inputs_dict["labels"] = torch.zeros(
                    (self.model_tester.batch_size, self.model_tester.seq_length), dtype=torch.long, device=torch_device
                )
248
            elif model_class.__name__ in get_values(MODEL_FOR_MASKED_IMAGE_MODELING_MAPPING_NAMES):
NielsRogge's avatar
NielsRogge committed
249
250
251
252
                num_patches = self.model_tester.image_size // self.model_tester.patch_size
                inputs_dict["bool_masked_pos"] = torch.zeros(
                    (self.model_tester.batch_size, num_patches**2), dtype=torch.long, device=torch_device
                )
253
            elif model_class.__name__ in get_values(MODEL_FOR_SEMANTIC_SEGMENTATION_MAPPING_NAMES):
NielsRogge's avatar
NielsRogge committed
254
255
256
257
                batch_size, num_channels, height, width = inputs_dict["pixel_values"].shape
                inputs_dict["labels"] = torch.zeros(
                    [self.model_tester.batch_size, height, width], device=torch_device
                ).long()
258

259
260
        return inputs_dict

Patrick von Platen's avatar
Patrick von Platen committed
261
    def test_save_load(self):
262
263
        config, inputs_dict = self.model_tester.prepare_config_and_inputs_for_common()

264
265
266
267
268
269
270
271
272
273
        def check_save_load(out1, out2):
            # make sure we don't have nans
            out_2 = out2.cpu().numpy()
            out_2[np.isnan(out_2)] = 0

            out_1 = out1.cpu().numpy()
            out_1[np.isnan(out_1)] = 0
            max_diff = np.amax(np.abs(out_1 - out_2))
            self.assertLessEqual(max_diff, 1e-5)

274
275
276
277
278
        for model_class in self.all_model_classes:
            model = model_class(config)
            model.to(torch_device)
            model.eval()
            with torch.no_grad():
279
                first = model(**self._prepare_for_class(inputs_dict, model_class))[0]
280

281
            with tempfile.TemporaryDirectory() as tmpdirname:
282
                model.save_pretrained(tmpdirname)
283
284
285
286
287
288
289

                # the config file (and the generation config file, if it can generate) should be saved
                self.assertTrue(os.path.exists(os.path.join(tmpdirname, CONFIG_NAME)))
                self.assertEqual(
                    model.can_generate(), os.path.exists(os.path.join(tmpdirname, GENERATION_CONFIG_NAME))
                )

290
                model = model_class.from_pretrained(tmpdirname)
291
                model.to(torch_device)
292
                with torch.no_grad():
293
                    second = model(**self._prepare_for_class(inputs_dict, model_class))[0]
thomwolf's avatar
thomwolf committed
294

295
296
297
298
299
            if isinstance(first, tuple) and isinstance(second, tuple):
                for tensor1, tensor2 in zip(first, second):
                    check_save_load(tensor1, tensor2)
            else:
                check_save_load(first, second)
300

301
    def test_save_load_keys_to_ignore_on_save(self):
302
303
304
305
        config, inputs_dict = self.model_tester.prepare_config_and_inputs_for_common()

        for model_class in self.all_model_classes:
            model = model_class(config)
306
307
            _keys_to_ignore_on_save = getattr(model, "_keys_to_ignore_on_save", None)
            if _keys_to_ignore_on_save is None:
308
309
310
                continue

            # check the keys are in the original state_dict
311
            for k in _keys_to_ignore_on_save:
312
                self.assertIn(k, model.state_dict().keys(), "\n".join(model.state_dict().keys()))
313
314
315
316
317
318

            # check that certain keys didn't get saved with the model
            with tempfile.TemporaryDirectory() as tmpdirname:
                model.save_pretrained(tmpdirname)
                output_model_file = os.path.join(tmpdirname, WEIGHTS_NAME)
                state_dict_saved = torch.load(output_model_file)
319
                for k in _keys_to_ignore_on_save:
320
                    self.assertNotIn(k, state_dict_saved.keys(), "\n".join(state_dict_saved.keys()))
321

Sylvain Gugger's avatar
Sylvain Gugger committed
322
323
324
                # Test we can load the state dict in the model, necessary for the checkpointing API in Trainer.
                load_result = model.load_state_dict(state_dict_saved, strict=False)
                self.assertTrue(
325
326
                    len(load_result.missing_keys) == 0
                    or set(load_result.missing_keys) == set(model._keys_to_ignore_on_save)
Sylvain Gugger's avatar
Sylvain Gugger committed
327
328
329
                )
                self.assertTrue(len(load_result.unexpected_keys) == 0)

330
331
332
333
334
335
336
337
338
339
340
    def test_gradient_checkpointing_backward_compatibility(self):
        config, inputs_dict = self.model_tester.prepare_config_and_inputs_for_common()

        for model_class in self.all_model_classes:
            if not model_class.supports_gradient_checkpointing:
                continue

            config.gradient_checkpointing = True
            model = model_class(config)
            self.assertTrue(model.is_gradient_checkpointing)

341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
    def test_gradient_checkpointing_enable_disable(self):
        config, inputs_dict = self.model_tester.prepare_config_and_inputs_for_common()

        for model_class in self.all_model_classes:
            if not model_class.supports_gradient_checkpointing:
                continue

            # at init model should have gradient checkpointing disabled
            model = model_class(config)
            self.assertFalse(model.is_gradient_checkpointing)

            # check enable works
            model.gradient_checkpointing_enable()
            self.assertTrue(model.is_gradient_checkpointing)

            # check disable works
            model.gradient_checkpointing_disable()
            self.assertFalse(model.is_gradient_checkpointing)

360
361
362
363
364
365
    def _mock_init_weights(self, module):
        if hasattr(module, "weight") and module.weight is not None:
            module.weight.data.fill_(3)
        if hasattr(module, "bias") and module.bias is not None:
            module.bias.data.fill_(3)

366
    @is_flaky()
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
    def test_save_load_fast_init_from_base(self):
        config, inputs_dict = self.model_tester.prepare_config_and_inputs_for_common()
        base_class = MODEL_MAPPING[config.__class__]

        if isinstance(base_class, tuple):
            base_class = base_class[0]

        for model_class in self.all_model_classes:
            if model_class == base_class:
                continue

            # make a copy of model class to not break future tests
            # from https://stackoverflow.com/questions/9541025/how-to-copy-a-python-class
            class CopyClass(model_class):
                pass

            model_class_copy = CopyClass

            # make sure that all keys are expected for test
            model_class_copy._keys_to_ignore_on_load_missing = []

            # make init deterministic, but make sure that
            # non-initialized weights throw errors nevertheless
            model_class_copy._init_weights = self._mock_init_weights

            model = base_class(config)
            state_dict = model.state_dict()

            # this will often delete a single weight of a multi-weight module
            # to test an edge case
            random_key_to_del = random.choice(list(state_dict.keys()))
            del state_dict[random_key_to_del]

            # check that certain keys didn't get saved with the model
            with tempfile.TemporaryDirectory() as tmpdirname:
                model.save_pretrained(tmpdirname)
                torch.save(state_dict, os.path.join(tmpdirname, "pytorch_model.bin"))

                model_fast_init = model_class_copy.from_pretrained(tmpdirname)
                model_slow_init = model_class_copy.from_pretrained(tmpdirname, _fast_init=False)

                for key in model_fast_init.state_dict().keys():
                    max_diff = (model_slow_init.state_dict()[key] - model_fast_init.state_dict()[key]).sum().item()
                    self.assertLessEqual(max_diff, 1e-3, msg=f"{key} not identical")

    def test_save_load_fast_init_to_base(self):
        config, inputs_dict = self.model_tester.prepare_config_and_inputs_for_common()
        base_class = MODEL_MAPPING[config.__class__]

        if isinstance(base_class, tuple):
            base_class = base_class[0]

        for model_class in self.all_model_classes:

            if model_class == base_class:
                continue

            # make a copy of model class to not break future tests
            # from https://stackoverflow.com/questions/9541025/how-to-copy-a-python-class
            class CopyClass(base_class):
                pass

            base_class_copy = CopyClass

            # make sure that all keys are expected for test
            base_class_copy._keys_to_ignore_on_load_missing = []

            # make init deterministic, but make sure that
            # non-initialized weights throw errors nevertheless
            base_class_copy._init_weights = self._mock_init_weights

            model = model_class(config)
            state_dict = model.state_dict()

            # this will often delete a single weight of a multi-weight module
            # to test an edge case
            random_key_to_del = random.choice(list(state_dict.keys()))
            del state_dict[random_key_to_del]

            # check that certain keys didn't get saved with the model
            with tempfile.TemporaryDirectory() as tmpdirname:
                model.config.save_pretrained(tmpdirname)
                torch.save(state_dict, os.path.join(tmpdirname, "pytorch_model.bin"))

                model_fast_init = base_class_copy.from_pretrained(tmpdirname)
                model_slow_init = base_class_copy.from_pretrained(tmpdirname, _fast_init=False)

                for key in model_fast_init.state_dict().keys():
455
456
457
                    max_diff = torch.max(
                        torch.abs(model_slow_init.state_dict()[key] - model_fast_init.state_dict()[key])
                    ).item()
458
459
                    self.assertLessEqual(max_diff, 1e-3, msg=f"{key} not identical")

Patrick von Platen's avatar
Patrick von Platen committed
460
    def test_initialization(self):
461
462
463
464
465
466
467
468
        config, inputs_dict = self.model_tester.prepare_config_and_inputs_for_common()

        configs_no_init = _config_zero_init(config)
        for model_class in self.all_model_classes:
            model = model_class(config=configs_no_init)
            for name, param in model.named_parameters():
                if param.requires_grad:
                    self.assertIn(
Lysandre Debut's avatar
Lysandre Debut committed
469
                        ((param.data.mean() * 1e9).round() / 1e9).item(),
470
                        [0.0, 1.0],
471
                        msg=f"Parameter {name} of model {model_class} seems not properly initialized",
472
                    )
thomwolf's avatar
thomwolf committed
473

Patrick von Platen's avatar
Patrick von Platen committed
474
    def test_determinism(self):
475
        config, inputs_dict = self.model_tester.prepare_config_and_inputs_for_common()
476
477
478
479
480
481
482
483
484

        def check_determinism(first, second):
            out_1 = first.cpu().numpy()
            out_2 = second.cpu().numpy()
            out_1 = out_1[~np.isnan(out_1)]
            out_2 = out_2[~np.isnan(out_2)]
            max_diff = np.amax(np.abs(out_1 - out_2))
            self.assertLessEqual(max_diff, 1e-5)

485
486
487
488
489
        for model_class in self.all_model_classes:
            model = model_class(config)
            model.to(torch_device)
            model.eval()
            with torch.no_grad():
490
491
                first = model(**self._prepare_for_class(inputs_dict, model_class))[0]
                second = model(**self._prepare_for_class(inputs_dict, model_class))[0]
Weizhen's avatar
Weizhen committed
492

493
494
495
496
497
            if isinstance(first, tuple) and isinstance(second, tuple):
                for tensor1, tensor2 in zip(first, second):
                    check_determinism(tensor1, tensor2)
            else:
                check_determinism(first, second)
498

499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
    def test_forward_signature(self):
        config, _ = self.model_tester.prepare_config_and_inputs_for_common()

        for model_class in self.all_model_classes:
            model = model_class(config)
            signature = inspect.signature(model.forward)
            # signature.parameters is an OrderedDict => so arg_names order is deterministic
            arg_names = [*signature.parameters.keys()]

            if model.config.is_encoder_decoder:
                expected_arg_names = [
                    "input_ids",
                    "attention_mask",
                    "decoder_input_ids",
                    "decoder_attention_mask",
                ]
515
                expected_arg_names.extend(
516
517
                    ["head_mask", "decoder_head_mask", "cross_attn_head_mask", "encoder_outputs"]
                    if "head_mask" and "decoder_head_mask" and "cross_attn_head_mask" in arg_names
518
519
520
                    else ["encoder_outputs"]
                )
                self.assertListEqual(arg_names[: len(expected_arg_names)], expected_arg_names)
521
522
523
524
            else:
                expected_arg_names = ["input_ids"]
                self.assertListEqual(arg_names[:1], expected_arg_names)

525
526
527
528
529
    def test_training(self):
        if not self.model_tester.is_training:
            return

        for model_class in self.all_model_classes:
530
531
532
            config, inputs_dict = self.model_tester.prepare_config_and_inputs_for_common()
            config.return_dict = True

533
534
535
            if model_class.__name__ in [
                *get_values(MODEL_MAPPING_NAMES),
                *get_values(MODEL_FOR_BACKBONE_MAPPING_NAMES),
536
            ]:
537
                continue
538

539
540
541
542
543
544
545
546
            model = model_class(config)
            model.to(torch_device)
            model.train()
            inputs = self._prepare_for_class(inputs_dict, model_class, return_labels=True)
            loss = model(**inputs).loss
            loss.backward()

    def test_training_gradient_checkpointing(self):
547
        if not self.model_tester.is_training:
548
549
550
            return

        for model_class in self.all_model_classes:
551
552
553
554
            config, inputs_dict = self.model_tester.prepare_config_and_inputs_for_common()
            config.use_cache = False
            config.return_dict = True

555
            if (
556
557
                model_class.__name__
                in [*get_values(MODEL_MAPPING_NAMES), *get_values(MODEL_FOR_BACKBONE_MAPPING_NAMES)]
558
559
                or not model_class.supports_gradient_checkpointing
            ):
560
561
562
                continue
            model = model_class(config)
            model.to(torch_device)
563
            model.gradient_checkpointing_enable()
564
565
566
567
568
            model.train()
            inputs = self._prepare_for_class(inputs_dict, model_class, return_labels=True)
            loss = model(**inputs).loss
            loss.backward()

Patrick von Platen's avatar
Patrick von Platen committed
569
    def test_attention_outputs(self):
570
571
572
        if not self.has_attentions:
            self.skipTest(reason="Model does not output attentions")

573
574
        config, inputs_dict = self.model_tester.prepare_config_and_inputs_for_common()
        config.return_dict = True
575

576
577
578
579
580
581
582
583
584
585
586
587
        seq_len = getattr(self.model_tester, "seq_length", None)
        decoder_seq_length = getattr(self.model_tester, "decoder_seq_length", seq_len)
        encoder_seq_length = getattr(self.model_tester, "encoder_seq_length", seq_len)
        decoder_key_length = getattr(self.model_tester, "decoder_key_length", decoder_seq_length)
        encoder_key_length = getattr(self.model_tester, "key_length", encoder_seq_length)
        chunk_length = getattr(self.model_tester, "chunk_length", None)
        if chunk_length is not None and hasattr(self.model_tester, "num_hashes"):
            encoder_seq_length = encoder_seq_length * self.model_tester.num_hashes

        for model_class in self.all_model_classes:
            inputs_dict["output_attentions"] = True
            inputs_dict["output_hidden_states"] = False
588
            config.return_dict = True
589
590
591
592
593
594
595
            model = model_class(config)
            model.to(torch_device)
            model.eval()
            with torch.no_grad():
                outputs = model(**self._prepare_for_class(inputs_dict, model_class))
            attentions = outputs.encoder_attentions if config.is_encoder_decoder else outputs.attentions
            self.assertEqual(len(attentions), self.model_tester.num_hidden_layers)
596

597
598
599
600
601
602
603
604
605
606
            # check that output_attentions also work using config
            del inputs_dict["output_attentions"]
            config.output_attentions = True
            model = model_class(config)
            model.to(torch_device)
            model.eval()
            with torch.no_grad():
                outputs = model(**self._prepare_for_class(inputs_dict, model_class))
            attentions = outputs.encoder_attentions if config.is_encoder_decoder else outputs.attentions
            self.assertEqual(len(attentions), self.model_tester.num_hidden_layers)
thomwolf's avatar
thomwolf committed
607

608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
            if chunk_length is not None:
                self.assertListEqual(
                    list(attentions[0].shape[-4:]),
                    [self.model_tester.num_attention_heads, encoder_seq_length, chunk_length, encoder_key_length],
                )
            else:
                self.assertListEqual(
                    list(attentions[0].shape[-3:]),
                    [self.model_tester.num_attention_heads, encoder_seq_length, encoder_key_length],
                )
            out_len = len(outputs)

            if self.is_encoder_decoder:
                correct_outlen = 5

                # loss is at first position
                if "labels" in inputs_dict:
                    correct_outlen += 1  # loss is added to beginning
                # Question Answering model returns start_logits and end_logits
627
628
629
                if model_class.__name__ in [
                    *get_values(MODEL_FOR_QUESTION_ANSWERING_MAPPING_NAMES),
                    *get_values(MODEL_FOR_DOCUMENT_QUESTION_ANSWERING_MAPPING_NAMES),
630
                ]:
631
632
633
634
635
636
637
638
639
640
641
642
643
644
                    correct_outlen += 1  # start_logits and end_logits instead of only 1 output
                if "past_key_values" in outputs:
                    correct_outlen += 1  # past_key_values have been returned

                self.assertEqual(out_len, correct_outlen)

                # decoder attentions
                decoder_attentions = outputs.decoder_attentions
                self.assertIsInstance(decoder_attentions, (list, tuple))
                self.assertEqual(len(decoder_attentions), self.model_tester.num_hidden_layers)
                self.assertListEqual(
                    list(decoder_attentions[0].shape[-3:]),
                    [self.model_tester.num_attention_heads, decoder_seq_length, decoder_key_length],
                )
645

646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
                # cross attentions
                cross_attentions = outputs.cross_attentions
                self.assertIsInstance(cross_attentions, (list, tuple))
                self.assertEqual(len(cross_attentions), self.model_tester.num_hidden_layers)
                self.assertListEqual(
                    list(cross_attentions[0].shape[-3:]),
                    [
                        self.model_tester.num_attention_heads,
                        decoder_seq_length,
                        encoder_key_length,
                    ],
                )

            # Check attention is always last and order is fine
            inputs_dict["output_attentions"] = True
            inputs_dict["output_hidden_states"] = True
            model = model_class(config)
            model.to(torch_device)
            model.eval()
            with torch.no_grad():
                outputs = model(**self._prepare_for_class(inputs_dict, model_class))

            if hasattr(self.model_tester, "num_hidden_states_types"):
                added_hidden_states = self.model_tester.num_hidden_states_types
            elif self.is_encoder_decoder:
                added_hidden_states = 2
            else:
                added_hidden_states = 1
            self.assertEqual(out_len + added_hidden_states, len(outputs))

            self_attentions = outputs.encoder_attentions if config.is_encoder_decoder else outputs.attentions

            self.assertEqual(len(self_attentions), self.model_tester.num_hidden_layers)
            if chunk_length is not None:
                self.assertListEqual(
                    list(self_attentions[0].shape[-4:]),
                    [self.model_tester.num_attention_heads, encoder_seq_length, chunk_length, encoder_key_length],
                )
            else:
                self.assertListEqual(
                    list(self_attentions[0].shape[-3:]),
                    [self.model_tester.num_attention_heads, encoder_seq_length, encoder_key_length],
                )
thomwolf's avatar
thomwolf committed
689

690
    @slow
691
    def test_torchscript_simple(self):
692
693
        config, inputs_dict = self.model_tester.prepare_config_and_inputs_for_common()
        self._create_and_check_torchscript(config, inputs_dict)
thomwolf's avatar
thomwolf committed
694

695
    @slow
Patrick von Platen's avatar
Patrick von Platen committed
696
    def test_torchscript_output_attentions(self):
697
698
699
        config, inputs_dict = self.model_tester.prepare_config_and_inputs_for_common()
        config.output_attentions = True
        self._create_and_check_torchscript(config, inputs_dict)
thomwolf's avatar
thomwolf committed
700

701
    @slow
Patrick von Platen's avatar
Patrick von Platen committed
702
    def test_torchscript_output_hidden_state(self):
703
704
705
        config, inputs_dict = self.model_tester.prepare_config_and_inputs_for_common()
        config.output_hidden_states = True
        self._create_and_check_torchscript(config, inputs_dict)
thomwolf's avatar
thomwolf committed
706

707
708
709
710
711
    # This is copied from `torch/testing/_internal/jit_utils.py::clear_class_registry`
    def clear_torch_jit_class_registry(self):

        torch._C._jit_clear_class_registry()
        torch.jit._recursive.concrete_type_store = torch.jit._recursive.ConcreteTypeStore()
712
713
714
        # torch 1.8 has no `_clear_class_state` in `torch.jit._state`
        if hasattr(torch.jit._state, "_clear_class_state"):
            torch.jit._state._clear_class_state()
715

716
    def _create_and_check_torchscript(self, config, inputs_dict):
Patrick von Platen's avatar
Patrick von Platen committed
717
        if not self.test_torchscript:
718
            return
719

720
721
722
723
724
725
        configs_no_init = _config_zero_init(config)  # To be sure we have no Nan
        configs_no_init.torchscript = True
        for model_class in self.all_model_classes:
            model = model_class(config=configs_no_init)
            model.to(torch_device)
            model.eval()
726
            inputs = self._prepare_for_class(inputs_dict, model_class)
thomwolf's avatar
thomwolf committed
727

728
729
            main_input_name = model_class.main_input_name

730
            try:
731
                if model.config.is_encoder_decoder:
732
                    model.config.use_cache = False  # FSTM still requires this hack -> FSTM should probably be refactored similar to BART afterward
733
                    main_input = inputs[main_input_name]
734
735
736
                    attention_mask = inputs["attention_mask"]
                    decoder_input_ids = inputs["decoder_input_ids"]
                    decoder_attention_mask = inputs["decoder_attention_mask"]
737
                    model(main_input, attention_mask, decoder_input_ids, decoder_attention_mask)
738
                    traced_model = torch.jit.trace(
739
                        model, (main_input, attention_mask, decoder_input_ids, decoder_attention_mask)
740
                    )
741
742
743
744
                elif "bbox" in inputs and "image" in inputs:  # LayoutLMv2 requires additional inputs
                    input_ids = inputs["input_ids"]
                    bbox = inputs["bbox"]
                    image = inputs["image"].tensor
745
                    model(input_ids, bbox, image)
746
747
748
                    traced_model = torch.jit.trace(
                        model, (input_ids, bbox, image), check_trace=False
                    )  # when traced model is checked, an error is produced due to name mangling
749
                else:
750
                    main_input = inputs[main_input_name]
751
                    model(main_input)
752
                    traced_model = torch.jit.trace(model, main_input)
753
754
            except RuntimeError:
                self.fail("Couldn't trace module.")
thomwolf's avatar
thomwolf committed
755

756
            with tempfile.TemporaryDirectory() as tmp_dir_name:
757
                pt_file_name = os.path.join(tmp_dir_name, "traced_model.pt")
thomwolf's avatar
thomwolf committed
758

759
                try:
760
                    torch.jit.save(traced_model, pt_file_name)
761
762
                except Exception:
                    self.fail("Couldn't save module.")
thomwolf's avatar
thomwolf committed
763

764
765
766
767
                try:
                    loaded_model = torch.jit.load(pt_file_name)
                except Exception:
                    self.fail("Couldn't load module.")
LysandreJik's avatar
LysandreJik committed
768

769
770
            model.to(torch_device)
            model.eval()
thomwolf's avatar
thomwolf committed
771

772
773
            loaded_model.to(torch_device)
            loaded_model.eval()
thomwolf's avatar
thomwolf committed
774

775
776
777
            model_state_dict = model.state_dict()
            loaded_model_state_dict = loaded_model.state_dict()

778
779
780
781
782
783
784
785
786
            non_persistent_buffers = {}
            for key in loaded_model_state_dict.keys():
                if key not in model_state_dict.keys():
                    non_persistent_buffers[key] = loaded_model_state_dict[key]

            loaded_model_state_dict = {
                key: value for key, value in loaded_model_state_dict.items() if key not in non_persistent_buffers
            }

787
            self.assertEqual(set(model_state_dict.keys()), set(loaded_model_state_dict.keys()))
thomwolf's avatar
thomwolf committed
788

789
790
791
792
793
794
795
796
797
798
799
            model_buffers = list(model.buffers())
            for non_persistent_buffer in non_persistent_buffers.values():
                found_buffer = False
                for i, model_buffer in enumerate(model_buffers):
                    if torch.equal(non_persistent_buffer, model_buffer):
                        found_buffer = True
                        break

                self.assertTrue(found_buffer)
                model_buffers.pop(i)

800
            models_equal = True
801
            for layer_name, p1 in model_state_dict.items():
802
803
804
805
                if layer_name in loaded_model_state_dict:
                    p2 = loaded_model_state_dict[layer_name]
                    if p1.data.ne(p2.data).sum() > 0:
                        models_equal = False
thomwolf's avatar
thomwolf committed
806

807
            self.assertTrue(models_equal)
thomwolf's avatar
thomwolf committed
808

809
810
811
812
            # Avoid memory leak. Without this, each call increase RAM usage by ~20MB.
            # (Even with this call, there are still memory leak by ~0.04MB)
            self.clear_torch_jit_class_registry()

813
814
815
816
817
818
819
820
    def test_torch_fx(self):
        config, inputs_dict = self.model_tester.prepare_config_and_inputs_for_common()
        self._create_and_check_torch_fx_tracing(config, inputs_dict)

    def test_torch_fx_output_loss(self):
        config, inputs_dict = self.model_tester.prepare_config_and_inputs_for_common()
        self._create_and_check_torch_fx_tracing(config, inputs_dict, output_loss=True)

821
822
    def _create_and_check_torch_fx_tracing(self, config, inputs_dict, output_loss=False):
        if not is_torch_fx_available() or not self.fx_compatible:
823
824
825
826
827
            return

        configs_no_init = _config_zero_init(config)  # To be sure we have no Nan
        configs_no_init.return_dict = False

828
        for model_class in self.all_model_classes:
829
830
831
832
833
834
835
836
837
            model = model_class(config=configs_no_init)
            model.to(torch_device)
            model.eval()
            inputs = self._prepare_for_class(inputs_dict, model_class, return_labels=output_loss)

            try:
                if model.config.is_encoder_decoder:
                    model.config.use_cache = False  # FSTM still requires this hack -> FSTM should probably be refactored similar to BART afterward
                    labels = inputs.get("labels", None)
838
839
840
                    input_names = [
                        "attention_mask",
                        "decoder_attention_mask",
841
                        "decoder_input_ids",
842
                        "input_features",
843
844
                        "input_ids",
                        "input_values",
845
                    ]
846
847
                    if labels is not None:
                        input_names.append("labels")
848

849
                    filtered_inputs = {k: v for (k, v) in inputs.items() if k in input_names}
850
                    input_names = list(filtered_inputs.keys())
851

852
                    model_output = model(**filtered_inputs)
853

854
                    traced_model = symbolic_trace(model, input_names)
855
                    traced_output = traced_model(**filtered_inputs)
856
                else:
857
858
859
860
                    input_names = [
                        "attention_mask",
                        "bbox",
                        "input_features",
861
862
863
864
865
866
                        "input_ids",
                        "input_values",
                        "pixel_values",
                        "token_type_ids",
                        "visual_feats",
                        "visual_pos",
867
                    ]
868

869
                    labels = inputs.get("labels", None)
870
871
                    start_positions = inputs.get("start_positions", None)
                    end_positions = inputs.get("end_positions", None)
872
873
                    if labels is not None:
                        input_names.append("labels")
874
875
876
877
                    if start_positions is not None:
                        input_names.append("start_positions")
                    if end_positions is not None:
                        input_names.append("end_positions")
878

879
                    filtered_inputs = {k: v for (k, v) in inputs.items() if k in input_names}
880
                    input_names = list(filtered_inputs.keys())
881

882
                    if model.__class__.__name__ in set(MODEL_FOR_SEQUENCE_CLASSIFICATION_MAPPING_NAMES.values()) and (
883
                        not hasattr(model.config, "problem_type") or model.config.problem_type is None
884
885
886
                    ):
                        model.config.problem_type = "single_label_classification"

887
                    traced_model = symbolic_trace(model, input_names)
888
                    traced_output = traced_model(**filtered_inputs)
889
                    model_output = model(**filtered_inputs)
890

891
            except Exception as e:
892
                self.fail(f"Couldn't trace module: {e}")
893

894
895
896
897
898
899
900
901
902
903
904
905
906
            def flatten_output(output):
                flatten = []
                for x in output:
                    if isinstance(x, (tuple, list)):
                        flatten += flatten_output(x)
                    elif not isinstance(x, torch.Tensor):
                        continue
                    else:
                        flatten.append(x)
                return flatten

            model_output = flatten_output(model_output)
            traced_output = flatten_output(traced_output)
907
            num_outputs = len(model_output)
908
909
910
911
912
913

            for i in range(num_outputs):
                self.assertTrue(
                    torch.allclose(model_output[i], traced_output[i]),
                    f"traced {i}th output doesn't match model {i}th output for {model_class}",
                )
914

915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
            # Test that the model can be serialized and restored properly
            with tempfile.TemporaryDirectory() as tmp_dir_name:
                pkl_file_name = os.path.join(tmp_dir_name, "model.pkl")
                try:
                    with open(pkl_file_name, "wb") as f:
                        pickle.dump(traced_model, f)
                    with open(pkl_file_name, "rb") as f:
                        loaded = pickle.load(f)
                except Exception as e:
                    self.fail(f"Couldn't serialize / deserialize the traced model: {e}")

                loaded_output = loaded(**filtered_inputs)
                loaded_output = flatten_output(loaded_output)

                for i in range(num_outputs):
                    self.assertTrue(
                        torch.allclose(model_output[i], loaded_output[i]),
                        f"serialized model {i}th output doesn't match model {i}th output for {model_class}",
                    )

935
936
937
938
            # Avoid memory leak. Without this, each call increase RAM usage by ~20MB.
            # (Even with this call, there are still memory leak by ~0.04MB)
            self.clear_torch_jit_class_registry()

Patrick von Platen's avatar
Patrick von Platen committed
939
940
    def test_headmasking(self):
        if not self.test_head_masking:
941
            return
942

943
944
945
        global_rng.seed(42)
        config, inputs_dict = self.model_tester.prepare_config_and_inputs_for_common()
        global_rng.seed()
LysandreJik's avatar
LysandreJik committed
946

947
        inputs_dict["output_attentions"] = True
948
949
950
951
952
953
        config.output_hidden_states = True
        configs_no_init = _config_zero_init(config)  # To be sure we have no Nan
        for model_class in self.all_model_classes:
            model = model_class(config=configs_no_init)
            model.to(torch_device)
            model.eval()
LysandreJik's avatar
LysandreJik committed
954

955
956
957
            # Prepare head_mask
            # Set require_grad after having prepared the tensor to avoid error (leaf variable has been moved into the graph interior)
            head_mask = torch.ones(
Lysandre's avatar
Lysandre committed
958
959
960
                self.model_tester.num_hidden_layers,
                self.model_tester.num_attention_heads,
                device=torch_device,
961
962
963
964
            )
            head_mask[0, 0] = 0
            head_mask[-1, :-1] = 0
            head_mask.requires_grad_(requires_grad=True)
965
            inputs = self._prepare_for_class(inputs_dict, model_class).copy()
966
            inputs["head_mask"] = head_mask
967
968
969
970
971
            if model.config.is_encoder_decoder:
                signature = inspect.signature(model.forward)
                arg_names = [*signature.parameters.keys()]
                if "decoder_head_mask" in arg_names:  # necessary diferentiation because of T5 model
                    inputs["decoder_head_mask"] = head_mask
972
973
                if "cross_attn_head_mask" in arg_names:
                    inputs["cross_attn_head_mask"] = head_mask
974
            outputs = model(**inputs, return_dict=True)
975
976
977
978
979
980
981
982
983

            # Test that we can get a gradient back for importance score computation
            output = sum(t.sum() for t in outputs[0])
            output = output.sum()
            output.backward()
            multihead_outputs = head_mask.grad

            self.assertIsNotNone(multihead_outputs)
            self.assertEqual(len(multihead_outputs), self.model_tester.num_hidden_layers)
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
1001
1002
1003
1004

            def check_attentions_validity(attentions):
                # Remove Nan
                for t in attentions:
                    self.assertLess(
                        torch.sum(torch.isnan(t)), t.numel() / 4
                    )  # Check we don't have more than 25% nans (arbitrary)
                attentions = [
                    t.masked_fill(torch.isnan(t), 0.0) for t in attentions
                ]  # remove them (the test is less complete)

                self.assertAlmostEqual(attentions[0][..., 0, :, :].flatten().sum().item(), 0.0)
                self.assertNotEqual(attentions[0][..., -1, :, :].flatten().sum().item(), 0.0)
                if len(attentions) > 2:  # encoder-decoder models have only 2 layers in each module
                    self.assertNotEqual(attentions[1][..., 0, :, :].flatten().sum().item(), 0.0)
                self.assertAlmostEqual(attentions[-1][..., -2, :, :].flatten().sum().item(), 0.0)
                self.assertNotEqual(attentions[-1][..., -1, :, :].flatten().sum().item(), 0.0)

            if model.config.is_encoder_decoder:
                check_attentions_validity(outputs.encoder_attentions)
                check_attentions_validity(outputs.decoder_attentions)
1005
                check_attentions_validity(outputs.cross_attentions)
1006
1007
            else:
                check_attentions_validity(outputs.attentions)
1008

Patrick von Platen's avatar
Patrick von Platen committed
1009
1010
    def test_head_pruning(self):
        if not self.test_pruning:
1011
1012
1013
            return

        for model_class in self.all_model_classes:
Lysandre's avatar
Lysandre committed
1014
1015
1016
1017
            (
                config,
                inputs_dict,
            ) = self.model_tester.prepare_config_and_inputs_for_common()
1018

1019
1020
            if "head_mask" in inputs_dict:
                del inputs_dict["head_mask"]
1021

1022
            inputs_dict["output_attentions"] = True
1023
1024
1025
1026
            config.output_hidden_states = False
            model = model_class(config=config)
            model.to(torch_device)
            model.eval()
1027
1028
1029
1030
            heads_to_prune = {
                0: list(range(1, self.model_tester.num_attention_heads)),
                -1: [0],
            }
1031
1032
            model.prune_heads(heads_to_prune)
            with torch.no_grad():
1033
                outputs = model(**self._prepare_for_class(inputs_dict, model_class))
1034

1035
            attentions = outputs[-1]
1036

1037
1038
1039
            self.assertEqual(attentions[0].shape[-3], 1)
            self.assertEqual(attentions[1].shape[-3], self.model_tester.num_attention_heads)
            self.assertEqual(attentions[-1].shape[-3], self.model_tester.num_attention_heads - 1)
LysandreJik's avatar
LysandreJik committed
1040

Patrick von Platen's avatar
Patrick von Platen committed
1041
1042
    def test_head_pruning_save_load_from_pretrained(self):
        if not self.test_pruning:
1043
            return
LysandreJik's avatar
LysandreJik committed
1044

1045
        for model_class in self.all_model_classes:
Lysandre's avatar
Lysandre committed
1046
1047
1048
1049
            (
                config,
                inputs_dict,
            ) = self.model_tester.prepare_config_and_inputs_for_common()
1050
1051
1052

            if "head_mask" in inputs_dict:
                del inputs_dict["head_mask"]
1053

1054
            inputs_dict["output_attentions"] = True
1055
1056
1057
1058
            config.output_hidden_states = False
            model = model_class(config=config)
            model.to(torch_device)
            model.eval()
1059
1060
1061
1062
            heads_to_prune = {
                0: list(range(1, self.model_tester.num_attention_heads)),
                -1: [0],
            }
1063
            model.prune_heads(heads_to_prune)
1064

1065
            with tempfile.TemporaryDirectory() as temp_dir_name:
1066
1067
                model.save_pretrained(temp_dir_name)
                model = model_class.from_pretrained(temp_dir_name)
1068
                model.to(torch_device)
1069

1070
            with torch.no_grad():
1071
                outputs = model(**self._prepare_for_class(inputs_dict, model_class))
1072
1073
1074
1075
            attentions = outputs[-1]
            self.assertEqual(attentions[0].shape[-3], 1)
            self.assertEqual(attentions[1].shape[-3], self.model_tester.num_attention_heads)
            self.assertEqual(attentions[-1].shape[-3], self.model_tester.num_attention_heads - 1)
1076

Patrick von Platen's avatar
Patrick von Platen committed
1077
1078
    def test_head_pruning_save_load_from_config_init(self):
        if not self.test_pruning:
1079
            return
1080

1081
        for model_class in self.all_model_classes:
Lysandre's avatar
Lysandre committed
1082
1083
1084
1085
            (
                config,
                inputs_dict,
            ) = self.model_tester.prepare_config_and_inputs_for_common()
1086

1087
1088
            if "head_mask" in inputs_dict:
                del inputs_dict["head_mask"]
1089

1090
            inputs_dict["output_attentions"] = True
1091
            config.output_hidden_states = False
1092

1093
1094
1095
1096
            heads_to_prune = {
                0: list(range(1, self.model_tester.num_attention_heads)),
                -1: [0],
            }
1097
            config.pruned_heads = heads_to_prune
1098

1099
1100
1101
            model = model_class(config=config)
            model.to(torch_device)
            model.eval()
1102

1103
            with torch.no_grad():
1104
                outputs = model(**self._prepare_for_class(inputs_dict, model_class))
1105
            attentions = outputs[-1]
1106

1107
1108
1109
            self.assertEqual(attentions[0].shape[-3], 1)
            self.assertEqual(attentions[1].shape[-3], self.model_tester.num_attention_heads)
            self.assertEqual(attentions[-1].shape[-3], self.model_tester.num_attention_heads - 1)
1110

Patrick von Platen's avatar
Patrick von Platen committed
1111
1112
    def test_head_pruning_integration(self):
        if not self.test_pruning:
1113
            return
1114

1115
        for model_class in self.all_model_classes:
Lysandre's avatar
Lysandre committed
1116
1117
1118
1119
            (
                config,
                inputs_dict,
            ) = self.model_tester.prepare_config_and_inputs_for_common()
1120

1121
1122
            if "head_mask" in inputs_dict:
                del inputs_dict["head_mask"]
1123

1124
            inputs_dict["output_attentions"] = True
1125
            config.output_hidden_states = False
1126

1127
1128
            heads_to_prune = {0: [0], 1: [1, 2]}
            config.pruned_heads = heads_to_prune
1129

1130
1131
1132
            model = model_class(config=config)
            model.to(torch_device)
            model.eval()
1133

1134
            with torch.no_grad():
1135
                outputs = model(**self._prepare_for_class(inputs_dict, model_class))
1136
            attentions = outputs[-1]
1137

1138
1139
1140
1141
            self.assertEqual(attentions[0].shape[-3], self.model_tester.num_attention_heads - 1)
            self.assertEqual(attentions[1].shape[-3], self.model_tester.num_attention_heads - 2)
            self.assertEqual(attentions[2].shape[-3], self.model_tester.num_attention_heads)
            self.assertEqual(attentions[3].shape[-3], self.model_tester.num_attention_heads)
thomwolf's avatar
thomwolf committed
1142

1143
            with tempfile.TemporaryDirectory() as temp_dir_name:
1144
1145
                model.save_pretrained(temp_dir_name)
                model = model_class.from_pretrained(temp_dir_name)
1146
                model.to(torch_device)
thomwolf's avatar
thomwolf committed
1147

1148
            with torch.no_grad():
1149
                outputs = model(**self._prepare_for_class(inputs_dict, model_class))
1150
            attentions = outputs[-1]
LysandreJik's avatar
LysandreJik committed
1151

1152
1153
1154
1155
            self.assertEqual(attentions[0].shape[-3], self.model_tester.num_attention_heads - 1)
            self.assertEqual(attentions[1].shape[-3], self.model_tester.num_attention_heads - 2)
            self.assertEqual(attentions[2].shape[-3], self.model_tester.num_attention_heads)
            self.assertEqual(attentions[3].shape[-3], self.model_tester.num_attention_heads)
thomwolf's avatar
thomwolf committed
1156

1157
1158
            heads_to_prune = {0: [0], 2: [1, 2]}
            model.prune_heads(heads_to_prune)
1159

1160
            with torch.no_grad():
1161
                outputs = model(**self._prepare_for_class(inputs_dict, model_class))
1162
            attentions = outputs[-1]
1163

1164
1165
1166
1167
            self.assertEqual(attentions[0].shape[-3], self.model_tester.num_attention_heads - 1)
            self.assertEqual(attentions[1].shape[-3], self.model_tester.num_attention_heads - 2)
            self.assertEqual(attentions[2].shape[-3], self.model_tester.num_attention_heads - 2)
            self.assertEqual(attentions[3].shape[-3], self.model_tester.num_attention_heads)
1168

1169
            self.assertDictEqual(model.config.pruned_heads, {0: [0], 1: [1, 2], 2: [1, 2]})
thomwolf's avatar
thomwolf committed
1170

Patrick von Platen's avatar
Patrick von Platen committed
1171
    def test_hidden_states_output(self):
Joseph Liu's avatar
Joseph Liu committed
1172
        def check_hidden_states_output(inputs_dict, config, model_class):
1173
            model = model_class(config)
1174
            model.to(torch_device)
thomwolf's avatar
thomwolf committed
1175
            model.eval()
Joseph Liu's avatar
Joseph Liu committed
1176

thomwolf's avatar
thomwolf committed
1177
            with torch.no_grad():
1178
                outputs = model(**self._prepare_for_class(inputs_dict, model_class))
1179
1180

            hidden_states = outputs.encoder_hidden_states if config.is_encoder_decoder else outputs.hidden_states
Patrick von Platen's avatar
Patrick von Platen committed
1181

Sylvain Gugger's avatar
Sylvain Gugger committed
1182
1183
1184
1185
            expected_num_layers = getattr(
                self.model_tester, "expected_num_hidden_layers", self.model_tester.num_hidden_layers + 1
            )
            self.assertEqual(len(hidden_states), expected_num_layers)
1186

Patrick von Platen's avatar
Patrick von Platen committed
1187
1188
1189
1190
1191
1192
1193
            if hasattr(self.model_tester, "encoder_seq_length"):
                seq_length = self.model_tester.encoder_seq_length
                if hasattr(self.model_tester, "chunk_length") and self.model_tester.chunk_length > 1:
                    seq_length = seq_length * self.model_tester.chunk_length
            else:
                seq_length = self.model_tester.seq_length

1194
            self.assertListEqual(
Lysandre's avatar
Lysandre committed
1195
1196
                list(hidden_states[0].shape[-2:]),
                [seq_length, self.model_tester.hidden_size],
1197
            )
thomwolf's avatar
thomwolf committed
1198

1199
1200
1201
1202
1203
1204
1205
1206
1207
1208
1209
1210
1211
            if config.is_encoder_decoder:
                hidden_states = outputs.decoder_hidden_states

                self.assertIsInstance(hidden_states, (list, tuple))
                self.assertEqual(len(hidden_states), expected_num_layers)
                seq_len = getattr(self.model_tester, "seq_length", None)
                decoder_seq_length = getattr(self.model_tester, "decoder_seq_length", seq_len)

                self.assertListEqual(
                    list(hidden_states[0].shape[-2:]),
                    [decoder_seq_length, self.model_tester.hidden_size],
                )

Joseph Liu's avatar
Joseph Liu committed
1212
1213
1214
1215
1216
1217
1218
1219
1220
1221
1222
1223
        config, inputs_dict = self.model_tester.prepare_config_and_inputs_for_common()

        for model_class in self.all_model_classes:
            inputs_dict["output_hidden_states"] = True
            check_hidden_states_output(inputs_dict, config, model_class)

            # check that output_hidden_states also work using config
            del inputs_dict["output_hidden_states"]
            config.output_hidden_states = True

            check_hidden_states_output(inputs_dict, config, model_class)

1224
1225
1226
    def test_retain_grad_hidden_states_attentions(self):
        config, inputs_dict = self.model_tester.prepare_config_and_inputs_for_common()
        config.output_hidden_states = True
1227
        config.output_attentions = self.has_attentions
1228
1229
1230
1231
1232
1233
1234
1235
1236

        # no need to test all models as different heads yield the same functionality
        model_class = self.all_model_classes[0]
        model = model_class(config)
        model.to(torch_device)

        inputs = self._prepare_for_class(inputs_dict, model_class)

        outputs = model(**inputs)
1237

1238
1239
1240
1241
1242
1243
1244
1245
1246
1247
        output = outputs[0]

        if config.is_encoder_decoder:
            # Seq2Seq models
            encoder_hidden_states = outputs.encoder_hidden_states[0]
            encoder_hidden_states.retain_grad()

            decoder_hidden_states = outputs.decoder_hidden_states[0]
            decoder_hidden_states.retain_grad()

1248
1249
1250
1251
1252
1253
1254
1255
1256
            if self.has_attentions:
                encoder_attentions = outputs.encoder_attentions[0]
                encoder_attentions.retain_grad()

                decoder_attentions = outputs.decoder_attentions[0]
                decoder_attentions.retain_grad()

                cross_attentions = outputs.cross_attentions[0]
                cross_attentions.retain_grad()
1257
1258
1259
1260
1261

            output.flatten()[0].backward(retain_graph=True)

            self.assertIsNotNone(encoder_hidden_states.grad)
            self.assertIsNotNone(decoder_hidden_states.grad)
1262
1263
1264
1265
1266

            if self.has_attentions:
                self.assertIsNotNone(encoder_attentions.grad)
                self.assertIsNotNone(decoder_attentions.grad)
                self.assertIsNotNone(cross_attentions.grad)
1267
1268
1269
1270
        else:
            # Encoder-/Decoder-only models
            hidden_states = outputs.hidden_states[0]
            hidden_states.retain_grad()
1271
1272
1273
1274

            if self.has_attentions:
                attentions = outputs.attentions[0]
                attentions.retain_grad()
1275
1276
1277
1278

            output.flatten()[0].backward(retain_graph=True)

            self.assertIsNotNone(hidden_states.grad)
1279
1280
1281

            if self.has_attentions:
                self.assertIsNotNone(attentions.grad)
1282

Pradhy729's avatar
Pradhy729 committed
1283
    def test_feed_forward_chunking(self):
Lysandre's avatar
Lysandre committed
1284
1285
1286
1287
        (
            original_config,
            inputs_dict,
        ) = self.model_tester.prepare_config_and_inputs_for_common()
Pradhy729's avatar
Pradhy729 committed
1288
1289
1290
1291
1292
1293
1294
1295
1296
1297
1298
1299
1300
1301
1302
1303
1304
1305
        for model_class in self.all_model_classes:
            torch.manual_seed(0)
            config = copy.deepcopy(original_config)
            model = model_class(config)
            model.to(torch_device)
            model.eval()

            hidden_states_no_chunk = model(**self._prepare_for_class(inputs_dict, model_class))[0]

            torch.manual_seed(0)
            config.chunk_size_feed_forward = 1
            model = model_class(config)
            model.to(torch_device)
            model.eval()

            hidden_states_with_chunk = model(**self._prepare_for_class(inputs_dict, model_class))[0]
            self.assertTrue(torch.allclose(hidden_states_no_chunk, hidden_states_with_chunk, atol=1e-3))

1306
1307
1308
1309
1310
1311
1312
1313
1314
1315
1316
1317
1318
1319
1320
1321
1322
1323
1324
1325
1326
1327
1328
1329
1330
1331
1332
1333
1334
1335
1336
1337
1338
1339
1340
1341
1342
1343
1344
1345
1346
1347
1348
1349
1350
1351
1352
1353
1354
1355
1356
1357
1358
1359
1360
1361
1362
1363
1364
1365
1366
1367
1368
1369
1370
1371
1372
1373
1374
1375
1376
1377
1378
1379
1380
1381
1382
1383
1384
    def test_resize_position_vector_embeddings(self):
        if not self.test_resize_position_embeddings:
            return

        (
            original_config,
            inputs_dict,
        ) = self.model_tester.prepare_config_and_inputs_for_common()

        for model_class in self.all_model_classes:
            config = copy.deepcopy(original_config)
            model = model_class(config)
            model.to(torch_device)

            if self.model_tester.is_training is False:
                model.eval()

            max_position_embeddings = config.max_position_embeddings

            # Retrieve the embeddings and clone theme
            if model.config.is_encoder_decoder:
                encoder_model_embed, decoder_model_embed = model.get_position_embeddings()
                encoder_cloned_embeddings = encoder_model_embed.weight.clone()
                decoder_cloned_embeddings = decoder_model_embed.weight.clone()
            else:
                model_embed = model.get_position_embeddings()
                cloned_embeddings = model_embed.weight.clone()

            # Check that resizing the position embeddings with a larger max_position_embeddings increases
            # the model's postion embeddings size
            model.resize_position_embeddings(max_position_embeddings + 10)
            self.assertEqual(model.config.max_position_embeddings, max_position_embeddings + 10)

            # Check that it actually resizes the embeddings matrix
            if model.config.is_encoder_decoder:
                encoder_model_embed, decoder_model_embed = model.get_position_embeddings()
                self.assertEqual(encoder_model_embed.weight.shape[0], encoder_cloned_embeddings.shape[0] + 10)
                self.assertEqual(decoder_model_embed.weight.shape[0], decoder_cloned_embeddings.shape[0] + 10)
            else:
                model_embed = model.get_position_embeddings()
                self.assertEqual(model_embed.weight.shape[0], cloned_embeddings.shape[0] + 10)

            # Check that the model can still do a forward pass successfully (every parameter should be resized)
            model(**self._prepare_for_class(inputs_dict, model_class))

            # Check that resizing the position embeddings with a smaller max_position_embeddings decreases
            # the model's max_position_embeddings
            model.resize_position_embeddings(max_position_embeddings - 5)
            self.assertEqual(model.config.max_position_embeddings, max_position_embeddings - 5)

            # Check that it actually resizes the embeddings matrix
            if model.config.is_encoder_decoder:
                encoder_model_embed, decoder_model_embed = model.get_position_embeddings()
                self.assertEqual(encoder_model_embed.weight.shape[0], encoder_cloned_embeddings.shape[0] - 5)
                self.assertEqual(decoder_model_embed.weight.shape[0], decoder_cloned_embeddings.shape[0] - 5)
            else:
                model_embed = model.get_position_embeddings()
                self.assertEqual(model_embed.weight.shape[0], cloned_embeddings.shape[0] - 5)

            # Check that the model can still do a forward pass successfully (every parameter should be resized)
            model(**self._prepare_for_class(inputs_dict, model_class))

            # Check that adding and removing tokens has not modified the first part of the embedding matrix.
            models_equal = True

            if model.config.is_encoder_decoder:
                for p1, p2 in zip(encoder_cloned_embeddings, encoder_model_embed.weight):
                    if p1.data.ne(p2.data).sum() > 0:
                        models_equal = False
                for p1, p2 in zip(decoder_cloned_embeddings, decoder_model_embed.weight):
                    if p1.data.ne(p2.data).sum() > 0:
                        models_equal = False
            else:
                for p1, p2 in zip(cloned_embeddings, model_embed.weight):
                    if p1.data.ne(p2.data).sum() > 0:
                        models_equal = False

            self.assertTrue(models_equal)

Patrick von Platen's avatar
Patrick von Platen committed
1385
    def test_resize_tokens_embeddings(self):
Lysandre's avatar
Lysandre committed
1386
1387
1388
1389
        (
            original_config,
            inputs_dict,
        ) = self.model_tester.prepare_config_and_inputs_for_common()
Patrick von Platen's avatar
Patrick von Platen committed
1390
        if not self.test_resize_embeddings:
1391
1392
1393
1394
1395
            return

        for model_class in self.all_model_classes:
            config = copy.deepcopy(original_config)
            model = model_class(config)
1396
            model.to(torch_device)
1397

Patrick von Platen's avatar
Patrick von Platen committed
1398
1399
1400
            if self.model_tester.is_training is False:
                model.eval()

1401
1402
1403
1404
1405
1406
1407
1408
1409
1410
            model_vocab_size = config.vocab_size
            # Retrieve the embeddings and clone theme
            model_embed = model.resize_token_embeddings(model_vocab_size)
            cloned_embeddings = model_embed.weight.clone()

            # Check that resizing the token embeddings with a larger vocab size increases the model's vocab size
            model_embed = model.resize_token_embeddings(model_vocab_size + 10)
            self.assertEqual(model.config.vocab_size, model_vocab_size + 10)
            # Check that it actually resizes the embeddings matrix
            self.assertEqual(model_embed.weight.shape[0], cloned_embeddings.shape[0] + 10)
1411
            # Check that the model can still do a forward pass successfully (every parameter should be resized)
1412
            model(**self._prepare_for_class(inputs_dict, model_class))
1413
1414
1415
1416
1417
1418
1419

            # Check that resizing the token embeddings with a smaller vocab size decreases the model's vocab size
            model_embed = model.resize_token_embeddings(model_vocab_size - 15)
            self.assertEqual(model.config.vocab_size, model_vocab_size - 15)
            # Check that it actually resizes the embeddings matrix
            self.assertEqual(model_embed.weight.shape[0], cloned_embeddings.shape[0] - 15)

1420
1421
1422
            # Check that the model can still do a forward pass successfully (every parameter should be resized)
            # Input ids should be clamped to the maximum size of the vocabulary
            inputs_dict["input_ids"].clamp_(max=model_vocab_size - 15 - 1)
1423
1424
1425
1426

            # make sure that decoder_input_ids are resized as well
            if "decoder_input_ids" in inputs_dict:
                inputs_dict["decoder_input_ids"].clamp_(max=model_vocab_size - 15 - 1)
1427
            model(**self._prepare_for_class(inputs_dict, model_class))
1428

1429
1430
1431
1432
1433
1434
1435
1436
            # Check that adding and removing tokens has not modified the first part of the embedding matrix.
            models_equal = True
            for p1, p2 in zip(cloned_embeddings, model_embed.weight):
                if p1.data.ne(p2.data).sum() > 0:
                    models_equal = False

            self.assertTrue(models_equal)

1437
1438
1439
1440
1441
1442
1443
1444
1445
1446
1447
1448
1449
1450
1451
1452
1453
1454
1455
1456
1457
1458
1459
1460
1461
1462
1463
1464
1465
1466
1467
1468
1469
1470
1471
1472
1473
1474
1475
1476
1477
1478
1479
1480
1481
1482
1483
1484
1485
1486
1487
    def test_resize_embeddings_untied(self):
        (
            original_config,
            inputs_dict,
        ) = self.model_tester.prepare_config_and_inputs_for_common()
        if not self.test_resize_embeddings:
            return

        original_config.tie_word_embeddings = False

        # if model cannot untied embeddings -> leave test
        if original_config.tie_word_embeddings:
            return

        for model_class in self.all_model_classes:
            config = copy.deepcopy(original_config)
            model = model_class(config).to(torch_device)

            # if no output embeddings -> leave test
            if model.get_output_embeddings() is None:
                continue

            # Check that resizing the token embeddings with a larger vocab size increases the model's vocab size
            model_vocab_size = config.vocab_size
            model.resize_token_embeddings(model_vocab_size + 10)
            self.assertEqual(model.config.vocab_size, model_vocab_size + 10)
            output_embeds = model.get_output_embeddings()
            self.assertEqual(output_embeds.weight.shape[0], model_vocab_size + 10)
            # Check bias if present
            if output_embeds.bias is not None:
                self.assertEqual(output_embeds.bias.shape[0], model_vocab_size + 10)
            # Check that the model can still do a forward pass successfully (every parameter should be resized)
            model(**self._prepare_for_class(inputs_dict, model_class))

            # Check that resizing the token embeddings with a smaller vocab size decreases the model's vocab size
            model.resize_token_embeddings(model_vocab_size - 15)
            self.assertEqual(model.config.vocab_size, model_vocab_size - 15)
            # Check that it actually resizes the embeddings matrix
            output_embeds = model.get_output_embeddings()
            self.assertEqual(output_embeds.weight.shape[0], model_vocab_size - 15)
            # Check bias if present
            if output_embeds.bias is not None:
                self.assertEqual(output_embeds.bias.shape[0], model_vocab_size - 15)
            # Check that the model can still do a forward pass successfully (every parameter should be resized)
            # Input ids should be clamped to the maximum size of the vocabulary
            inputs_dict["input_ids"].clamp_(max=model_vocab_size - 15 - 1)
            if "decoder_input_ids" in inputs_dict:
                inputs_dict["decoder_input_ids"].clamp_(max=model_vocab_size - 15 - 1)
            # Check that the model can still do a forward pass successfully (every parameter should be resized)
            model(**self._prepare_for_class(inputs_dict, model_class))

Patrick von Platen's avatar
Patrick von Platen committed
1488
    def test_model_common_attributes(self):
1489
1490
1491
1492
        config, inputs_dict = self.model_tester.prepare_config_and_inputs_for_common()

        for model_class in self.all_model_classes:
            model = model_class(config)
1493
1494
            self.assertIsInstance(model.get_input_embeddings(), (nn.Embedding, AdaptiveEmbedding))
            model.set_input_embeddings(nn.Embedding(10, 10))
1495
            x = model.get_output_embeddings()
1496
            self.assertTrue(x is None or isinstance(x, nn.Linear))
1497

1498
1499
1500
1501
1502
1503
1504
    def test_model_main_input_name(self):
        for model_class in self.all_model_classes:
            model_signature = inspect.signature(getattr(model_class, "forward"))
            # The main input is the name of the argument after `self`
            observed_main_input_name = list(model_signature.parameters.keys())[1]
            self.assertEqual(model_class.main_input_name, observed_main_input_name)

1505
    def test_correct_missing_keys(self):
1506
1507
        if not self.test_missing_keys:
            return
1508
1509
1510
1511
1512
1513
1514
        config, _ = self.model_tester.prepare_config_and_inputs_for_common()

        for model_class in self.all_model_classes:
            model = model_class(config)
            base_model_prefix = model.base_model_prefix

            if hasattr(model, base_model_prefix):
1515
1516
1517
1518
1519
1520
1521
1522
1523
1524
1525
1526
1527
1528

                extra_params = {k: v for k, v in model.named_parameters() if not k.startswith(base_model_prefix)}
                extra_params.update({k: v for k, v in model.named_buffers() if not k.startswith(base_model_prefix)})
                # Some models define this as None
                if model._keys_to_ignore_on_load_missing:
                    for key in model._keys_to_ignore_on_load_missing:
                        extra_params.pop(key, None)

                if not extra_params:
                    # In that case, we *are* on a head model, but every
                    # single key is not actual parameters and this is
                    # tested in `test_tied_model_weights_key_ignore` test.
                    continue

1529
1530
1531
                with tempfile.TemporaryDirectory() as temp_dir_name:
                    model.base_model.save_pretrained(temp_dir_name)
                    model, loading_info = model_class.from_pretrained(temp_dir_name, output_loading_info=True)
1532
                    self.assertGreater(len(loading_info["missing_keys"]), 0, model.__class__.__name__)
1533

1534
1535
1536
1537
1538
1539
1540
1541
1542
1543
1544
1545
1546
1547
1548
1549
1550
1551
1552
1553
1554
1555
1556
1557
1558
1559
1560
1561
1562
1563
1564
1565
1566
1567
1568
1569
1570
1571
1572
1573
1574
1575
1576
1577
1578
1579
1580
1581
    def test_tie_model_weights(self):
        if not self.test_torchscript:
            return

        config, inputs_dict = self.model_tester.prepare_config_and_inputs_for_common()

        def check_same_values(layer_1, layer_2):
            equal = True
            for p1, p2 in zip(layer_1.weight, layer_2.weight):
                if p1.data.ne(p2.data).sum() > 0:
                    equal = False
            return equal

        for model_class in self.all_model_classes:
            config.torchscript = True
            model_not_tied = model_class(config)
            if model_not_tied.get_output_embeddings() is None:
                continue

            config_tied = copy.deepcopy(config)
            config_tied.torchscript = False
            model_tied = model_class(config_tied)
            params_tied = list(model_tied.parameters())
            # Check that the embedding layer and decoding layer are the same in size and in value
            # self.assertTrue(check_same_values(embeddings, decoding))

            # # Check that after modification, they remain the same.
            # embeddings.weight.data.div_(2)
            # # Check that the embedding layer and decoding layer are the same in size and in value
            # self.assertTrue(embeddings.weight.shape, decoding.weight.shape)
            # self.assertTrue(check_same_values(embeddings, decoding))

            # # Check that after modification, they remain the same.
            # decoding.weight.data.div_(4)
            # # Check that the embedding layer and decoding layer are the same in size and in value
            # self.assertTrue(embeddings.weight.shape, decoding.weight.shape)
            # self.assertTrue(check_same_values(embeddings, decoding))

            # Check that after resize they remain tied.
            model_tied.resize_token_embeddings(config.vocab_size + 10)
            params_tied_2 = list(model_tied.parameters())
            self.assertEqual(len(params_tied_2), len(params_tied))

            # decoding.weight.data.mul_(20)
            # # Check that the embedding layer and decoding layer are the same in size and in value
            # self.assertTrue(model.transformer.wte.weight.shape, model.lm_head.weight.shape)
            # self.assertTrue(check_same_values(model.transformer.wte, model.lm_head))

1582
1583
1584
1585
1586
1587
1588
1589
1590
1591
1592
1593
1594
1595
1596
1597
1598
1599
1600
1601
1602
1603
1604
1605
1606
1607
1608
1609
1610
1611
1612
1613
1614
1615
1616
1617
1618
1619
1620
1621
1622
1623
1624
1625
1626
1627
1628
1629
    def test_tied_model_weights_key_ignore(self):
        config, inputs_dict = self.model_tester.prepare_config_and_inputs_for_common()
        for model_class in self.all_model_classes:
            model_tied = model_class(config)
            with tempfile.TemporaryDirectory() as d:
                model_tied.save_pretrained(d)

                # We are nuking ALL weights on file, so every parameter should
                # yell on load. We're going to detect if we yell too much, or too little.
                with open(os.path.join(d, "pytorch_model.bin"), "wb") as f:
                    torch.save({}, f)
                model_reloaded, infos = model_class.from_pretrained(d, output_loading_info=True)

                # ! Actually we could use `state_dict()` and check iteratively the tensors which are the same (for instance using `tensor.data_ptr()`). to detect the duplicates.
                # ```python
                # model = GPT2LMHeadModel.from_pretrained("gpt2")
                # "lm_head.weight" in model.state_dict().keys()  # True
                # "lm_head.weight" in model.named_parameters() # False
                # In [6]: model.lm_head.weight.data_ptr()
                # Out[6]: 139901378371648
                # In [9]: model.transformer.wte.weight.data_ptr()
                # Out[9]: 139901378371648  # Same PTR, it's the same DATA ! we would need to check for stride too to be 100% accurate.
                # ```

                prefix = f"{model_reloaded.base_model_prefix}."
                params = dict(model_reloaded.named_parameters())
                params.update(dict(model_reloaded.named_buffers()))
                # param_names = set(k[len(prefix) :] if k.startswith(prefix) else k for k in params.keys())
                param_names = set(k[len(prefix) :] if k.startswith(prefix) else k for k in params.keys())

                missing_keys = set(infos["missing_keys"])

                extra_missing = missing_keys - param_names
                # missed_missing = param_names - missing_keys

                self.assertEqual(
                    extra_missing,
                    set(),
                    f"This model {model_class.__name__} might be missing some `keys_to_ignore`: {extra_missing}",
                )

                # self.assertEqual(
                #     missed_missing,
                #     set(),
                #     f"This model {model_class.__name__} ignores keys {missed_missing} but they look like real"
                #     " parameters",
                # )

1630
1631
1632
    def test_model_outputs_equivalence(self):
        config, inputs_dict = self.model_tester.prepare_config_and_inputs_for_common()

Sam Shleifer's avatar
Sam Shleifer committed
1633
1634
1635
1636
        def set_nan_tensor_to_zero(t):
            t[t != t] = 0
            return t

1637
1638
1639
1640
1641
1642
1643
1644
1645
        def check_equivalence(model, tuple_inputs, dict_inputs, additional_kwargs={}):
            with torch.no_grad():
                tuple_output = model(**tuple_inputs, return_dict=False, **additional_kwargs)
                dict_output = model(**dict_inputs, return_dict=True, **additional_kwargs).to_tuple()

                def recursive_check(tuple_object, dict_object):
                    if isinstance(tuple_object, (List, Tuple)):
                        for tuple_iterable_value, dict_iterable_value in zip(tuple_object, dict_object):
                            recursive_check(tuple_iterable_value, dict_iterable_value)
NielsRogge's avatar
NielsRogge committed
1646
1647
1648
1649
1650
                    elif isinstance(tuple_object, Dict):
                        for tuple_iterable_value, dict_iterable_value in zip(
                            tuple_object.values(), dict_object.values()
                        ):
                            recursive_check(tuple_iterable_value, dict_iterable_value)
1651
1652
1653
1654
                    elif tuple_object is None:
                        return
                    else:
                        self.assertTrue(
Sam Shleifer's avatar
Sam Shleifer committed
1655
1656
1657
                            torch.allclose(
                                set_nan_tensor_to_zero(tuple_object), set_nan_tensor_to_zero(dict_object), atol=1e-5
                            ),
Sylvain Gugger's avatar
Sylvain Gugger committed
1658
1659
1660
1661
1662
1663
                            msg=(
                                "Tuple and dict output are not equal. Difference:"
                                f" {torch.max(torch.abs(tuple_object - dict_object))}. Tuple has `nan`:"
                                f" {torch.isnan(tuple_object).any()} and `inf`: {torch.isinf(tuple_object)}. Dict has"
                                f" `nan`: {torch.isnan(dict_object).any()} and `inf`: {torch.isinf(dict_object)}."
                            ),
1664
1665
1666
1667
1668
1669
1670
1671
1672
1673
1674
1675
1676
1677
1678
1679
1680
1681
1682
1683
1684
1685
1686
1687
1688
                        )

                recursive_check(tuple_output, dict_output)

        for model_class in self.all_model_classes:
            model = model_class(config)
            model.to(torch_device)
            model.eval()

            tuple_inputs = self._prepare_for_class(inputs_dict, model_class)
            dict_inputs = self._prepare_for_class(inputs_dict, model_class)
            check_equivalence(model, tuple_inputs, dict_inputs)

            tuple_inputs = self._prepare_for_class(inputs_dict, model_class, return_labels=True)
            dict_inputs = self._prepare_for_class(inputs_dict, model_class, return_labels=True)
            check_equivalence(model, tuple_inputs, dict_inputs)

            tuple_inputs = self._prepare_for_class(inputs_dict, model_class)
            dict_inputs = self._prepare_for_class(inputs_dict, model_class)
            check_equivalence(model, tuple_inputs, dict_inputs, {"output_hidden_states": True})

            tuple_inputs = self._prepare_for_class(inputs_dict, model_class, return_labels=True)
            dict_inputs = self._prepare_for_class(inputs_dict, model_class, return_labels=True)
            check_equivalence(model, tuple_inputs, dict_inputs, {"output_hidden_states": True})

1689
1690
1691
1692
            if self.has_attentions:
                tuple_inputs = self._prepare_for_class(inputs_dict, model_class)
                dict_inputs = self._prepare_for_class(inputs_dict, model_class)
                check_equivalence(model, tuple_inputs, dict_inputs, {"output_attentions": True})
1693

1694
1695
1696
1697
1698
1699
1700
1701
1702
                tuple_inputs = self._prepare_for_class(inputs_dict, model_class, return_labels=True)
                dict_inputs = self._prepare_for_class(inputs_dict, model_class, return_labels=True)
                check_equivalence(model, tuple_inputs, dict_inputs, {"output_attentions": True})

                tuple_inputs = self._prepare_for_class(inputs_dict, model_class, return_labels=True)
                dict_inputs = self._prepare_for_class(inputs_dict, model_class, return_labels=True)
                check_equivalence(
                    model, tuple_inputs, dict_inputs, {"output_hidden_states": True, "output_attentions": True}
                )
1703

1704
1705
1706
1707
    # Don't copy this method to model specific test file!
    # TODO: remove this method once the issues are all fixed!
    def _make_attention_mask_non_null(self, inputs_dict):
        """Make sure no sequence has all zeros as attention mask"""
1708

1709
1710
1711
        for k in ["attention_mask", "encoder_attention_mask", "decoder_attention_mask"]:
            if k in inputs_dict:
                attention_mask = inputs_dict[k]
1712

1713
1714
1715
1716
1717
1718
                # Make sure no all 0s attention masks - to avoid failure at this moment.
                # Put `1` at the beginning of sequences to make it still work when combining causal attention masks.
                # TODO: remove this line once a fix regarding large negative values for attention mask is done.
                attention_mask = torch.cat(
                    [torch.ones_like(attention_mask[:, :1], dtype=attention_mask.dtype), attention_mask[:, 1:]], dim=-1
                )
1719

1720
1721
1722
1723
1724
1725
1726
1727
1728
1729
1730
1731
1732
1733
1734
1735
1736
1737
1738
1739
1740
1741
1742
1743
1744
1745
1746
1747
1748
1749
1750
1751
1752
1753
1754
1755
1756
1757
1758
1759
1760
1761
1762
1763
1764
1765
                # Here we make the first sequence with all 0s as attention mask.
                # Currently, this will fail for `TFWav2Vec2Model`. This is caused by the different large negative
                # values, like `1e-4`, `1e-9`, `1e-30` and `-inf` for attention mask across models/frameworks.
                # TODO: enable this block once the large negative values thing is cleaned up.
                # (see https://github.com/huggingface/transformers/issues/14859)
                # attention_mask = torch.cat(
                #     [torch.zeros_like(attention_mask[:1], dtype=attention_mask.dtype), attention_mask[1:]],
                #     dim=0
                # )

                inputs_dict[k] = attention_mask

    # Don't copy this method to model specific test file!
    # TODO: remove this method once the issues are all fixed!
    def _postprocessing_to_ignore_test_cases(self, tf_outputs, pt_outputs, model_class):
        """For temporarily ignoring some failed test cases (issues to be fixed)"""

        tf_keys = set([k for k, v in tf_outputs.items() if v is not None])
        pt_keys = set([k for k, v in pt_outputs.items() if v is not None])

        key_differences = tf_keys.symmetric_difference(pt_keys)

        if model_class.__name__ in [
            "FlaubertWithLMHeadModel",
            "FunnelForPreTraining",
            "ElectraForPreTraining",
            "XLMWithLMHeadModel",
            "TransfoXLLMHeadModel",
        ]:
            for k in key_differences:
                if k in ["loss", "losses"]:
                    tf_keys.discard(k)
                    pt_keys.discard(k)
        elif model_class.__name__.startswith("GPT2"):
            # `TFGPT2` has `past_key_values` as a tensor while `GPT2` has it as a tuple.
            tf_keys.discard("past_key_values")
            pt_keys.discard("past_key_values")

        # create new outputs from the remaining fields
        new_tf_outputs = type(tf_outputs)(**{k: tf_outputs[k] for k in tf_keys})
        new_pt_outputs = type(pt_outputs)(**{k: pt_outputs[k] for k in pt_keys})

        return new_tf_outputs, new_pt_outputs

    # Copied from tests.test_modeling_tf_common.TFModelTesterMixin.check_pt_tf_outputs
    def check_pt_tf_outputs(self, tf_outputs, pt_outputs, model_class, tol=1e-5, name="outputs", attributes=None):
1766
        """Check the outputs from PyTorch and TensorFlow models are close enough. Checks are done in a recursive way.
1767

1768
1769
1770
1771
1772
1773
1774
1775
        Args:
            model_class: The class of the model that is currently testing. For example, `TFBertModel`,
                TFBertForMaskedLM`, `TFBertForSequenceClassification`, etc. Mainly used for providing more informative
                error messages.
            name (`str`): The name of the output. For example, `output.hidden_states`, `output.attentions`, etc.
            attributes (`Tuple[str]`): The names of the output's element if the output is a tuple/list with each element
                being a named field in the output.
        """
1776

1777
1778
1779
        self.assertEqual(type(name), str)
        if attributes is not None:
            self.assertEqual(type(attributes), tuple, f"{name}: The argument `attributes` should be a `tuple`")
1780

1781
1782
1783
1784
1785
1786
        # Allow `ModelOutput` (e.g. `CLIPOutput` has `text_model_output` and `vision_model_output`).
        if isinstance(tf_outputs, ModelOutput):
            self.assertTrue(
                isinstance(pt_outputs, ModelOutput),
                f"{name}: `pt_outputs` should an instance of `ModelOutput` when `tf_outputs` is",
            )
1787

1788
1789
1790
            # Don't copy this block to model specific test file!
            # TODO: remove this method and this line after issues are fixed
            tf_outputs, pt_outputs = self._postprocessing_to_ignore_test_cases(tf_outputs, pt_outputs, model_class)
1791

1792
1793
            tf_keys = [k for k, v in tf_outputs.items() if v is not None]
            pt_keys = [k for k, v in pt_outputs.items() if v is not None]
1794

1795
            self.assertEqual(tf_keys, pt_keys, f"{name}: Output keys differ between TF and PyTorch")
1796

1797
            # convert to the case of `tuple`
1798
            # appending each key to the current (string) `name`
1799
1800
1801
1802
            attributes = tuple([f"{name}.{k}" for k in tf_keys])
            self.check_pt_tf_outputs(
                tf_outputs.to_tuple(), pt_outputs.to_tuple(), model_class, tol=tol, name=name, attributes=attributes
            )
1803

1804
1805
1806
1807
1808
1809
1810
1811
1812
1813
        # Allow `list` (e.g. `TransfoXLModelOutput.mems` is a list of tensors.)
        elif type(tf_outputs) in [tuple, list]:
            self.assertEqual(type(tf_outputs), type(pt_outputs), f"{name}: Output types differ between TF and PyTorch")
            self.assertEqual(len(tf_outputs), len(pt_outputs), f"{name}: Output lengths differ between TF and PyTorch")

            if attributes is not None:
                # case 1: each output has assigned name (e.g. a tuple form of a `ModelOutput`)
                self.assertEqual(
                    len(attributes),
                    len(tf_outputs),
1814
                    f"{name}: The tuple `attributes` should have the same length as `tf_outputs`",
1815
                )
1816
            else:
1817
                # case 2: each output has no assigned name (e.g. hidden states of each layer) -> add an index to `name`
1818
                attributes = tuple([f"{name}_{idx}" for idx in range(len(tf_outputs))])
1819

1820
1821
            for tf_output, pt_output, attr in zip(tf_outputs, pt_outputs, attributes):
                self.check_pt_tf_outputs(tf_output, pt_output, model_class, tol=tol, name=attr)
1822

1823
1824
1825
1826
        elif isinstance(tf_outputs, tf.Tensor):
            self.assertTrue(
                isinstance(pt_outputs, torch.Tensor), f"{name}: `pt_outputs` should a tensor when `tf_outputs` is"
            )
1827

1828
1829
            tf_outputs = tf_outputs.numpy()
            pt_outputs = pt_outputs.detach().to("cpu").numpy()
1830

1831
1832
1833
            self.assertEqual(
                tf_outputs.shape, pt_outputs.shape, f"{name}: Output shapes differ between TF and PyTorch"
            )
1834

1835
1836
1837
1838
            # deal with NumPy's scalars to make replacing nan values by 0 work.
            if np.isscalar(tf_outputs):
                tf_outputs = np.array([tf_outputs])
                pt_outputs = np.array([pt_outputs])
1839

1840
1841
            tf_nans = np.isnan(tf_outputs)
            pt_nans = np.isnan(pt_outputs)
1842

1843
1844
1845
1846
            pt_outputs[tf_nans] = 0
            tf_outputs[tf_nans] = 0
            pt_outputs[pt_nans] = 0
            tf_outputs[pt_nans] = 0
1847

1848
            max_diff = np.amax(np.abs(tf_outputs - pt_outputs))
1849
            self.assertLessEqual(max_diff, tol, f"{name}: Difference between PyTorch and TF is {max_diff} (>= {tol}).")
1850
1851
        else:
            raise ValueError(
1852
                "`tf_outputs` should be an instance of `ModelOutput`, a `tuple`, or an instance of `tf.Tensor`. Got"
Sylvain Gugger's avatar
Sylvain Gugger committed
1853
                f" {type(tf_outputs)} instead."
1854
1855
            )

1856
1857
1858
1859
1860
1861
1862
1863
1864
1865
1866
1867
1868
1869
1870
1871
1872
1873
    def prepare_tf_inputs_from_pt_inputs(self, pt_inputs_dict):

        tf_inputs_dict = {}
        for key, tensor in pt_inputs_dict.items():
            # skip key that does not exist in tf
            if type(tensor) == bool:
                tf_inputs_dict[key] = tensor
            elif key == "input_values":
                tf_inputs_dict[key] = tf.convert_to_tensor(tensor.cpu().numpy(), dtype=tf.float32)
            elif key == "pixel_values":
                tf_inputs_dict[key] = tf.convert_to_tensor(tensor.cpu().numpy(), dtype=tf.float32)
            elif key == "input_features":
                tf_inputs_dict[key] = tf.convert_to_tensor(tensor.cpu().numpy(), dtype=tf.float32)
            # other general float inputs
            elif tensor.is_floating_point():
                tf_inputs_dict[key] = tf.convert_to_tensor(tensor.cpu().numpy(), dtype=tf.float32)
            else:
                tf_inputs_dict[key] = tf.convert_to_tensor(tensor.cpu().numpy(), dtype=tf.int32)
1874

1875
        return tf_inputs_dict
1876

1877
    def check_pt_tf_models(self, tf_model, pt_model, pt_inputs_dict):
1878

1879
        tf_inputs_dict = self.prepare_tf_inputs_from_pt_inputs(pt_inputs_dict)
1880

1881
1882
1883
1884
        # send pytorch inputs to the correct device
        pt_inputs_dict = {
            k: v.to(device=torch_device) if isinstance(v, torch.Tensor) else v for k, v in pt_inputs_dict.items()
        }
1885

1886
1887
        # send pytorch model to the correct device
        pt_model.to(torch_device)
1888

1889
1890
        # Check predictions on first output (logits/hidden-states) are close enough given low-level computational differences
        pt_model.eval()
1891

1892
1893
1894
1895
1896
1897
1898
1899
1900
1901
1902
1903
1904
1905
1906
1907
        with torch.no_grad():
            pt_outputs = pt_model(**pt_inputs_dict)
        tf_outputs = tf_model(tf_inputs_dict)

        # tf models returned loss is usually a tensor rather than a scalar.
        # (see `hf_compute_loss`: it uses `tf.keras.losses.Reduction.NONE`)
        # Change it here to a scalar to match PyTorch models' loss
        tf_loss = getattr(tf_outputs, "loss", None)
        if tf_loss is not None:
            tf_outputs.loss = tf.math.reduce_mean(tf_loss)

        self.check_pt_tf_outputs(tf_outputs, pt_outputs, type(pt_model))

    @is_pt_tf_cross_test
    def test_pt_tf_model_equivalence(self):
        import transformers
1908
1909
1910

        for model_class in self.all_model_classes:

1911
1912
1913
            config, inputs_dict = self.model_tester.prepare_config_and_inputs_for_common()

            tf_model_class_name = "TF" + model_class.__name__  # Add the "TF" at the beginning
1914
            if not hasattr(transformers, tf_model_class_name):
1915
                # transformers does not have this model in TF version yet
1916
1917
                return

1918
1919
1920
            # Output all for aggressive testing
            config.output_hidden_states = True
            config.output_attentions = self.has_attentions
1921

1922
1923
1924
1925
            # Make sure no sequence has all zeros as attention mask, otherwise some tests fail due to the inconsistency
            # of the usage `1e-4`, `1e-9`, `1e-30`, `-inf`.
            # TODO: Use a uniform value for all models, make sure all tests pass without this processing, and remove it.
            self._make_attention_mask_non_null(inputs_dict)
1926
1927

            tf_model_class = getattr(transformers, tf_model_class_name)
1928
1929

            pt_model = model_class(config)
1930
1931
1932
1933
1934
1935
1936
1937
1938
            tf_model = tf_model_class(config)

            pt_inputs_dict = self._prepare_for_class(inputs_dict, model_class)
            pt_inputs_dict_with_labels = self._prepare_for_class(
                inputs_dict,
                model_class,
                # Not all models accept "labels" in the forward pass (yet :) )
                return_labels=True if "labels" in inspect.signature(model_class.forward).parameters.keys() else False,
            )
1939
1940
1941
1942
1943
1944
1945
1946
1947

            # make sure only tf inputs are forward that actually exist in function args
            tf_input_keys = set(inspect.signature(tf_model.call).parameters.keys())

            # remove all head masks
            tf_input_keys.discard("head_mask")
            tf_input_keys.discard("cross_attn_head_mask")
            tf_input_keys.discard("decoder_head_mask")

1948
            pt_inputs_dict = {k: v for k, v in pt_inputs_dict.items() if k in tf_input_keys}
1949
1950
1951
1952
1953
1954
            pt_inputs_dict_with_labels = {k: v for k, v in pt_inputs_dict_with_labels.items() if k in tf_input_keys}

            # For some models (e.g. base models), there is no label returned.
            # Set the input dict to `None` to avoid check outputs twice for the same input dicts.
            if set(pt_inputs_dict_with_labels.keys()).symmetric_difference(pt_inputs_dict.keys()):
                pt_inputs_dict_with_labels = None
1955
1956

            # Check we can load pt model in tf and vice-versa with model => model functions
1957
1958
            # Here requires `tf_inputs_dict` to build `tf_model`
            tf_inputs_dict = self.prepare_tf_inputs_from_pt_inputs(pt_inputs_dict)
1959
            tf_model = transformers.load_pytorch_model_in_tf2_model(tf_model, pt_model, tf_inputs=tf_inputs_dict)
1960
            pt_model = transformers.load_tf2_model_in_pytorch_model(pt_model, tf_model)
1961

1962
1963
1964
1965
1966
            # Original test: check without `labels`
            self.check_pt_tf_models(tf_model, pt_model, pt_inputs_dict)
            # check with `labels`
            if pt_inputs_dict_with_labels:
                self.check_pt_tf_models(tf_model, pt_model, pt_inputs_dict_with_labels)
1967
1968
1969
1970
1971
1972
1973
1974
1975
1976
1977

            # Check we can load pt model in tf and vice-versa with checkpoint => model functions
            with tempfile.TemporaryDirectory() as tmpdirname:
                pt_checkpoint_path = os.path.join(tmpdirname, "pt_model.bin")
                torch.save(pt_model.state_dict(), pt_checkpoint_path)
                tf_model = transformers.load_pytorch_checkpoint_in_tf2_model(tf_model, pt_checkpoint_path)

                tf_checkpoint_path = os.path.join(tmpdirname, "tf_model.h5")
                tf_model.save_weights(tf_checkpoint_path)
                pt_model = transformers.load_tf2_checkpoint_in_pytorch_model(pt_model, tf_checkpoint_path)

1978
1979
1980
1981
1982
            # Original test: check without `labels`
            self.check_pt_tf_models(tf_model, pt_model, pt_inputs_dict)
            # check with `labels`
            if pt_inputs_dict_with_labels:
                self.check_pt_tf_models(tf_model, pt_model, pt_inputs_dict_with_labels)
1983
1984
1985
1986
1987

    def assert_almost_equals(self, a: np.ndarray, b: np.ndarray, tol: float):
        diff = np.abs((a - b)).max()
        self.assertLessEqual(diff, tol, f"Difference between torch and flax is {diff} (>= {tol}).")

1988
    def check_pt_flax_outputs(self, fx_outputs, pt_outputs, model_class, tol=1e-5, name="outputs", attributes=None):
1989
1990
1991
1992
1993
1994
1995
1996
1997
        """
        Args:
            model_class: The class of the model that is currently testing. For example, ..., etc.
            Currently unused, but it could make debugging easier and faster.

            names: A string, or a list of strings. These specify what fx_outputs/pt_outputs represent in the model outputs.
                Currently unused, but in the future, we could use this information to make the error message clearer
                by giving the name(s) of the output tensor(s) with large difference(s) between PT and Flax.
        """
1998
1999
2000
2001
2002
2003
2004
2005
2006
2007
2008
2009
2010
2011
2012
2013
2014
2015
2016
2017
2018
2019
2020
2021
2022
2023
2024
2025
2026
2027
2028
2029
2030
2031
2032
2033
2034
2035
2036
2037

        self.assertEqual(type(name), str)
        if attributes is not None:
            self.assertEqual(type(attributes), tuple, f"{name}: The argument `attributes` should be a `tuple`")

        # Allow `ModelOutput` (e.g. `CLIPOutput` has `text_model_output` and `vision_model_output`).
        if isinstance(fx_outputs, ModelOutput):
            self.assertTrue(
                isinstance(pt_outputs, ModelOutput),
                f"{name}: `pt_outputs` should an instance of `ModelOutput` when `fx_outputs` is",
            )

            fx_keys = tuple([k for k, v in fx_outputs.items() if v is not None])
            pt_keys = tuple([k for k, v in pt_outputs.items() if v is not None])

            self.assertEqual(fx_keys, pt_keys, f"{name}: Output keys differ between Flax and PyTorch")

            # convert to the case of `tuple`
            # appending each key to the current (string) `name`
            attributes = tuple([f"{name}.{k}" for k in fx_keys])
            self.check_pt_flax_outputs(
                fx_outputs.to_tuple(), pt_outputs.to_tuple(), model_class, tol=tol, name=name, attributes=attributes
            )

        # Allow `list` (e.g. `TransfoXLModelOutput.mems` is a list of tensors.)
        elif type(fx_outputs) in [tuple, list]:
            self.assertEqual(
                type(fx_outputs), type(pt_outputs), f"{name}: Output types differ between Flax and PyTorch"
            )
            self.assertEqual(
                len(fx_outputs), len(pt_outputs), f"{name}: Output lengths differ between Flax and PyTorch"
            )

            if attributes is not None:
                # case 1: each output has assigned name (e.g. a tuple form of a `ModelOutput`)
                self.assertEqual(
                    len(attributes),
                    len(fx_outputs),
                    f"{name}: The tuple `attributes` should have the same length as `fx_outputs`",
                )
2038
            else:
2039
2040
2041
2042
2043
2044
                # case 2: each output has no assigned name (e.g. hidden states of each layer) -> add an index to `name`
                attributes = tuple([f"{name}_{idx}" for idx in range(len(fx_outputs))])

            for fx_output, pt_output, attr in zip(fx_outputs, pt_outputs, attributes):
                self.check_pt_flax_outputs(fx_output, pt_output, model_class, tol=tol, name=attr)

2045
        elif isinstance(fx_outputs, jnp.ndarray):
2046
2047
2048
            self.assertTrue(
                isinstance(pt_outputs, torch.Tensor), f"{name}: `pt_outputs` should a tensor when `fx_outputs` is"
            )
2049
2050
2051
2052
2053

            # Using `np.asarray` gives `ValueError: assignment destination is read-only` at the line `fx_outputs[fx_nans] = 0`.
            fx_outputs = np.array(fx_outputs)
            pt_outputs = pt_outputs.detach().to("cpu").numpy()

2054
2055
2056
2057
2058
2059
2060
2061
2062
            self.assertEqual(
                fx_outputs.shape, pt_outputs.shape, f"{name}: Output shapes differ between Flax and PyTorch"
            )

            # deal with NumPy's scalars to make replacing nan values by 0 work.
            if np.isscalar(fx_outputs):
                fx_outputs = np.array([fx_outputs])
                pt_outputs = np.array([pt_outputs])

2063
2064
2065
2066
2067
2068
2069
2070
            fx_nans = np.isnan(fx_outputs)
            pt_nans = np.isnan(pt_outputs)

            pt_outputs[fx_nans] = 0
            fx_outputs[fx_nans] = 0
            pt_outputs[pt_nans] = 0
            fx_outputs[pt_nans] = 0

2071
2072
2073
2074
            max_diff = np.amax(np.abs(fx_outputs - pt_outputs))
            self.assertLessEqual(
                max_diff, tol, f"{name}: Difference between PyTorch and Flax is {max_diff} (>= {tol})."
            )
2075
2076
        else:
            raise ValueError(
2077
2078
                "`fx_outputs` should be an instance of `ModelOutput`, a `tuple`, or an instance of `jnp.ndarray`. Got"
                f" {type(fx_outputs)} instead."
2079
2080
            )

2081
2082
2083
2084
2085
2086
2087
2088
2089
    @is_pt_flax_cross_test
    def test_equivalence_pt_to_flax(self):
        config, inputs_dict = self.model_tester.prepare_config_and_inputs_for_common()

        for model_class in self.all_model_classes:
            with self.subTest(model_class.__name__):
                fx_model_class_name = "Flax" + model_class.__name__

                if not hasattr(transformers, fx_model_class_name):
2090
                    # no flax model exists for this class
2091
2092
                    return

2093
2094
2095
2096
                # Output all for aggressive testing
                config.output_hidden_states = True
                config.output_attentions = self.has_attentions

2097
2098
                fx_model_class = getattr(transformers, fx_model_class_name)

2099
2100
2101
2102
2103
2104
                # load PyTorch class
                pt_model = model_class(config).eval()
                # Flax models don't use the `use_cache` option and cache is not returned as a default.
                # So we disable `use_cache` here for PyTorch model.
                pt_model.config.use_cache = False

2105
2106
                # load Flax class
                fx_model = fx_model_class(config, dtype=jnp.float32)
2107

2108
2109
2110
2111
2112
2113
2114
2115
2116
                # make sure only flax inputs are forward that actually exist in function args
                fx_input_keys = inspect.signature(fx_model.__call__).parameters.keys()

                # prepare inputs
                pt_inputs = self._prepare_for_class(inputs_dict, model_class)

                # remove function args that don't exist in Flax
                pt_inputs = {k: v for k, v in pt_inputs.items() if k in fx_input_keys}

2117
2118
2119
2120
2121
2122
2123
2124
                # send pytorch inputs to the correct device
                pt_inputs = {
                    k: v.to(device=torch_device) if isinstance(v, torch.Tensor) else v for k, v in pt_inputs.items()
                }

                # convert inputs to Flax
                fx_inputs = {k: np.array(v) for k, v in pt_inputs.items() if torch.is_tensor(v)}

2125
2126
2127
                fx_state = convert_pytorch_state_dict_to_flax(pt_model.state_dict(), fx_model)
                fx_model.params = fx_state

2128
2129
2130
                # send pytorch model to the correct device
                pt_model.to(torch_device)

2131
                with torch.no_grad():
2132
2133
                    pt_outputs = pt_model(**pt_inputs)
                fx_outputs = fx_model(**fx_inputs)
2134

2135
2136
2137
2138
                fx_keys = tuple([k for k, v in fx_outputs.items() if v is not None])
                pt_keys = tuple([k for k, v in pt_outputs.items() if v is not None])

                self.assertEqual(fx_keys, pt_keys)
2139
                self.check_pt_flax_outputs(fx_outputs, pt_outputs, model_class)
2140
2141
2142
2143
2144

                with tempfile.TemporaryDirectory() as tmpdirname:
                    pt_model.save_pretrained(tmpdirname)
                    fx_model_loaded = fx_model_class.from_pretrained(tmpdirname, from_pt=True)

2145
2146
2147
2148
2149
2150
                fx_outputs_loaded = fx_model_loaded(**fx_inputs)

                fx_keys = tuple([k for k, v in fx_outputs_loaded.items() if v is not None])
                pt_keys = tuple([k for k, v in pt_outputs.items() if v is not None])

                self.assertEqual(fx_keys, pt_keys)
2151
                self.check_pt_flax_outputs(fx_outputs_loaded, pt_outputs, model_class)
2152
2153
2154
2155
2156
2157
2158
2159
2160
2161
2162
2163
2164

    @is_pt_flax_cross_test
    def test_equivalence_flax_to_pt(self):
        config, inputs_dict = self.model_tester.prepare_config_and_inputs_for_common()

        for model_class in self.all_model_classes:
            with self.subTest(model_class.__name__):
                fx_model_class_name = "Flax" + model_class.__name__

                if not hasattr(transformers, fx_model_class_name):
                    # no flax model exists for this class
                    return

2165
2166
2167
2168
                # Output all for aggressive testing
                config.output_hidden_states = True
                config.output_attentions = self.has_attentions

2169
2170
                fx_model_class = getattr(transformers, fx_model_class_name)

2171
2172
2173
2174
2175
2176
                # load PyTorch class
                pt_model = model_class(config).eval()
                # Flax models don't use the `use_cache` option and cache is not returned as a default.
                # So we disable `use_cache` here for PyTorch model.
                pt_model.config.use_cache = False

2177
2178
                # load Flax class
                fx_model = fx_model_class(config, dtype=jnp.float32)
2179

2180
2181
2182
2183
2184
2185
2186
2187
2188
                # make sure only flax inputs are forward that actually exist in function args
                fx_input_keys = inspect.signature(fx_model.__call__).parameters.keys()

                # prepare inputs
                pt_inputs = self._prepare_for_class(inputs_dict, model_class)

                # remove function args that don't exist in Flax
                pt_inputs = {k: v for k, v in pt_inputs.items() if k in fx_input_keys}

2189
2190
2191
2192
                # send pytorch inputs to the correct device
                pt_inputs = {
                    k: v.to(device=torch_device) if isinstance(v, torch.Tensor) else v for k, v in pt_inputs.items()
                }
2193

2194
                # convert inputs to Flax
2195
2196
                fx_inputs = {k: np.array(v) for k, v in pt_inputs.items() if torch.is_tensor(v)}

2197
2198
2199
2200
2201
2202
2203
                pt_model = load_flax_weights_in_pytorch_model(pt_model, fx_model.params)

                # make sure weights are tied in PyTorch
                pt_model.tie_weights()

                # send pytorch model to the correct device
                pt_model.to(torch_device)
2204

2205
2206
2207
2208
2209
2210
2211
2212
                with torch.no_grad():
                    pt_outputs = pt_model(**pt_inputs)
                fx_outputs = fx_model(**fx_inputs)

                fx_keys = tuple([k for k, v in fx_outputs.items() if v is not None])
                pt_keys = tuple([k for k, v in pt_outputs.items() if v is not None])

                self.assertEqual(fx_keys, pt_keys)
2213
                self.check_pt_flax_outputs(fx_outputs, pt_outputs, model_class)
2214
2215
2216
2217
2218

                with tempfile.TemporaryDirectory() as tmpdirname:
                    fx_model.save_pretrained(tmpdirname)
                    pt_model_loaded = model_class.from_pretrained(tmpdirname, from_flax=True)

2219
2220
2221
2222
                # send pytorch model to the correct device
                pt_model_loaded.to(torch_device)
                pt_model_loaded.eval()

2223
                with torch.no_grad():
2224
                    pt_outputs_loaded = pt_model_loaded(**pt_inputs)
2225

2226
2227
2228
2229
                fx_keys = tuple([k for k, v in fx_outputs.items() if v is not None])
                pt_keys = tuple([k for k, v in pt_outputs_loaded.items() if v is not None])

                self.assertEqual(fx_keys, pt_keys)
2230
                self.check_pt_flax_outputs(fx_outputs, pt_outputs_loaded, model_class)
2231

Patrick von Platen's avatar
Patrick von Platen committed
2232
    def test_inputs_embeds(self):
2233
2234
2235
2236
        config, inputs_dict = self.model_tester.prepare_config_and_inputs_for_common()

        for model_class in self.all_model_classes:
            model = model_class(config)
2237
            model.to(torch_device)
thomwolf's avatar
thomwolf committed
2238
            model.eval()
2239

2240
            inputs = copy.deepcopy(self._prepare_for_class(inputs_dict, model_class))
Weizhen's avatar
Weizhen committed
2241

2242
2243
2244
2245
2246
2247
2248
2249
2250
            if not self.is_encoder_decoder:
                input_ids = inputs["input_ids"]
                del inputs["input_ids"]
            else:
                encoder_input_ids = inputs["input_ids"]
                decoder_input_ids = inputs.get("decoder_input_ids", encoder_input_ids)
                del inputs["input_ids"]
                inputs.pop("decoder_input_ids", None)

2251
2252
            wte = model.get_input_embeddings()
            if not self.is_encoder_decoder:
2253
                inputs["inputs_embeds"] = wte(input_ids)
2254
            else:
2255
2256
                inputs["inputs_embeds"] = wte(encoder_input_ids)
                inputs["decoder_inputs_embeds"] = wte(decoder_input_ids)
2257

thomwolf's avatar
thomwolf committed
2258
            with torch.no_grad():
Weizhen's avatar
Weizhen committed
2259
                model(**inputs)[0]
2260

2261
2262
    @require_torch_multi_gpu
    def test_multi_gpu_data_parallel_forward(self):
2263
2264
2265
2266
        config, inputs_dict = self.model_tester.prepare_config_and_inputs_for_common()

        # some params shouldn't be scattered by nn.DataParallel
        # so just remove them if they are present.
2267
        blacklist_non_batched_params = ["head_mask", "decoder_head_mask", "cross_attn_head_mask"]
2268
2269
2270
2271
2272
2273
2274
2275
2276
2277
2278
2279
2280
2281
        for k in blacklist_non_batched_params:
            inputs_dict.pop(k, None)

        # move input tensors to cuda:O
        for k, v in inputs_dict.items():
            if torch.is_tensor(v):
                inputs_dict[k] = v.to(0)

        for model_class in self.all_model_classes:
            model = model_class(config=config)
            model.to(0)
            model.eval()

            # Wrap model in nn.DataParallel
2282
            model = nn.DataParallel(model)
2283
            with torch.no_grad():
2284
                _ = model(**self._prepare_for_class(inputs_dict, model_class))
2285

2286
2287
2288
    @require_torch_multi_gpu
    def test_model_parallelization(self):
        if not self.test_model_parallel:
2289
            return
2290

2291
        # a candidate for testing_utils
2292
        def get_current_gpu_memory_use():
Patrick von Platen's avatar
Patrick von Platen committed
2293
            """returns a list of cuda memory allocations per GPU in MBs"""
2294
2295
2296
2297
2298

            per_device_memory = []
            for id in range(torch.cuda.device_count()):
                with torch.cuda.device(id):
                    per_device_memory.append(torch.cuda.memory_allocated() >> 20)
2299
2300
2301
2302
2303
2304
2305
2306
2307

            return per_device_memory

        # Needs a large model to see the difference.
        config = self.model_tester.get_large_model_config()

        for model_class in self.all_parallelizable_model_classes:
            torch.cuda.empty_cache()

2308
2309
2310
            # 1. single gpu memory load + unload + memory measurements
            # Retrieve initial memory usage (can easily be ~0.6-1.5GB if cuda-kernels have been preloaded by previous tests)
            memory_at_start = get_current_gpu_memory_use()
2311

2312
2313
            # Put model on device 0 and take a memory snapshot
            model = model_class(config)
2314
2315
2316
            model.to("cuda:0")
            memory_after_model_load = get_current_gpu_memory_use()

2317
2318
2319
            # The memory use on device 0 should be higher than it was initially.
            self.assertGreater(memory_after_model_load[0], memory_at_start[0])

2320
            del model
2321
            gc.collect()
2322
2323
            torch.cuda.empty_cache()

2324
2325
2326
            # 2. MP test
            # it's essential to re-calibrate the usage before the next stage
            memory_at_start = get_current_gpu_memory_use()
2327
2328

            # Spread model layers over multiple devices
2329
            model = model_class(config)
2330
2331
2332
2333
            model.parallelize()
            memory_after_parallelization = get_current_gpu_memory_use()

            # Assert that the memory use on all devices is higher than it was when loaded only on CPU
2334
            for n in range(len(model.device_map.keys())):
2335
                self.assertGreater(memory_after_parallelization[n], memory_at_start[n])
2336

2337
            # Assert that the memory use of device 0 is lower than it was when the entire model was loaded on it
2338
2339
            self.assertLess(memory_after_parallelization[0], memory_after_model_load[0])

2340
2341
            # Assert that the memory use of device 1 is higher than it was when the entire model was loaded
            # on device 0 and device 1 wasn't used at all
2342
2343
2344
            self.assertGreater(memory_after_parallelization[1], memory_after_model_load[1])

            del model
2345
            gc.collect()
2346
2347
2348
2349
2350
            torch.cuda.empty_cache()

    @require_torch_multi_gpu
    def test_model_parallel_equal_results(self):
        if not self.test_model_parallel:
2351
            return
2352
2353
2354
2355
2356
2357

        config, inputs_dict = self.model_tester.prepare_config_and_inputs_for_common()

        for model_class in self.all_parallelizable_model_classes:
            inputs_dict = self._prepare_for_class(inputs_dict, model_class)

2358
            def cast_to_device(dictionary, device):
2359
2360
2361
                output = {}
                for k, v in dictionary.items():
                    if isinstance(v, torch.Tensor):
2362
                        output[k] = v.to(device)
2363
2364
2365
2366
2367
                    else:
                        output[k] = v

                return output

2368
2369
2370
2371
2372
2373
            model = model_class(config)
            output = model(**cast_to_device(inputs_dict, "cpu"))

            model.parallelize()

            parallel_output = model(**cast_to_device(inputs_dict, "cuda:0"))
2374
2375
2376
2377
2378
2379
2380
2381

            for value, parallel_value in zip(output, parallel_output):
                if isinstance(value, torch.Tensor):
                    self.assertTrue(torch.allclose(value, parallel_value.to("cpu"), atol=1e-7))
                elif isinstance(value, (Tuple, List)):
                    for value_, parallel_value_ in zip(value, parallel_value):
                        self.assertTrue(torch.allclose(value_, parallel_value_.to("cpu"), atol=1e-7))

2382
2383
2384
2385
2386
2387
2388
2389
2390
2391
2392
2393
2394
2395
2396
2397
2398
2399
2400
2401
2402
2403
2404
2405
2406
2407
2408
2409
    @require_torch_multi_gpu
    def test_model_parallel_beam_search(self):
        if not self.test_model_parallel:
            return

        all_generative_and_parallelizable_model_classes = tuple(
            set(self.all_generative_model_classes).intersection(self.all_parallelizable_model_classes)
        )

        config, inputs_dict = self.model_tester.prepare_config_and_inputs_for_common()

        for model_class in all_generative_and_parallelizable_model_classes:
            inputs_dict = self._prepare_for_class(inputs_dict, model_class)
            model = model_class(config)

            def cast_to_device(dictionary, device):
                output = {}
                for k, v in dictionary.items():
                    if isinstance(v, torch.Tensor):
                        output[k] = v.to(device)
                    else:
                        output[k] = v

                return output

            model.parallelize()
            model.generate(**cast_to_device(inputs_dict, "cuda:0"), num_beams=2)

2410
2411
2412
2413
2414
2415
2416
2417
2418
2419
2420
2421
2422
2423
    def check_device_map_is_respected(self, model, device_map):
        for param_name, param in model.named_parameters():
            # Find device in device_map
            while len(param_name) > 0 and param_name not in device_map:
                param_name = ".".join(param_name.split(".")[:-1])
            if param_name not in device_map:
                raise ValueError("device map is incomplete, it does not contain any device for `param_name`.")

            param_device = device_map[param_name]
            if param_device in ["cpu", "disk"]:
                self.assertEqual(param.device, torch.device("meta"))
            else:
                self.assertEqual(param.device, torch.device(param_device))

Sylvain Gugger's avatar
Sylvain Gugger committed
2424
2425
2426
2427
2428
2429
2430
2431
2432
    @require_accelerate
    @require_torch_gpu
    def test_disk_offload(self):
        config, inputs_dict = self.model_tester.prepare_config_and_inputs_for_common()

        for model_class in self.all_model_classes:
            if model_class._no_split_modules is None:
                continue

2433
            inputs_dict_class = self._prepare_for_class(inputs_dict, model_class)
Sylvain Gugger's avatar
Sylvain Gugger committed
2434
2435
            model = model_class(config).eval()
            model = model.to(torch_device)
2436
            torch.manual_seed(0)
2437
            base_output = model(**inputs_dict_class)
Sylvain Gugger's avatar
Sylvain Gugger committed
2438
2439

            model_size = compute_module_sizes(model)[""]
2440
            max_size = int(self.model_split_percents[0] * model_size)
Sylvain Gugger's avatar
Sylvain Gugger committed
2441
2442
2443
2444
2445
2446
2447
2448
2449
2450
2451
2452
2453
            with tempfile.TemporaryDirectory() as tmp_dir:
                model.cpu().save_pretrained(tmp_dir)

                max_memory = {0: max_size, "cpu": max_size}
                with self.assertRaises(ValueError):
                    # This errors out cause it's missing an offload folder
                    new_model = model_class.from_pretrained(tmp_dir, device_map="auto", max_memory=max_memory)

                new_model = model_class.from_pretrained(
                    tmp_dir, device_map="auto", max_memory=max_memory, offload_folder=tmp_dir
                )

                self.check_device_map_is_respected(new_model, new_model.hf_device_map)
2454
                torch.manual_seed(0)
2455
                new_output = new_model(**inputs_dict_class)
Sylvain Gugger's avatar
Sylvain Gugger committed
2456
2457
2458

                self.assertTrue(torch.allclose(base_output[0], new_output[0]))

2459
2460
2461
2462
2463
2464
2465
2466
2467
    @require_accelerate
    @require_torch_gpu
    def test_cpu_offload(self):
        config, inputs_dict = self.model_tester.prepare_config_and_inputs_for_common()

        for model_class in self.all_model_classes:
            if model_class._no_split_modules is None:
                continue

2468
            inputs_dict_class = self._prepare_for_class(inputs_dict, model_class)
2469
2470
            model = model_class(config).eval()
            model = model.to(torch_device)
2471
2472

            torch.manual_seed(0)
2473
            base_output = model(**inputs_dict_class)
2474
2475
2476

            model_size = compute_module_sizes(model)[""]
            # We test several splits of sizes to make sure it works.
2477
            max_gpu_sizes = [int(p * model_size) for p in self.model_split_percents]
2478
2479
2480
2481
2482
2483
2484
2485
2486
2487
            with tempfile.TemporaryDirectory() as tmp_dir:
                model.cpu().save_pretrained(tmp_dir)

                for max_size in max_gpu_sizes:
                    max_memory = {0: max_size, "cpu": model_size * 2}
                    new_model = model_class.from_pretrained(tmp_dir, device_map="auto", max_memory=max_memory)
                    # Making sure part of the model will actually end up offloaded
                    self.assertSetEqual(set(new_model.hf_device_map.values()), {0, "cpu"})

                    self.check_device_map_is_respected(new_model, new_model.hf_device_map)
2488
2489

                    torch.manual_seed(0)
2490
                    new_output = new_model(**inputs_dict_class)
2491
2492
2493
2494
2495
2496
2497
2498
2499
2500
2501
2502

                    self.assertTrue(torch.allclose(base_output[0], new_output[0]))

    @require_accelerate
    @require_torch_multi_gpu
    def test_model_parallelism(self):
        config, inputs_dict = self.model_tester.prepare_config_and_inputs_for_common()

        for model_class in self.all_model_classes:
            if model_class._no_split_modules is None:
                continue

2503
            inputs_dict_class = self._prepare_for_class(inputs_dict, model_class)
2504
2505
            model = model_class(config).eval()
            model = model.to(torch_device)
2506
2507

            torch.manual_seed(0)
2508
            base_output = model(**inputs_dict_class)
2509
2510
2511

            model_size = compute_module_sizes(model)[""]
            # We test several splits of sizes to make sure it works.
2512
            max_gpu_sizes = [int(p * model_size) for p in self.model_split_percents]
2513
2514
2515
2516
2517
2518
2519
2520
2521
2522
            with tempfile.TemporaryDirectory() as tmp_dir:
                model.cpu().save_pretrained(tmp_dir)

                for max_size in max_gpu_sizes:
                    max_memory = {0: max_size, 1: model_size * 2, "cpu": model_size * 2}
                    new_model = model_class.from_pretrained(tmp_dir, device_map="auto", max_memory=max_memory)
                    # Making sure part of the model will actually end up offloaded
                    self.assertSetEqual(set(new_model.hf_device_map.values()), {0, 1})

                    self.check_device_map_is_respected(new_model, new_model.hf_device_map)
2523
2524

                    torch.manual_seed(0)
2525
                    new_output = new_model(**inputs_dict_class)
2526
2527
2528

                    self.assertTrue(torch.allclose(base_output[0], new_output[0]))

2529
2530
2531
2532
2533
2534
2535
2536
2537
2538
    def test_problem_types(self):
        config, inputs_dict = self.model_tester.prepare_config_and_inputs_for_common()

        problem_types = [
            {"title": "multi_label_classification", "num_labels": 2, "dtype": torch.float},
            {"title": "single_label_classification", "num_labels": 1, "dtype": torch.long},
            {"title": "regression", "num_labels": 1, "dtype": torch.float},
        ]

        for model_class in self.all_model_classes:
2539
2540
2541
            if model_class.__name__ not in [
                *get_values(MODEL_FOR_SEQUENCE_CLASSIFICATION_MAPPING_NAMES),
                *get_values(MODEL_FOR_IMAGE_CLASSIFICATION_MAPPING_NAMES),
2542
            ]:
2543
2544
2545
2546
2547
2548
2549
2550
2551
2552
2553
2554
2555
2556
2557
2558
2559
2560
2561
                continue

            for problem_type in problem_types:
                with self.subTest(msg=f"Testing {model_class} with {problem_type['title']}"):

                    config.problem_type = problem_type["title"]
                    config.num_labels = problem_type["num_labels"]

                    model = model_class(config)
                    model.to(torch_device)
                    model.train()

                    inputs = self._prepare_for_class(inputs_dict, model_class, return_labels=True)

                    if problem_type["num_labels"] > 1:
                        inputs["labels"] = inputs["labels"].unsqueeze(1).repeat(1, problem_type["num_labels"])

                    inputs["labels"] = inputs["labels"].to(problem_type["dtype"])

2562
2563
2564
2565
2566
2567
                    # This tests that we do not trigger the warning form PyTorch "Using a target size that is different
                    # to the input size. This will likely lead to incorrect results due to broadcasting. Please ensure
                    # they have the same size." which is a symptom something in wrong for the regression problem.
                    # See https://github.com/huggingface/transformers/issues/11780
                    with warnings.catch_warnings(record=True) as warning_list:
                        loss = model(**inputs).loss
2568
2569
2570
2571
2572
                    for w in warning_list:
                        if "Using a target size that is different to the input size" in str(w.message):
                            raise ValueError(
                                f"Something is going wrong in the regression problem: intercepted {w.message}"
                            )
2573

2574
2575
                    loss.backward()

2576
    def test_load_with_mismatched_shapes(self):
2577
2578
        if not self.test_mismatched_shapes:
            return
2579
2580
2581
        config, inputs_dict = self.model_tester.prepare_config_and_inputs_for_common()

        for model_class in self.all_model_classes:
2582
            if model_class.__name__ not in get_values(MODEL_FOR_SEQUENCE_CLASSIFICATION_MAPPING_NAMES):
2583
2584
2585
2586
2587
2588
2589
2590
                continue

            with self.subTest(msg=f"Testing {model_class}"):
                with tempfile.TemporaryDirectory() as tmp_dir:
                    model = model_class(config)
                    model.save_pretrained(tmp_dir)

                    # Fails when we don't set ignore_mismatched_sizes=True
2591
                    with self.assertRaises(RuntimeError):
2592
                        new_model = AutoModelForSequenceClassification.from_pretrained(tmp_dir, num_labels=42)
2593
2594
                    with self.assertRaises(RuntimeError):
                        new_model_without_prefix = AutoModel.from_pretrained(tmp_dir, vocab_size=10)
2595
2596

                    logger = logging.get_logger("transformers.modeling_utils")
2597

2598
2599
2600
2601
2602
2603
2604
2605
2606
2607
                    with CaptureLogger(logger) as cl:
                        new_model = AutoModelForSequenceClassification.from_pretrained(
                            tmp_dir, num_labels=42, ignore_mismatched_sizes=True
                        )
                    self.assertIn("the shapes did not match", cl.out)
                    new_model.to(torch_device)
                    inputs = self._prepare_for_class(inputs_dict, model_class)
                    logits = new_model(**inputs).logits
                    self.assertEqual(logits.shape[1], 42)

2608
2609
2610
2611
2612
2613
2614
2615
2616
2617
2618
2619
                    with CaptureLogger(logger) as cl:
                        new_model_without_prefix = AutoModel.from_pretrained(
                            tmp_dir, vocab_size=10, ignore_mismatched_sizes=True
                        )
                    self.assertIn("the shapes did not match", cl.out)
                    input_ids = ids_tensor((2, 8), 10)
                    new_model_without_prefix.to(torch_device)
                    if self.is_encoder_decoder:
                        new_model_without_prefix(input_ids, decoder_input_ids=input_ids)
                    else:
                        new_model_without_prefix(input_ids)

2620

2621
global_rng = random.Random()
thomwolf's avatar
thomwolf committed
2622
2623


thomwolf's avatar
thomwolf committed
2624
def ids_tensor(shape, vocab_size, rng=None, name=None):
2625
    #  Creates a random int32 tensor of the shape within the vocab size
thomwolf's avatar
thomwolf committed
2626
    if rng is None:
2627
        rng = global_rng
thomwolf's avatar
thomwolf committed
2628

thomwolf's avatar
thomwolf committed
2629
2630
2631
    total_dims = 1
    for dim in shape:
        total_dims *= dim
thomwolf's avatar
thomwolf committed
2632

thomwolf's avatar
thomwolf committed
2633
2634
2635
    values = []
    for _ in range(total_dims):
        values.append(rng.randint(0, vocab_size - 1))
thomwolf's avatar
thomwolf committed
2636

2637
    return torch.tensor(data=values, dtype=torch.long, device=torch_device).view(shape).contiguous()
thomwolf's avatar
thomwolf committed
2638
2639


2640
2641
2642
2643
2644
2645
2646
def random_attention_mask(shape, rng=None, name=None):
    attn_mask = ids_tensor(shape, vocab_size=2, rng=None, name=None)
    # make sure that at least one token is attended to for each batch
    attn_mask[:, -1] = 1
    return attn_mask


2647
def floats_tensor(shape, scale=1.0, rng=None, name=None):
Patrick von Platen's avatar
Patrick von Platen committed
2648
    """Creates a random float32 tensor"""
2649
2650
2651
2652
2653
2654
2655
2656
2657
2658
2659
    if rng is None:
        rng = global_rng

    total_dims = 1
    for dim in shape:
        total_dims *= dim

    values = []
    for _ in range(total_dims):
        values.append(rng.random() * scale)

2660
    return torch.tensor(data=values, dtype=torch.float, device=torch_device).view(shape).contiguous()
2661
2662


2663
2664
2665
2666
2667
2668
2669
2670
2671
def check_models_equal(model1, model2):
    models_are_equal = True
    for model1_p, model2_p in zip(model1.parameters(), model2.parameters()):
        if model1_p.data.ne(model2_p.data).sum() > 0:
            models_are_equal = False

    return models_are_equal


2672
@require_torch
2673
class ModelUtilsTest(TestCasePlus):
2674
    @slow
Patrick von Platen's avatar
Patrick von Platen committed
2675
    def test_model_from_pretrained(self):
2676
        for model_name in BERT_PRETRAINED_MODEL_ARCHIVE_LIST[:1]:
thomwolf's avatar
thomwolf committed
2677
2678
2679
2680
2681
2682
2683
2684
            config = BertConfig.from_pretrained(model_name)
            self.assertIsNotNone(config)
            self.assertIsInstance(config, PretrainedConfig)

            model = BertModel.from_pretrained(model_name)
            model, loading_info = BertModel.from_pretrained(model_name, output_loading_info=True)
            self.assertIsNotNone(model)
            self.assertIsInstance(model, PreTrainedModel)
Lysandre Debut's avatar
Lysandre Debut committed
2685
2686
2687
2688
2689

            self.assertEqual(len(loading_info["missing_keys"]), 0)
            self.assertEqual(len(loading_info["unexpected_keys"]), 8)
            self.assertEqual(len(loading_info["mismatched_keys"]), 0)
            self.assertEqual(len(loading_info["error_msgs"]), 0)
thomwolf's avatar
thomwolf committed
2690
2691

            config = BertConfig.from_pretrained(model_name, output_attentions=True, output_hidden_states=True)
Lysandre Debut's avatar
Lysandre Debut committed
2692
2693
2694
2695

            # Not sure this is the intended behavior. TODO fix Lysandre & Thom
            config.name_or_path = model_name

thomwolf's avatar
thomwolf committed
2696
2697
2698
            model = BertModel.from_pretrained(model_name, output_attentions=True, output_hidden_states=True)
            self.assertEqual(model.config.output_hidden_states, True)
            self.assertEqual(model.config, config)
2699

2700
2701
2702
2703
2704
2705
2706
2707
2708
2709
2710
2711
2712
2713
2714
2715
2716
2717
2718
2719
2720
2721
2722
2723
2724
2725
2726
2727
2728
2729
2730
2731
2732
2733
2734
2735
2736
2737
2738
2739
2740
2741
2742
2743
2744
2745
2746
2747
2748
2749
    def test_model_from_pretrained_subfolder(self):
        config = BertConfig.from_pretrained("hf-internal-testing/tiny-random-bert")
        model = BertModel(config)

        subfolder = "bert"
        with tempfile.TemporaryDirectory() as tmp_dir:
            model.save_pretrained(os.path.join(tmp_dir, subfolder))

            with self.assertRaises(OSError):
                _ = BertModel.from_pretrained(tmp_dir)

            model_loaded = BertModel.from_pretrained(tmp_dir, subfolder=subfolder)

        self.assertTrue(check_models_equal(model, model_loaded))

    def test_model_from_pretrained_subfolder_sharded(self):
        config = BertConfig.from_pretrained("hf-internal-testing/tiny-random-bert")
        model = BertModel(config)

        subfolder = "bert"
        with tempfile.TemporaryDirectory() as tmp_dir:
            model.save_pretrained(os.path.join(tmp_dir, subfolder), max_shard_size="10KB")

            with self.assertRaises(OSError):
                _ = BertModel.from_pretrained(tmp_dir)

            model_loaded = BertModel.from_pretrained(tmp_dir, subfolder=subfolder)

        self.assertTrue(check_models_equal(model, model_loaded))

    def test_model_from_pretrained_hub_subfolder(self):
        subfolder = "bert"
        model_id = "hf-internal-testing/tiny-random-bert-subfolder"
        with self.assertRaises(OSError):
            _ = BertModel.from_pretrained(model_id)

        model = BertModel.from_pretrained(model_id, subfolder=subfolder)

        self.assertIsNotNone(model)

    def test_model_from_pretrained_hub_subfolder_sharded(self):
        subfolder = "bert"
        model_id = "hf-internal-testing/tiny-random-bert-sharded-subfolder"
        with self.assertRaises(OSError):
            _ = BertModel.from_pretrained(model_id)

        model = BertModel.from_pretrained(model_id, subfolder=subfolder)

        self.assertIsNotNone(model)

2750
2751
2752
2753
    def test_model_from_pretrained_with_different_pretrained_model_name(self):
        model = T5ForConditionalGeneration.from_pretrained(TINY_T5)
        self.assertIsNotNone(model)

2754
2755
        logger = logging.get_logger("transformers.configuration_utils")
        with CaptureLogger(logger) as cl:
2756
            BertModel.from_pretrained(TINY_T5)
2757
        self.assertTrue("You are using a model of type t5 to instantiate a model of type bert" in cl.out)
Sylvain Gugger's avatar
Sylvain Gugger committed
2758

2759
2760
2761
2762
2763
2764
2765
2766
2767
2768
2769
2770
2771
2772
2773
2774
2775
2776
2777
2778
2779
2780
    @require_torch
    def test_model_from_config_torch_dtype(self):
        # test that the model can be instantiated with dtype of user's choice - as long as it's a
        # float dtype. To make it happen config.torch_dtype needs to be set before instantiating the
        # model from the config object.

        config = T5Config.from_pretrained(TINY_T5)
        model = AutoModel.from_config(config)
        # XXX: isn't supported
        # model = T5ForConditionalGeneration.from_config(config)
        self.assertEqual(model.dtype, torch.float32)

        model = AutoModel.from_config(config, torch_dtype=torch.float16)
        self.assertEqual(model.dtype, torch.float16)

        # torch.set_default_dtype() supports only float dtypes, so will fail with non-float type
        with self.assertRaises(ValueError):
            model = AutoModel.from_config(config, torch_dtype=torch.int64)

    @require_torch
    def test_model_from_pretrained_torch_dtype(self):
        # test that the model can be instantiated with dtype of either
2781
2782
        # 1. explicit from_pretrained's torch_dtype argument
        # 2. via autodiscovery by looking at model weights (torch_dtype="auto")
2783
        # so if a model.half() was saved, we want it to be instantiated as such.
2784
2785
        #
        # test an explicit model class, but also AutoModel separately as the latter goes through a different code path
2786
2787
2788
2789
2790
2791
2792
2793
2794
2795
2796
2797
2798
2799
2800
2801
2802
2803
2804
2805
2806
2807
        model_path = self.get_auto_remove_tmp_dir()

        # baseline - we know TINY_T5 is fp32 model
        model = T5ForConditionalGeneration.from_pretrained(TINY_T5)
        self.assertEqual(model.dtype, torch.float32)

        # test the default fp32 save_pretrained => from_pretrained cycle
        model.save_pretrained(model_path)
        model = T5ForConditionalGeneration.from_pretrained(model_path)
        self.assertEqual(model.dtype, torch.float32)
        # test with auto-detection
        model = T5ForConditionalGeneration.from_pretrained(model_path, torch_dtype="auto")
        self.assertEqual(model.dtype, torch.float32)

        # test forced loading in fp16 (even though the weights are in fp32)
        model = T5ForConditionalGeneration.from_pretrained(model_path, torch_dtype=torch.float16)
        self.assertEqual(model.dtype, torch.float16)

        # test fp16 save_pretrained, loaded with auto-detection
        model = model.half()
        model.save_pretrained(model_path)
        model = T5ForConditionalGeneration.from_pretrained(model_path, torch_dtype="auto")
2808
        self.assertEqual(model.config.torch_dtype, torch.float16)
2809
2810
        self.assertEqual(model.dtype, torch.float16)

2811
2812
2813
2814
2815
        # tests `config.torch_dtype` saving
        with open(f"{model_path}/config.json") as f:
            config_dict = json.load(f)
        self.assertEqual(config_dict["torch_dtype"], "float16")

2816
2817
2818
2819
        # test fp16 save_pretrained, loaded with the explicit fp16
        model = T5ForConditionalGeneration.from_pretrained(model_path, torch_dtype=torch.float16)
        self.assertEqual(model.dtype, torch.float16)

2820
2821
2822
2823
2824
2825
2826
2827
        # test AutoModel separately as it goes through a different path
        # test auto-detection
        model = AutoModel.from_pretrained(TINY_T5, torch_dtype="auto")
        self.assertEqual(model.dtype, torch.float32)
        # test forcing an explicit dtype
        model = AutoModel.from_pretrained(TINY_T5, torch_dtype=torch.float16)
        self.assertEqual(model.dtype, torch.float16)

2828
2829
2830
2831
        # test model whose first param is not of a floating type, but int
        model = AutoModel.from_pretrained(TINY_BERT_FOR_TOKEN_CLASSIFICATION, torch_dtype="auto")
        self.assertEqual(model.dtype, torch.float32)

2832
2833
2834
2835
2836
2837
2838
    def test_no_super_init_config_and_model(self):
        config = NoSuperInitConfig(attribute=32)
        model = NoSuperInitModel(config)

        with tempfile.TemporaryDirectory() as tmp_dir:
            model.save_pretrained(tmp_dir)

2839
2840
2841
2842
            new_model = NoSuperInitModel.from_pretrained(tmp_dir)

        for p1, p2 in zip(model.parameters(), new_model.parameters()):
            self.assertTrue(torch.equal(p1, p2))
2843

Sylvain Gugger's avatar
Sylvain Gugger committed
2844
2845
2846
2847
2848
2849
2850
2851
2852
2853
2854
2855
2856
2857
2858
2859
2860
2861
2862
2863
2864
2865
2866
2867
2868
2869
2870
2871
2872
2873
2874
2875
2876
2877
2878
2879
2880
2881
2882
2883
2884
2885
2886
2887
2888
2889
2890
2891
2892
2893
2894
2895
2896
2897
2898
2899
2900
2901
2902
2903
2904
2905
2906
2907
2908
2909
2910
2911
2912
2913
2914
2915
2916
2917
2918
2919
2920
2921
2922
2923
2924
2925
2926
2927
2928
2929
2930
2931
2932
2933
2934
2935
2936
2937
2938
2939
2940
2941
2942
2943
2944
2945
2946
2947
2948
2949
2950
2951
2952
2953
2954
2955
2956
2957
2958
2959
2960
    def test_shard_checkpoint(self):
        # This is the model we will use, total size 340,000 bytes.
        model = torch.nn.Sequential(
            torch.nn.Linear(100, 200, bias=False),  # size 80,000
            torch.nn.Linear(200, 200, bias=False),  # size 160,000
            torch.nn.Linear(200, 100, bias=False),  # size 80,000
            torch.nn.Linear(100, 50, bias=False),  # size 20,000
        )
        state_dict = model.state_dict()

        with self.subTest("No shard when max size is bigger than model size"):
            shards, index = shard_checkpoint(state_dict)
            self.assertIsNone(index)
            self.assertDictEqual(shards, {WEIGHTS_NAME: state_dict})

        with self.subTest("Test sharding, no weights bigger than max size"):
            shards, index = shard_checkpoint(state_dict, max_shard_size="300kB")
            # Split is first two layers then last two.
            self.assertDictEqual(
                index,
                {
                    "metadata": {"total_size": 340000},
                    "weight_map": {
                        "0.weight": "pytorch_model-00001-of-00002.bin",
                        "1.weight": "pytorch_model-00001-of-00002.bin",
                        "2.weight": "pytorch_model-00002-of-00002.bin",
                        "3.weight": "pytorch_model-00002-of-00002.bin",
                    },
                },
            )

            shard1 = {"0.weight": state_dict["0.weight"], "1.weight": state_dict["1.weight"]}
            shard2 = {"2.weight": state_dict["2.weight"], "3.weight": state_dict["3.weight"]}
            self.assertDictEqual(
                shards, {"pytorch_model-00001-of-00002.bin": shard1, "pytorch_model-00002-of-00002.bin": shard2}
            )

        with self.subTest("Test sharding with weights bigger than max size"):
            shards, index = shard_checkpoint(state_dict, max_shard_size="100kB")
            # Split is first layer, second layer then last 2.
            self.assertDictEqual(
                index,
                {
                    "metadata": {"total_size": 340000},
                    "weight_map": {
                        "0.weight": "pytorch_model-00001-of-00003.bin",
                        "1.weight": "pytorch_model-00002-of-00003.bin",
                        "2.weight": "pytorch_model-00003-of-00003.bin",
                        "3.weight": "pytorch_model-00003-of-00003.bin",
                    },
                },
            )

            shard1 = {"0.weight": state_dict["0.weight"]}
            shard2 = {"1.weight": state_dict["1.weight"]}
            shard3 = {"2.weight": state_dict["2.weight"], "3.weight": state_dict["3.weight"]}
            self.assertDictEqual(
                shards,
                {
                    "pytorch_model-00001-of-00003.bin": shard1,
                    "pytorch_model-00002-of-00003.bin": shard2,
                    "pytorch_model-00003-of-00003.bin": shard3,
                },
            )

    def test_checkpoint_sharding_local(self):
        model = BertModel.from_pretrained("hf-internal-testing/tiny-random-bert")

        with tempfile.TemporaryDirectory() as tmp_dir:
            # We use the same folder for various sizes to make sure a new save erases the old checkpoint.
            for max_size in ["50kB", "50kiB", "100kB", "100kiB", "200kB", "200kiB"]:
                model.save_pretrained(tmp_dir, max_shard_size=max_size)

                # Get each shard file and its size
                shard_to_size = {}
                for shard in os.listdir(tmp_dir):
                    if shard.endswith(".bin"):
                        shard_file = os.path.join(tmp_dir, shard)
                        shard_to_size[shard_file] = os.path.getsize(shard_file)

                index_file = os.path.join(tmp_dir, WEIGHTS_INDEX_NAME)
                # Check there is an index but no regular weight file
                self.assertTrue(os.path.isfile(index_file))
                self.assertFalse(os.path.isfile(os.path.join(tmp_dir, WEIGHTS_NAME)))

                # Check a file is bigger than max_size only when it has a single weight
                for shard_file, size in shard_to_size.items():
                    if max_size.endswith("kiB"):
                        max_size_int = int(max_size[:-3]) * 2**10
                    else:
                        max_size_int = int(max_size[:-2]) * 10**3
                    # Note: pickle adds some junk so the weight of the file can end up being slightly bigger than
                    # the size asked for (since we count parameters)
                    if size >= max_size_int + 50000:
                        state_dict = torch.load(shard_file)
                        self.assertEqual(len(state_dict), 1)

                # Check the index and the shard files found match
                with open(index_file, "r", encoding="utf-8") as f:
                    index = json.loads(f.read())

                all_shards = set(index["weight_map"].values())
                shards_found = set(f for f in os.listdir(tmp_dir) if f.endswith(".bin"))
                self.assertSetEqual(all_shards, shards_found)

                # Finally, check the model can be reloaded
                new_model = BertModel.from_pretrained(tmp_dir)
                for p1, p2 in zip(model.parameters(), new_model.parameters()):
                    self.assertTrue(torch.allclose(p1, p2))

    def test_checkpoint_sharding_from_hub(self):
        model = BertModel.from_pretrained("hf-internal-testing/tiny-random-bert-sharded")
        # the model above is the same as the model below, just a sharded version.
        ref_model = BertModel.from_pretrained("hf-internal-testing/tiny-random-bert")
        for p1, p2 in zip(model.parameters(), ref_model.parameters()):
            self.assertTrue(torch.allclose(p1, p2))

2961
    @require_accelerate
2962
2963
2964
2965
2966
2967
2968
2969
2970
2971
2972
2973
    def test_from_pretrained_low_cpu_mem_usage_functional(self):
        # test that we can use `from_pretrained(..., low_cpu_mem_usage=True)` with normal and
        # sharded models

        mnames = [
            "hf-internal-testing/tiny-random-bert-sharded",
            "hf-internal-testing/tiny-random-bert",
        ]
        for mname in mnames:
            _ = BertModel.from_pretrained(mname, low_cpu_mem_usage=True)

    @require_usr_bin_time
2974
    @require_accelerate
2975
2976
2977
2978
2979
2980
2981
2982
2983
2984
2985
2986
2987
2988
2989
2990
2991
2992
2993
2994
2995
2996
2997
2998
2999
3000
3001
3002
3003
3004
3005
3006
3007
3008
3009
3010
3011
3012
    def test_from_pretrained_low_cpu_mem_usage_measured(self):
        # test that `from_pretrained(..., low_cpu_mem_usage=True)` uses less cpu memory than default

        mname = "bert-base-cased"

        preamble = "from transformers import AutoModel"
        one_liner_str = f'{preamble}; AutoModel.from_pretrained("{mname}", low_cpu_mem_usage=False)'
        max_rss_normal = self.python_one_liner_max_rss(one_liner_str)
        # print(f"{max_rss_normal=}")

        one_liner_str = f'{preamble};  AutoModel.from_pretrained("{mname}", low_cpu_mem_usage=True)'
        max_rss_low_mem = self.python_one_liner_max_rss(one_liner_str)
        # print(f"{max_rss_low_mem=}")

        diff_bytes = max_rss_normal - max_rss_low_mem
        diff_percent = diff_bytes / max_rss_low_mem
        # print(f"{diff_bytes=}, {diff_percent=}")
        # ideally we would compare that the diff is close to ~1x checkpoint size in bytes, but
        # measuring cpu memory on linux is very tricky and inconsistent, so instead let's check that
        # it's at least 15% less cpu memory consumed

        self.assertGreater(
            diff_percent,
            0.15,
            "should use less CPU memory for low_cpu_mem_usage=True, "
            f"but got max_rss_normal={max_rss_normal} and max_rss_low_mem={max_rss_low_mem}",
        )

        # if you want to compare things manually, let's first look at the size of the model in bytes
        # model = BertModel.from_pretrained(mname, low_cpu_mem_usage=False)
        # total_numel = sum(dict((p.data_ptr(), p.numel()) for p in model.parameters()).values())
        # total_bytes = total_numel * 4  # 420MB
        # Now the diff_bytes should be very close to total_bytes, but the reports are inconsistent.
        # The easiest way to test this is to switch the model and torch.load to do all the work on
        # gpu - that way one can measure exactly the total and peak memory used. Perhaps once we add
        # functionality to load models directly on gpu, this test can be rewritten to use torch's
        # cuda memory tracking and then we should be able to do a much more precise test.

3013
    @require_accelerate
3014
3015
3016
3017
3018
3019
3020
3021
3022
3023
3024
3025
3026
3027
3028
3029
    @require_torch_multi_gpu
    @slow
    def test_model_parallelism_gpt2(self):
        device_map = {"transformer.wte": 0, "transformer.wpe": 0, "lm_head": 0, "transformer.ln_f": 1}
        for i in range(12):
            device_map[f"transformer.h.{i}"] = 0 if i <= 5 else 1

        model = AutoModelForCausalLM.from_pretrained("gpt2", device_map=device_map)

        tokenizer = AutoTokenizer.from_pretrained("gpt2")
        inputs = tokenizer("Hello, my name is", return_tensors="pt")
        output = model.generate(inputs["input_ids"].to(0))

        text_output = tokenizer.decode(output[0].tolist())
        self.assertEqual(text_output, "Hello, my name is John. I'm a writer, and I'm a writer. I'm")

Sylvain Gugger's avatar
Sylvain Gugger committed
3030
3031
3032
3033
3034
3035
3036
3037
3038
3039
3040
3041
3042
3043
3044
3045
3046
3047
3048
3049
3050
3051
3052
3053
3054
3055
3056
3057
3058
3059
3060
3061
3062
3063
3064
3065
3066
3067
3068
3069
3070
3071
    @require_accelerate
    @require_torch_gpu
    def test_from_pretrained_disk_offload_task_model(self):
        model = AutoModel.from_pretrained("hf-internal-testing/tiny-random-gpt2")
        device_map = {
            "transformer.wte": 0,
            "transformer.wpe": 0,
            "transformer.h.0": "cpu",
            "transformer.h.1": "cpu",
            "transformer.h.2": "cpu",
            "transformer.h.3": "disk",
            "transformer.h.4": "disk",
            "transformer.ln_f": 0,
            "lm_head": 0,
        }
        with tempfile.TemporaryDirectory() as tmp_dir:
            inputs = torch.tensor([[1, 2, 3]]).to(0)

            model.save_pretrained(tmp_dir)
            new_model = AutoModelForCausalLM.from_pretrained(tmp_dir).to(0)
            outputs1 = new_model.to(0)(inputs)

            offload_folder = os.path.join(tmp_dir, "offload")
            new_model_with_offload = AutoModelForCausalLM.from_pretrained(
                tmp_dir, device_map=device_map, offload_folder=offload_folder
            )
            outputs2 = new_model_with_offload(inputs)

            self.assertTrue(torch.allclose(outputs1.logits.cpu(), outputs2.logits.cpu()))

            # With state dict temp offload
            offload_folder = os.path.join(tmp_dir, "offload")
            new_model_with_offload = AutoModelForCausalLM.from_pretrained(
                tmp_dir,
                device_map=device_map,
                offload_folder=offload_folder,
                offload_state_dict=True,
            )
            outputs2 = new_model_with_offload(inputs)

            self.assertTrue(torch.allclose(outputs1.logits.cpu(), outputs2.logits.cpu()))

3072
3073
3074
3075
    def test_cached_files_are_used_when_internet_is_down(self):
        # A mock response for an HTTP head request to emulate server down
        response_mock = mock.Mock()
        response_mock.status_code = 500
3076
        response_mock.headers = {}
3077
        response_mock.raise_for_status.side_effect = HTTPError
3078
        response_mock.json.return_value = {}
3079
3080
3081
3082
3083

        # Download this model to make sure it's in the cache.
        _ = BertModel.from_pretrained("hf-internal-testing/tiny-random-bert")

        # Under the mock environment we get a 500 error when trying to reach the model.
3084
        with mock.patch("requests.request", return_value=response_mock) as mock_head:
3085
3086
3087
3088
            _ = BertModel.from_pretrained("hf-internal-testing/tiny-random-bert")
            # This check we did call the fake head request
            mock_head.assert_called()

3089
3090
3091
3092
3093
3094
3095
3096
3097
3098
3099
3100
3101
3102
3103
3104
3105
3106
3107
3108
    def test_load_from_one_file(self):
        try:
            tmp_file = tempfile.mktemp()
            with open(tmp_file, "wb") as f:
                http_get(
                    "https://huggingface.co/hf-internal-testing/tiny-random-bert/resolve/main/pytorch_model.bin", f
                )

            config = BertConfig.from_pretrained("hf-internal-testing/tiny-random-bert")
            _ = BertModel.from_pretrained(tmp_file, config=config)
        finally:
            os.remove(tmp_file)

    def test_legacy_load_from_url(self):
        # This test is for deprecated behavior and can be removed in v5
        config = BertConfig.from_pretrained("hf-internal-testing/tiny-random-bert")
        _ = BertModel.from_pretrained(
            "https://huggingface.co/hf-internal-testing/tiny-random-bert/resolve/main/pytorch_model.bin", config=config
        )

3109
3110
3111
3112
3113
3114
3115
3116
3117
3118
3119
3120
3121
3122
3123
3124
3125
3126
3127
3128
3129
3130
3131
3132
3133
3134
3135
3136
3137
3138
3139
3140
3141
3142
3143
3144
3145
3146
3147
3148
3149
3150
3151
3152
3153
3154
3155
3156
3157
3158
3159
    @require_safetensors
    def test_safetensors_save_and_load(self):
        model = BertModel.from_pretrained("hf-internal-testing/tiny-random-bert")
        with tempfile.TemporaryDirectory() as tmp_dir:
            model.save_pretrained(tmp_dir, safe_serialization=True)
            # No pytorch_model.bin file, only a model.safetensors
            self.assertTrue(os.path.isfile(os.path.join(tmp_dir, SAFE_WEIGHTS_NAME)))
            self.assertFalse(os.path.isfile(os.path.join(tmp_dir, WEIGHTS_NAME)))

            new_model = BertModel.from_pretrained(tmp_dir)

            # Check models are equal
            for p1, p2 in zip(model.parameters(), new_model.parameters()):
                self.assertTrue(torch.allclose(p1, p2))

    @require_safetensors
    def test_safetensors_load_from_hub(self):
        safetensors_model = BertModel.from_pretrained("hf-internal-testing/tiny-random-bert-safetensors")
        pytorch_model = BertModel.from_pretrained("hf-internal-testing/tiny-random-bert")

        # Check models are equal
        for p1, p2 in zip(safetensors_model.parameters(), pytorch_model.parameters()):
            self.assertTrue(torch.allclose(p1, p2))

    @require_safetensors
    def test_safetensors_save_and_load_sharded(self):
        model = BertModel.from_pretrained("hf-internal-testing/tiny-random-bert")
        with tempfile.TemporaryDirectory() as tmp_dir:
            model.save_pretrained(tmp_dir, safe_serialization=True, max_shard_size="100kB")
            # No pytorch_model.bin index file, only a model.safetensors index
            self.assertFalse(os.path.isfile(os.path.join(tmp_dir, WEIGHTS_INDEX_NAME)))
            self.assertTrue(os.path.isfile(os.path.join(tmp_dir, SAFE_WEIGHTS_INDEX_NAME)))
            # No regular weights file
            self.assertFalse(os.path.isfile(os.path.join(tmp_dir, WEIGHTS_NAME)))
            self.assertFalse(os.path.isfile(os.path.join(tmp_dir, SAFE_WEIGHTS_NAME)))

            new_model = BertModel.from_pretrained(tmp_dir)

            # Check models are equal
            for p1, p2 in zip(model.parameters(), new_model.parameters()):
                self.assertTrue(torch.allclose(p1, p2))

    @require_safetensors
    def test_safetensors_load_from_hub_sharded(self):
        safetensors_model = BertModel.from_pretrained("hf-internal-testing/tiny-random-bert-sharded-safetensors")
        pytorch_model = BertModel.from_pretrained("hf-internal-testing/tiny-random-bert-sharded")

        # Check models are equal
        for p1, p2 in zip(safetensors_model.parameters(), pytorch_model.parameters()):
            self.assertTrue(torch.allclose(p1, p2))

Sylvain Gugger's avatar
Sylvain Gugger committed
3160
3161
3162
3163
3164
3165
3166
3167
3168
3169
3170
3171
3172
3173
3174
3175
3176
3177
3178
3179
3180
3181
    def test_base_model_to_head_model_load(self):
        base_model = BaseModel(PretrainedConfig())
        with tempfile.TemporaryDirectory() as tmp_dir:
            base_model.save_pretrained(tmp_dir)

            # Can load a base model in a model with head
            model = ModelWithHead.from_pretrained(tmp_dir)
            for p1, p2 in zip(model.base.parameters(), base_model.parameters()):
                self.assertTrue(torch.allclose(p1, p2))

            # It doesn't work if the state dict has a mix of keys of the head and base without prefix though.
            base_state_dict = base_model.state_dict()
            head_state_dict = model.state_dict()
            base_state_dict["linear2.weight"] = head_state_dict["linear2.weight"]
            base_state_dict["linear2.bias"] = head_state_dict["linear2.bias"]
            torch.save(base_state_dict, os.path.join(tmp_dir, WEIGHTS_NAME))

            with self.assertRaisesRegex(
                ValueError, "The state dictionary of the model you are trying to load is corrupted."
            ):
                _ = ModelWithHead.from_pretrained(tmp_dir)

Susnato Dhar's avatar
Susnato Dhar committed
3182
3183
3184
3185
3186
3187
3188
3189
3190
3191
3192
3193
3194
3195
3196
3197
3198
3199
3200
3201
3202
    @require_torch_gpu
    def test_pretrained_low_mem_new_config(self):
        # Checking for 1 model(the same one which was described in the issue) .
        model_ids = ["gpt2"]

        for model_id in model_ids:
            model_config = AutoConfig.from_pretrained(pretrained_model_name_or_path=model_id)
            model_config.n_layer = 48
            model_config.n_head = 25
            model_config.n_embd = 1600
            model = AutoModelForCausalLM.from_pretrained(
                pretrained_model_name_or_path=model_id,
                config=model_config,
                ignore_mismatched_sizes=True,
                torch_dtype=torch.float16,
                low_cpu_mem_usage=True,
            )
            model_ref = AutoModelForCausalLM.from_pretrained(pretrained_model_name_or_path=model_id)

            self.assertEqual(model.__class__.__name__, model_ref.__class__.__name__)

Sylvain Gugger's avatar
Sylvain Gugger committed
3203
3204
3205
3206
3207
3208

@require_torch
@is_staging_test
class ModelPushToHubTester(unittest.TestCase):
    @classmethod
    def setUpClass(cls):
3209
3210
3211
        cls._token = TOKEN
        set_access_token(TOKEN)
        HfFolder.save_token(TOKEN)
Sylvain Gugger's avatar
Sylvain Gugger committed
3212
3213
3214
3215

    @classmethod
    def tearDownClass(cls):
        try:
3216
            delete_repo(token=cls._token, repo_id="test-model")
Sylvain Gugger's avatar
Sylvain Gugger committed
3217
3218
3219
3220
        except HTTPError:
            pass

        try:
3221
            delete_repo(token=cls._token, repo_id="valid_org/test-model-org")
Sylvain Gugger's avatar
Sylvain Gugger committed
3222
3223
3224
        except HTTPError:
            pass

3225
        try:
3226
            delete_repo(token=cls._token, repo_id="test-dynamic-model")
3227
3228
3229
        except HTTPError:
            pass

Sylvain Gugger's avatar
Sylvain Gugger committed
3230
3231
3232
3233
3234
    def test_push_to_hub(self):
        config = BertConfig(
            vocab_size=99, hidden_size=32, num_hidden_layers=5, num_attention_heads=4, intermediate_size=37
        )
        model = BertModel(config)
3235
3236
3237
3238
3239
3240
3241
3242
3243
3244
        model.push_to_hub("test-model", use_auth_token=self._token)

        new_model = BertModel.from_pretrained(f"{USER}/test-model")
        for p1, p2 in zip(model.parameters(), new_model.parameters()):
            self.assertTrue(torch.equal(p1, p2))

        # Reset repo
        delete_repo(token=self._token, repo_id="test-model")

        # Push to hub via save_pretrained
Sylvain Gugger's avatar
Sylvain Gugger committed
3245
        with tempfile.TemporaryDirectory() as tmp_dir:
3246
            model.save_pretrained(tmp_dir, repo_id="test-model", push_to_hub=True, use_auth_token=self._token)
Sylvain Gugger's avatar
Sylvain Gugger committed
3247

3248
3249
3250
        new_model = BertModel.from_pretrained(f"{USER}/test-model")
        for p1, p2 in zip(model.parameters(), new_model.parameters()):
            self.assertTrue(torch.equal(p1, p2))
Sylvain Gugger's avatar
Sylvain Gugger committed
3251
3252
3253
3254
3255
3256

    def test_push_to_hub_in_organization(self):
        config = BertConfig(
            vocab_size=99, hidden_size=32, num_hidden_layers=5, num_attention_heads=4, intermediate_size=37
        )
        model = BertModel(config)
3257
3258
3259
3260
3261
3262
3263
3264
3265
3266
        model.push_to_hub("valid_org/test-model-org", use_auth_token=self._token)

        new_model = BertModel.from_pretrained("valid_org/test-model-org")
        for p1, p2 in zip(model.parameters(), new_model.parameters()):
            self.assertTrue(torch.equal(p1, p2))

        # Reset repo
        delete_repo(token=self._token, repo_id="valid_org/test-model-org")

        # Push to hub via save_pretrained
Sylvain Gugger's avatar
Sylvain Gugger committed
3267
3268
        with tempfile.TemporaryDirectory() as tmp_dir:
            model.save_pretrained(
3269
                tmp_dir, push_to_hub=True, use_auth_token=self._token, repo_id="valid_org/test-model-org"
Sylvain Gugger's avatar
Sylvain Gugger committed
3270
3271
            )

3272
3273
3274
        new_model = BertModel.from_pretrained("valid_org/test-model-org")
        for p1, p2 in zip(model.parameters(), new_model.parameters()):
            self.assertTrue(torch.equal(p1, p2))
3275
3276

    def test_push_to_hub_dynamic_model(self):
3277
3278
3279
3280
3281
        CustomConfig.register_for_auto_class()
        CustomModel.register_for_auto_class()

        config = CustomConfig(hidden_size=32)
        model = CustomModel(config)
3282

3283
3284
3285
3286
3287
3288
        model.push_to_hub("test-dynamic-model", use_auth_token=self._token)
        # checks
        self.assertDictEqual(
            config.auto_map,
            {"AutoConfig": "custom_configuration.CustomConfig", "AutoModel": "custom_modeling.CustomModel"},
        )
3289
3290

        new_model = AutoModel.from_pretrained(f"{USER}/test-dynamic-model", trust_remote_code=True)
3291
3292
        # Can't make an isinstance check because the new_model is from the CustomModel class of a dynamic module
        self.assertEqual(new_model.__class__.__name__, "CustomModel")
3293
3294
        for p1, p2 in zip(model.parameters(), new_model.parameters()):
            self.assertTrue(torch.equal(p1, p2))
3295

3296
        config = AutoConfig.from_pretrained(f"{USER}/test-dynamic-model", trust_remote_code=True)
3297
        new_model = AutoModel.from_config(config, trust_remote_code=True)
3298
        self.assertEqual(new_model.__class__.__name__, "CustomModel")