test_modeling_common.py 55.4 KB
Newer Older
thomwolf's avatar
thomwolf committed
1
2
3
4
5
6
7
8
9
10
11
12
13
14
# coding=utf-8
# Copyright 2019 HuggingFace Inc.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
#     http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
Aymeric Augustin's avatar
Aymeric Augustin committed
15

16
import copy
17
import gc
18
import inspect
19
import os.path
Aymeric Augustin's avatar
Aymeric Augustin committed
20
import random
21
import tempfile
thomwolf's avatar
thomwolf committed
22
import unittest
23
from typing import List, Tuple
thomwolf's avatar
thomwolf committed
24

25
from transformers import is_torch_available
26
from transformers.file_utils import WEIGHTS_NAME
27
from transformers.models.auto import get_values
28
from transformers.testing_utils import require_torch, require_torch_multi_gpu, slow, torch_device
29

Aymeric Augustin's avatar
Aymeric Augustin committed
30

31
if is_torch_available():
32
    import numpy as np
33
    import torch
thomwolf's avatar
thomwolf committed
34

35
    from transformers import (
36
        BERT_PRETRAINED_MODEL_ARCHIVE_LIST,
37
        MODEL_FOR_CAUSAL_LM_MAPPING,
38
        MODEL_FOR_IMAGE_CLASSIFICATION_MAPPING,
39
        MODEL_FOR_MASKED_LM_MAPPING,
40
        MODEL_FOR_MULTIPLE_CHOICE_MAPPING,
41
        MODEL_FOR_NEXT_SENTENCE_PREDICTION_MAPPING,
42
        MODEL_FOR_QUESTION_ANSWERING_MAPPING,
43
44
45
        MODEL_FOR_SEQ_TO_SEQ_CAUSAL_LM_MAPPING,
        MODEL_FOR_SEQUENCE_CLASSIFICATION_MAPPING,
        MODEL_FOR_TOKEN_CLASSIFICATION_MAPPING,
46
        MODEL_MAPPING,
47
48
49
50
51
        AdaptiveEmbedding,
        BertConfig,
        BertModel,
        PretrainedConfig,
        PreTrainedModel,
52
        T5ForConditionalGeneration,
53
    )
thomwolf's avatar
thomwolf committed
54

55

56
57
58
def _config_zero_init(config):
    configs_no_init = copy.deepcopy(config)
    for key in configs_no_init.__dict__.keys():
59
        if "_range" in key or "_std" in key or "initializer_factor" in key:
Lysandre Debut's avatar
Lysandre Debut committed
60
            setattr(configs_no_init, key, 1e-10)
61
62
    return configs_no_init

thomwolf's avatar
thomwolf committed
63

64
65
66
TINY_T5 = "patrickvonplaten/t5-tiny-random"


67
68
69
70
71
@require_torch
class ModelTesterMixin:

    model_tester = None
    all_model_classes = ()
72
    all_generative_model_classes = ()
Patrick von Platen's avatar
Patrick von Platen committed
73
74
75
76
    test_torchscript = True
    test_pruning = True
    test_resize_embeddings = True
    test_head_masking = True
77
    test_missing_keys = True
78
    test_model_parallel = False
79
80
    is_encoder_decoder = False

81
82
    def _prepare_for_class(self, inputs_dict, model_class, return_labels=False):
        inputs_dict = copy.deepcopy(inputs_dict)
83
        if model_class in get_values(MODEL_FOR_MULTIPLE_CHOICE_MAPPING):
84
            inputs_dict = {
85
                k: v.unsqueeze(1).expand(-1, self.model_tester.num_choices, -1).contiguous()
86
                if isinstance(v, torch.Tensor) and v.ndim > 1
Sylvain Gugger's avatar
Sylvain Gugger committed
87
                else v
88
89
                for k, v in inputs_dict.items()
            }
90
91

        if return_labels:
92
            if model_class in get_values(MODEL_FOR_MULTIPLE_CHOICE_MAPPING):
93
                inputs_dict["labels"] = torch.ones(self.model_tester.batch_size, dtype=torch.long, device=torch_device)
94
            elif model_class in get_values(MODEL_FOR_QUESTION_ANSWERING_MAPPING):
95
96
97
98
99
100
                inputs_dict["start_positions"] = torch.zeros(
                    self.model_tester.batch_size, dtype=torch.long, device=torch_device
                )
                inputs_dict["end_positions"] = torch.zeros(
                    self.model_tester.batch_size, dtype=torch.long, device=torch_device
                )
101
            elif model_class in [
102
103
104
                *get_values(MODEL_FOR_SEQUENCE_CLASSIFICATION_MAPPING),
                *get_values(MODEL_FOR_NEXT_SENTENCE_PREDICTION_MAPPING),
                *get_values(MODEL_FOR_IMAGE_CLASSIFICATION_MAPPING),
105
            ]:
106
107
108
109
                inputs_dict["labels"] = torch.zeros(
                    self.model_tester.batch_size, dtype=torch.long, device=torch_device
                )
            elif model_class in [
110
111
112
113
                *get_values(MODEL_FOR_TOKEN_CLASSIFICATION_MAPPING),
                *get_values(MODEL_FOR_CAUSAL_LM_MAPPING),
                *get_values(MODEL_FOR_MASKED_LM_MAPPING),
                *get_values(MODEL_FOR_SEQ_TO_SEQ_CAUSAL_LM_MAPPING),
114
115
116
117
            ]:
                inputs_dict["labels"] = torch.zeros(
                    (self.model_tester.batch_size, self.model_tester.seq_length), dtype=torch.long, device=torch_device
                )
118
119
        return inputs_dict

Patrick von Platen's avatar
Patrick von Platen committed
120
    def test_save_load(self):
121
122
123
124
125
126
127
        config, inputs_dict = self.model_tester.prepare_config_and_inputs_for_common()

        for model_class in self.all_model_classes:
            model = model_class(config)
            model.to(torch_device)
            model.eval()
            with torch.no_grad():
128
                outputs = model(**self._prepare_for_class(inputs_dict, model_class))
Weizhen's avatar
Weizhen committed
129

130
            out_2 = outputs[0].cpu().numpy()
131
            out_2[np.isnan(out_2)] = 0
132

133
            with tempfile.TemporaryDirectory() as tmpdirname:
134
135
                model.save_pretrained(tmpdirname)
                model = model_class.from_pretrained(tmpdirname)
136
                model.to(torch_device)
137
                with torch.no_grad():
138
                    after_outputs = model(**self._prepare_for_class(inputs_dict, model_class))
thomwolf's avatar
thomwolf committed
139

140
141
142
                # Make sure we don't have nans
                out_1 = after_outputs[0].cpu().numpy()
                out_1[np.isnan(out_1)] = 0
thomwolf's avatar
thomwolf committed
143
144
                max_diff = np.amax(np.abs(out_1 - out_2))
                self.assertLessEqual(max_diff, 1e-5)
145

146
    def test_save_load__keys_to_ignore_on_save(self):
147
148
149
150
        config, inputs_dict = self.model_tester.prepare_config_and_inputs_for_common()

        for model_class in self.all_model_classes:
            model = model_class(config)
151
152
            _keys_to_ignore_on_save = getattr(model, "_keys_to_ignore_on_save", None)
            if _keys_to_ignore_on_save is None:
153
154
155
                continue

            # check the keys are in the original state_dict
156
            for k in _keys_to_ignore_on_save:
157
158
159
160
161
162
163
                self.assertIn(k, model.state_dict())

            # check that certain keys didn't get saved with the model
            with tempfile.TemporaryDirectory() as tmpdirname:
                model.save_pretrained(tmpdirname)
                output_model_file = os.path.join(tmpdirname, WEIGHTS_NAME)
                state_dict_saved = torch.load(output_model_file)
164
                for k in _keys_to_ignore_on_save:
165
166
                    self.assertNotIn(k, state_dict_saved)

Patrick von Platen's avatar
Patrick von Platen committed
167
    def test_initialization(self):
168
169
170
171
172
173
174
175
        config, inputs_dict = self.model_tester.prepare_config_and_inputs_for_common()

        configs_no_init = _config_zero_init(config)
        for model_class in self.all_model_classes:
            model = model_class(config=configs_no_init)
            for name, param in model.named_parameters():
                if param.requires_grad:
                    self.assertIn(
Lysandre Debut's avatar
Lysandre Debut committed
176
                        ((param.data.mean() * 1e9).round() / 1e9).item(),
177
                        [0.0, 1.0],
178
                        msg=f"Parameter {name} of model {model_class} seems not properly initialized",
179
                    )
thomwolf's avatar
thomwolf committed
180

Patrick von Platen's avatar
Patrick von Platen committed
181
    def test_determinism(self):
182
183
184
185
186
187
188
        config, inputs_dict = self.model_tester.prepare_config_and_inputs_for_common()

        for model_class in self.all_model_classes:
            model = model_class(config)
            model.to(torch_device)
            model.eval()
            with torch.no_grad():
189
190
                first = model(**self._prepare_for_class(inputs_dict, model_class))[0]
                second = model(**self._prepare_for_class(inputs_dict, model_class))[0]
Weizhen's avatar
Weizhen committed
191

192
193
194
195
196
197
198
            out_1 = first.cpu().numpy()
            out_2 = second.cpu().numpy()
            out_1 = out_1[~np.isnan(out_1)]
            out_2 = out_2[~np.isnan(out_2)]
            max_diff = np.amax(np.abs(out_1 - out_2))
            self.assertLessEqual(max_diff, 1e-5)

199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
    def test_forward_signature(self):
        config, _ = self.model_tester.prepare_config_and_inputs_for_common()

        for model_class in self.all_model_classes:
            model = model_class(config)
            signature = inspect.signature(model.forward)
            # signature.parameters is an OrderedDict => so arg_names order is deterministic
            arg_names = [*signature.parameters.keys()]

            if model.config.is_encoder_decoder:
                expected_arg_names = [
                    "input_ids",
                    "attention_mask",
                    "decoder_input_ids",
                    "decoder_attention_mask",
                ]
215
216
217
218
219
220
                expected_arg_names.extend(
                    ["head_mask", "decoder_head_mask", "encoder_outputs"]
                    if "head_mask" and "decoder_head_mask" in arg_names
                    else ["encoder_outputs"]
                )
                self.assertListEqual(arg_names[: len(expected_arg_names)], expected_arg_names)
221
222
223
224
            else:
                expected_arg_names = ["input_ids"]
                self.assertListEqual(arg_names[:1], expected_arg_names)

225
226
227
228
229
230
231
232
    def test_training(self):
        if not self.model_tester.is_training:
            return

        config, inputs_dict = self.model_tester.prepare_config_and_inputs_for_common()
        config.return_dict = True

        for model_class in self.all_model_classes:
233
            if model_class in get_values(MODEL_MAPPING):
234
235
236
237
238
239
240
241
242
243
244
245
246
247
                continue
            model = model_class(config)
            model.to(torch_device)
            model.train()
            inputs = self._prepare_for_class(inputs_dict, model_class, return_labels=True)
            loss = model(**inputs).loss
            loss.backward()

    def test_training_gradient_checkpointing(self):
        config, inputs_dict = self.model_tester.prepare_config_and_inputs_for_common()
        if not self.model_tester.is_training or not hasattr(config, "gradient_checkpointing"):
            return

        config.gradient_checkpointing = True
248
        config.use_cache = False
249
250
251
        config.return_dict = True

        for model_class in self.all_model_classes:
252
            if model_class in get_values(MODEL_MAPPING):
253
254
255
256
257
258
259
260
                continue
            model = model_class(config)
            model.to(torch_device)
            model.train()
            inputs = self._prepare_for_class(inputs_dict, model_class, return_labels=True)
            loss = model(**inputs).loss
            loss.backward()

Patrick von Platen's avatar
Patrick von Platen committed
261
    def test_attention_outputs(self):
262
        config, inputs_dict = self.model_tester.prepare_config_and_inputs_for_common()
Weizhen's avatar
Weizhen committed
263
264
        config.return_dict = True

sshleifer's avatar
sshleifer committed
265
        seq_len = getattr(self.model_tester, "seq_length", None)
sshleifer's avatar
sshleifer committed
266
267
        decoder_seq_length = getattr(self.model_tester, "decoder_seq_length", seq_len)
        encoder_seq_length = getattr(self.model_tester, "encoder_seq_length", seq_len)
Weizhen's avatar
Weizhen committed
268
        decoder_key_length = getattr(self.model_tester, "decoder_key_length", decoder_seq_length)
269
        encoder_key_length = getattr(self.model_tester, "key_length", encoder_seq_length)
Patrick von Platen's avatar
Patrick von Platen committed
270
271
272
        chunk_length = getattr(self.model_tester, "chunk_length", None)
        if chunk_length is not None and hasattr(self.model_tester, "num_hashes"):
            encoder_seq_length = encoder_seq_length * self.model_tester.num_hashes
273
274

        for model_class in self.all_model_classes:
275
            inputs_dict["output_attentions"] = True
Joseph Liu's avatar
Joseph Liu committed
276
            inputs_dict["output_hidden_states"] = False
277
            config.return_dict = True
278
279
280
281
            model = model_class(config)
            model.to(torch_device)
            model.eval()
            with torch.no_grad():
282
                outputs = model(**self._prepare_for_class(inputs_dict, model_class))
283
            attentions = outputs.encoder_attentions if config.is_encoder_decoder else outputs.attentions
284
285
286
287
288
289
290
291
292
            self.assertEqual(len(attentions), self.model_tester.num_hidden_layers)

            # check that output_attentions also work using config
            del inputs_dict["output_attentions"]
            config.output_attentions = True
            model = model_class(config)
            model.to(torch_device)
            model.eval()
            with torch.no_grad():
293
294
                outputs = model(**self._prepare_for_class(inputs_dict, model_class))
            attentions = outputs.encoder_attentions if config.is_encoder_decoder else outputs.attentions
295
            self.assertEqual(len(attentions), self.model_tester.num_hidden_layers)
Patrick von Platen's avatar
Patrick von Platen committed
296
297
298
299
300
301
302
303
304
305
306

            if chunk_length is not None:
                self.assertListEqual(
                    list(attentions[0].shape[-4:]),
                    [self.model_tester.num_attention_heads, encoder_seq_length, chunk_length, encoder_key_length],
                )
            else:
                self.assertListEqual(
                    list(attentions[0].shape[-3:]),
                    [self.model_tester.num_attention_heads, encoder_seq_length, encoder_key_length],
                )
307
            out_len = len(outputs)
thomwolf's avatar
thomwolf committed
308

309
            if self.is_encoder_decoder:
310
                correct_outlen = 5
311

312
313
314
315
                # loss is at first position
                if "labels" in inputs_dict:
                    correct_outlen += 1  # loss is added to beginning
                # Question Answering model returns start_logits and end_logits
316
                if model_class in get_values(MODEL_FOR_QUESTION_ANSWERING_MAPPING):
317
                    correct_outlen += 1  # start_logits and end_logits instead of only 1 output
318
319
                if "past_key_values" in outputs:
                    correct_outlen += 1  # past_key_values have been returned
Weizhen's avatar
Weizhen committed
320

Sam Shleifer's avatar
Sam Shleifer committed
321
322
                self.assertEqual(out_len, correct_outlen)

323
                # decoder attentions
324
                decoder_attentions = outputs.decoder_attentions
Sam Shleifer's avatar
Sam Shleifer committed
325
                self.assertIsInstance(decoder_attentions, (list, tuple))
326
                self.assertEqual(len(decoder_attentions), self.model_tester.num_hidden_layers)
thomwolf's avatar
thomwolf committed
327
                self.assertListEqual(
328
329
                    list(decoder_attentions[0].shape[-3:]),
                    [self.model_tester.num_attention_heads, decoder_seq_length, decoder_key_length],
330
                )
thomwolf's avatar
thomwolf committed
331

332
333
334
335
336
337
338
339
340
341
342
343
344
                # cross attentions
                cross_attentions = outputs.cross_attentions
                self.assertIsInstance(cross_attentions, (list, tuple))
                self.assertEqual(len(cross_attentions), self.model_tester.num_hidden_layers)
                self.assertListEqual(
                    list(cross_attentions[0].shape[-3:]),
                    [
                        self.model_tester.num_attention_heads,
                        decoder_seq_length,
                        encoder_key_length,
                    ],
                )

345
            # Check attention is always last and order is fine
346
            inputs_dict["output_attentions"] = True
Joseph Liu's avatar
Joseph Liu committed
347
            inputs_dict["output_hidden_states"] = True
348
349
350
351
            model = model_class(config)
            model.to(torch_device)
            model.eval()
            with torch.no_grad():
352
                outputs = model(**self._prepare_for_class(inputs_dict, model_class))
353

Weizhen's avatar
Weizhen committed
354
355
356
357
358
359
360
361
            if hasattr(self.model_tester, "num_hidden_states_types"):
                added_hidden_states = self.model_tester.num_hidden_states_types
            elif self.is_encoder_decoder:
                added_hidden_states = 2
            else:
                added_hidden_states = 1
            self.assertEqual(out_len + added_hidden_states, len(outputs))

362
363
            self_attentions = outputs.encoder_attentions if config.is_encoder_decoder else outputs.attentions

364
            self.assertEqual(len(self_attentions), self.model_tester.num_hidden_layers)
Patrick von Platen's avatar
Patrick von Platen committed
365
366
367
368
369
370
371
372
373
374
            if chunk_length is not None:
                self.assertListEqual(
                    list(self_attentions[0].shape[-4:]),
                    [self.model_tester.num_attention_heads, encoder_seq_length, chunk_length, encoder_key_length],
                )
            else:
                self.assertListEqual(
                    list(self_attentions[0].shape[-3:]),
                    [self.model_tester.num_attention_heads, encoder_seq_length, encoder_key_length],
                )
thomwolf's avatar
thomwolf committed
375

Patrick von Platen's avatar
Patrick von Platen committed
376
    def test_torchscript(self):
377
378
        config, inputs_dict = self.model_tester.prepare_config_and_inputs_for_common()
        self._create_and_check_torchscript(config, inputs_dict)
thomwolf's avatar
thomwolf committed
379

Patrick von Platen's avatar
Patrick von Platen committed
380
    def test_torchscript_output_attentions(self):
381
382
383
        config, inputs_dict = self.model_tester.prepare_config_and_inputs_for_common()
        config.output_attentions = True
        self._create_and_check_torchscript(config, inputs_dict)
thomwolf's avatar
thomwolf committed
384

Patrick von Platen's avatar
Patrick von Platen committed
385
    def test_torchscript_output_hidden_state(self):
386
387
388
        config, inputs_dict = self.model_tester.prepare_config_and_inputs_for_common()
        config.output_hidden_states = True
        self._create_and_check_torchscript(config, inputs_dict)
thomwolf's avatar
thomwolf committed
389

390
    def _create_and_check_torchscript(self, config, inputs_dict):
Patrick von Platen's avatar
Patrick von Platen committed
391
        if not self.test_torchscript:
392
            return
393

394
395
396
397
398
399
        configs_no_init = _config_zero_init(config)  # To be sure we have no Nan
        configs_no_init.torchscript = True
        for model_class in self.all_model_classes:
            model = model_class(config=configs_no_init)
            model.to(torch_device)
            model.eval()
400
            inputs = self._prepare_for_class(inputs_dict, model_class)
thomwolf's avatar
thomwolf committed
401

402
            try:
403
                if model.config.is_encoder_decoder:
404
                    model.config.use_cache = False  # FSTM still requires this hack -> FSTM should probably be refactored similar to BART afterward
405
406
407
408
409
410
411
412
413
414
                    input_ids = inputs["input_ids"]
                    attention_mask = inputs["attention_mask"]
                    decoder_input_ids = inputs["decoder_input_ids"]
                    decoder_attention_mask = inputs["decoder_attention_mask"]
                    traced_model = torch.jit.trace(
                        model, (input_ids, attention_mask, decoder_input_ids, decoder_attention_mask)
                    )
                else:
                    input_ids = inputs["input_ids"]
                    traced_model = torch.jit.trace(model, input_ids)
415
416
            except RuntimeError:
                self.fail("Couldn't trace module.")
thomwolf's avatar
thomwolf committed
417

418
            with tempfile.TemporaryDirectory() as tmp_dir_name:
419
                pt_file_name = os.path.join(tmp_dir_name, "traced_model.pt")
thomwolf's avatar
thomwolf committed
420

421
                try:
422
                    torch.jit.save(traced_model, pt_file_name)
423
424
                except Exception:
                    self.fail("Couldn't save module.")
thomwolf's avatar
thomwolf committed
425

426
427
428
429
                try:
                    loaded_model = torch.jit.load(pt_file_name)
                except Exception:
                    self.fail("Couldn't load module.")
LysandreJik's avatar
LysandreJik committed
430

431
432
            model.to(torch_device)
            model.eval()
thomwolf's avatar
thomwolf committed
433

434
435
            loaded_model.to(torch_device)
            loaded_model.eval()
thomwolf's avatar
thomwolf committed
436

437
438
439
440
            model_state_dict = model.state_dict()
            loaded_model_state_dict = loaded_model.state_dict()

            self.assertEqual(set(model_state_dict.keys()), set(loaded_model_state_dict.keys()))
thomwolf's avatar
thomwolf committed
441

442
            models_equal = True
443
444
            for layer_name, p1 in model_state_dict.items():
                p2 = loaded_model_state_dict[layer_name]
445
446
                if p1.data.ne(p2.data).sum() > 0:
                    models_equal = False
thomwolf's avatar
thomwolf committed
447

448
            self.assertTrue(models_equal)
thomwolf's avatar
thomwolf committed
449

Patrick von Platen's avatar
Patrick von Platen committed
450
451
    def test_headmasking(self):
        if not self.test_head_masking:
452
            return
453

454
455
456
        global_rng.seed(42)
        config, inputs_dict = self.model_tester.prepare_config_and_inputs_for_common()
        global_rng.seed()
LysandreJik's avatar
LysandreJik committed
457

458
        inputs_dict["output_attentions"] = True
459
460
461
462
463
464
        config.output_hidden_states = True
        configs_no_init = _config_zero_init(config)  # To be sure we have no Nan
        for model_class in self.all_model_classes:
            model = model_class(config=configs_no_init)
            model.to(torch_device)
            model.eval()
LysandreJik's avatar
LysandreJik committed
465

466
467
468
            # Prepare head_mask
            # Set require_grad after having prepared the tensor to avoid error (leaf variable has been moved into the graph interior)
            head_mask = torch.ones(
Lysandre's avatar
Lysandre committed
469
470
471
                self.model_tester.num_hidden_layers,
                self.model_tester.num_attention_heads,
                device=torch_device,
472
473
474
475
            )
            head_mask[0, 0] = 0
            head_mask[-1, :-1] = 0
            head_mask.requires_grad_(requires_grad=True)
476
            inputs = self._prepare_for_class(inputs_dict, model_class).copy()
477
            inputs["head_mask"] = head_mask
478
479
480
481
482
            if model.config.is_encoder_decoder:
                signature = inspect.signature(model.forward)
                arg_names = [*signature.parameters.keys()]
                if "decoder_head_mask" in arg_names:  # necessary diferentiation because of T5 model
                    inputs["decoder_head_mask"] = head_mask
483
            outputs = model(**inputs, return_dict=True)
484
485
486
487
488
489
490
491
492

            # Test that we can get a gradient back for importance score computation
            output = sum(t.sum() for t in outputs[0])
            output = output.sum()
            output.backward()
            multihead_outputs = head_mask.grad

            self.assertIsNotNone(multihead_outputs)
            self.assertEqual(len(multihead_outputs), self.model_tester.num_hidden_layers)
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515

            def check_attentions_validity(attentions):
                # Remove Nan
                for t in attentions:
                    self.assertLess(
                        torch.sum(torch.isnan(t)), t.numel() / 4
                    )  # Check we don't have more than 25% nans (arbitrary)
                attentions = [
                    t.masked_fill(torch.isnan(t), 0.0) for t in attentions
                ]  # remove them (the test is less complete)

                self.assertAlmostEqual(attentions[0][..., 0, :, :].flatten().sum().item(), 0.0)
                self.assertNotEqual(attentions[0][..., -1, :, :].flatten().sum().item(), 0.0)
                if len(attentions) > 2:  # encoder-decoder models have only 2 layers in each module
                    self.assertNotEqual(attentions[1][..., 0, :, :].flatten().sum().item(), 0.0)
                self.assertAlmostEqual(attentions[-1][..., -2, :, :].flatten().sum().item(), 0.0)
                self.assertNotEqual(attentions[-1][..., -1, :, :].flatten().sum().item(), 0.0)

            if model.config.is_encoder_decoder:
                check_attentions_validity(outputs.encoder_attentions)
                check_attentions_validity(outputs.decoder_attentions)
            else:
                check_attentions_validity(outputs.attentions)
516

Patrick von Platen's avatar
Patrick von Platen committed
517
518
    def test_head_pruning(self):
        if not self.test_pruning:
519
520
521
            return

        for model_class in self.all_model_classes:
Lysandre's avatar
Lysandre committed
522
523
524
525
            (
                config,
                inputs_dict,
            ) = self.model_tester.prepare_config_and_inputs_for_common()
526

527
528
            if "head_mask" in inputs_dict:
                del inputs_dict["head_mask"]
529

530
            inputs_dict["output_attentions"] = True
531
532
533
534
            config.output_hidden_states = False
            model = model_class(config=config)
            model.to(torch_device)
            model.eval()
535
536
537
538
            heads_to_prune = {
                0: list(range(1, self.model_tester.num_attention_heads)),
                -1: [0],
            }
539
540
            model.prune_heads(heads_to_prune)
            with torch.no_grad():
541
                outputs = model(**self._prepare_for_class(inputs_dict, model_class))
542

543
            attentions = outputs[-1]
544

545
546
547
            self.assertEqual(attentions[0].shape[-3], 1)
            self.assertEqual(attentions[1].shape[-3], self.model_tester.num_attention_heads)
            self.assertEqual(attentions[-1].shape[-3], self.model_tester.num_attention_heads - 1)
LysandreJik's avatar
LysandreJik committed
548

Patrick von Platen's avatar
Patrick von Platen committed
549
550
    def test_head_pruning_save_load_from_pretrained(self):
        if not self.test_pruning:
551
            return
LysandreJik's avatar
LysandreJik committed
552

553
        for model_class in self.all_model_classes:
Lysandre's avatar
Lysandre committed
554
555
556
557
            (
                config,
                inputs_dict,
            ) = self.model_tester.prepare_config_and_inputs_for_common()
558
559
560

            if "head_mask" in inputs_dict:
                del inputs_dict["head_mask"]
561

562
            inputs_dict["output_attentions"] = True
563
564
565
566
            config.output_hidden_states = False
            model = model_class(config=config)
            model.to(torch_device)
            model.eval()
567
568
569
570
            heads_to_prune = {
                0: list(range(1, self.model_tester.num_attention_heads)),
                -1: [0],
            }
571
            model.prune_heads(heads_to_prune)
572

573
            with tempfile.TemporaryDirectory() as temp_dir_name:
574
575
                model.save_pretrained(temp_dir_name)
                model = model_class.from_pretrained(temp_dir_name)
576
                model.to(torch_device)
577

578
            with torch.no_grad():
579
                outputs = model(**self._prepare_for_class(inputs_dict, model_class))
580
581
582
583
            attentions = outputs[-1]
            self.assertEqual(attentions[0].shape[-3], 1)
            self.assertEqual(attentions[1].shape[-3], self.model_tester.num_attention_heads)
            self.assertEqual(attentions[-1].shape[-3], self.model_tester.num_attention_heads - 1)
584

Patrick von Platen's avatar
Patrick von Platen committed
585
586
    def test_head_pruning_save_load_from_config_init(self):
        if not self.test_pruning:
587
            return
588

589
        for model_class in self.all_model_classes:
Lysandre's avatar
Lysandre committed
590
591
592
593
            (
                config,
                inputs_dict,
            ) = self.model_tester.prepare_config_and_inputs_for_common()
594

595
596
            if "head_mask" in inputs_dict:
                del inputs_dict["head_mask"]
597

598
            inputs_dict["output_attentions"] = True
599
            config.output_hidden_states = False
600

601
602
603
604
            heads_to_prune = {
                0: list(range(1, self.model_tester.num_attention_heads)),
                -1: [0],
            }
605
            config.pruned_heads = heads_to_prune
606

607
608
609
            model = model_class(config=config)
            model.to(torch_device)
            model.eval()
610

611
            with torch.no_grad():
612
                outputs = model(**self._prepare_for_class(inputs_dict, model_class))
613
            attentions = outputs[-1]
614

615
616
617
            self.assertEqual(attentions[0].shape[-3], 1)
            self.assertEqual(attentions[1].shape[-3], self.model_tester.num_attention_heads)
            self.assertEqual(attentions[-1].shape[-3], self.model_tester.num_attention_heads - 1)
618

Patrick von Platen's avatar
Patrick von Platen committed
619
620
    def test_head_pruning_integration(self):
        if not self.test_pruning:
621
            return
622

623
        for model_class in self.all_model_classes:
Lysandre's avatar
Lysandre committed
624
625
626
627
            (
                config,
                inputs_dict,
            ) = self.model_tester.prepare_config_and_inputs_for_common()
628

629
630
            if "head_mask" in inputs_dict:
                del inputs_dict["head_mask"]
631

632
            inputs_dict["output_attentions"] = True
633
            config.output_hidden_states = False
634

635
636
            heads_to_prune = {0: [0], 1: [1, 2]}
            config.pruned_heads = heads_to_prune
637

638
639
640
            model = model_class(config=config)
            model.to(torch_device)
            model.eval()
641

642
            with torch.no_grad():
643
                outputs = model(**self._prepare_for_class(inputs_dict, model_class))
644
            attentions = outputs[-1]
645

646
647
648
649
            self.assertEqual(attentions[0].shape[-3], self.model_tester.num_attention_heads - 1)
            self.assertEqual(attentions[1].shape[-3], self.model_tester.num_attention_heads - 2)
            self.assertEqual(attentions[2].shape[-3], self.model_tester.num_attention_heads)
            self.assertEqual(attentions[3].shape[-3], self.model_tester.num_attention_heads)
thomwolf's avatar
thomwolf committed
650

651
            with tempfile.TemporaryDirectory() as temp_dir_name:
652
653
                model.save_pretrained(temp_dir_name)
                model = model_class.from_pretrained(temp_dir_name)
654
                model.to(torch_device)
thomwolf's avatar
thomwolf committed
655

656
            with torch.no_grad():
657
                outputs = model(**self._prepare_for_class(inputs_dict, model_class))
658
            attentions = outputs[-1]
LysandreJik's avatar
LysandreJik committed
659

660
661
662
663
            self.assertEqual(attentions[0].shape[-3], self.model_tester.num_attention_heads - 1)
            self.assertEqual(attentions[1].shape[-3], self.model_tester.num_attention_heads - 2)
            self.assertEqual(attentions[2].shape[-3], self.model_tester.num_attention_heads)
            self.assertEqual(attentions[3].shape[-3], self.model_tester.num_attention_heads)
thomwolf's avatar
thomwolf committed
664

665
666
            heads_to_prune = {0: [0], 2: [1, 2]}
            model.prune_heads(heads_to_prune)
667

668
            with torch.no_grad():
669
                outputs = model(**self._prepare_for_class(inputs_dict, model_class))
670
            attentions = outputs[-1]
671

672
673
674
675
            self.assertEqual(attentions[0].shape[-3], self.model_tester.num_attention_heads - 1)
            self.assertEqual(attentions[1].shape[-3], self.model_tester.num_attention_heads - 2)
            self.assertEqual(attentions[2].shape[-3], self.model_tester.num_attention_heads - 2)
            self.assertEqual(attentions[3].shape[-3], self.model_tester.num_attention_heads)
676

677
            self.assertDictEqual(model.config.pruned_heads, {0: [0], 1: [1, 2], 2: [1, 2]})
thomwolf's avatar
thomwolf committed
678

Patrick von Platen's avatar
Patrick von Platen committed
679
    def test_hidden_states_output(self):
Joseph Liu's avatar
Joseph Liu committed
680
        def check_hidden_states_output(inputs_dict, config, model_class):
681
            model = model_class(config)
682
            model.to(torch_device)
thomwolf's avatar
thomwolf committed
683
            model.eval()
Joseph Liu's avatar
Joseph Liu committed
684

thomwolf's avatar
thomwolf committed
685
            with torch.no_grad():
686
                outputs = model(**self._prepare_for_class(inputs_dict, model_class))
687
688

            hidden_states = outputs.encoder_hidden_states if config.is_encoder_decoder else outputs.hidden_states
Patrick von Platen's avatar
Patrick von Platen committed
689

Sylvain Gugger's avatar
Sylvain Gugger committed
690
691
692
693
            expected_num_layers = getattr(
                self.model_tester, "expected_num_hidden_layers", self.model_tester.num_hidden_layers + 1
            )
            self.assertEqual(len(hidden_states), expected_num_layers)
694

Patrick von Platen's avatar
Patrick von Platen committed
695
696
697
698
699
700
701
            if hasattr(self.model_tester, "encoder_seq_length"):
                seq_length = self.model_tester.encoder_seq_length
                if hasattr(self.model_tester, "chunk_length") and self.model_tester.chunk_length > 1:
                    seq_length = seq_length * self.model_tester.chunk_length
            else:
                seq_length = self.model_tester.seq_length

702
            self.assertListEqual(
Lysandre's avatar
Lysandre committed
703
704
                list(hidden_states[0].shape[-2:]),
                [seq_length, self.model_tester.hidden_size],
705
            )
thomwolf's avatar
thomwolf committed
706

707
708
709
710
711
712
713
714
715
716
717
718
719
            if config.is_encoder_decoder:
                hidden_states = outputs.decoder_hidden_states

                self.assertIsInstance(hidden_states, (list, tuple))
                self.assertEqual(len(hidden_states), expected_num_layers)
                seq_len = getattr(self.model_tester, "seq_length", None)
                decoder_seq_length = getattr(self.model_tester, "decoder_seq_length", seq_len)

                self.assertListEqual(
                    list(hidden_states[0].shape[-2:]),
                    [decoder_seq_length, self.model_tester.hidden_size],
                )

Joseph Liu's avatar
Joseph Liu committed
720
721
722
723
724
725
726
727
728
729
730
731
        config, inputs_dict = self.model_tester.prepare_config_and_inputs_for_common()

        for model_class in self.all_model_classes:
            inputs_dict["output_hidden_states"] = True
            check_hidden_states_output(inputs_dict, config, model_class)

            # check that output_hidden_states also work using config
            del inputs_dict["output_hidden_states"]
            config.output_hidden_states = True

            check_hidden_states_output(inputs_dict, config, model_class)

732
733
734
735
736
737
738
739
740
741
742
743
744
    def test_retain_grad_hidden_states_attentions(self):
        config, inputs_dict = self.model_tester.prepare_config_and_inputs_for_common()
        config.output_hidden_states = True
        config.output_attentions = True

        # no need to test all models as different heads yield the same functionality
        model_class = self.all_model_classes[0]
        model = model_class(config)
        model.to(torch_device)

        inputs = self._prepare_for_class(inputs_dict, model_class)

        outputs = model(**inputs)
745
746

        print(outputs)
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
        output = outputs[0]

        if config.is_encoder_decoder:
            # Seq2Seq models
            encoder_hidden_states = outputs.encoder_hidden_states[0]
            encoder_attentions = outputs.encoder_attentions[0]
            encoder_hidden_states.retain_grad()
            encoder_attentions.retain_grad()

            decoder_hidden_states = outputs.decoder_hidden_states[0]
            decoder_attentions = outputs.decoder_attentions[0]
            decoder_hidden_states.retain_grad()
            decoder_attentions.retain_grad()

            cross_attentions = outputs.cross_attentions[0]
            cross_attentions.retain_grad()

            output.flatten()[0].backward(retain_graph=True)

            self.assertIsNotNone(encoder_hidden_states.grad)
            self.assertIsNotNone(encoder_attentions.grad)
            self.assertIsNotNone(decoder_hidden_states.grad)
            self.assertIsNotNone(decoder_attentions.grad)
            self.assertIsNotNone(cross_attentions.grad)
        else:
            # Encoder-/Decoder-only models
            hidden_states = outputs.hidden_states[0]
            attentions = outputs.attentions[0]

            hidden_states.retain_grad()
            attentions.retain_grad()

            output.flatten()[0].backward(retain_graph=True)

            self.assertIsNotNone(hidden_states.grad)
            self.assertIsNotNone(attentions.grad)

Pradhy729's avatar
Pradhy729 committed
784
    def test_feed_forward_chunking(self):
Lysandre's avatar
Lysandre committed
785
786
787
788
        (
            original_config,
            inputs_dict,
        ) = self.model_tester.prepare_config_and_inputs_for_common()
Pradhy729's avatar
Pradhy729 committed
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
        for model_class in self.all_model_classes:
            torch.manual_seed(0)
            config = copy.deepcopy(original_config)
            model = model_class(config)
            model.to(torch_device)
            model.eval()

            hidden_states_no_chunk = model(**self._prepare_for_class(inputs_dict, model_class))[0]

            torch.manual_seed(0)
            config.chunk_size_feed_forward = 1
            model = model_class(config)
            model.to(torch_device)
            model.eval()

            hidden_states_with_chunk = model(**self._prepare_for_class(inputs_dict, model_class))[0]
            self.assertTrue(torch.allclose(hidden_states_no_chunk, hidden_states_with_chunk, atol=1e-3))

Patrick von Platen's avatar
Patrick von Platen committed
807
    def test_resize_tokens_embeddings(self):
Lysandre's avatar
Lysandre committed
808
809
810
811
        (
            original_config,
            inputs_dict,
        ) = self.model_tester.prepare_config_and_inputs_for_common()
Patrick von Platen's avatar
Patrick von Platen committed
812
        if not self.test_resize_embeddings:
813
814
815
816
817
            return

        for model_class in self.all_model_classes:
            config = copy.deepcopy(original_config)
            model = model_class(config)
818
            model.to(torch_device)
819

Patrick von Platen's avatar
Patrick von Platen committed
820
821
822
            if self.model_tester.is_training is False:
                model.eval()

823
824
825
826
827
828
829
830
831
832
            model_vocab_size = config.vocab_size
            # Retrieve the embeddings and clone theme
            model_embed = model.resize_token_embeddings(model_vocab_size)
            cloned_embeddings = model_embed.weight.clone()

            # Check that resizing the token embeddings with a larger vocab size increases the model's vocab size
            model_embed = model.resize_token_embeddings(model_vocab_size + 10)
            self.assertEqual(model.config.vocab_size, model_vocab_size + 10)
            # Check that it actually resizes the embeddings matrix
            self.assertEqual(model_embed.weight.shape[0], cloned_embeddings.shape[0] + 10)
833
            # Check that the model can still do a forward pass successfully (every parameter should be resized)
834
            model(**self._prepare_for_class(inputs_dict, model_class))
835
836
837
838
839
840
841

            # Check that resizing the token embeddings with a smaller vocab size decreases the model's vocab size
            model_embed = model.resize_token_embeddings(model_vocab_size - 15)
            self.assertEqual(model.config.vocab_size, model_vocab_size - 15)
            # Check that it actually resizes the embeddings matrix
            self.assertEqual(model_embed.weight.shape[0], cloned_embeddings.shape[0] - 15)

842
843
844
            # Check that the model can still do a forward pass successfully (every parameter should be resized)
            # Input ids should be clamped to the maximum size of the vocabulary
            inputs_dict["input_ids"].clamp_(max=model_vocab_size - 15 - 1)
845
846
847
848

            # make sure that decoder_input_ids are resized as well
            if "decoder_input_ids" in inputs_dict:
                inputs_dict["decoder_input_ids"].clamp_(max=model_vocab_size - 15 - 1)
849
            model(**self._prepare_for_class(inputs_dict, model_class))
850

851
852
853
854
855
856
857
858
            # Check that adding and removing tokens has not modified the first part of the embedding matrix.
            models_equal = True
            for p1, p2 in zip(cloned_embeddings, model_embed.weight):
                if p1.data.ne(p2.data).sum() > 0:
                    models_equal = False

            self.assertTrue(models_equal)

859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
    def test_resize_embeddings_untied(self):
        (
            original_config,
            inputs_dict,
        ) = self.model_tester.prepare_config_and_inputs_for_common()
        if not self.test_resize_embeddings:
            return

        original_config.tie_word_embeddings = False

        # if model cannot untied embeddings -> leave test
        if original_config.tie_word_embeddings:
            return

        for model_class in self.all_model_classes:
            config = copy.deepcopy(original_config)
            model = model_class(config).to(torch_device)

            # if no output embeddings -> leave test
            if model.get_output_embeddings() is None:
                continue

            # Check that resizing the token embeddings with a larger vocab size increases the model's vocab size
            model_vocab_size = config.vocab_size
            model.resize_token_embeddings(model_vocab_size + 10)
            self.assertEqual(model.config.vocab_size, model_vocab_size + 10)
            output_embeds = model.get_output_embeddings()
            self.assertEqual(output_embeds.weight.shape[0], model_vocab_size + 10)
            # Check bias if present
            if output_embeds.bias is not None:
                self.assertEqual(output_embeds.bias.shape[0], model_vocab_size + 10)
            # Check that the model can still do a forward pass successfully (every parameter should be resized)
            model(**self._prepare_for_class(inputs_dict, model_class))

            # Check that resizing the token embeddings with a smaller vocab size decreases the model's vocab size
            model.resize_token_embeddings(model_vocab_size - 15)
            self.assertEqual(model.config.vocab_size, model_vocab_size - 15)
            # Check that it actually resizes the embeddings matrix
            output_embeds = model.get_output_embeddings()
            self.assertEqual(output_embeds.weight.shape[0], model_vocab_size - 15)
            # Check bias if present
            if output_embeds.bias is not None:
                self.assertEqual(output_embeds.bias.shape[0], model_vocab_size - 15)
            # Check that the model can still do a forward pass successfully (every parameter should be resized)
            # Input ids should be clamped to the maximum size of the vocabulary
            inputs_dict["input_ids"].clamp_(max=model_vocab_size - 15 - 1)
            if "decoder_input_ids" in inputs_dict:
                inputs_dict["decoder_input_ids"].clamp_(max=model_vocab_size - 15 - 1)
            # Check that the model can still do a forward pass successfully (every parameter should be resized)
            model(**self._prepare_for_class(inputs_dict, model_class))

Patrick von Platen's avatar
Patrick von Platen committed
910
    def test_model_common_attributes(self):
911
912
913
914
915
916
917
918
919
        config, inputs_dict = self.model_tester.prepare_config_and_inputs_for_common()

        for model_class in self.all_model_classes:
            model = model_class(config)
            self.assertIsInstance(model.get_input_embeddings(), (torch.nn.Embedding, AdaptiveEmbedding))
            model.set_input_embeddings(torch.nn.Embedding(10, 10))
            x = model.get_output_embeddings()
            self.assertTrue(x is None or isinstance(x, torch.nn.Linear))

920
    def test_correct_missing_keys(self):
921
922
        if not self.test_missing_keys:
            return
923
924
925
926
927
928
929
930
931
932
933
        config, _ = self.model_tester.prepare_config_and_inputs_for_common()

        for model_class in self.all_model_classes:
            model = model_class(config)
            base_model_prefix = model.base_model_prefix

            if hasattr(model, base_model_prefix):
                with tempfile.TemporaryDirectory() as temp_dir_name:
                    model.base_model.save_pretrained(temp_dir_name)
                    model, loading_info = model_class.from_pretrained(temp_dir_name, output_loading_info=True)

934
                    with self.subTest(msg=f"Missing keys for {model.__class__.__name__}"):
935
936
                        self.assertGreater(len(loading_info["missing_keys"]), 0)

937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
    def test_tie_model_weights(self):
        if not self.test_torchscript:
            return

        config, inputs_dict = self.model_tester.prepare_config_and_inputs_for_common()

        def check_same_values(layer_1, layer_2):
            equal = True
            for p1, p2 in zip(layer_1.weight, layer_2.weight):
                if p1.data.ne(p2.data).sum() > 0:
                    equal = False
            return equal

        for model_class in self.all_model_classes:
            config.torchscript = True
            model_not_tied = model_class(config)
            if model_not_tied.get_output_embeddings() is None:
                continue

            config_tied = copy.deepcopy(config)
            config_tied.torchscript = False
            model_tied = model_class(config_tied)
            params_tied = list(model_tied.parameters())
            # Check that the embedding layer and decoding layer are the same in size and in value
            # self.assertTrue(check_same_values(embeddings, decoding))

            # # Check that after modification, they remain the same.
            # embeddings.weight.data.div_(2)
            # # Check that the embedding layer and decoding layer are the same in size and in value
            # self.assertTrue(embeddings.weight.shape, decoding.weight.shape)
            # self.assertTrue(check_same_values(embeddings, decoding))

            # # Check that after modification, they remain the same.
            # decoding.weight.data.div_(4)
            # # Check that the embedding layer and decoding layer are the same in size and in value
            # self.assertTrue(embeddings.weight.shape, decoding.weight.shape)
            # self.assertTrue(check_same_values(embeddings, decoding))

            # Check that after resize they remain tied.
            model_tied.resize_token_embeddings(config.vocab_size + 10)
            params_tied_2 = list(model_tied.parameters())
            self.assertEqual(len(params_tied_2), len(params_tied))

            # decoding.weight.data.mul_(20)
            # # Check that the embedding layer and decoding layer are the same in size and in value
            # self.assertTrue(model.transformer.wte.weight.shape, model.lm_head.weight.shape)
            # self.assertTrue(check_same_values(model.transformer.wte, model.lm_head))

985
986
987
988
    def test_model_outputs_equivalence(self):

        config, inputs_dict = self.model_tester.prepare_config_and_inputs_for_common()

Sam Shleifer's avatar
Sam Shleifer committed
989
990
991
992
        def set_nan_tensor_to_zero(t):
            t[t != t] = 0
            return t

993
994
995
996
997
998
999
1000
1001
1002
1003
1004
1005
        def check_equivalence(model, tuple_inputs, dict_inputs, additional_kwargs={}):
            with torch.no_grad():
                tuple_output = model(**tuple_inputs, return_dict=False, **additional_kwargs)
                dict_output = model(**dict_inputs, return_dict=True, **additional_kwargs).to_tuple()

                def recursive_check(tuple_object, dict_object):
                    if isinstance(tuple_object, (List, Tuple)):
                        for tuple_iterable_value, dict_iterable_value in zip(tuple_object, dict_object):
                            recursive_check(tuple_iterable_value, dict_iterable_value)
                    elif tuple_object is None:
                        return
                    else:
                        self.assertTrue(
Sam Shleifer's avatar
Sam Shleifer committed
1006
1007
1008
                            torch.allclose(
                                set_nan_tensor_to_zero(tuple_object), set_nan_tensor_to_zero(dict_object), atol=1e-5
                            ),
1009
                            msg=f"Tuple and dict output are not equal. Difference: {torch.max(torch.abs(tuple_object - dict_object))}. Tuple has `nan`: {torch.isnan(tuple_object).any()} and `inf`: {torch.isinf(tuple_object)}. Dict has `nan`: {torch.isnan(dict_object).any()} and `inf`: {torch.isinf(dict_object)}.",
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025
1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
                        )

                recursive_check(tuple_output, dict_output)

        for model_class in self.all_model_classes:
            model = model_class(config)
            model.to(torch_device)
            model.eval()

            tuple_inputs = self._prepare_for_class(inputs_dict, model_class)
            dict_inputs = self._prepare_for_class(inputs_dict, model_class)
            check_equivalence(model, tuple_inputs, dict_inputs)

            tuple_inputs = self._prepare_for_class(inputs_dict, model_class, return_labels=True)
            dict_inputs = self._prepare_for_class(inputs_dict, model_class, return_labels=True)
            check_equivalence(model, tuple_inputs, dict_inputs)

            tuple_inputs = self._prepare_for_class(inputs_dict, model_class)
            dict_inputs = self._prepare_for_class(inputs_dict, model_class)
            check_equivalence(model, tuple_inputs, dict_inputs, {"output_hidden_states": True})

            tuple_inputs = self._prepare_for_class(inputs_dict, model_class)
            dict_inputs = self._prepare_for_class(inputs_dict, model_class)
            check_equivalence(model, tuple_inputs, dict_inputs, {"output_attentions": True})

            tuple_inputs = self._prepare_for_class(inputs_dict, model_class, return_labels=True)
            dict_inputs = self._prepare_for_class(inputs_dict, model_class, return_labels=True)
            check_equivalence(model, tuple_inputs, dict_inputs, {"output_hidden_states": True})

            tuple_inputs = self._prepare_for_class(inputs_dict, model_class, return_labels=True)
            dict_inputs = self._prepare_for_class(inputs_dict, model_class, return_labels=True)
            check_equivalence(model, tuple_inputs, dict_inputs, {"output_attentions": True})

            tuple_inputs = self._prepare_for_class(inputs_dict, model_class, return_labels=True)
            dict_inputs = self._prepare_for_class(inputs_dict, model_class, return_labels=True)
            check_equivalence(
                model, tuple_inputs, dict_inputs, {"output_hidden_states": True, "output_attentions": True}
            )

Patrick von Platen's avatar
Patrick von Platen committed
1049
    def test_inputs_embeds(self):
1050
1051
1052
1053
        config, inputs_dict = self.model_tester.prepare_config_and_inputs_for_common()

        for model_class in self.all_model_classes:
            model = model_class(config)
1054
            model.to(torch_device)
thomwolf's avatar
thomwolf committed
1055
            model.eval()
1056

1057
            inputs = copy.deepcopy(self._prepare_for_class(inputs_dict, model_class))
Weizhen's avatar
Weizhen committed
1058

1059
1060
1061
1062
1063
1064
1065
1066
1067
            if not self.is_encoder_decoder:
                input_ids = inputs["input_ids"]
                del inputs["input_ids"]
            else:
                encoder_input_ids = inputs["input_ids"]
                decoder_input_ids = inputs.get("decoder_input_ids", encoder_input_ids)
                del inputs["input_ids"]
                inputs.pop("decoder_input_ids", None)

1068
1069
            wte = model.get_input_embeddings()
            if not self.is_encoder_decoder:
1070
                inputs["inputs_embeds"] = wte(input_ids)
1071
            else:
1072
1073
                inputs["inputs_embeds"] = wte(encoder_input_ids)
                inputs["decoder_inputs_embeds"] = wte(decoder_input_ids)
1074

thomwolf's avatar
thomwolf committed
1075
            with torch.no_grad():
Weizhen's avatar
Weizhen committed
1076
                model(**inputs)[0]
1077

1078
1079
    @require_torch_multi_gpu
    def test_multi_gpu_data_parallel_forward(self):
1080
1081
1082
1083
        config, inputs_dict = self.model_tester.prepare_config_and_inputs_for_common()

        # some params shouldn't be scattered by nn.DataParallel
        # so just remove them if they are present.
Patrick von Platen's avatar
Patrick von Platen committed
1084
        blacklist_non_batched_params = ["head_mask", "decoder_head_mask"]
1085
1086
1087
1088
1089
1090
1091
1092
1093
1094
1095
1096
1097
1098
1099
1100
        for k in blacklist_non_batched_params:
            inputs_dict.pop(k, None)

        # move input tensors to cuda:O
        for k, v in inputs_dict.items():
            if torch.is_tensor(v):
                inputs_dict[k] = v.to(0)

        for model_class in self.all_model_classes:
            model = model_class(config=config)
            model.to(0)
            model.eval()

            # Wrap model in nn.DataParallel
            model = torch.nn.DataParallel(model)
            with torch.no_grad():
1101
                _ = model(**self._prepare_for_class(inputs_dict, model_class))
1102

1103
1104
1105
    @require_torch_multi_gpu
    def test_model_parallelization(self):
        if not self.test_model_parallel:
1106
            return
1107

1108
        # a candidate for testing_utils
1109
        def get_current_gpu_memory_use():
1110
1111
1112
1113
1114
1115
            """ returns a list of cuda memory allocations per GPU in MBs"""

            per_device_memory = []
            for id in range(torch.cuda.device_count()):
                with torch.cuda.device(id):
                    per_device_memory.append(torch.cuda.memory_allocated() >> 20)
1116
1117
1118
1119
1120
1121
1122
1123
1124

            return per_device_memory

        # Needs a large model to see the difference.
        config = self.model_tester.get_large_model_config()

        for model_class in self.all_parallelizable_model_classes:
            torch.cuda.empty_cache()

1125
1126
1127
            # 1. single gpu memory load + unload + memory measurements
            # Retrieve initial memory usage (can easily be ~0.6-1.5GB if cuda-kernels have been preloaded by previous tests)
            memory_at_start = get_current_gpu_memory_use()
1128

1129
1130
            # Put model on device 0 and take a memory snapshot
            model = model_class(config)
1131
1132
1133
            model.to("cuda:0")
            memory_after_model_load = get_current_gpu_memory_use()

1134
1135
1136
            # The memory use on device 0 should be higher than it was initially.
            self.assertGreater(memory_after_model_load[0], memory_at_start[0])

1137
            del model
1138
            gc.collect()
1139
1140
            torch.cuda.empty_cache()

1141
1142
1143
            # 2. MP test
            # it's essential to re-calibrate the usage before the next stage
            memory_at_start = get_current_gpu_memory_use()
1144
1145

            # Spread model layers over multiple devices
1146
            model = model_class(config)
1147
1148
1149
1150
1151
            model.parallelize()
            memory_after_parallelization = get_current_gpu_memory_use()

            # Assert that the memory use on all devices is higher than it was when loaded only on CPU
            for n in range(torch.cuda.device_count()):
1152
                self.assertGreater(memory_after_parallelization[n], memory_at_start[n])
1153

1154
            # Assert that the memory use of device 0 is lower than it was when the entire model was loaded on it
1155
1156
            self.assertLess(memory_after_parallelization[0], memory_after_model_load[0])

1157
1158
            # Assert that the memory use of device 1 is higher than it was when the entire model was loaded
            # on device 0 and device 1 wasn't used at all
1159
1160
1161
            self.assertGreater(memory_after_parallelization[1], memory_after_model_load[1])

            del model
1162
            gc.collect()
1163
1164
1165
1166
1167
            torch.cuda.empty_cache()

    @require_torch_multi_gpu
    def test_model_parallel_equal_results(self):
        if not self.test_model_parallel:
1168
            return
1169
1170
1171
1172
1173
1174

        config, inputs_dict = self.model_tester.prepare_config_and_inputs_for_common()

        for model_class in self.all_parallelizable_model_classes:
            inputs_dict = self._prepare_for_class(inputs_dict, model_class)

1175
            def cast_to_device(dictionary, device):
1176
1177
1178
                output = {}
                for k, v in dictionary.items():
                    if isinstance(v, torch.Tensor):
1179
                        output[k] = v.to(device)
1180
1181
1182
1183
1184
                    else:
                        output[k] = v

                return output

1185
1186
1187
1188
1189
1190
            model = model_class(config)
            output = model(**cast_to_device(inputs_dict, "cpu"))

            model.parallelize()

            parallel_output = model(**cast_to_device(inputs_dict, "cuda:0"))
1191
1192
1193
1194
1195
1196
1197
1198

            for value, parallel_value in zip(output, parallel_output):
                if isinstance(value, torch.Tensor):
                    self.assertTrue(torch.allclose(value, parallel_value.to("cpu"), atol=1e-7))
                elif isinstance(value, (Tuple, List)):
                    for value_, parallel_value_ in zip(value, parallel_value):
                        self.assertTrue(torch.allclose(value_, parallel_value_.to("cpu"), atol=1e-7))

1199
1200
1201
1202
1203
1204
1205
1206
1207
1208
1209
1210
1211
1212
1213
1214
1215
1216
1217
1218
1219
1220
1221
1222
1223
1224
1225
1226
    @require_torch_multi_gpu
    def test_model_parallel_beam_search(self):
        if not self.test_model_parallel:
            return

        all_generative_and_parallelizable_model_classes = tuple(
            set(self.all_generative_model_classes).intersection(self.all_parallelizable_model_classes)
        )

        config, inputs_dict = self.model_tester.prepare_config_and_inputs_for_common()

        for model_class in all_generative_and_parallelizable_model_classes:
            inputs_dict = self._prepare_for_class(inputs_dict, model_class)
            model = model_class(config)

            def cast_to_device(dictionary, device):
                output = {}
                for k, v in dictionary.items():
                    if isinstance(v, torch.Tensor):
                        output[k] = v.to(device)
                    else:
                        output[k] = v

                return output

            model.parallelize()
            model.generate(**cast_to_device(inputs_dict, "cuda:0"), num_beams=2)

1227

1228
global_rng = random.Random()
thomwolf's avatar
thomwolf committed
1229
1230


thomwolf's avatar
thomwolf committed
1231
def ids_tensor(shape, vocab_size, rng=None, name=None):
1232
    #  Creates a random int32 tensor of the shape within the vocab size
thomwolf's avatar
thomwolf committed
1233
    if rng is None:
1234
        rng = global_rng
thomwolf's avatar
thomwolf committed
1235

thomwolf's avatar
thomwolf committed
1236
1237
1238
    total_dims = 1
    for dim in shape:
        total_dims *= dim
thomwolf's avatar
thomwolf committed
1239

thomwolf's avatar
thomwolf committed
1240
1241
1242
    values = []
    for _ in range(total_dims):
        values.append(rng.randint(0, vocab_size - 1))
thomwolf's avatar
thomwolf committed
1243

1244
    return torch.tensor(data=values, dtype=torch.long, device=torch_device).view(shape).contiguous()
thomwolf's avatar
thomwolf committed
1245
1246


1247
1248
1249
1250
1251
1252
1253
def random_attention_mask(shape, rng=None, name=None):
    attn_mask = ids_tensor(shape, vocab_size=2, rng=None, name=None)
    # make sure that at least one token is attended to for each batch
    attn_mask[:, -1] = 1
    return attn_mask


1254
def floats_tensor(shape, scale=1.0, rng=None, name=None):
Patrick von Platen's avatar
Patrick von Platen committed
1255
    """Creates a random float32 tensor"""
1256
1257
1258
1259
1260
1261
1262
1263
1264
1265
1266
    if rng is None:
        rng = global_rng

    total_dims = 1
    for dim in shape:
        total_dims *= dim

    values = []
    for _ in range(total_dims):
        values.append(rng.random() * scale)

1267
    return torch.tensor(data=values, dtype=torch.float, device=torch_device).view(shape).contiguous()
1268
1269


1270
@require_torch
thomwolf's avatar
thomwolf committed
1271
class ModelUtilsTest(unittest.TestCase):
1272
    @slow
Patrick von Platen's avatar
Patrick von Platen committed
1273
    def test_model_from_pretrained(self):
1274
        for model_name in BERT_PRETRAINED_MODEL_ARCHIVE_LIST[:1]:
thomwolf's avatar
thomwolf committed
1275
1276
1277
1278
1279
1280
1281
1282
1283
1284
1285
1286
            config = BertConfig.from_pretrained(model_name)
            self.assertIsNotNone(config)
            self.assertIsInstance(config, PretrainedConfig)

            model = BertModel.from_pretrained(model_name)
            model, loading_info = BertModel.from_pretrained(model_name, output_loading_info=True)
            self.assertIsNotNone(model)
            self.assertIsInstance(model, PreTrainedModel)
            for value in loading_info.values():
                self.assertEqual(len(value), 0)

            config = BertConfig.from_pretrained(model_name, output_attentions=True, output_hidden_states=True)
Lysandre Debut's avatar
Lysandre Debut committed
1287
1288
1289
1290

            # Not sure this is the intended behavior. TODO fix Lysandre & Thom
            config.name_or_path = model_name

thomwolf's avatar
thomwolf committed
1291
1292
1293
            model = BertModel.from_pretrained(model_name, output_attentions=True, output_hidden_states=True)
            self.assertEqual(model.config.output_hidden_states, True)
            self.assertEqual(model.config, config)
1294
1295
1296
1297
1298
1299
1300
1301

    def test_model_from_pretrained_with_different_pretrained_model_name(self):
        model = T5ForConditionalGeneration.from_pretrained(TINY_T5)
        self.assertIsNotNone(model)

        with self.assertRaises(Exception) as context:
            BertModel.from_pretrained(TINY_T5)
        self.assertTrue("You tried to initiate a model of type" in str(context.exception))