test_modeling_common.py 120 KB
Newer Older
thomwolf's avatar
thomwolf committed
1
2
3
4
5
6
7
8
9
10
11
12
13
14
# coding=utf-8
# Copyright 2019 HuggingFace Inc.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
#     http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
Aymeric Augustin's avatar
Aymeric Augustin committed
15

16
import copy
17
import gc
18
import inspect
19
import json
20
import os
21
import os.path
22
import pickle
Aymeric Augustin's avatar
Aymeric Augustin committed
23
import random
24
import sys
25
import tempfile
thomwolf's avatar
thomwolf committed
26
import unittest
27
import unittest.mock as mock
28
import warnings
29
from pathlib import Path
NielsRogge's avatar
NielsRogge committed
30
from typing import Dict, List, Tuple
thomwolf's avatar
thomwolf committed
31

32
33
34
import numpy as np

import transformers
35
from huggingface_hub import Repository, delete_repo, login
Sylvain Gugger's avatar
Sylvain Gugger committed
36
from requests.exceptions import HTTPError
37
38
39
40
41
42
43
44
from transformers import (
    AutoConfig,
    AutoModel,
    AutoModelForSequenceClassification,
    PretrainedConfig,
    is_torch_available,
    logging,
)
45
from transformers.models.auto import get_values
Sylvain Gugger's avatar
Sylvain Gugger committed
46
47
48
49
from transformers.testing_utils import (
    PASS,
    USER,
    CaptureLogger,
50
    TestCasePlus,
51
52
    is_pt_flax_cross_test,
    is_pt_tf_cross_test,
Sylvain Gugger's avatar
Sylvain Gugger committed
53
54
55
    is_staging_test,
    require_torch,
    require_torch_multi_gpu,
56
    require_usr_bin_time,
Sylvain Gugger's avatar
Sylvain Gugger committed
57
58
59
    slow,
    torch_device,
)
60
61
62
63
64
65
66
67
from transformers.utils import (
    WEIGHTS_INDEX_NAME,
    WEIGHTS_NAME,
    is_flax_available,
    is_tf_available,
    is_torch_fx_available,
)
from transformers.utils.generic import ModelOutput
68

Aymeric Augustin's avatar
Aymeric Augustin committed
69

70
71
sys.path.append(str(Path(__file__).parent.parent / "utils"))

72
from test_module.custom_configuration import CustomConfig, NoSuperInitConfig  # noqa E402
73
74


75
if is_torch_available():
76
    import torch
77
    from torch import nn
thomwolf's avatar
thomwolf committed
78

79
    from test_module.custom_modeling import CustomModel, NoSuperInitModel
80
    from transformers import (
81
        BERT_PRETRAINED_MODEL_ARCHIVE_LIST,
82
        MODEL_FOR_AUDIO_XVECTOR_MAPPING,
NielsRogge's avatar
NielsRogge committed
83
        MODEL_FOR_CAUSAL_IMAGE_MODELING_MAPPING,
84
        MODEL_FOR_CAUSAL_LM_MAPPING,
85
        MODEL_FOR_IMAGE_CLASSIFICATION_MAPPING,
NielsRogge's avatar
NielsRogge committed
86
        MODEL_FOR_MASKED_IMAGE_MODELING_MAPPING,
87
        MODEL_FOR_MASKED_LM_MAPPING,
88
        MODEL_FOR_MULTIPLE_CHOICE_MAPPING,
89
        MODEL_FOR_NEXT_SENTENCE_PREDICTION_MAPPING,
90
        MODEL_FOR_QUESTION_ANSWERING_MAPPING,
NielsRogge's avatar
NielsRogge committed
91
        MODEL_FOR_SEMANTIC_SEGMENTATION_MAPPING,
92
93
94
        MODEL_FOR_SEQ_TO_SEQ_CAUSAL_LM_MAPPING,
        MODEL_FOR_SEQUENCE_CLASSIFICATION_MAPPING,
        MODEL_FOR_TOKEN_CLASSIFICATION_MAPPING,
95
        MODEL_MAPPING,
96
97
98
99
        AdaptiveEmbedding,
        BertConfig,
        BertModel,
        PreTrainedModel,
100
        T5Config,
101
        T5ForConditionalGeneration,
102
    )
Sylvain Gugger's avatar
Sylvain Gugger committed
103
    from transformers.modeling_utils import shard_checkpoint
thomwolf's avatar
thomwolf committed
104

105
106
107
if is_tf_available():
    import tensorflow as tf

108
109
110
111
112
113
114
if is_flax_available():
    import jax.numpy as jnp
    from transformers.modeling_flax_pytorch_utils import (
        convert_pytorch_state_dict_to_flax,
        load_flax_weights_in_pytorch_model,
    )

115
if is_torch_fx_available():
116
    from transformers.utils.fx import symbolic_trace
117

118

119
120
121
def _config_zero_init(config):
    configs_no_init = copy.deepcopy(config)
    for key in configs_no_init.__dict__.keys():
122
        if "_range" in key or "_std" in key or "initializer_factor" in key or "layer_scale" in key:
Lysandre Debut's avatar
Lysandre Debut committed
123
            setattr(configs_no_init, key, 1e-10)
124
125
    return configs_no_init

thomwolf's avatar
thomwolf committed
126

127
128
129
TINY_T5 = "patrickvonplaten/t5-tiny-random"


130
131
132
133
134
@require_torch
class ModelTesterMixin:

    model_tester = None
    all_model_classes = ()
135
    all_generative_model_classes = ()
136
    fx_compatible = False
Patrick von Platen's avatar
Patrick von Platen committed
137
138
139
    test_torchscript = True
    test_pruning = True
    test_resize_embeddings = True
140
    test_resize_position_embeddings = False
Patrick von Platen's avatar
Patrick von Platen committed
141
    test_head_masking = True
142
    test_mismatched_shapes = True
143
    test_missing_keys = True
144
    test_model_parallel = False
145
    is_encoder_decoder = False
146
    has_attentions = True
147

148
149
    def _prepare_for_class(self, inputs_dict, model_class, return_labels=False):
        inputs_dict = copy.deepcopy(inputs_dict)
150
        if model_class in get_values(MODEL_FOR_MULTIPLE_CHOICE_MAPPING):
151
            inputs_dict = {
152
                k: v.unsqueeze(1).expand(-1, self.model_tester.num_choices, -1).contiguous()
153
                if isinstance(v, torch.Tensor) and v.ndim > 1
Sylvain Gugger's avatar
Sylvain Gugger committed
154
                else v
155
156
                for k, v in inputs_dict.items()
            }
157
158
        elif model_class in get_values(MODEL_FOR_AUDIO_XVECTOR_MAPPING):
            inputs_dict.pop("attention_mask")
159
160

        if return_labels:
161
            if model_class in get_values(MODEL_FOR_MULTIPLE_CHOICE_MAPPING):
162
                inputs_dict["labels"] = torch.ones(self.model_tester.batch_size, dtype=torch.long, device=torch_device)
163
            elif model_class in get_values(MODEL_FOR_QUESTION_ANSWERING_MAPPING):
164
165
166
167
168
169
                inputs_dict["start_positions"] = torch.zeros(
                    self.model_tester.batch_size, dtype=torch.long, device=torch_device
                )
                inputs_dict["end_positions"] = torch.zeros(
                    self.model_tester.batch_size, dtype=torch.long, device=torch_device
                )
170
            elif model_class in [
171
172
173
                *get_values(MODEL_FOR_SEQUENCE_CLASSIFICATION_MAPPING),
                *get_values(MODEL_FOR_NEXT_SENTENCE_PREDICTION_MAPPING),
                *get_values(MODEL_FOR_IMAGE_CLASSIFICATION_MAPPING),
174
            ]:
175
176
177
178
                inputs_dict["labels"] = torch.zeros(
                    self.model_tester.batch_size, dtype=torch.long, device=torch_device
                )
            elif model_class in [
179
180
                *get_values(MODEL_FOR_TOKEN_CLASSIFICATION_MAPPING),
                *get_values(MODEL_FOR_CAUSAL_LM_MAPPING),
NielsRogge's avatar
NielsRogge committed
181
                *get_values(MODEL_FOR_CAUSAL_IMAGE_MODELING_MAPPING),
182
183
                *get_values(MODEL_FOR_MASKED_LM_MAPPING),
                *get_values(MODEL_FOR_SEQ_TO_SEQ_CAUSAL_LM_MAPPING),
184
185
186
187
            ]:
                inputs_dict["labels"] = torch.zeros(
                    (self.model_tester.batch_size, self.model_tester.seq_length), dtype=torch.long, device=torch_device
                )
NielsRogge's avatar
NielsRogge committed
188
189
190
191
192
            elif model_class in get_values(MODEL_FOR_MASKED_IMAGE_MODELING_MAPPING):
                num_patches = self.model_tester.image_size // self.model_tester.patch_size
                inputs_dict["bool_masked_pos"] = torch.zeros(
                    (self.model_tester.batch_size, num_patches**2), dtype=torch.long, device=torch_device
                )
NielsRogge's avatar
NielsRogge committed
193
194
195
196
197
            elif model_class in get_values(MODEL_FOR_SEMANTIC_SEGMENTATION_MAPPING):
                batch_size, num_channels, height, width = inputs_dict["pixel_values"].shape
                inputs_dict["labels"] = torch.zeros(
                    [self.model_tester.batch_size, height, width], device=torch_device
                ).long()
198

199
200
        return inputs_dict

Patrick von Platen's avatar
Patrick von Platen committed
201
    def test_save_load(self):
202
203
204
205
206
207
208
        config, inputs_dict = self.model_tester.prepare_config_and_inputs_for_common()

        for model_class in self.all_model_classes:
            model = model_class(config)
            model.to(torch_device)
            model.eval()
            with torch.no_grad():
209
                outputs = model(**self._prepare_for_class(inputs_dict, model_class))
Weizhen's avatar
Weizhen committed
210

211
            out_2 = outputs[0].cpu().numpy()
212
            out_2[np.isnan(out_2)] = 0
213

214
            with tempfile.TemporaryDirectory() as tmpdirname:
215
216
                model.save_pretrained(tmpdirname)
                model = model_class.from_pretrained(tmpdirname)
217
                model.to(torch_device)
218
                with torch.no_grad():
219
                    after_outputs = model(**self._prepare_for_class(inputs_dict, model_class))
thomwolf's avatar
thomwolf committed
220

221
222
223
                # Make sure we don't have nans
                out_1 = after_outputs[0].cpu().numpy()
                out_1[np.isnan(out_1)] = 0
thomwolf's avatar
thomwolf committed
224
225
                max_diff = np.amax(np.abs(out_1 - out_2))
                self.assertLessEqual(max_diff, 1e-5)
226

227
    def test_save_load_keys_to_ignore_on_save(self):
228
229
230
231
        config, inputs_dict = self.model_tester.prepare_config_and_inputs_for_common()

        for model_class in self.all_model_classes:
            model = model_class(config)
232
233
            _keys_to_ignore_on_save = getattr(model, "_keys_to_ignore_on_save", None)
            if _keys_to_ignore_on_save is None:
234
235
236
                continue

            # check the keys are in the original state_dict
237
            for k in _keys_to_ignore_on_save:
238
                self.assertIn(k, model.state_dict().keys(), "\n".join(model.state_dict().keys()))
239
240
241
242
243
244

            # check that certain keys didn't get saved with the model
            with tempfile.TemporaryDirectory() as tmpdirname:
                model.save_pretrained(tmpdirname)
                output_model_file = os.path.join(tmpdirname, WEIGHTS_NAME)
                state_dict_saved = torch.load(output_model_file)
245
                for k in _keys_to_ignore_on_save:
246
                    self.assertNotIn(k, state_dict_saved.keys(), "\n".join(state_dict_saved.keys()))
247

Sylvain Gugger's avatar
Sylvain Gugger committed
248
249
250
                # Test we can load the state dict in the model, necessary for the checkpointing API in Trainer.
                load_result = model.load_state_dict(state_dict_saved, strict=False)
                self.assertTrue(
251
252
                    len(load_result.missing_keys) == 0
                    or set(load_result.missing_keys) == set(model._keys_to_ignore_on_save)
Sylvain Gugger's avatar
Sylvain Gugger committed
253
254
255
                )
                self.assertTrue(len(load_result.unexpected_keys) == 0)

256
257
258
259
260
261
262
263
264
265
266
    def test_gradient_checkpointing_backward_compatibility(self):
        config, inputs_dict = self.model_tester.prepare_config_and_inputs_for_common()

        for model_class in self.all_model_classes:
            if not model_class.supports_gradient_checkpointing:
                continue

            config.gradient_checkpointing = True
            model = model_class(config)
            self.assertTrue(model.is_gradient_checkpointing)

267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
    def test_gradient_checkpointing_enable_disable(self):
        config, inputs_dict = self.model_tester.prepare_config_and_inputs_for_common()

        for model_class in self.all_model_classes:
            if not model_class.supports_gradient_checkpointing:
                continue

            # at init model should have gradient checkpointing disabled
            model = model_class(config)
            self.assertFalse(model.is_gradient_checkpointing)

            # check enable works
            model.gradient_checkpointing_enable()
            self.assertTrue(model.is_gradient_checkpointing)

            # check disable works
            model.gradient_checkpointing_disable()
            self.assertFalse(model.is_gradient_checkpointing)

286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
    def _mock_init_weights(self, module):
        if hasattr(module, "weight") and module.weight is not None:
            module.weight.data.fill_(3)
        if hasattr(module, "bias") and module.bias is not None:
            module.bias.data.fill_(3)

    def test_save_load_fast_init_from_base(self):
        config, inputs_dict = self.model_tester.prepare_config_and_inputs_for_common()
        base_class = MODEL_MAPPING[config.__class__]

        if isinstance(base_class, tuple):
            base_class = base_class[0]

        for model_class in self.all_model_classes:
            if model_class == base_class:
                continue

            # make a copy of model class to not break future tests
            # from https://stackoverflow.com/questions/9541025/how-to-copy-a-python-class
            class CopyClass(model_class):
                pass

            model_class_copy = CopyClass

            # make sure that all keys are expected for test
            model_class_copy._keys_to_ignore_on_load_missing = []

            # make init deterministic, but make sure that
            # non-initialized weights throw errors nevertheless
            model_class_copy._init_weights = self._mock_init_weights

            model = base_class(config)
            state_dict = model.state_dict()

            # this will often delete a single weight of a multi-weight module
            # to test an edge case
            random_key_to_del = random.choice(list(state_dict.keys()))
            del state_dict[random_key_to_del]

            # check that certain keys didn't get saved with the model
            with tempfile.TemporaryDirectory() as tmpdirname:
                model.save_pretrained(tmpdirname)
                torch.save(state_dict, os.path.join(tmpdirname, "pytorch_model.bin"))

                model_fast_init = model_class_copy.from_pretrained(tmpdirname)
                model_slow_init = model_class_copy.from_pretrained(tmpdirname, _fast_init=False)

                for key in model_fast_init.state_dict().keys():
                    max_diff = (model_slow_init.state_dict()[key] - model_fast_init.state_dict()[key]).sum().item()
                    self.assertLessEqual(max_diff, 1e-3, msg=f"{key} not identical")

    def test_save_load_fast_init_to_base(self):
        config, inputs_dict = self.model_tester.prepare_config_and_inputs_for_common()
        base_class = MODEL_MAPPING[config.__class__]

        if isinstance(base_class, tuple):
            base_class = base_class[0]

        for model_class in self.all_model_classes:

            if model_class == base_class:
                continue

            # make a copy of model class to not break future tests
            # from https://stackoverflow.com/questions/9541025/how-to-copy-a-python-class
            class CopyClass(base_class):
                pass

            base_class_copy = CopyClass

            # make sure that all keys are expected for test
            base_class_copy._keys_to_ignore_on_load_missing = []

            # make init deterministic, but make sure that
            # non-initialized weights throw errors nevertheless
            base_class_copy._init_weights = self._mock_init_weights

            model = model_class(config)
            state_dict = model.state_dict()

            # this will often delete a single weight of a multi-weight module
            # to test an edge case
            random_key_to_del = random.choice(list(state_dict.keys()))
            del state_dict[random_key_to_del]

            # check that certain keys didn't get saved with the model
            with tempfile.TemporaryDirectory() as tmpdirname:
                model.config.save_pretrained(tmpdirname)
                torch.save(state_dict, os.path.join(tmpdirname, "pytorch_model.bin"))

                model_fast_init = base_class_copy.from_pretrained(tmpdirname)
                model_slow_init = base_class_copy.from_pretrained(tmpdirname, _fast_init=False)

                for key in model_fast_init.state_dict().keys():
                    max_diff = (model_slow_init.state_dict()[key] - model_fast_init.state_dict()[key]).sum().item()
                    self.assertLessEqual(max_diff, 1e-3, msg=f"{key} not identical")

Patrick von Platen's avatar
Patrick von Platen committed
383
    def test_initialization(self):
384
385
386
387
388
389
390
391
        config, inputs_dict = self.model_tester.prepare_config_and_inputs_for_common()

        configs_no_init = _config_zero_init(config)
        for model_class in self.all_model_classes:
            model = model_class(config=configs_no_init)
            for name, param in model.named_parameters():
                if param.requires_grad:
                    self.assertIn(
Lysandre Debut's avatar
Lysandre Debut committed
392
                        ((param.data.mean() * 1e9).round() / 1e9).item(),
393
                        [0.0, 1.0],
394
                        msg=f"Parameter {name} of model {model_class} seems not properly initialized",
395
                    )
thomwolf's avatar
thomwolf committed
396

Patrick von Platen's avatar
Patrick von Platen committed
397
    def test_determinism(self):
398
399
400
401
402
403
        config, inputs_dict = self.model_tester.prepare_config_and_inputs_for_common()
        for model_class in self.all_model_classes:
            model = model_class(config)
            model.to(torch_device)
            model.eval()
            with torch.no_grad():
404
405
                first = model(**self._prepare_for_class(inputs_dict, model_class))[0]
                second = model(**self._prepare_for_class(inputs_dict, model_class))[0]
Weizhen's avatar
Weizhen committed
406

407
408
409
410
411
412
413
            out_1 = first.cpu().numpy()
            out_2 = second.cpu().numpy()
            out_1 = out_1[~np.isnan(out_1)]
            out_2 = out_2[~np.isnan(out_2)]
            max_diff = np.amax(np.abs(out_1 - out_2))
            self.assertLessEqual(max_diff, 1e-5)

414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
    def test_forward_signature(self):
        config, _ = self.model_tester.prepare_config_and_inputs_for_common()

        for model_class in self.all_model_classes:
            model = model_class(config)
            signature = inspect.signature(model.forward)
            # signature.parameters is an OrderedDict => so arg_names order is deterministic
            arg_names = [*signature.parameters.keys()]

            if model.config.is_encoder_decoder:
                expected_arg_names = [
                    "input_ids",
                    "attention_mask",
                    "decoder_input_ids",
                    "decoder_attention_mask",
                ]
430
                expected_arg_names.extend(
431
432
                    ["head_mask", "decoder_head_mask", "cross_attn_head_mask", "encoder_outputs"]
                    if "head_mask" and "decoder_head_mask" and "cross_attn_head_mask" in arg_names
433
434
435
                    else ["encoder_outputs"]
                )
                self.assertListEqual(arg_names[: len(expected_arg_names)], expected_arg_names)
436
437
438
439
            else:
                expected_arg_names = ["input_ids"]
                self.assertListEqual(arg_names[:1], expected_arg_names)

440
441
442
443
444
    def test_training(self):
        if not self.model_tester.is_training:
            return

        for model_class in self.all_model_classes:
445
446
447
            config, inputs_dict = self.model_tester.prepare_config_and_inputs_for_common()
            config.return_dict = True

448
            if model_class in get_values(MODEL_MAPPING):
449
                continue
450

451
452
453
454
455
456
457
458
            model = model_class(config)
            model.to(torch_device)
            model.train()
            inputs = self._prepare_for_class(inputs_dict, model_class, return_labels=True)
            loss = model(**inputs).loss
            loss.backward()

    def test_training_gradient_checkpointing(self):
459
        if not self.model_tester.is_training:
460
461
462
            return

        for model_class in self.all_model_classes:
463
464
465
466
            config, inputs_dict = self.model_tester.prepare_config_and_inputs_for_common()
            config.use_cache = False
            config.return_dict = True

467
            if model_class in get_values(MODEL_MAPPING) or not model_class.supports_gradient_checkpointing:
468
469
470
                continue
            model = model_class(config)
            model.to(torch_device)
471
            model.gradient_checkpointing_enable()
472
473
474
475
476
            model.train()
            inputs = self._prepare_for_class(inputs_dict, model_class, return_labels=True)
            loss = model(**inputs).loss
            loss.backward()

Patrick von Platen's avatar
Patrick von Platen committed
477
    def test_attention_outputs(self):
478
479
        if not self.has_attentions:
            pass
480

481
482
        else:
            config, inputs_dict = self.model_tester.prepare_config_and_inputs_for_common()
483
            config.return_dict = True
484

485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
            seq_len = getattr(self.model_tester, "seq_length", None)
            decoder_seq_length = getattr(self.model_tester, "decoder_seq_length", seq_len)
            encoder_seq_length = getattr(self.model_tester, "encoder_seq_length", seq_len)
            decoder_key_length = getattr(self.model_tester, "decoder_key_length", decoder_seq_length)
            encoder_key_length = getattr(self.model_tester, "key_length", encoder_seq_length)
            chunk_length = getattr(self.model_tester, "chunk_length", None)
            if chunk_length is not None and hasattr(self.model_tester, "num_hashes"):
                encoder_seq_length = encoder_seq_length * self.model_tester.num_hashes

            for model_class in self.all_model_classes:
                inputs_dict["output_attentions"] = True
                inputs_dict["output_hidden_states"] = False
                config.return_dict = True
                model = model_class(config)
                model.to(torch_device)
                model.eval()
                with torch.no_grad():
                    outputs = model(**self._prepare_for_class(inputs_dict, model_class))
                attentions = outputs.encoder_attentions if config.is_encoder_decoder else outputs.attentions
                self.assertEqual(len(attentions), self.model_tester.num_hidden_layers)

                # check that output_attentions also work using config
                del inputs_dict["output_attentions"]
                config.output_attentions = True
                model = model_class(config)
                model.to(torch_device)
                model.eval()
                with torch.no_grad():
                    outputs = model(**self._prepare_for_class(inputs_dict, model_class))
                attentions = outputs.encoder_attentions if config.is_encoder_decoder else outputs.attentions
                self.assertEqual(len(attentions), self.model_tester.num_hidden_layers)

                if chunk_length is not None:
                    self.assertListEqual(
                        list(attentions[0].shape[-4:]),
                        [self.model_tester.num_attention_heads, encoder_seq_length, chunk_length, encoder_key_length],
                    )
                else:
                    self.assertListEqual(
                        list(attentions[0].shape[-3:]),
                        [self.model_tester.num_attention_heads, encoder_seq_length, encoder_key_length],
                    )
                out_len = len(outputs)

                if self.is_encoder_decoder:
                    correct_outlen = 5

                    # loss is at first position
                    if "labels" in inputs_dict:
                        correct_outlen += 1  # loss is added to beginning
                    # Question Answering model returns start_logits and end_logits
                    if model_class in get_values(MODEL_FOR_QUESTION_ANSWERING_MAPPING):
                        correct_outlen += 1  # start_logits and end_logits instead of only 1 output
                    if "past_key_values" in outputs:
                        correct_outlen += 1  # past_key_values have been returned

                    self.assertEqual(out_len, correct_outlen)

                    # decoder attentions
                    decoder_attentions = outputs.decoder_attentions
                    self.assertIsInstance(decoder_attentions, (list, tuple))
                    self.assertEqual(len(decoder_attentions), self.model_tester.num_hidden_layers)
                    self.assertListEqual(
                        list(decoder_attentions[0].shape[-3:]),
                        [self.model_tester.num_attention_heads, decoder_seq_length, decoder_key_length],
                    )
thomwolf's avatar
thomwolf committed
551

552
553
554
555
556
557
558
559
560
561
562
563
                    # cross attentions
                    cross_attentions = outputs.cross_attentions
                    self.assertIsInstance(cross_attentions, (list, tuple))
                    self.assertEqual(len(cross_attentions), self.model_tester.num_hidden_layers)
                    self.assertListEqual(
                        list(cross_attentions[0].shape[-3:]),
                        [
                            self.model_tester.num_attention_heads,
                            decoder_seq_length,
                            encoder_key_length,
                        ],
                    )
564

565
566
567
568
569
570
571
572
                # Check attention is always last and order is fine
                inputs_dict["output_attentions"] = True
                inputs_dict["output_hidden_states"] = True
                model = model_class(config)
                model.to(torch_device)
                model.eval()
                with torch.no_grad():
                    outputs = model(**self._prepare_for_class(inputs_dict, model_class))
573

574
575
576
577
578
579
580
                if hasattr(self.model_tester, "num_hidden_states_types"):
                    added_hidden_states = self.model_tester.num_hidden_states_types
                elif self.is_encoder_decoder:
                    added_hidden_states = 2
                else:
                    added_hidden_states = 1
                self.assertEqual(out_len + added_hidden_states, len(outputs))
Weizhen's avatar
Weizhen committed
581

582
                self_attentions = outputs.encoder_attentions if config.is_encoder_decoder else outputs.attentions
583

584
585
586
587
588
589
590
591
592
593
594
                self.assertEqual(len(self_attentions), self.model_tester.num_hidden_layers)
                if chunk_length is not None:
                    self.assertListEqual(
                        list(self_attentions[0].shape[-4:]),
                        [self.model_tester.num_attention_heads, encoder_seq_length, chunk_length, encoder_key_length],
                    )
                else:
                    self.assertListEqual(
                        list(self_attentions[0].shape[-3:]),
                        [self.model_tester.num_attention_heads, encoder_seq_length, encoder_key_length],
                    )
thomwolf's avatar
thomwolf committed
595

596
    @slow
597
    def test_torchscript_simple(self):
598
599
        config, inputs_dict = self.model_tester.prepare_config_and_inputs_for_common()
        self._create_and_check_torchscript(config, inputs_dict)
thomwolf's avatar
thomwolf committed
600

601
    @slow
Patrick von Platen's avatar
Patrick von Platen committed
602
    def test_torchscript_output_attentions(self):
603
604
605
        config, inputs_dict = self.model_tester.prepare_config_and_inputs_for_common()
        config.output_attentions = True
        self._create_and_check_torchscript(config, inputs_dict)
thomwolf's avatar
thomwolf committed
606

607
    @slow
Patrick von Platen's avatar
Patrick von Platen committed
608
    def test_torchscript_output_hidden_state(self):
609
610
611
        config, inputs_dict = self.model_tester.prepare_config_and_inputs_for_common()
        config.output_hidden_states = True
        self._create_and_check_torchscript(config, inputs_dict)
thomwolf's avatar
thomwolf committed
612

613
614
615
616
617
618
619
    # This is copied from `torch/testing/_internal/jit_utils.py::clear_class_registry`
    def clear_torch_jit_class_registry(self):

        torch._C._jit_clear_class_registry()
        torch.jit._recursive.concrete_type_store = torch.jit._recursive.ConcreteTypeStore()
        torch.jit._state._clear_class_state()

620
    def _create_and_check_torchscript(self, config, inputs_dict):
Patrick von Platen's avatar
Patrick von Platen committed
621
        if not self.test_torchscript:
622
            return
623

624
625
626
627
628
629
        configs_no_init = _config_zero_init(config)  # To be sure we have no Nan
        configs_no_init.torchscript = True
        for model_class in self.all_model_classes:
            model = model_class(config=configs_no_init)
            model.to(torch_device)
            model.eval()
630
            inputs = self._prepare_for_class(inputs_dict, model_class)
thomwolf's avatar
thomwolf committed
631

632
633
            main_input_name = model_class.main_input_name

634
            try:
635
                if model.config.is_encoder_decoder:
636
                    model.config.use_cache = False  # FSTM still requires this hack -> FSTM should probably be refactored similar to BART afterward
637
                    main_input = inputs[main_input_name]
638
639
640
641
                    attention_mask = inputs["attention_mask"]
                    decoder_input_ids = inputs["decoder_input_ids"]
                    decoder_attention_mask = inputs["decoder_attention_mask"]
                    traced_model = torch.jit.trace(
642
                        model, (main_input, attention_mask, decoder_input_ids, decoder_attention_mask)
643
644
                    )
                else:
645
646
                    main_input = inputs[main_input_name]
                    traced_model = torch.jit.trace(model, main_input)
647
648
            except RuntimeError:
                self.fail("Couldn't trace module.")
thomwolf's avatar
thomwolf committed
649

650
            with tempfile.TemporaryDirectory() as tmp_dir_name:
651
                pt_file_name = os.path.join(tmp_dir_name, "traced_model.pt")
thomwolf's avatar
thomwolf committed
652

653
                try:
654
                    torch.jit.save(traced_model, pt_file_name)
655
656
                except Exception:
                    self.fail("Couldn't save module.")
thomwolf's avatar
thomwolf committed
657

658
659
660
661
                try:
                    loaded_model = torch.jit.load(pt_file_name)
                except Exception:
                    self.fail("Couldn't load module.")
LysandreJik's avatar
LysandreJik committed
662

663
664
            model.to(torch_device)
            model.eval()
thomwolf's avatar
thomwolf committed
665

666
667
            loaded_model.to(torch_device)
            loaded_model.eval()
thomwolf's avatar
thomwolf committed
668

669
670
671
            model_state_dict = model.state_dict()
            loaded_model_state_dict = loaded_model.state_dict()

672
673
674
675
676
677
678
679
680
            non_persistent_buffers = {}
            for key in loaded_model_state_dict.keys():
                if key not in model_state_dict.keys():
                    non_persistent_buffers[key] = loaded_model_state_dict[key]

            loaded_model_state_dict = {
                key: value for key, value in loaded_model_state_dict.items() if key not in non_persistent_buffers
            }

681
            self.assertEqual(set(model_state_dict.keys()), set(loaded_model_state_dict.keys()))
thomwolf's avatar
thomwolf committed
682

683
684
685
686
687
688
689
690
691
692
693
            model_buffers = list(model.buffers())
            for non_persistent_buffer in non_persistent_buffers.values():
                found_buffer = False
                for i, model_buffer in enumerate(model_buffers):
                    if torch.equal(non_persistent_buffer, model_buffer):
                        found_buffer = True
                        break

                self.assertTrue(found_buffer)
                model_buffers.pop(i)

694
            models_equal = True
695
            for layer_name, p1 in model_state_dict.items():
696
697
698
699
                if layer_name in loaded_model_state_dict:
                    p2 = loaded_model_state_dict[layer_name]
                    if p1.data.ne(p2.data).sum() > 0:
                        models_equal = False
thomwolf's avatar
thomwolf committed
700

701
            self.assertTrue(models_equal)
thomwolf's avatar
thomwolf committed
702

703
704
705
706
            # Avoid memory leak. Without this, each call increase RAM usage by ~20MB.
            # (Even with this call, there are still memory leak by ~0.04MB)
            self.clear_torch_jit_class_registry()

707
708
709
710
711
712
713
714
    def test_torch_fx(self):
        config, inputs_dict = self.model_tester.prepare_config_and_inputs_for_common()
        self._create_and_check_torch_fx_tracing(config, inputs_dict)

    def test_torch_fx_output_loss(self):
        config, inputs_dict = self.model_tester.prepare_config_and_inputs_for_common()
        self._create_and_check_torch_fx_tracing(config, inputs_dict, output_loss=True)

715
716
    def _create_and_check_torch_fx_tracing(self, config, inputs_dict, output_loss=False):
        if not is_torch_fx_available() or not self.fx_compatible:
717
718
719
720
721
            return

        configs_no_init = _config_zero_init(config)  # To be sure we have no Nan
        configs_no_init.return_dict = False

722
        for model_class in self.all_model_classes:
723
724
725
726
727
728
729
730
731
732
733
734
            model = model_class(config=configs_no_init)
            model.to(torch_device)
            model.eval()
            inputs = self._prepare_for_class(inputs_dict, model_class, return_labels=output_loss)

            try:
                if model.config.is_encoder_decoder:
                    model.config.use_cache = False  # FSTM still requires this hack -> FSTM should probably be refactored similar to BART afterward
                    labels = inputs.get("labels", None)
                    input_names = ["input_ids", "attention_mask", "decoder_input_ids", "decoder_attention_mask"]
                    if labels is not None:
                        input_names.append("labels")
735
                    filtered_inputs = {k: v for (k, v) in inputs.items() if k in input_names}
736

737
                    model_output = model(**filtered_inputs)
738

739
                    traced_model = symbolic_trace(model, input_names)
740
                    traced_output = traced_model(**filtered_inputs)
741
                else:
742
                    input_names = ["input_ids", "attention_mask", "token_type_ids", "pixel_values"]
743

744
                    labels = inputs.get("labels", None)
745
746
                    start_positions = inputs.get("start_positions", None)
                    end_positions = inputs.get("end_positions", None)
747
748
                    if labels is not None:
                        input_names.append("labels")
749
750
751
752
                    if start_positions is not None:
                        input_names.append("start_positions")
                    if end_positions is not None:
                        input_names.append("end_positions")
753

754
755
                    filtered_inputs = {k: v for (k, v) in inputs.items() if k in input_names}
                    input_names = filtered_inputs.keys()
756

757
                    model_output = model(**filtered_inputs)
758

759
                    traced_model = symbolic_trace(model, input_names)
760
                    traced_output = traced_model(**filtered_inputs)
761

762
763
            except RuntimeError as e:
                self.fail(f"Couldn't trace module: {e}")
764

765
766
767
768
769
770
771
772
773
774
775
776
777
            def flatten_output(output):
                flatten = []
                for x in output:
                    if isinstance(x, (tuple, list)):
                        flatten += flatten_output(x)
                    elif not isinstance(x, torch.Tensor):
                        continue
                    else:
                        flatten.append(x)
                return flatten

            model_output = flatten_output(model_output)
            traced_output = flatten_output(traced_output)
778
            num_outputs = len(model_output)
779
780
781
782
783
784

            for i in range(num_outputs):
                self.assertTrue(
                    torch.allclose(model_output[i], traced_output[i]),
                    f"traced {i}th output doesn't match model {i}th output for {model_class}",
                )
785

786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
            # Test that the model can be TorchScripted
            try:
                scripted = torch.jit.script(traced_model)
            except Exception as e:
                self.fail(f"Could not TorchScript the traced model: {e}")
            scripted_output = scripted(**filtered_inputs)
            scripted_output = flatten_output(scripted_output)

            for i in range(num_outputs):
                self.assertTrue(
                    torch.allclose(model_output[i], scripted_output[i]),
                    f"scripted {i}th output doesn't match model {i}th output for {model_class}",
                )

            # Test that the model can be serialized and restored properly
            with tempfile.TemporaryDirectory() as tmp_dir_name:
                pkl_file_name = os.path.join(tmp_dir_name, "model.pkl")
                try:
                    with open(pkl_file_name, "wb") as f:
                        pickle.dump(traced_model, f)
                    with open(pkl_file_name, "rb") as f:
                        loaded = pickle.load(f)
                except Exception as e:
                    self.fail(f"Couldn't serialize / deserialize the traced model: {e}")

                loaded_output = loaded(**filtered_inputs)
                loaded_output = flatten_output(loaded_output)

                for i in range(num_outputs):
                    self.assertTrue(
                        torch.allclose(model_output[i], loaded_output[i]),
                        f"serialized model {i}th output doesn't match model {i}th output for {model_class}",
                    )

Patrick von Platen's avatar
Patrick von Platen committed
820
821
    def test_headmasking(self):
        if not self.test_head_masking:
822
            return
823

824
825
826
        global_rng.seed(42)
        config, inputs_dict = self.model_tester.prepare_config_and_inputs_for_common()
        global_rng.seed()
LysandreJik's avatar
LysandreJik committed
827

828
        inputs_dict["output_attentions"] = True
829
830
831
832
833
834
        config.output_hidden_states = True
        configs_no_init = _config_zero_init(config)  # To be sure we have no Nan
        for model_class in self.all_model_classes:
            model = model_class(config=configs_no_init)
            model.to(torch_device)
            model.eval()
LysandreJik's avatar
LysandreJik committed
835

836
837
838
            # Prepare head_mask
            # Set require_grad after having prepared the tensor to avoid error (leaf variable has been moved into the graph interior)
            head_mask = torch.ones(
Lysandre's avatar
Lysandre committed
839
840
841
                self.model_tester.num_hidden_layers,
                self.model_tester.num_attention_heads,
                device=torch_device,
842
843
844
845
            )
            head_mask[0, 0] = 0
            head_mask[-1, :-1] = 0
            head_mask.requires_grad_(requires_grad=True)
846
            inputs = self._prepare_for_class(inputs_dict, model_class).copy()
847
            inputs["head_mask"] = head_mask
848
849
850
851
852
            if model.config.is_encoder_decoder:
                signature = inspect.signature(model.forward)
                arg_names = [*signature.parameters.keys()]
                if "decoder_head_mask" in arg_names:  # necessary diferentiation because of T5 model
                    inputs["decoder_head_mask"] = head_mask
853
854
                if "cross_attn_head_mask" in arg_names:
                    inputs["cross_attn_head_mask"] = head_mask
855
            outputs = model(**inputs, return_dict=True)
856
857
858
859
860
861
862
863
864

            # Test that we can get a gradient back for importance score computation
            output = sum(t.sum() for t in outputs[0])
            output = output.sum()
            output.backward()
            multihead_outputs = head_mask.grad

            self.assertIsNotNone(multihead_outputs)
            self.assertEqual(len(multihead_outputs), self.model_tester.num_hidden_layers)
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885

            def check_attentions_validity(attentions):
                # Remove Nan
                for t in attentions:
                    self.assertLess(
                        torch.sum(torch.isnan(t)), t.numel() / 4
                    )  # Check we don't have more than 25% nans (arbitrary)
                attentions = [
                    t.masked_fill(torch.isnan(t), 0.0) for t in attentions
                ]  # remove them (the test is less complete)

                self.assertAlmostEqual(attentions[0][..., 0, :, :].flatten().sum().item(), 0.0)
                self.assertNotEqual(attentions[0][..., -1, :, :].flatten().sum().item(), 0.0)
                if len(attentions) > 2:  # encoder-decoder models have only 2 layers in each module
                    self.assertNotEqual(attentions[1][..., 0, :, :].flatten().sum().item(), 0.0)
                self.assertAlmostEqual(attentions[-1][..., -2, :, :].flatten().sum().item(), 0.0)
                self.assertNotEqual(attentions[-1][..., -1, :, :].flatten().sum().item(), 0.0)

            if model.config.is_encoder_decoder:
                check_attentions_validity(outputs.encoder_attentions)
                check_attentions_validity(outputs.decoder_attentions)
886
                check_attentions_validity(outputs.cross_attentions)
887
888
            else:
                check_attentions_validity(outputs.attentions)
889

Patrick von Platen's avatar
Patrick von Platen committed
890
891
    def test_head_pruning(self):
        if not self.test_pruning:
892
893
894
            return

        for model_class in self.all_model_classes:
Lysandre's avatar
Lysandre committed
895
896
897
898
            (
                config,
                inputs_dict,
            ) = self.model_tester.prepare_config_and_inputs_for_common()
899

900
901
            if "head_mask" in inputs_dict:
                del inputs_dict["head_mask"]
902

903
            inputs_dict["output_attentions"] = True
904
905
906
907
            config.output_hidden_states = False
            model = model_class(config=config)
            model.to(torch_device)
            model.eval()
908
909
910
911
            heads_to_prune = {
                0: list(range(1, self.model_tester.num_attention_heads)),
                -1: [0],
            }
912
913
            model.prune_heads(heads_to_prune)
            with torch.no_grad():
914
                outputs = model(**self._prepare_for_class(inputs_dict, model_class))
915

916
            attentions = outputs[-1]
917

918
919
920
            self.assertEqual(attentions[0].shape[-3], 1)
            self.assertEqual(attentions[1].shape[-3], self.model_tester.num_attention_heads)
            self.assertEqual(attentions[-1].shape[-3], self.model_tester.num_attention_heads - 1)
LysandreJik's avatar
LysandreJik committed
921

Patrick von Platen's avatar
Patrick von Platen committed
922
923
    def test_head_pruning_save_load_from_pretrained(self):
        if not self.test_pruning:
924
            return
LysandreJik's avatar
LysandreJik committed
925

926
        for model_class in self.all_model_classes:
Lysandre's avatar
Lysandre committed
927
928
929
930
            (
                config,
                inputs_dict,
            ) = self.model_tester.prepare_config_and_inputs_for_common()
931
932
933

            if "head_mask" in inputs_dict:
                del inputs_dict["head_mask"]
934

935
            inputs_dict["output_attentions"] = True
936
937
938
939
            config.output_hidden_states = False
            model = model_class(config=config)
            model.to(torch_device)
            model.eval()
940
941
942
943
            heads_to_prune = {
                0: list(range(1, self.model_tester.num_attention_heads)),
                -1: [0],
            }
944
            model.prune_heads(heads_to_prune)
945

946
            with tempfile.TemporaryDirectory() as temp_dir_name:
947
948
                model.save_pretrained(temp_dir_name)
                model = model_class.from_pretrained(temp_dir_name)
949
                model.to(torch_device)
950

951
            with torch.no_grad():
952
                outputs = model(**self._prepare_for_class(inputs_dict, model_class))
953
954
955
956
            attentions = outputs[-1]
            self.assertEqual(attentions[0].shape[-3], 1)
            self.assertEqual(attentions[1].shape[-3], self.model_tester.num_attention_heads)
            self.assertEqual(attentions[-1].shape[-3], self.model_tester.num_attention_heads - 1)
957

Patrick von Platen's avatar
Patrick von Platen committed
958
959
    def test_head_pruning_save_load_from_config_init(self):
        if not self.test_pruning:
960
            return
961

962
        for model_class in self.all_model_classes:
Lysandre's avatar
Lysandre committed
963
964
965
966
            (
                config,
                inputs_dict,
            ) = self.model_tester.prepare_config_and_inputs_for_common()
967

968
969
            if "head_mask" in inputs_dict:
                del inputs_dict["head_mask"]
970

971
            inputs_dict["output_attentions"] = True
972
            config.output_hidden_states = False
973

974
975
976
977
            heads_to_prune = {
                0: list(range(1, self.model_tester.num_attention_heads)),
                -1: [0],
            }
978
            config.pruned_heads = heads_to_prune
979

980
981
982
            model = model_class(config=config)
            model.to(torch_device)
            model.eval()
983

984
            with torch.no_grad():
985
                outputs = model(**self._prepare_for_class(inputs_dict, model_class))
986
            attentions = outputs[-1]
987

988
989
990
            self.assertEqual(attentions[0].shape[-3], 1)
            self.assertEqual(attentions[1].shape[-3], self.model_tester.num_attention_heads)
            self.assertEqual(attentions[-1].shape[-3], self.model_tester.num_attention_heads - 1)
991

Patrick von Platen's avatar
Patrick von Platen committed
992
993
    def test_head_pruning_integration(self):
        if not self.test_pruning:
994
            return
995

996
        for model_class in self.all_model_classes:
Lysandre's avatar
Lysandre committed
997
998
999
1000
            (
                config,
                inputs_dict,
            ) = self.model_tester.prepare_config_and_inputs_for_common()
1001

1002
1003
            if "head_mask" in inputs_dict:
                del inputs_dict["head_mask"]
1004

1005
            inputs_dict["output_attentions"] = True
1006
            config.output_hidden_states = False
1007

1008
1009
            heads_to_prune = {0: [0], 1: [1, 2]}
            config.pruned_heads = heads_to_prune
1010

1011
1012
1013
            model = model_class(config=config)
            model.to(torch_device)
            model.eval()
1014

1015
            with torch.no_grad():
1016
                outputs = model(**self._prepare_for_class(inputs_dict, model_class))
1017
            attentions = outputs[-1]
1018

1019
1020
1021
1022
            self.assertEqual(attentions[0].shape[-3], self.model_tester.num_attention_heads - 1)
            self.assertEqual(attentions[1].shape[-3], self.model_tester.num_attention_heads - 2)
            self.assertEqual(attentions[2].shape[-3], self.model_tester.num_attention_heads)
            self.assertEqual(attentions[3].shape[-3], self.model_tester.num_attention_heads)
thomwolf's avatar
thomwolf committed
1023

1024
            with tempfile.TemporaryDirectory() as temp_dir_name:
1025
1026
                model.save_pretrained(temp_dir_name)
                model = model_class.from_pretrained(temp_dir_name)
1027
                model.to(torch_device)
thomwolf's avatar
thomwolf committed
1028

1029
            with torch.no_grad():
1030
                outputs = model(**self._prepare_for_class(inputs_dict, model_class))
1031
            attentions = outputs[-1]
LysandreJik's avatar
LysandreJik committed
1032

1033
1034
1035
1036
            self.assertEqual(attentions[0].shape[-3], self.model_tester.num_attention_heads - 1)
            self.assertEqual(attentions[1].shape[-3], self.model_tester.num_attention_heads - 2)
            self.assertEqual(attentions[2].shape[-3], self.model_tester.num_attention_heads)
            self.assertEqual(attentions[3].shape[-3], self.model_tester.num_attention_heads)
thomwolf's avatar
thomwolf committed
1037

1038
1039
            heads_to_prune = {0: [0], 2: [1, 2]}
            model.prune_heads(heads_to_prune)
1040

1041
            with torch.no_grad():
1042
                outputs = model(**self._prepare_for_class(inputs_dict, model_class))
1043
            attentions = outputs[-1]
1044

1045
1046
1047
1048
            self.assertEqual(attentions[0].shape[-3], self.model_tester.num_attention_heads - 1)
            self.assertEqual(attentions[1].shape[-3], self.model_tester.num_attention_heads - 2)
            self.assertEqual(attentions[2].shape[-3], self.model_tester.num_attention_heads - 2)
            self.assertEqual(attentions[3].shape[-3], self.model_tester.num_attention_heads)
1049

1050
            self.assertDictEqual(model.config.pruned_heads, {0: [0], 1: [1, 2], 2: [1, 2]})
thomwolf's avatar
thomwolf committed
1051

Patrick von Platen's avatar
Patrick von Platen committed
1052
    def test_hidden_states_output(self):
Joseph Liu's avatar
Joseph Liu committed
1053
        def check_hidden_states_output(inputs_dict, config, model_class):
1054
            model = model_class(config)
1055
            model.to(torch_device)
thomwolf's avatar
thomwolf committed
1056
            model.eval()
Joseph Liu's avatar
Joseph Liu committed
1057

thomwolf's avatar
thomwolf committed
1058
            with torch.no_grad():
1059
                outputs = model(**self._prepare_for_class(inputs_dict, model_class))
1060
1061

            hidden_states = outputs.encoder_hidden_states if config.is_encoder_decoder else outputs.hidden_states
Patrick von Platen's avatar
Patrick von Platen committed
1062

Sylvain Gugger's avatar
Sylvain Gugger committed
1063
1064
1065
1066
            expected_num_layers = getattr(
                self.model_tester, "expected_num_hidden_layers", self.model_tester.num_hidden_layers + 1
            )
            self.assertEqual(len(hidden_states), expected_num_layers)
1067

Patrick von Platen's avatar
Patrick von Platen committed
1068
1069
1070
1071
1072
1073
1074
            if hasattr(self.model_tester, "encoder_seq_length"):
                seq_length = self.model_tester.encoder_seq_length
                if hasattr(self.model_tester, "chunk_length") and self.model_tester.chunk_length > 1:
                    seq_length = seq_length * self.model_tester.chunk_length
            else:
                seq_length = self.model_tester.seq_length

1075
            self.assertListEqual(
Lysandre's avatar
Lysandre committed
1076
1077
                list(hidden_states[0].shape[-2:]),
                [seq_length, self.model_tester.hidden_size],
1078
            )
thomwolf's avatar
thomwolf committed
1079

1080
1081
1082
1083
1084
1085
1086
1087
1088
1089
1090
1091
1092
            if config.is_encoder_decoder:
                hidden_states = outputs.decoder_hidden_states

                self.assertIsInstance(hidden_states, (list, tuple))
                self.assertEqual(len(hidden_states), expected_num_layers)
                seq_len = getattr(self.model_tester, "seq_length", None)
                decoder_seq_length = getattr(self.model_tester, "decoder_seq_length", seq_len)

                self.assertListEqual(
                    list(hidden_states[0].shape[-2:]),
                    [decoder_seq_length, self.model_tester.hidden_size],
                )

Joseph Liu's avatar
Joseph Liu committed
1093
1094
1095
1096
1097
1098
1099
1100
1101
1102
1103
1104
        config, inputs_dict = self.model_tester.prepare_config_and_inputs_for_common()

        for model_class in self.all_model_classes:
            inputs_dict["output_hidden_states"] = True
            check_hidden_states_output(inputs_dict, config, model_class)

            # check that output_hidden_states also work using config
            del inputs_dict["output_hidden_states"]
            config.output_hidden_states = True

            check_hidden_states_output(inputs_dict, config, model_class)

1105
1106
1107
    def test_retain_grad_hidden_states_attentions(self):
        config, inputs_dict = self.model_tester.prepare_config_and_inputs_for_common()
        config.output_hidden_states = True
1108
        config.output_attentions = self.has_attentions
1109
1110
1111
1112
1113
1114
1115
1116
1117

        # no need to test all models as different heads yield the same functionality
        model_class = self.all_model_classes[0]
        model = model_class(config)
        model.to(torch_device)

        inputs = self._prepare_for_class(inputs_dict, model_class)

        outputs = model(**inputs)
1118

1119
1120
1121
1122
1123
1124
1125
1126
1127
1128
        output = outputs[0]

        if config.is_encoder_decoder:
            # Seq2Seq models
            encoder_hidden_states = outputs.encoder_hidden_states[0]
            encoder_hidden_states.retain_grad()

            decoder_hidden_states = outputs.decoder_hidden_states[0]
            decoder_hidden_states.retain_grad()

1129
1130
1131
1132
1133
1134
1135
1136
1137
            if self.has_attentions:
                encoder_attentions = outputs.encoder_attentions[0]
                encoder_attentions.retain_grad()

                decoder_attentions = outputs.decoder_attentions[0]
                decoder_attentions.retain_grad()

                cross_attentions = outputs.cross_attentions[0]
                cross_attentions.retain_grad()
1138
1139
1140
1141
1142

            output.flatten()[0].backward(retain_graph=True)

            self.assertIsNotNone(encoder_hidden_states.grad)
            self.assertIsNotNone(decoder_hidden_states.grad)
1143
1144
1145
1146
1147

            if self.has_attentions:
                self.assertIsNotNone(encoder_attentions.grad)
                self.assertIsNotNone(decoder_attentions.grad)
                self.assertIsNotNone(cross_attentions.grad)
1148
1149
1150
1151
        else:
            # Encoder-/Decoder-only models
            hidden_states = outputs.hidden_states[0]
            hidden_states.retain_grad()
1152
1153
1154
1155

            if self.has_attentions:
                attentions = outputs.attentions[0]
                attentions.retain_grad()
1156
1157
1158
1159

            output.flatten()[0].backward(retain_graph=True)

            self.assertIsNotNone(hidden_states.grad)
1160
1161
1162

            if self.has_attentions:
                self.assertIsNotNone(attentions.grad)
1163

Pradhy729's avatar
Pradhy729 committed
1164
    def test_feed_forward_chunking(self):
Lysandre's avatar
Lysandre committed
1165
1166
1167
1168
        (
            original_config,
            inputs_dict,
        ) = self.model_tester.prepare_config_and_inputs_for_common()
Pradhy729's avatar
Pradhy729 committed
1169
1170
1171
1172
1173
1174
1175
1176
1177
1178
1179
1180
1181
1182
1183
1184
1185
1186
        for model_class in self.all_model_classes:
            torch.manual_seed(0)
            config = copy.deepcopy(original_config)
            model = model_class(config)
            model.to(torch_device)
            model.eval()

            hidden_states_no_chunk = model(**self._prepare_for_class(inputs_dict, model_class))[0]

            torch.manual_seed(0)
            config.chunk_size_feed_forward = 1
            model = model_class(config)
            model.to(torch_device)
            model.eval()

            hidden_states_with_chunk = model(**self._prepare_for_class(inputs_dict, model_class))[0]
            self.assertTrue(torch.allclose(hidden_states_no_chunk, hidden_states_with_chunk, atol=1e-3))

1187
1188
1189
1190
1191
1192
1193
1194
1195
1196
1197
1198
1199
1200
1201
1202
1203
1204
1205
1206
1207
1208
1209
1210
1211
1212
1213
1214
1215
1216
1217
1218
1219
1220
1221
1222
1223
1224
1225
1226
1227
1228
1229
1230
1231
1232
1233
1234
1235
1236
1237
1238
1239
1240
1241
1242
1243
1244
1245
1246
1247
1248
1249
1250
1251
1252
1253
1254
1255
1256
1257
1258
1259
1260
1261
1262
1263
1264
1265
    def test_resize_position_vector_embeddings(self):
        if not self.test_resize_position_embeddings:
            return

        (
            original_config,
            inputs_dict,
        ) = self.model_tester.prepare_config_and_inputs_for_common()

        for model_class in self.all_model_classes:
            config = copy.deepcopy(original_config)
            model = model_class(config)
            model.to(torch_device)

            if self.model_tester.is_training is False:
                model.eval()

            max_position_embeddings = config.max_position_embeddings

            # Retrieve the embeddings and clone theme
            if model.config.is_encoder_decoder:
                encoder_model_embed, decoder_model_embed = model.get_position_embeddings()
                encoder_cloned_embeddings = encoder_model_embed.weight.clone()
                decoder_cloned_embeddings = decoder_model_embed.weight.clone()
            else:
                model_embed = model.get_position_embeddings()
                cloned_embeddings = model_embed.weight.clone()

            # Check that resizing the position embeddings with a larger max_position_embeddings increases
            # the model's postion embeddings size
            model.resize_position_embeddings(max_position_embeddings + 10)
            self.assertEqual(model.config.max_position_embeddings, max_position_embeddings + 10)

            # Check that it actually resizes the embeddings matrix
            if model.config.is_encoder_decoder:
                encoder_model_embed, decoder_model_embed = model.get_position_embeddings()
                self.assertEqual(encoder_model_embed.weight.shape[0], encoder_cloned_embeddings.shape[0] + 10)
                self.assertEqual(decoder_model_embed.weight.shape[0], decoder_cloned_embeddings.shape[0] + 10)
            else:
                model_embed = model.get_position_embeddings()
                self.assertEqual(model_embed.weight.shape[0], cloned_embeddings.shape[0] + 10)

            # Check that the model can still do a forward pass successfully (every parameter should be resized)
            model(**self._prepare_for_class(inputs_dict, model_class))

            # Check that resizing the position embeddings with a smaller max_position_embeddings decreases
            # the model's max_position_embeddings
            model.resize_position_embeddings(max_position_embeddings - 5)
            self.assertEqual(model.config.max_position_embeddings, max_position_embeddings - 5)

            # Check that it actually resizes the embeddings matrix
            if model.config.is_encoder_decoder:
                encoder_model_embed, decoder_model_embed = model.get_position_embeddings()
                self.assertEqual(encoder_model_embed.weight.shape[0], encoder_cloned_embeddings.shape[0] - 5)
                self.assertEqual(decoder_model_embed.weight.shape[0], decoder_cloned_embeddings.shape[0] - 5)
            else:
                model_embed = model.get_position_embeddings()
                self.assertEqual(model_embed.weight.shape[0], cloned_embeddings.shape[0] - 5)

            # Check that the model can still do a forward pass successfully (every parameter should be resized)
            model(**self._prepare_for_class(inputs_dict, model_class))

            # Check that adding and removing tokens has not modified the first part of the embedding matrix.
            models_equal = True

            if model.config.is_encoder_decoder:
                for p1, p2 in zip(encoder_cloned_embeddings, encoder_model_embed.weight):
                    if p1.data.ne(p2.data).sum() > 0:
                        models_equal = False
                for p1, p2 in zip(decoder_cloned_embeddings, decoder_model_embed.weight):
                    if p1.data.ne(p2.data).sum() > 0:
                        models_equal = False
            else:
                for p1, p2 in zip(cloned_embeddings, model_embed.weight):
                    if p1.data.ne(p2.data).sum() > 0:
                        models_equal = False

            self.assertTrue(models_equal)

Patrick von Platen's avatar
Patrick von Platen committed
1266
    def test_resize_tokens_embeddings(self):
Lysandre's avatar
Lysandre committed
1267
1268
1269
1270
        (
            original_config,
            inputs_dict,
        ) = self.model_tester.prepare_config_and_inputs_for_common()
Patrick von Platen's avatar
Patrick von Platen committed
1271
        if not self.test_resize_embeddings:
1272
1273
1274
1275
1276
            return

        for model_class in self.all_model_classes:
            config = copy.deepcopy(original_config)
            model = model_class(config)
1277
            model.to(torch_device)
1278

Patrick von Platen's avatar
Patrick von Platen committed
1279
1280
1281
            if self.model_tester.is_training is False:
                model.eval()

1282
1283
1284
1285
1286
1287
1288
1289
1290
1291
            model_vocab_size = config.vocab_size
            # Retrieve the embeddings and clone theme
            model_embed = model.resize_token_embeddings(model_vocab_size)
            cloned_embeddings = model_embed.weight.clone()

            # Check that resizing the token embeddings with a larger vocab size increases the model's vocab size
            model_embed = model.resize_token_embeddings(model_vocab_size + 10)
            self.assertEqual(model.config.vocab_size, model_vocab_size + 10)
            # Check that it actually resizes the embeddings matrix
            self.assertEqual(model_embed.weight.shape[0], cloned_embeddings.shape[0] + 10)
1292
            # Check that the model can still do a forward pass successfully (every parameter should be resized)
1293
            model(**self._prepare_for_class(inputs_dict, model_class))
1294
1295
1296
1297
1298
1299
1300

            # Check that resizing the token embeddings with a smaller vocab size decreases the model's vocab size
            model_embed = model.resize_token_embeddings(model_vocab_size - 15)
            self.assertEqual(model.config.vocab_size, model_vocab_size - 15)
            # Check that it actually resizes the embeddings matrix
            self.assertEqual(model_embed.weight.shape[0], cloned_embeddings.shape[0] - 15)

1301
1302
1303
            # Check that the model can still do a forward pass successfully (every parameter should be resized)
            # Input ids should be clamped to the maximum size of the vocabulary
            inputs_dict["input_ids"].clamp_(max=model_vocab_size - 15 - 1)
1304
1305
1306
1307

            # make sure that decoder_input_ids are resized as well
            if "decoder_input_ids" in inputs_dict:
                inputs_dict["decoder_input_ids"].clamp_(max=model_vocab_size - 15 - 1)
1308
            model(**self._prepare_for_class(inputs_dict, model_class))
1309

1310
1311
1312
1313
1314
1315
1316
1317
            # Check that adding and removing tokens has not modified the first part of the embedding matrix.
            models_equal = True
            for p1, p2 in zip(cloned_embeddings, model_embed.weight):
                if p1.data.ne(p2.data).sum() > 0:
                    models_equal = False

            self.assertTrue(models_equal)

1318
1319
1320
1321
1322
1323
1324
1325
1326
1327
1328
1329
1330
1331
1332
1333
1334
1335
1336
1337
1338
1339
1340
1341
1342
1343
1344
1345
1346
1347
1348
1349
1350
1351
1352
1353
1354
1355
1356
1357
1358
1359
1360
1361
1362
1363
1364
1365
1366
1367
1368
    def test_resize_embeddings_untied(self):
        (
            original_config,
            inputs_dict,
        ) = self.model_tester.prepare_config_and_inputs_for_common()
        if not self.test_resize_embeddings:
            return

        original_config.tie_word_embeddings = False

        # if model cannot untied embeddings -> leave test
        if original_config.tie_word_embeddings:
            return

        for model_class in self.all_model_classes:
            config = copy.deepcopy(original_config)
            model = model_class(config).to(torch_device)

            # if no output embeddings -> leave test
            if model.get_output_embeddings() is None:
                continue

            # Check that resizing the token embeddings with a larger vocab size increases the model's vocab size
            model_vocab_size = config.vocab_size
            model.resize_token_embeddings(model_vocab_size + 10)
            self.assertEqual(model.config.vocab_size, model_vocab_size + 10)
            output_embeds = model.get_output_embeddings()
            self.assertEqual(output_embeds.weight.shape[0], model_vocab_size + 10)
            # Check bias if present
            if output_embeds.bias is not None:
                self.assertEqual(output_embeds.bias.shape[0], model_vocab_size + 10)
            # Check that the model can still do a forward pass successfully (every parameter should be resized)
            model(**self._prepare_for_class(inputs_dict, model_class))

            # Check that resizing the token embeddings with a smaller vocab size decreases the model's vocab size
            model.resize_token_embeddings(model_vocab_size - 15)
            self.assertEqual(model.config.vocab_size, model_vocab_size - 15)
            # Check that it actually resizes the embeddings matrix
            output_embeds = model.get_output_embeddings()
            self.assertEqual(output_embeds.weight.shape[0], model_vocab_size - 15)
            # Check bias if present
            if output_embeds.bias is not None:
                self.assertEqual(output_embeds.bias.shape[0], model_vocab_size - 15)
            # Check that the model can still do a forward pass successfully (every parameter should be resized)
            # Input ids should be clamped to the maximum size of the vocabulary
            inputs_dict["input_ids"].clamp_(max=model_vocab_size - 15 - 1)
            if "decoder_input_ids" in inputs_dict:
                inputs_dict["decoder_input_ids"].clamp_(max=model_vocab_size - 15 - 1)
            # Check that the model can still do a forward pass successfully (every parameter should be resized)
            model(**self._prepare_for_class(inputs_dict, model_class))

Patrick von Platen's avatar
Patrick von Platen committed
1369
    def test_model_common_attributes(self):
1370
1371
1372
1373
        config, inputs_dict = self.model_tester.prepare_config_and_inputs_for_common()

        for model_class in self.all_model_classes:
            model = model_class(config)
1374
1375
            self.assertIsInstance(model.get_input_embeddings(), (nn.Embedding, AdaptiveEmbedding))
            model.set_input_embeddings(nn.Embedding(10, 10))
1376
            x = model.get_output_embeddings()
1377
            self.assertTrue(x is None or isinstance(x, nn.Linear))
1378

1379
1380
1381
1382
1383
1384
1385
    def test_model_main_input_name(self):
        for model_class in self.all_model_classes:
            model_signature = inspect.signature(getattr(model_class, "forward"))
            # The main input is the name of the argument after `self`
            observed_main_input_name = list(model_signature.parameters.keys())[1]
            self.assertEqual(model_class.main_input_name, observed_main_input_name)

1386
    def test_correct_missing_keys(self):
1387
1388
        if not self.test_missing_keys:
            return
1389
1390
1391
1392
1393
1394
1395
1396
1397
1398
        config, _ = self.model_tester.prepare_config_and_inputs_for_common()

        for model_class in self.all_model_classes:
            model = model_class(config)
            base_model_prefix = model.base_model_prefix

            if hasattr(model, base_model_prefix):
                with tempfile.TemporaryDirectory() as temp_dir_name:
                    model.base_model.save_pretrained(temp_dir_name)
                    model, loading_info = model_class.from_pretrained(temp_dir_name, output_loading_info=True)
1399
                    with self.subTest(msg=f"Missing keys for {model.__class__.__name__}"):
1400
1401
                        self.assertGreater(len(loading_info["missing_keys"]), 0)

1402
1403
1404
1405
1406
1407
1408
1409
1410
1411
1412
1413
1414
1415
1416
1417
1418
1419
1420
1421
1422
1423
1424
1425
1426
1427
1428
1429
1430
1431
1432
1433
1434
1435
1436
1437
1438
1439
1440
1441
1442
1443
1444
1445
1446
1447
1448
1449
    def test_tie_model_weights(self):
        if not self.test_torchscript:
            return

        config, inputs_dict = self.model_tester.prepare_config_and_inputs_for_common()

        def check_same_values(layer_1, layer_2):
            equal = True
            for p1, p2 in zip(layer_1.weight, layer_2.weight):
                if p1.data.ne(p2.data).sum() > 0:
                    equal = False
            return equal

        for model_class in self.all_model_classes:
            config.torchscript = True
            model_not_tied = model_class(config)
            if model_not_tied.get_output_embeddings() is None:
                continue

            config_tied = copy.deepcopy(config)
            config_tied.torchscript = False
            model_tied = model_class(config_tied)
            params_tied = list(model_tied.parameters())
            # Check that the embedding layer and decoding layer are the same in size and in value
            # self.assertTrue(check_same_values(embeddings, decoding))

            # # Check that after modification, they remain the same.
            # embeddings.weight.data.div_(2)
            # # Check that the embedding layer and decoding layer are the same in size and in value
            # self.assertTrue(embeddings.weight.shape, decoding.weight.shape)
            # self.assertTrue(check_same_values(embeddings, decoding))

            # # Check that after modification, they remain the same.
            # decoding.weight.data.div_(4)
            # # Check that the embedding layer and decoding layer are the same in size and in value
            # self.assertTrue(embeddings.weight.shape, decoding.weight.shape)
            # self.assertTrue(check_same_values(embeddings, decoding))

            # Check that after resize they remain tied.
            model_tied.resize_token_embeddings(config.vocab_size + 10)
            params_tied_2 = list(model_tied.parameters())
            self.assertEqual(len(params_tied_2), len(params_tied))

            # decoding.weight.data.mul_(20)
            # # Check that the embedding layer and decoding layer are the same in size and in value
            # self.assertTrue(model.transformer.wte.weight.shape, model.lm_head.weight.shape)
            # self.assertTrue(check_same_values(model.transformer.wte, model.lm_head))

1450
1451
1452
    def test_model_outputs_equivalence(self):
        config, inputs_dict = self.model_tester.prepare_config_and_inputs_for_common()

Sam Shleifer's avatar
Sam Shleifer committed
1453
1454
1455
1456
        def set_nan_tensor_to_zero(t):
            t[t != t] = 0
            return t

1457
1458
1459
1460
1461
1462
1463
1464
1465
        def check_equivalence(model, tuple_inputs, dict_inputs, additional_kwargs={}):
            with torch.no_grad():
                tuple_output = model(**tuple_inputs, return_dict=False, **additional_kwargs)
                dict_output = model(**dict_inputs, return_dict=True, **additional_kwargs).to_tuple()

                def recursive_check(tuple_object, dict_object):
                    if isinstance(tuple_object, (List, Tuple)):
                        for tuple_iterable_value, dict_iterable_value in zip(tuple_object, dict_object):
                            recursive_check(tuple_iterable_value, dict_iterable_value)
NielsRogge's avatar
NielsRogge committed
1466
1467
1468
1469
1470
                    elif isinstance(tuple_object, Dict):
                        for tuple_iterable_value, dict_iterable_value in zip(
                            tuple_object.values(), dict_object.values()
                        ):
                            recursive_check(tuple_iterable_value, dict_iterable_value)
1471
1472
1473
1474
                    elif tuple_object is None:
                        return
                    else:
                        self.assertTrue(
Sam Shleifer's avatar
Sam Shleifer committed
1475
1476
1477
                            torch.allclose(
                                set_nan_tensor_to_zero(tuple_object), set_nan_tensor_to_zero(dict_object), atol=1e-5
                            ),
Sylvain Gugger's avatar
Sylvain Gugger committed
1478
1479
1480
1481
1482
1483
                            msg=(
                                "Tuple and dict output are not equal. Difference:"
                                f" {torch.max(torch.abs(tuple_object - dict_object))}. Tuple has `nan`:"
                                f" {torch.isnan(tuple_object).any()} and `inf`: {torch.isinf(tuple_object)}. Dict has"
                                f" `nan`: {torch.isnan(dict_object).any()} and `inf`: {torch.isinf(dict_object)}."
                            ),
1484
1485
1486
1487
1488
1489
1490
1491
1492
1493
1494
1495
1496
1497
1498
1499
1500
1501
1502
1503
1504
1505
1506
1507
1508
                        )

                recursive_check(tuple_output, dict_output)

        for model_class in self.all_model_classes:
            model = model_class(config)
            model.to(torch_device)
            model.eval()

            tuple_inputs = self._prepare_for_class(inputs_dict, model_class)
            dict_inputs = self._prepare_for_class(inputs_dict, model_class)
            check_equivalence(model, tuple_inputs, dict_inputs)

            tuple_inputs = self._prepare_for_class(inputs_dict, model_class, return_labels=True)
            dict_inputs = self._prepare_for_class(inputs_dict, model_class, return_labels=True)
            check_equivalence(model, tuple_inputs, dict_inputs)

            tuple_inputs = self._prepare_for_class(inputs_dict, model_class)
            dict_inputs = self._prepare_for_class(inputs_dict, model_class)
            check_equivalence(model, tuple_inputs, dict_inputs, {"output_hidden_states": True})

            tuple_inputs = self._prepare_for_class(inputs_dict, model_class, return_labels=True)
            dict_inputs = self._prepare_for_class(inputs_dict, model_class, return_labels=True)
            check_equivalence(model, tuple_inputs, dict_inputs, {"output_hidden_states": True})

1509
1510
1511
1512
            if self.has_attentions:
                tuple_inputs = self._prepare_for_class(inputs_dict, model_class)
                dict_inputs = self._prepare_for_class(inputs_dict, model_class)
                check_equivalence(model, tuple_inputs, dict_inputs, {"output_attentions": True})
1513

1514
1515
1516
1517
1518
1519
1520
1521
1522
                tuple_inputs = self._prepare_for_class(inputs_dict, model_class, return_labels=True)
                dict_inputs = self._prepare_for_class(inputs_dict, model_class, return_labels=True)
                check_equivalence(model, tuple_inputs, dict_inputs, {"output_attentions": True})

                tuple_inputs = self._prepare_for_class(inputs_dict, model_class, return_labels=True)
                dict_inputs = self._prepare_for_class(inputs_dict, model_class, return_labels=True)
                check_equivalence(
                    model, tuple_inputs, dict_inputs, {"output_hidden_states": True, "output_attentions": True}
                )
1523

1524
1525
1526
1527
    # Don't copy this method to model specific test file!
    # TODO: remove this method once the issues are all fixed!
    def _make_attention_mask_non_null(self, inputs_dict):
        """Make sure no sequence has all zeros as attention mask"""
1528

1529
1530
1531
        for k in ["attention_mask", "encoder_attention_mask", "decoder_attention_mask"]:
            if k in inputs_dict:
                attention_mask = inputs_dict[k]
1532

1533
1534
1535
1536
1537
1538
                # Make sure no all 0s attention masks - to avoid failure at this moment.
                # Put `1` at the beginning of sequences to make it still work when combining causal attention masks.
                # TODO: remove this line once a fix regarding large negative values for attention mask is done.
                attention_mask = torch.cat(
                    [torch.ones_like(attention_mask[:, :1], dtype=attention_mask.dtype), attention_mask[:, 1:]], dim=-1
                )
1539

1540
1541
1542
1543
1544
1545
1546
1547
1548
1549
1550
1551
1552
1553
1554
1555
1556
1557
1558
1559
1560
1561
1562
1563
1564
1565
1566
1567
1568
1569
1570
1571
1572
1573
1574
1575
1576
1577
1578
1579
1580
1581
1582
1583
1584
1585
1586
                # Here we make the first sequence with all 0s as attention mask.
                # Currently, this will fail for `TFWav2Vec2Model`. This is caused by the different large negative
                # values, like `1e-4`, `1e-9`, `1e-30` and `-inf` for attention mask across models/frameworks.
                # TODO: enable this block once the large negative values thing is cleaned up.
                # (see https://github.com/huggingface/transformers/issues/14859)
                # attention_mask = torch.cat(
                #     [torch.zeros_like(attention_mask[:1], dtype=attention_mask.dtype), attention_mask[1:]],
                #     dim=0
                # )

                inputs_dict[k] = attention_mask

    # Don't copy this method to model specific test file!
    # TODO: remove this method once the issues are all fixed!
    def _postprocessing_to_ignore_test_cases(self, tf_outputs, pt_outputs, model_class):
        """For temporarily ignoring some failed test cases (issues to be fixed)"""

        tf_keys = set([k for k, v in tf_outputs.items() if v is not None])
        pt_keys = set([k for k, v in pt_outputs.items() if v is not None])

        key_differences = tf_keys.symmetric_difference(pt_keys)

        if model_class.__name__ in [
            "FlaubertWithLMHeadModel",
            "FunnelForPreTraining",
            "ElectraForPreTraining",
            "XLMWithLMHeadModel",
            "TransfoXLLMHeadModel",
        ]:
            for k in key_differences:
                if k in ["loss", "losses"]:
                    tf_keys.discard(k)
                    pt_keys.discard(k)
        elif model_class.__name__.startswith("GPT2"):
            # `TFGPT2` has `past_key_values` as a tensor while `GPT2` has it as a tuple.
            tf_keys.discard("past_key_values")
            pt_keys.discard("past_key_values")

        # create new outputs from the remaining fields
        new_tf_outputs = type(tf_outputs)(**{k: tf_outputs[k] for k in tf_keys})
        new_pt_outputs = type(pt_outputs)(**{k: pt_outputs[k] for k in pt_keys})

        return new_tf_outputs, new_pt_outputs

    # Copied from tests.test_modeling_tf_common.TFModelTesterMixin.check_pt_tf_outputs
    def check_pt_tf_outputs(self, tf_outputs, pt_outputs, model_class, tol=1e-5, name="outputs", attributes=None):
        """Check the outputs from PyTorch and TensorFlow models are closed enough. Checks are done in a recursive way.
1587

1588
1589
1590
1591
1592
1593
1594
1595
        Args:
            model_class: The class of the model that is currently testing. For example, `TFBertModel`,
                TFBertForMaskedLM`, `TFBertForSequenceClassification`, etc. Mainly used for providing more informative
                error messages.
            name (`str`): The name of the output. For example, `output.hidden_states`, `output.attentions`, etc.
            attributes (`Tuple[str]`): The names of the output's element if the output is a tuple/list with each element
                being a named field in the output.
        """
1596

1597
1598
1599
        self.assertEqual(type(name), str)
        if attributes is not None:
            self.assertEqual(type(attributes), tuple, f"{name}: The argument `attributes` should be a `tuple`")
1600

1601
1602
1603
1604
1605
1606
        # Allow `ModelOutput` (e.g. `CLIPOutput` has `text_model_output` and `vision_model_output`).
        if isinstance(tf_outputs, ModelOutput):
            self.assertTrue(
                isinstance(pt_outputs, ModelOutput),
                f"{name}: `pt_outputs` should an instance of `ModelOutput` when `tf_outputs` is",
            )
1607

1608
1609
1610
            # Don't copy this block to model specific test file!
            # TODO: remove this method and this line after issues are fixed
            tf_outputs, pt_outputs = self._postprocessing_to_ignore_test_cases(tf_outputs, pt_outputs, model_class)
1611

1612
1613
            tf_keys = tuple([k for k, v in tf_outputs.items() if v is not None])
            pt_keys = tuple([k for k, v in pt_outputs.items() if v is not None])
1614

1615
            self.assertEqual(tf_keys, pt_keys, f"{name}: Output keys differ between TF and PyTorch")
1616

1617
1618
1619
1620
1621
1622
            # convert to the case of `tuple`
            # appending each key to the current (string) `names`
            attributes = tuple([f"{name}.{k}" for k in tf_keys])
            self.check_pt_tf_outputs(
                tf_outputs.to_tuple(), pt_outputs.to_tuple(), model_class, tol=tol, name=name, attributes=attributes
            )
1623

1624
1625
1626
1627
1628
1629
1630
1631
1632
1633
1634
        # Allow `list` (e.g. `TransfoXLModelOutput.mems` is a list of tensors.)
        elif type(tf_outputs) in [tuple, list]:
            self.assertEqual(type(tf_outputs), type(pt_outputs), f"{name}: Output types differ between TF and PyTorch")
            self.assertEqual(len(tf_outputs), len(pt_outputs), f"{name}: Output lengths differ between TF and PyTorch")

            if attributes is not None:
                # case 1: each output has assigned name (e.g. a tuple form of a `ModelOutput`)
                self.assertEqual(
                    len(attributes),
                    len(tf_outputs),
                    f"{name}: The tuple `names` should have the same length as `tf_outputs`",
1635
                )
1636
1637
1638
            else:
                # case 2: each output has no assigned name (e.g. hidden states of each layer) -> add an index to `names`
                attributes = tuple([f"{name}_{idx}" for idx in range(len(tf_outputs))])
1639

1640
1641
            for tf_output, pt_output, attr in zip(tf_outputs, pt_outputs, attributes):
                self.check_pt_tf_outputs(tf_output, pt_output, model_class, tol=tol, name=attr)
1642

1643
1644
1645
1646
        elif isinstance(tf_outputs, tf.Tensor):
            self.assertTrue(
                isinstance(pt_outputs, torch.Tensor), f"{name}: `pt_outputs` should a tensor when `tf_outputs` is"
            )
1647

1648
1649
            tf_outputs = tf_outputs.numpy()
            pt_outputs = pt_outputs.detach().to("cpu").numpy()
1650

1651
1652
1653
            self.assertEqual(
                tf_outputs.shape, pt_outputs.shape, f"{name}: Output shapes differ between TF and PyTorch"
            )
1654

1655
1656
1657
1658
            # deal with NumPy's scalars to make replacing nan values by 0 work.
            if np.isscalar(tf_outputs):
                tf_outputs = np.array([tf_outputs])
                pt_outputs = np.array([pt_outputs])
1659

1660
1661
            tf_nans = np.isnan(tf_outputs)
            pt_nans = np.isnan(pt_outputs)
1662

1663
1664
1665
1666
            pt_outputs[tf_nans] = 0
            tf_outputs[tf_nans] = 0
            pt_outputs[pt_nans] = 0
            tf_outputs[pt_nans] = 0
1667

1668
1669
1670
1671
            max_diff = np.amax(np.abs(tf_outputs - pt_outputs))
            self.assertLessEqual(max_diff, tol, f"{name}: Difference between torch and tf is {max_diff} (>= {tol}).")
        else:
            raise ValueError(
Sylvain Gugger's avatar
Sylvain Gugger committed
1672
1673
                "`tf_outputs` should be an instance of `tf.Tensor`, a `tuple`, or an instance of `tf.Tensor`. Got"
                f" {type(tf_outputs)} instead."
1674
1675
            )

1676
1677
1678
1679
1680
1681
1682
1683
1684
1685
1686
1687
1688
1689
1690
1691
1692
1693
    def prepare_tf_inputs_from_pt_inputs(self, pt_inputs_dict):

        tf_inputs_dict = {}
        for key, tensor in pt_inputs_dict.items():
            # skip key that does not exist in tf
            if type(tensor) == bool:
                tf_inputs_dict[key] = tensor
            elif key == "input_values":
                tf_inputs_dict[key] = tf.convert_to_tensor(tensor.cpu().numpy(), dtype=tf.float32)
            elif key == "pixel_values":
                tf_inputs_dict[key] = tf.convert_to_tensor(tensor.cpu().numpy(), dtype=tf.float32)
            elif key == "input_features":
                tf_inputs_dict[key] = tf.convert_to_tensor(tensor.cpu().numpy(), dtype=tf.float32)
            # other general float inputs
            elif tensor.is_floating_point():
                tf_inputs_dict[key] = tf.convert_to_tensor(tensor.cpu().numpy(), dtype=tf.float32)
            else:
                tf_inputs_dict[key] = tf.convert_to_tensor(tensor.cpu().numpy(), dtype=tf.int32)
1694

1695
        return tf_inputs_dict
1696

1697
    def check_pt_tf_models(self, tf_model, pt_model, pt_inputs_dict):
1698

1699
        tf_inputs_dict = self.prepare_tf_inputs_from_pt_inputs(pt_inputs_dict)
1700

1701
1702
1703
1704
        # send pytorch inputs to the correct device
        pt_inputs_dict = {
            k: v.to(device=torch_device) if isinstance(v, torch.Tensor) else v for k, v in pt_inputs_dict.items()
        }
1705

1706
1707
        # send pytorch model to the correct device
        pt_model.to(torch_device)
1708

1709
1710
        # Check predictions on first output (logits/hidden-states) are close enough given low-level computational differences
        pt_model.eval()
1711

1712
1713
1714
1715
1716
1717
1718
1719
1720
1721
1722
1723
1724
1725
1726
1727
        with torch.no_grad():
            pt_outputs = pt_model(**pt_inputs_dict)
        tf_outputs = tf_model(tf_inputs_dict)

        # tf models returned loss is usually a tensor rather than a scalar.
        # (see `hf_compute_loss`: it uses `tf.keras.losses.Reduction.NONE`)
        # Change it here to a scalar to match PyTorch models' loss
        tf_loss = getattr(tf_outputs, "loss", None)
        if tf_loss is not None:
            tf_outputs.loss = tf.math.reduce_mean(tf_loss)

        self.check_pt_tf_outputs(tf_outputs, pt_outputs, type(pt_model))

    @is_pt_tf_cross_test
    def test_pt_tf_model_equivalence(self):
        import transformers
1728
1729
1730

        for model_class in self.all_model_classes:

1731
1732
1733
            config, inputs_dict = self.model_tester.prepare_config_and_inputs_for_common()

            tf_model_class_name = "TF" + model_class.__name__  # Add the "TF" at the beginning
1734
            if not hasattr(transformers, tf_model_class_name):
1735
                # transformers does not have this model in TF version yet
1736
1737
                return

1738
1739
1740
            # Output all for aggressive testing
            config.output_hidden_states = True
            config.output_attentions = self.has_attentions
1741

1742
1743
1744
1745
            # Make sure no sequence has all zeros as attention mask, otherwise some tests fail due to the inconsistency
            # of the usage `1e-4`, `1e-9`, `1e-30`, `-inf`.
            # TODO: Use a uniform value for all models, make sure all tests pass without this processing, and remove it.
            self._make_attention_mask_non_null(inputs_dict)
1746
1747

            tf_model_class = getattr(transformers, tf_model_class_name)
1748
1749

            pt_model = model_class(config)
1750
1751
1752
1753
1754
1755
1756
1757
1758
            tf_model = tf_model_class(config)

            pt_inputs_dict = self._prepare_for_class(inputs_dict, model_class)
            pt_inputs_dict_with_labels = self._prepare_for_class(
                inputs_dict,
                model_class,
                # Not all models accept "labels" in the forward pass (yet :) )
                return_labels=True if "labels" in inspect.signature(model_class.forward).parameters.keys() else False,
            )
1759
1760
1761
1762
1763
1764
1765
1766
1767

            # make sure only tf inputs are forward that actually exist in function args
            tf_input_keys = set(inspect.signature(tf_model.call).parameters.keys())

            # remove all head masks
            tf_input_keys.discard("head_mask")
            tf_input_keys.discard("cross_attn_head_mask")
            tf_input_keys.discard("decoder_head_mask")

1768
            pt_inputs_dict = {k: v for k, v in pt_inputs_dict.items() if k in tf_input_keys}
1769
1770
1771
1772
1773
1774
            pt_inputs_dict_with_labels = {k: v for k, v in pt_inputs_dict_with_labels.items() if k in tf_input_keys}

            # For some models (e.g. base models), there is no label returned.
            # Set the input dict to `None` to avoid check outputs twice for the same input dicts.
            if set(pt_inputs_dict_with_labels.keys()).symmetric_difference(pt_inputs_dict.keys()):
                pt_inputs_dict_with_labels = None
1775
1776

            # Check we can load pt model in tf and vice-versa with model => model functions
1777
1778
            # Here requires `tf_inputs_dict` to build `tf_model`
            tf_inputs_dict = self.prepare_tf_inputs_from_pt_inputs(pt_inputs_dict)
1779
            tf_model = transformers.load_pytorch_model_in_tf2_model(tf_model, pt_model, tf_inputs=tf_inputs_dict)
1780
            pt_model = transformers.load_tf2_model_in_pytorch_model(pt_model, tf_model)
1781

1782
1783
1784
1785
1786
            # Original test: check without `labels`
            self.check_pt_tf_models(tf_model, pt_model, pt_inputs_dict)
            # check with `labels`
            if pt_inputs_dict_with_labels:
                self.check_pt_tf_models(tf_model, pt_model, pt_inputs_dict_with_labels)
1787
1788
1789
1790
1791
1792
1793
1794
1795
1796
1797

            # Check we can load pt model in tf and vice-versa with checkpoint => model functions
            with tempfile.TemporaryDirectory() as tmpdirname:
                pt_checkpoint_path = os.path.join(tmpdirname, "pt_model.bin")
                torch.save(pt_model.state_dict(), pt_checkpoint_path)
                tf_model = transformers.load_pytorch_checkpoint_in_tf2_model(tf_model, pt_checkpoint_path)

                tf_checkpoint_path = os.path.join(tmpdirname, "tf_model.h5")
                tf_model.save_weights(tf_checkpoint_path)
                pt_model = transformers.load_tf2_checkpoint_in_pytorch_model(pt_model, tf_checkpoint_path)

1798
1799
1800
1801
1802
            # Original test: check without `labels`
            self.check_pt_tf_models(tf_model, pt_model, pt_inputs_dict)
            # check with `labels`
            if pt_inputs_dict_with_labels:
                self.check_pt_tf_models(tf_model, pt_model, pt_inputs_dict_with_labels)
1803
1804
1805
1806
1807

    def assert_almost_equals(self, a: np.ndarray, b: np.ndarray, tol: float):
        diff = np.abs((a - b)).max()
        self.assertLessEqual(diff, tol, f"Difference between torch and flax is {diff} (>= {tol}).")

1808
1809
1810
1811
1812
1813
1814
1815
1816
1817
1818
1819
1820
1821
1822
1823
1824
1825
1826
1827
1828
1829
1830
1831
1832
1833
1834
1835
1836
1837
1838
1839
1840
1841
1842
1843
1844
1845
1846
1847
1848
1849
    def check_outputs(self, fx_outputs, pt_outputs, model_class, names):
        """
        Args:
            model_class: The class of the model that is currently testing. For example, ..., etc.
            Currently unused, but it could make debugging easier and faster.

            names: A string, or a list of strings. These specify what fx_outputs/pt_outputs represent in the model outputs.
                Currently unused, but in the future, we could use this information to make the error message clearer
                by giving the name(s) of the output tensor(s) with large difference(s) between PT and Flax.
        """
        if type(fx_outputs) in [tuple, list]:
            self.assertEqual(type(fx_outputs), type(pt_outputs))
            self.assertEqual(len(fx_outputs), len(pt_outputs))
            if type(names) == tuple:
                for fo, po, name in zip(fx_outputs, pt_outputs, names):
                    self.check_outputs(fo, po, model_class, names=name)
            elif type(names) == str:
                for idx, (fo, po) in enumerate(zip(fx_outputs, pt_outputs)):
                    self.check_outputs(fo, po, model_class, names=f"{names}_{idx}")
            else:
                raise ValueError(f"`names` should be a `tuple` or a string. Got {type(names)} instead.")
        elif isinstance(fx_outputs, jnp.ndarray):
            self.assertTrue(isinstance(pt_outputs, torch.Tensor))

            # Using `np.asarray` gives `ValueError: assignment destination is read-only` at the line `fx_outputs[fx_nans] = 0`.
            fx_outputs = np.array(fx_outputs)
            pt_outputs = pt_outputs.detach().to("cpu").numpy()

            fx_nans = np.isnan(fx_outputs)
            pt_nans = np.isnan(pt_outputs)

            pt_outputs[fx_nans] = 0
            fx_outputs[fx_nans] = 0
            pt_outputs[pt_nans] = 0
            fx_outputs[pt_nans] = 0

            self.assert_almost_equals(fx_outputs, pt_outputs, 1e-5)
        else:
            raise ValueError(
                f"`fx_outputs` should be a `tuple` or an instance of `jnp.ndarray`. Got {type(fx_outputs)} instead."
            )

1850
1851
1852
1853
1854
1855
1856
1857
1858
    @is_pt_flax_cross_test
    def test_equivalence_pt_to_flax(self):
        config, inputs_dict = self.model_tester.prepare_config_and_inputs_for_common()

        for model_class in self.all_model_classes:
            with self.subTest(model_class.__name__):
                fx_model_class_name = "Flax" + model_class.__name__

                if not hasattr(transformers, fx_model_class_name):
1859
                    # no flax model exists for this class
1860
1861
                    return

1862
1863
1864
1865
                # Output all for aggressive testing
                config.output_hidden_states = True
                config.output_attentions = self.has_attentions

1866
1867
                fx_model_class = getattr(transformers, fx_model_class_name)

1868
1869
1870
1871
1872
1873
                # load PyTorch class
                pt_model = model_class(config).eval()
                # Flax models don't use the `use_cache` option and cache is not returned as a default.
                # So we disable `use_cache` here for PyTorch model.
                pt_model.config.use_cache = False

1874
1875
                # load Flax class
                fx_model = fx_model_class(config, dtype=jnp.float32)
1876

1877
1878
1879
1880
1881
1882
1883
1884
1885
                # make sure only flax inputs are forward that actually exist in function args
                fx_input_keys = inspect.signature(fx_model.__call__).parameters.keys()

                # prepare inputs
                pt_inputs = self._prepare_for_class(inputs_dict, model_class)

                # remove function args that don't exist in Flax
                pt_inputs = {k: v for k, v in pt_inputs.items() if k in fx_input_keys}

1886
1887
1888
1889
1890
1891
1892
1893
                # send pytorch inputs to the correct device
                pt_inputs = {
                    k: v.to(device=torch_device) if isinstance(v, torch.Tensor) else v for k, v in pt_inputs.items()
                }

                # convert inputs to Flax
                fx_inputs = {k: np.array(v) for k, v in pt_inputs.items() if torch.is_tensor(v)}

1894
1895
1896
                fx_state = convert_pytorch_state_dict_to_flax(pt_model.state_dict(), fx_model)
                fx_model.params = fx_state

1897
1898
1899
                # send pytorch model to the correct device
                pt_model.to(torch_device)

1900
                with torch.no_grad():
1901
1902
                    pt_outputs = pt_model(**pt_inputs)
                fx_outputs = fx_model(**fx_inputs)
1903

1904
1905
1906
1907
1908
                fx_keys = tuple([k for k, v in fx_outputs.items() if v is not None])
                pt_keys = tuple([k for k, v in pt_outputs.items() if v is not None])

                self.assertEqual(fx_keys, pt_keys)
                self.check_outputs(fx_outputs.to_tuple(), pt_outputs.to_tuple(), model_class, names=fx_keys)
1909
1910
1911
1912
1913

                with tempfile.TemporaryDirectory() as tmpdirname:
                    pt_model.save_pretrained(tmpdirname)
                    fx_model_loaded = fx_model_class.from_pretrained(tmpdirname, from_pt=True)

1914
1915
1916
1917
1918
1919
1920
                fx_outputs_loaded = fx_model_loaded(**fx_inputs)

                fx_keys = tuple([k for k, v in fx_outputs_loaded.items() if v is not None])
                pt_keys = tuple([k for k, v in pt_outputs.items() if v is not None])

                self.assertEqual(fx_keys, pt_keys)
                self.check_outputs(fx_outputs_loaded.to_tuple(), pt_outputs.to_tuple(), model_class, names=fx_keys)
1921
1922
1923
1924
1925
1926
1927
1928
1929
1930
1931
1932
1933

    @is_pt_flax_cross_test
    def test_equivalence_flax_to_pt(self):
        config, inputs_dict = self.model_tester.prepare_config_and_inputs_for_common()

        for model_class in self.all_model_classes:
            with self.subTest(model_class.__name__):
                fx_model_class_name = "Flax" + model_class.__name__

                if not hasattr(transformers, fx_model_class_name):
                    # no flax model exists for this class
                    return

1934
1935
1936
1937
                # Output all for aggressive testing
                config.output_hidden_states = True
                config.output_attentions = self.has_attentions

1938
1939
                fx_model_class = getattr(transformers, fx_model_class_name)

1940
1941
1942
1943
1944
1945
                # load PyTorch class
                pt_model = model_class(config).eval()
                # Flax models don't use the `use_cache` option and cache is not returned as a default.
                # So we disable `use_cache` here for PyTorch model.
                pt_model.config.use_cache = False

1946
1947
                # load Flax class
                fx_model = fx_model_class(config, dtype=jnp.float32)
1948

1949
1950
1951
1952
1953
1954
1955
1956
1957
                # make sure only flax inputs are forward that actually exist in function args
                fx_input_keys = inspect.signature(fx_model.__call__).parameters.keys()

                # prepare inputs
                pt_inputs = self._prepare_for_class(inputs_dict, model_class)

                # remove function args that don't exist in Flax
                pt_inputs = {k: v for k, v in pt_inputs.items() if k in fx_input_keys}

1958
1959
1960
1961
                # send pytorch inputs to the correct device
                pt_inputs = {
                    k: v.to(device=torch_device) if isinstance(v, torch.Tensor) else v for k, v in pt_inputs.items()
                }
1962

1963
                # convert inputs to Flax
1964
1965
                fx_inputs = {k: np.array(v) for k, v in pt_inputs.items() if torch.is_tensor(v)}

1966
1967
1968
1969
1970
1971
1972
                pt_model = load_flax_weights_in_pytorch_model(pt_model, fx_model.params)

                # make sure weights are tied in PyTorch
                pt_model.tie_weights()

                # send pytorch model to the correct device
                pt_model.to(torch_device)
1973

1974
1975
1976
1977
1978
1979
1980
1981
1982
                with torch.no_grad():
                    pt_outputs = pt_model(**pt_inputs)
                fx_outputs = fx_model(**fx_inputs)

                fx_keys = tuple([k for k, v in fx_outputs.items() if v is not None])
                pt_keys = tuple([k for k, v in pt_outputs.items() if v is not None])

                self.assertEqual(fx_keys, pt_keys)
                self.check_outputs(fx_outputs.to_tuple(), pt_outputs.to_tuple(), model_class, names=fx_keys)
1983
1984
1985
1986
1987

                with tempfile.TemporaryDirectory() as tmpdirname:
                    fx_model.save_pretrained(tmpdirname)
                    pt_model_loaded = model_class.from_pretrained(tmpdirname, from_flax=True)

1988
1989
1990
1991
                # send pytorch model to the correct device
                pt_model_loaded.to(torch_device)
                pt_model_loaded.eval()

1992
                with torch.no_grad():
1993
                    pt_outputs_loaded = pt_model_loaded(**pt_inputs)
1994

1995
1996
1997
1998
1999
                fx_keys = tuple([k for k, v in fx_outputs.items() if v is not None])
                pt_keys = tuple([k for k, v in pt_outputs_loaded.items() if v is not None])

                self.assertEqual(fx_keys, pt_keys)
                self.check_outputs(fx_outputs.to_tuple(), pt_outputs_loaded.to_tuple(), model_class, names=fx_keys)
2000

Patrick von Platen's avatar
Patrick von Platen committed
2001
    def test_inputs_embeds(self):
2002
2003
2004
2005
        config, inputs_dict = self.model_tester.prepare_config_and_inputs_for_common()

        for model_class in self.all_model_classes:
            model = model_class(config)
2006
            model.to(torch_device)
thomwolf's avatar
thomwolf committed
2007
            model.eval()
2008

2009
            inputs = copy.deepcopy(self._prepare_for_class(inputs_dict, model_class))
Weizhen's avatar
Weizhen committed
2010

2011
2012
2013
2014
2015
2016
2017
2018
2019
            if not self.is_encoder_decoder:
                input_ids = inputs["input_ids"]
                del inputs["input_ids"]
            else:
                encoder_input_ids = inputs["input_ids"]
                decoder_input_ids = inputs.get("decoder_input_ids", encoder_input_ids)
                del inputs["input_ids"]
                inputs.pop("decoder_input_ids", None)

2020
2021
            wte = model.get_input_embeddings()
            if not self.is_encoder_decoder:
2022
                inputs["inputs_embeds"] = wte(input_ids)
2023
            else:
2024
2025
                inputs["inputs_embeds"] = wte(encoder_input_ids)
                inputs["decoder_inputs_embeds"] = wte(decoder_input_ids)
2026

thomwolf's avatar
thomwolf committed
2027
            with torch.no_grad():
Weizhen's avatar
Weizhen committed
2028
                model(**inputs)[0]
2029

2030
2031
    @require_torch_multi_gpu
    def test_multi_gpu_data_parallel_forward(self):
2032
2033
2034
2035
        config, inputs_dict = self.model_tester.prepare_config_and_inputs_for_common()

        # some params shouldn't be scattered by nn.DataParallel
        # so just remove them if they are present.
2036
        blacklist_non_batched_params = ["head_mask", "decoder_head_mask", "cross_attn_head_mask"]
2037
2038
2039
2040
2041
2042
2043
2044
2045
2046
2047
2048
2049
2050
        for k in blacklist_non_batched_params:
            inputs_dict.pop(k, None)

        # move input tensors to cuda:O
        for k, v in inputs_dict.items():
            if torch.is_tensor(v):
                inputs_dict[k] = v.to(0)

        for model_class in self.all_model_classes:
            model = model_class(config=config)
            model.to(0)
            model.eval()

            # Wrap model in nn.DataParallel
2051
            model = nn.DataParallel(model)
2052
            with torch.no_grad():
2053
                _ = model(**self._prepare_for_class(inputs_dict, model_class))
2054

2055
2056
2057
    @require_torch_multi_gpu
    def test_model_parallelization(self):
        if not self.test_model_parallel:
2058
            return
2059

2060
        # a candidate for testing_utils
2061
        def get_current_gpu_memory_use():
Patrick von Platen's avatar
Patrick von Platen committed
2062
            """returns a list of cuda memory allocations per GPU in MBs"""
2063
2064
2065
2066
2067

            per_device_memory = []
            for id in range(torch.cuda.device_count()):
                with torch.cuda.device(id):
                    per_device_memory.append(torch.cuda.memory_allocated() >> 20)
2068
2069
2070
2071
2072
2073
2074
2075
2076

            return per_device_memory

        # Needs a large model to see the difference.
        config = self.model_tester.get_large_model_config()

        for model_class in self.all_parallelizable_model_classes:
            torch.cuda.empty_cache()

2077
2078
2079
            # 1. single gpu memory load + unload + memory measurements
            # Retrieve initial memory usage (can easily be ~0.6-1.5GB if cuda-kernels have been preloaded by previous tests)
            memory_at_start = get_current_gpu_memory_use()
2080

2081
2082
            # Put model on device 0 and take a memory snapshot
            model = model_class(config)
2083
2084
2085
            model.to("cuda:0")
            memory_after_model_load = get_current_gpu_memory_use()

2086
2087
2088
            # The memory use on device 0 should be higher than it was initially.
            self.assertGreater(memory_after_model_load[0], memory_at_start[0])

2089
            del model
2090
            gc.collect()
2091
2092
            torch.cuda.empty_cache()

2093
2094
2095
            # 2. MP test
            # it's essential to re-calibrate the usage before the next stage
            memory_at_start = get_current_gpu_memory_use()
2096
2097

            # Spread model layers over multiple devices
2098
            model = model_class(config)
2099
2100
2101
2102
            model.parallelize()
            memory_after_parallelization = get_current_gpu_memory_use()

            # Assert that the memory use on all devices is higher than it was when loaded only on CPU
2103
            for n in range(len(model.device_map.keys())):
2104
                self.assertGreater(memory_after_parallelization[n], memory_at_start[n])
2105

2106
            # Assert that the memory use of device 0 is lower than it was when the entire model was loaded on it
2107
2108
            self.assertLess(memory_after_parallelization[0], memory_after_model_load[0])

2109
2110
            # Assert that the memory use of device 1 is higher than it was when the entire model was loaded
            # on device 0 and device 1 wasn't used at all
2111
2112
2113
            self.assertGreater(memory_after_parallelization[1], memory_after_model_load[1])

            del model
2114
            gc.collect()
2115
2116
2117
2118
2119
            torch.cuda.empty_cache()

    @require_torch_multi_gpu
    def test_model_parallel_equal_results(self):
        if not self.test_model_parallel:
2120
            return
2121
2122
2123
2124
2125
2126

        config, inputs_dict = self.model_tester.prepare_config_and_inputs_for_common()

        for model_class in self.all_parallelizable_model_classes:
            inputs_dict = self._prepare_for_class(inputs_dict, model_class)

2127
            def cast_to_device(dictionary, device):
2128
2129
2130
                output = {}
                for k, v in dictionary.items():
                    if isinstance(v, torch.Tensor):
2131
                        output[k] = v.to(device)
2132
2133
2134
2135
2136
                    else:
                        output[k] = v

                return output

2137
2138
2139
2140
2141
2142
            model = model_class(config)
            output = model(**cast_to_device(inputs_dict, "cpu"))

            model.parallelize()

            parallel_output = model(**cast_to_device(inputs_dict, "cuda:0"))
2143
2144
2145
2146
2147
2148
2149
2150

            for value, parallel_value in zip(output, parallel_output):
                if isinstance(value, torch.Tensor):
                    self.assertTrue(torch.allclose(value, parallel_value.to("cpu"), atol=1e-7))
                elif isinstance(value, (Tuple, List)):
                    for value_, parallel_value_ in zip(value, parallel_value):
                        self.assertTrue(torch.allclose(value_, parallel_value_.to("cpu"), atol=1e-7))

2151
2152
2153
2154
2155
2156
2157
2158
2159
2160
2161
2162
2163
2164
2165
2166
2167
2168
2169
2170
2171
2172
2173
2174
2175
2176
2177
2178
    @require_torch_multi_gpu
    def test_model_parallel_beam_search(self):
        if not self.test_model_parallel:
            return

        all_generative_and_parallelizable_model_classes = tuple(
            set(self.all_generative_model_classes).intersection(self.all_parallelizable_model_classes)
        )

        config, inputs_dict = self.model_tester.prepare_config_and_inputs_for_common()

        for model_class in all_generative_and_parallelizable_model_classes:
            inputs_dict = self._prepare_for_class(inputs_dict, model_class)
            model = model_class(config)

            def cast_to_device(dictionary, device):
                output = {}
                for k, v in dictionary.items():
                    if isinstance(v, torch.Tensor):
                        output[k] = v.to(device)
                    else:
                        output[k] = v

                return output

            model.parallelize()
            model.generate(**cast_to_device(inputs_dict, "cuda:0"), num_beams=2)

2179
2180
2181
2182
2183
2184
2185
2186
2187
2188
    def test_problem_types(self):
        config, inputs_dict = self.model_tester.prepare_config_and_inputs_for_common()

        problem_types = [
            {"title": "multi_label_classification", "num_labels": 2, "dtype": torch.float},
            {"title": "single_label_classification", "num_labels": 1, "dtype": torch.long},
            {"title": "regression", "num_labels": 1, "dtype": torch.float},
        ]

        for model_class in self.all_model_classes:
2189
2190
2191
2192
            if model_class not in [
                *get_values(MODEL_FOR_SEQUENCE_CLASSIFICATION_MAPPING),
                *get_values(MODEL_FOR_IMAGE_CLASSIFICATION_MAPPING),
            ]:
2193
2194
2195
2196
2197
2198
2199
2200
2201
2202
2203
2204
2205
2206
2207
2208
2209
2210
2211
                continue

            for problem_type in problem_types:
                with self.subTest(msg=f"Testing {model_class} with {problem_type['title']}"):

                    config.problem_type = problem_type["title"]
                    config.num_labels = problem_type["num_labels"]

                    model = model_class(config)
                    model.to(torch_device)
                    model.train()

                    inputs = self._prepare_for_class(inputs_dict, model_class, return_labels=True)

                    if problem_type["num_labels"] > 1:
                        inputs["labels"] = inputs["labels"].unsqueeze(1).repeat(1, problem_type["num_labels"])

                    inputs["labels"] = inputs["labels"].to(problem_type["dtype"])

2212
2213
2214
2215
2216
2217
                    # This tests that we do not trigger the warning form PyTorch "Using a target size that is different
                    # to the input size. This will likely lead to incorrect results due to broadcasting. Please ensure
                    # they have the same size." which is a symptom something in wrong for the regression problem.
                    # See https://github.com/huggingface/transformers/issues/11780
                    with warnings.catch_warnings(record=True) as warning_list:
                        loss = model(**inputs).loss
2218
2219
2220
2221
2222
                    for w in warning_list:
                        if "Using a target size that is different to the input size" in str(w.message):
                            raise ValueError(
                                f"Something is going wrong in the regression problem: intercepted {w.message}"
                            )
2223

2224
2225
                    loss.backward()

2226
    def test_load_with_mismatched_shapes(self):
2227
2228
        if not self.test_mismatched_shapes:
            return
2229
2230
2231
2232
2233
2234
2235
2236
2237
2238
2239
2240
        config, inputs_dict = self.model_tester.prepare_config_and_inputs_for_common()

        for model_class in self.all_model_classes:
            if model_class not in get_values(MODEL_FOR_SEQUENCE_CLASSIFICATION_MAPPING):
                continue

            with self.subTest(msg=f"Testing {model_class}"):
                with tempfile.TemporaryDirectory() as tmp_dir:
                    model = model_class(config)
                    model.save_pretrained(tmp_dir)

                    # Fails when we don't set ignore_mismatched_sizes=True
2241
                    with self.assertRaises(RuntimeError):
2242
                        new_model = AutoModelForSequenceClassification.from_pretrained(tmp_dir, num_labels=42)
2243
2244
                    with self.assertRaises(RuntimeError):
                        new_model_without_prefix = AutoModel.from_pretrained(tmp_dir, vocab_size=10)
2245
2246

                    logger = logging.get_logger("transformers.modeling_utils")
2247

2248
2249
2250
2251
2252
2253
2254
2255
2256
2257
                    with CaptureLogger(logger) as cl:
                        new_model = AutoModelForSequenceClassification.from_pretrained(
                            tmp_dir, num_labels=42, ignore_mismatched_sizes=True
                        )
                    self.assertIn("the shapes did not match", cl.out)
                    new_model.to(torch_device)
                    inputs = self._prepare_for_class(inputs_dict, model_class)
                    logits = new_model(**inputs).logits
                    self.assertEqual(logits.shape[1], 42)

2258
2259
2260
2261
2262
2263
2264
2265
2266
2267
2268
2269
                    with CaptureLogger(logger) as cl:
                        new_model_without_prefix = AutoModel.from_pretrained(
                            tmp_dir, vocab_size=10, ignore_mismatched_sizes=True
                        )
                    self.assertIn("the shapes did not match", cl.out)
                    input_ids = ids_tensor((2, 8), 10)
                    new_model_without_prefix.to(torch_device)
                    if self.is_encoder_decoder:
                        new_model_without_prefix(input_ids, decoder_input_ids=input_ids)
                    else:
                        new_model_without_prefix(input_ids)

2270

2271
global_rng = random.Random()
thomwolf's avatar
thomwolf committed
2272
2273


thomwolf's avatar
thomwolf committed
2274
def ids_tensor(shape, vocab_size, rng=None, name=None):
2275
    #  Creates a random int32 tensor of the shape within the vocab size
thomwolf's avatar
thomwolf committed
2276
    if rng is None:
2277
        rng = global_rng
thomwolf's avatar
thomwolf committed
2278

thomwolf's avatar
thomwolf committed
2279
2280
2281
    total_dims = 1
    for dim in shape:
        total_dims *= dim
thomwolf's avatar
thomwolf committed
2282

thomwolf's avatar
thomwolf committed
2283
2284
2285
    values = []
    for _ in range(total_dims):
        values.append(rng.randint(0, vocab_size - 1))
thomwolf's avatar
thomwolf committed
2286

2287
    return torch.tensor(data=values, dtype=torch.long, device=torch_device).view(shape).contiguous()
thomwolf's avatar
thomwolf committed
2288
2289


2290
2291
2292
2293
2294
2295
2296
def random_attention_mask(shape, rng=None, name=None):
    attn_mask = ids_tensor(shape, vocab_size=2, rng=None, name=None)
    # make sure that at least one token is attended to for each batch
    attn_mask[:, -1] = 1
    return attn_mask


2297
def floats_tensor(shape, scale=1.0, rng=None, name=None):
Patrick von Platen's avatar
Patrick von Platen committed
2298
    """Creates a random float32 tensor"""
2299
2300
2301
2302
2303
2304
2305
2306
2307
2308
2309
    if rng is None:
        rng = global_rng

    total_dims = 1
    for dim in shape:
        total_dims *= dim

    values = []
    for _ in range(total_dims):
        values.append(rng.random() * scale)

2310
    return torch.tensor(data=values, dtype=torch.float, device=torch_device).view(shape).contiguous()
2311
2312


2313
@require_torch
2314
class ModelUtilsTest(TestCasePlus):
2315
    @slow
Patrick von Platen's avatar
Patrick von Platen committed
2316
    def test_model_from_pretrained(self):
2317
        for model_name in BERT_PRETRAINED_MODEL_ARCHIVE_LIST[:1]:
thomwolf's avatar
thomwolf committed
2318
2319
2320
2321
2322
2323
2324
2325
            config = BertConfig.from_pretrained(model_name)
            self.assertIsNotNone(config)
            self.assertIsInstance(config, PretrainedConfig)

            model = BertModel.from_pretrained(model_name)
            model, loading_info = BertModel.from_pretrained(model_name, output_loading_info=True)
            self.assertIsNotNone(model)
            self.assertIsInstance(model, PreTrainedModel)
Lysandre Debut's avatar
Lysandre Debut committed
2326
2327
2328
2329
2330

            self.assertEqual(len(loading_info["missing_keys"]), 0)
            self.assertEqual(len(loading_info["unexpected_keys"]), 8)
            self.assertEqual(len(loading_info["mismatched_keys"]), 0)
            self.assertEqual(len(loading_info["error_msgs"]), 0)
thomwolf's avatar
thomwolf committed
2331
2332

            config = BertConfig.from_pretrained(model_name, output_attentions=True, output_hidden_states=True)
Lysandre Debut's avatar
Lysandre Debut committed
2333
2334
2335
2336

            # Not sure this is the intended behavior. TODO fix Lysandre & Thom
            config.name_or_path = model_name

thomwolf's avatar
thomwolf committed
2337
2338
2339
            model = BertModel.from_pretrained(model_name, output_attentions=True, output_hidden_states=True)
            self.assertEqual(model.config.output_hidden_states, True)
            self.assertEqual(model.config, config)
2340
2341
2342
2343
2344

    def test_model_from_pretrained_with_different_pretrained_model_name(self):
        model = T5ForConditionalGeneration.from_pretrained(TINY_T5)
        self.assertIsNotNone(model)

2345
2346
        logger = logging.get_logger("transformers.configuration_utils")
        with CaptureLogger(logger) as cl:
2347
            BertModel.from_pretrained(TINY_T5)
2348
        self.assertTrue("You are using a model of type t5 to instantiate a model of type bert" in cl.out)
Sylvain Gugger's avatar
Sylvain Gugger committed
2349

2350
2351
2352
2353
2354
2355
2356
2357
2358
2359
2360
2361
2362
2363
2364
2365
2366
2367
2368
2369
2370
2371
    @require_torch
    def test_model_from_config_torch_dtype(self):
        # test that the model can be instantiated with dtype of user's choice - as long as it's a
        # float dtype. To make it happen config.torch_dtype needs to be set before instantiating the
        # model from the config object.

        config = T5Config.from_pretrained(TINY_T5)
        model = AutoModel.from_config(config)
        # XXX: isn't supported
        # model = T5ForConditionalGeneration.from_config(config)
        self.assertEqual(model.dtype, torch.float32)

        model = AutoModel.from_config(config, torch_dtype=torch.float16)
        self.assertEqual(model.dtype, torch.float16)

        # torch.set_default_dtype() supports only float dtypes, so will fail with non-float type
        with self.assertRaises(ValueError):
            model = AutoModel.from_config(config, torch_dtype=torch.int64)

    @require_torch
    def test_model_from_pretrained_torch_dtype(self):
        # test that the model can be instantiated with dtype of either
2372
2373
        # 1. explicit from_pretrained's torch_dtype argument
        # 2. via autodiscovery by looking at model weights (torch_dtype="auto")
2374
        # so if a model.half() was saved, we want it to be instantiated as such.
2375
2376
        #
        # test an explicit model class, but also AutoModel separately as the latter goes through a different code path
2377
2378
2379
2380
2381
2382
2383
2384
2385
2386
2387
2388
2389
2390
2391
2392
2393
2394
2395
2396
2397
2398
        model_path = self.get_auto_remove_tmp_dir()

        # baseline - we know TINY_T5 is fp32 model
        model = T5ForConditionalGeneration.from_pretrained(TINY_T5)
        self.assertEqual(model.dtype, torch.float32)

        # test the default fp32 save_pretrained => from_pretrained cycle
        model.save_pretrained(model_path)
        model = T5ForConditionalGeneration.from_pretrained(model_path)
        self.assertEqual(model.dtype, torch.float32)
        # test with auto-detection
        model = T5ForConditionalGeneration.from_pretrained(model_path, torch_dtype="auto")
        self.assertEqual(model.dtype, torch.float32)

        # test forced loading in fp16 (even though the weights are in fp32)
        model = T5ForConditionalGeneration.from_pretrained(model_path, torch_dtype=torch.float16)
        self.assertEqual(model.dtype, torch.float16)

        # test fp16 save_pretrained, loaded with auto-detection
        model = model.half()
        model.save_pretrained(model_path)
        model = T5ForConditionalGeneration.from_pretrained(model_path, torch_dtype="auto")
2399
        self.assertEqual(model.config.torch_dtype, torch.float16)
2400
2401
        self.assertEqual(model.dtype, torch.float16)

2402
2403
2404
2405
2406
        # tests `config.torch_dtype` saving
        with open(f"{model_path}/config.json") as f:
            config_dict = json.load(f)
        self.assertEqual(config_dict["torch_dtype"], "float16")

2407
2408
2409
2410
        # test fp16 save_pretrained, loaded with the explicit fp16
        model = T5ForConditionalGeneration.from_pretrained(model_path, torch_dtype=torch.float16)
        self.assertEqual(model.dtype, torch.float16)

2411
2412
2413
2414
2415
2416
2417
2418
        # test AutoModel separately as it goes through a different path
        # test auto-detection
        model = AutoModel.from_pretrained(TINY_T5, torch_dtype="auto")
        self.assertEqual(model.dtype, torch.float32)
        # test forcing an explicit dtype
        model = AutoModel.from_pretrained(TINY_T5, torch_dtype=torch.float16)
        self.assertEqual(model.dtype, torch.float16)

2419
2420
2421
2422
2423
2424
2425
    def test_no_super_init_config_and_model(self):
        config = NoSuperInitConfig(attribute=32)
        model = NoSuperInitModel(config)

        with tempfile.TemporaryDirectory() as tmp_dir:
            model.save_pretrained(tmp_dir)

2426
2427
2428
2429
            new_model = NoSuperInitModel.from_pretrained(tmp_dir)

        for p1, p2 in zip(model.parameters(), new_model.parameters()):
            self.assertTrue(torch.equal(p1, p2))
2430

Sylvain Gugger's avatar
Sylvain Gugger committed
2431
2432
2433
2434
2435
2436
2437
2438
2439
2440
2441
2442
2443
2444
2445
2446
2447
2448
2449
2450
2451
2452
2453
2454
2455
2456
2457
2458
2459
2460
2461
2462
2463
2464
2465
2466
2467
2468
2469
2470
2471
2472
2473
2474
2475
2476
2477
2478
2479
2480
2481
2482
2483
2484
2485
2486
2487
2488
2489
2490
2491
2492
2493
2494
2495
2496
2497
2498
2499
2500
2501
2502
2503
2504
2505
2506
2507
2508
2509
2510
2511
2512
2513
2514
2515
2516
2517
2518
2519
2520
2521
2522
2523
2524
2525
2526
2527
2528
2529
2530
2531
2532
2533
2534
2535
2536
2537
2538
2539
2540
2541
2542
2543
2544
2545
2546
2547
    def test_shard_checkpoint(self):
        # This is the model we will use, total size 340,000 bytes.
        model = torch.nn.Sequential(
            torch.nn.Linear(100, 200, bias=False),  # size 80,000
            torch.nn.Linear(200, 200, bias=False),  # size 160,000
            torch.nn.Linear(200, 100, bias=False),  # size 80,000
            torch.nn.Linear(100, 50, bias=False),  # size 20,000
        )
        state_dict = model.state_dict()

        with self.subTest("No shard when max size is bigger than model size"):
            shards, index = shard_checkpoint(state_dict)
            self.assertIsNone(index)
            self.assertDictEqual(shards, {WEIGHTS_NAME: state_dict})

        with self.subTest("Test sharding, no weights bigger than max size"):
            shards, index = shard_checkpoint(state_dict, max_shard_size="300kB")
            # Split is first two layers then last two.
            self.assertDictEqual(
                index,
                {
                    "metadata": {"total_size": 340000},
                    "weight_map": {
                        "0.weight": "pytorch_model-00001-of-00002.bin",
                        "1.weight": "pytorch_model-00001-of-00002.bin",
                        "2.weight": "pytorch_model-00002-of-00002.bin",
                        "3.weight": "pytorch_model-00002-of-00002.bin",
                    },
                },
            )

            shard1 = {"0.weight": state_dict["0.weight"], "1.weight": state_dict["1.weight"]}
            shard2 = {"2.weight": state_dict["2.weight"], "3.weight": state_dict["3.weight"]}
            self.assertDictEqual(
                shards, {"pytorch_model-00001-of-00002.bin": shard1, "pytorch_model-00002-of-00002.bin": shard2}
            )

        with self.subTest("Test sharding with weights bigger than max size"):
            shards, index = shard_checkpoint(state_dict, max_shard_size="100kB")
            # Split is first layer, second layer then last 2.
            self.assertDictEqual(
                index,
                {
                    "metadata": {"total_size": 340000},
                    "weight_map": {
                        "0.weight": "pytorch_model-00001-of-00003.bin",
                        "1.weight": "pytorch_model-00002-of-00003.bin",
                        "2.weight": "pytorch_model-00003-of-00003.bin",
                        "3.weight": "pytorch_model-00003-of-00003.bin",
                    },
                },
            )

            shard1 = {"0.weight": state_dict["0.weight"]}
            shard2 = {"1.weight": state_dict["1.weight"]}
            shard3 = {"2.weight": state_dict["2.weight"], "3.weight": state_dict["3.weight"]}
            self.assertDictEqual(
                shards,
                {
                    "pytorch_model-00001-of-00003.bin": shard1,
                    "pytorch_model-00002-of-00003.bin": shard2,
                    "pytorch_model-00003-of-00003.bin": shard3,
                },
            )

    def test_checkpoint_sharding_local(self):
        model = BertModel.from_pretrained("hf-internal-testing/tiny-random-bert")

        with tempfile.TemporaryDirectory() as tmp_dir:
            # We use the same folder for various sizes to make sure a new save erases the old checkpoint.
            for max_size in ["50kB", "50kiB", "100kB", "100kiB", "200kB", "200kiB"]:
                model.save_pretrained(tmp_dir, max_shard_size=max_size)

                # Get each shard file and its size
                shard_to_size = {}
                for shard in os.listdir(tmp_dir):
                    if shard.endswith(".bin"):
                        shard_file = os.path.join(tmp_dir, shard)
                        shard_to_size[shard_file] = os.path.getsize(shard_file)

                index_file = os.path.join(tmp_dir, WEIGHTS_INDEX_NAME)
                # Check there is an index but no regular weight file
                self.assertTrue(os.path.isfile(index_file))
                self.assertFalse(os.path.isfile(os.path.join(tmp_dir, WEIGHTS_NAME)))

                # Check a file is bigger than max_size only when it has a single weight
                for shard_file, size in shard_to_size.items():
                    if max_size.endswith("kiB"):
                        max_size_int = int(max_size[:-3]) * 2**10
                    else:
                        max_size_int = int(max_size[:-2]) * 10**3
                    # Note: pickle adds some junk so the weight of the file can end up being slightly bigger than
                    # the size asked for (since we count parameters)
                    if size >= max_size_int + 50000:
                        state_dict = torch.load(shard_file)
                        self.assertEqual(len(state_dict), 1)

                # Check the index and the shard files found match
                with open(index_file, "r", encoding="utf-8") as f:
                    index = json.loads(f.read())

                all_shards = set(index["weight_map"].values())
                shards_found = set(f for f in os.listdir(tmp_dir) if f.endswith(".bin"))
                self.assertSetEqual(all_shards, shards_found)

                # Finally, check the model can be reloaded
                new_model = BertModel.from_pretrained(tmp_dir)
                for p1, p2 in zip(model.parameters(), new_model.parameters()):
                    self.assertTrue(torch.allclose(p1, p2))

    def test_checkpoint_sharding_from_hub(self):
        model = BertModel.from_pretrained("hf-internal-testing/tiny-random-bert-sharded")
        # the model above is the same as the model below, just a sharded version.
        ref_model = BertModel.from_pretrained("hf-internal-testing/tiny-random-bert")
        for p1, p2 in zip(model.parameters(), ref_model.parameters()):
            self.assertTrue(torch.allclose(p1, p2))

2548
2549
2550
2551
2552
2553
2554
2555
2556
2557
2558
2559
2560
2561
2562
2563
2564
2565
2566
2567
2568
2569
2570
2571
2572
2573
2574
2575
2576
2577
2578
2579
2580
2581
2582
2583
2584
2585
2586
2587
2588
2589
2590
2591
2592
2593
2594
2595
2596
2597
    def test_from_pretrained_low_cpu_mem_usage_functional(self):
        # test that we can use `from_pretrained(..., low_cpu_mem_usage=True)` with normal and
        # sharded models

        mnames = [
            "hf-internal-testing/tiny-random-bert-sharded",
            "hf-internal-testing/tiny-random-bert",
        ]
        for mname in mnames:
            _ = BertModel.from_pretrained(mname, low_cpu_mem_usage=True)

    @require_usr_bin_time
    def test_from_pretrained_low_cpu_mem_usage_measured(self):
        # test that `from_pretrained(..., low_cpu_mem_usage=True)` uses less cpu memory than default

        mname = "bert-base-cased"

        preamble = "from transformers import AutoModel"
        one_liner_str = f'{preamble}; AutoModel.from_pretrained("{mname}", low_cpu_mem_usage=False)'
        max_rss_normal = self.python_one_liner_max_rss(one_liner_str)
        # print(f"{max_rss_normal=}")

        one_liner_str = f'{preamble};  AutoModel.from_pretrained("{mname}", low_cpu_mem_usage=True)'
        max_rss_low_mem = self.python_one_liner_max_rss(one_liner_str)
        # print(f"{max_rss_low_mem=}")

        diff_bytes = max_rss_normal - max_rss_low_mem
        diff_percent = diff_bytes / max_rss_low_mem
        # print(f"{diff_bytes=}, {diff_percent=}")
        # ideally we would compare that the diff is close to ~1x checkpoint size in bytes, but
        # measuring cpu memory on linux is very tricky and inconsistent, so instead let's check that
        # it's at least 15% less cpu memory consumed

        self.assertGreater(
            diff_percent,
            0.15,
            "should use less CPU memory for low_cpu_mem_usage=True, "
            f"but got max_rss_normal={max_rss_normal} and max_rss_low_mem={max_rss_low_mem}",
        )

        # if you want to compare things manually, let's first look at the size of the model in bytes
        # model = BertModel.from_pretrained(mname, low_cpu_mem_usage=False)
        # total_numel = sum(dict((p.data_ptr(), p.numel()) for p in model.parameters()).values())
        # total_bytes = total_numel * 4  # 420MB
        # Now the diff_bytes should be very close to total_bytes, but the reports are inconsistent.
        # The easiest way to test this is to switch the model and torch.load to do all the work on
        # gpu - that way one can measure exactly the total and peak memory used. Perhaps once we add
        # functionality to load models directly on gpu, this test can be rewritten to use torch's
        # cuda memory tracking and then we should be able to do a much more precise test.

2598
2599
2600
2601
2602
2603
2604
2605
2606
2607
2608
2609
2610
2611
2612
2613
    def test_cached_files_are_used_when_internet_is_down(self):
        # A mock response for an HTTP head request to emulate server down
        response_mock = mock.Mock()
        response_mock.status_code = 500
        response_mock.headers = []
        response_mock.raise_for_status.side_effect = HTTPError

        # Download this model to make sure it's in the cache.
        _ = BertModel.from_pretrained("hf-internal-testing/tiny-random-bert")

        # Under the mock environment we get a 500 error when trying to reach the model.
        with mock.patch("transformers.utils.hub.requests.head", return_value=response_mock) as mock_head:
            _ = BertModel.from_pretrained("hf-internal-testing/tiny-random-bert")
            # This check we did call the fake head request
            mock_head.assert_called()

Sylvain Gugger's avatar
Sylvain Gugger committed
2614
2615
2616
2617
2618
2619

@require_torch
@is_staging_test
class ModelPushToHubTester(unittest.TestCase):
    @classmethod
    def setUpClass(cls):
2620
        cls._token = login(username=USER, password=PASS)
Sylvain Gugger's avatar
Sylvain Gugger committed
2621
2622
2623
2624

    @classmethod
    def tearDownClass(cls):
        try:
2625
            delete_repo(token=cls._token, name="test-model")
Sylvain Gugger's avatar
Sylvain Gugger committed
2626
2627
2628
2629
        except HTTPError:
            pass

        try:
2630
            delete_repo(token=cls._token, name="test-model-org", organization="valid_org")
Sylvain Gugger's avatar
Sylvain Gugger committed
2631
2632
2633
        except HTTPError:
            pass

2634
        try:
2635
            delete_repo(token=cls._token, name="test-dynamic-model")
2636
2637
2638
        except HTTPError:
            pass

2639
2640
2641
2642
2643
        try:
            delete_repo(token=cls._token, name="test-dynamic-model-config")
        except HTTPError:
            pass

Sylvain Gugger's avatar
Sylvain Gugger committed
2644
2645
2646
2647
2648
2649
    def test_push_to_hub(self):
        config = BertConfig(
            vocab_size=99, hidden_size=32, num_hidden_layers=5, num_attention_heads=4, intermediate_size=37
        )
        model = BertModel(config)
        with tempfile.TemporaryDirectory() as tmp_dir:
2650
            model.save_pretrained(os.path.join(tmp_dir, "test-model"), push_to_hub=True, use_auth_token=self._token)
Sylvain Gugger's avatar
Sylvain Gugger committed
2651
2652
2653
2654
2655
2656
2657
2658
2659
2660
2661
2662

            new_model = BertModel.from_pretrained(f"{USER}/test-model")
            for p1, p2 in zip(model.parameters(), new_model.parameters()):
                self.assertTrue(torch.equal(p1, p2))

    def test_push_to_hub_in_organization(self):
        config = BertConfig(
            vocab_size=99, hidden_size=32, num_hidden_layers=5, num_attention_heads=4, intermediate_size=37
        )
        model = BertModel(config)
        with tempfile.TemporaryDirectory() as tmp_dir:
            model.save_pretrained(
2663
                os.path.join(tmp_dir, "test-model-org"),
Sylvain Gugger's avatar
Sylvain Gugger committed
2664
2665
2666
2667
2668
2669
2670
2671
                push_to_hub=True,
                use_auth_token=self._token,
                organization="valid_org",
            )

            new_model = BertModel.from_pretrained("valid_org/test-model-org")
            for p1, p2 in zip(model.parameters(), new_model.parameters()):
                self.assertTrue(torch.equal(p1, p2))
2672
2673

    def test_push_to_hub_dynamic_model(self):
2674
2675
2676
2677
2678
        CustomConfig.register_for_auto_class()
        CustomModel.register_for_auto_class()

        config = CustomConfig(hidden_size=32)
        model = CustomModel(config)
2679
2680
2681
2682

        with tempfile.TemporaryDirectory() as tmp_dir:
            repo = Repository(tmp_dir, clone_from=f"{USER}/test-dynamic-model", use_auth_token=self._token)
            model.save_pretrained(tmp_dir)
2683
2684
2685
2686
2687
            # checks
            self.assertDictEqual(
                config.auto_map,
                {"AutoConfig": "custom_configuration.CustomConfig", "AutoModel": "custom_modeling.CustomModel"},
            )
2688
2689
2690
2691

            repo.push_to_hub()

        new_model = AutoModel.from_pretrained(f"{USER}/test-dynamic-model", trust_remote_code=True)
2692
2693
        # Can't make an isinstance check because the new_model is from the CustomModel class of a dynamic module
        self.assertEqual(new_model.__class__.__name__, "CustomModel")
2694
2695
        for p1, p2 in zip(model.parameters(), new_model.parameters()):
            self.assertTrue(torch.equal(p1, p2))
2696

2697
        config = AutoConfig.from_pretrained(f"{USER}/test-dynamic-model", trust_remote_code=True)
2698
        new_model = AutoModel.from_config(config, trust_remote_code=True)
2699
        self.assertEqual(new_model.__class__.__name__, "CustomModel")