test_modeling_common.py 159 KB
Newer Older
thomwolf's avatar
thomwolf committed
1
2
3
4
5
6
7
8
9
10
11
12
13
14
# coding=utf-8
# Copyright 2019 HuggingFace Inc.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
#     http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
Aymeric Augustin's avatar
Aymeric Augustin committed
15

16
import copy
17
import gc
18
import glob
19
import inspect
20
import json
21
import os
22
import os.path
23
import pickle
Aymeric Augustin's avatar
Aymeric Augustin committed
24
import random
25
import sys
26
import tempfile
thomwolf's avatar
thomwolf committed
27
import unittest
28
import unittest.mock as mock
29
import warnings
30
from pathlib import Path
NielsRogge's avatar
NielsRogge committed
31
from typing import Dict, List, Tuple
thomwolf's avatar
thomwolf committed
32

33
import numpy as np
34
from huggingface_hub import HfFolder, delete_repo
35
from huggingface_hub.file_download import http_get
36
from pytest import mark
Sylvain Gugger's avatar
Sylvain Gugger committed
37
from requests.exceptions import HTTPError
38
39

import transformers
40
41
42
43
44
45
46
47
from transformers import (
    AutoConfig,
    AutoModel,
    AutoModelForSequenceClassification,
    PretrainedConfig,
    is_torch_available,
    logging,
)
48
from transformers.models.auto import get_values
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
from transformers.models.auto.modeling_auto import (
    MODEL_FOR_AUDIO_CLASSIFICATION_MAPPING_NAMES,
    MODEL_FOR_AUDIO_XVECTOR_MAPPING_NAMES,
    MODEL_FOR_BACKBONE_MAPPING_NAMES,
    MODEL_FOR_CAUSAL_IMAGE_MODELING_MAPPING_NAMES,
    MODEL_FOR_CAUSAL_LM_MAPPING_NAMES,
    MODEL_FOR_DOCUMENT_QUESTION_ANSWERING_MAPPING_NAMES,
    MODEL_FOR_IMAGE_CLASSIFICATION_MAPPING_NAMES,
    MODEL_FOR_MASKED_IMAGE_MODELING_MAPPING_NAMES,
    MODEL_FOR_MASKED_LM_MAPPING_NAMES,
    MODEL_FOR_MULTIPLE_CHOICE_MAPPING_NAMES,
    MODEL_FOR_NEXT_SENTENCE_PREDICTION_MAPPING_NAMES,
    MODEL_FOR_QUESTION_ANSWERING_MAPPING_NAMES,
    MODEL_FOR_SEMANTIC_SEGMENTATION_MAPPING_NAMES,
    MODEL_FOR_SEQ_TO_SEQ_CAUSAL_LM_MAPPING_NAMES,
    MODEL_FOR_SEQUENCE_CLASSIFICATION_MAPPING_NAMES,
    MODEL_FOR_TOKEN_CLASSIFICATION_MAPPING_NAMES,
    MODEL_FOR_VIDEO_CLASSIFICATION_MAPPING_NAMES,
    MODEL_MAPPING_NAMES,
)
Sylvain Gugger's avatar
Sylvain Gugger committed
69
from transformers.testing_utils import (
70
    TOKEN,
Sylvain Gugger's avatar
Sylvain Gugger committed
71
72
    USER,
    CaptureLogger,
73
    TestCasePlus,
74
75
    is_pt_flax_cross_test,
    is_pt_tf_cross_test,
Sylvain Gugger's avatar
Sylvain Gugger committed
76
    is_staging_test,
77
    require_accelerate,
78
    require_safetensors,
Sylvain Gugger's avatar
Sylvain Gugger committed
79
    require_torch,
80
    require_torch_gpu,
Sylvain Gugger's avatar
Sylvain Gugger committed
81
    require_torch_multi_gpu,
82
    require_usr_bin_time,
Sylvain Gugger's avatar
Sylvain Gugger committed
83
84
85
    slow,
    torch_device,
)
86
from transformers.utils import (
87
88
    CONFIG_NAME,
    GENERATION_CONFIG_NAME,
89
90
    SAFE_WEIGHTS_INDEX_NAME,
    SAFE_WEIGHTS_NAME,
91
92
    WEIGHTS_INDEX_NAME,
    WEIGHTS_NAME,
93
    is_accelerate_available,
94
95
96
97
98
    is_flax_available,
    is_tf_available,
    is_torch_fx_available,
)
from transformers.utils.generic import ModelOutput
99

Aymeric Augustin's avatar
Aymeric Augustin committed
100

101
102
sys.path.append(str(Path(__file__).parent.parent / "utils"))

103
from test_module.custom_configuration import CustomConfig, NoSuperInitConfig  # noqa E402
104
105


106
107
108
109
if is_accelerate_available():
    from accelerate.utils import compute_module_sizes


110
if is_torch_available():
111
    import torch
112
    from test_module.custom_modeling import CustomModel, NoSuperInitModel
113
    from torch import nn
thomwolf's avatar
thomwolf committed
114

115
    from transformers import (
116
        BERT_PRETRAINED_MODEL_ARCHIVE_LIST,
117
        MODEL_MAPPING,
118
        AdaptiveEmbedding,
119
120
        AutoModelForCausalLM,
        AutoTokenizer,
121
122
        BertConfig,
        BertModel,
123
        CLIPTextModel,
124
        PreTrainedModel,
125
        T5Config,
126
        T5ForConditionalGeneration,
127
    )
Sylvain Gugger's avatar
Sylvain Gugger committed
128
    from transformers.modeling_utils import shard_checkpoint
thomwolf's avatar
thomwolf committed
129

Sylvain Gugger's avatar
Sylvain Gugger committed
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
    # Fake pretrained models for tests
    class BaseModel(PreTrainedModel):
        config_class = PretrainedConfig

        def __init__(self, config):
            super().__init__(config)
            self.linear = nn.Linear(4, 5)
            self.linear_2 = nn.Linear(5, 6)

        def forward(self, x):
            return self.linear_2(self.linear(x))

    class ModelWithHead(PreTrainedModel):
        base_model_prefix = "base"
        config_class = PretrainedConfig

        def _init_weights(self, module):
            pass

        def __init__(self, config):
            super().__init__(config)
            self.base = BaseModel(config)
            # linear is a common name between Base and Head on purpose.
            self.linear = nn.Linear(6, 3)
            self.linear2 = nn.Linear(3, 5)

        def forward(self, x):
            return self.linear2(self.linear(self.base(x)))


160
161
162
if is_tf_available():
    import tensorflow as tf

163
164
if is_flax_available():
    import jax.numpy as jnp
165

166
167
168
169
170
    from transformers.modeling_flax_pytorch_utils import (
        convert_pytorch_state_dict_to_flax,
        load_flax_weights_in_pytorch_model,
    )

171
if is_torch_fx_available():
172
    from transformers.utils.fx import symbolic_trace
173

174

175
176
177
def _config_zero_init(config):
    configs_no_init = copy.deepcopy(config)
    for key in configs_no_init.__dict__.keys():
178
        if "_range" in key or "_std" in key or "initializer_factor" in key or "layer_scale" in key:
Lysandre Debut's avatar
Lysandre Debut committed
179
            setattr(configs_no_init, key, 1e-10)
180
181
182
        if isinstance(getattr(configs_no_init, key, None), PretrainedConfig):
            no_init_subconfig = _config_zero_init(getattr(configs_no_init, key))
            setattr(configs_no_init, key, no_init_subconfig)
183
184
    return configs_no_init

thomwolf's avatar
thomwolf committed
185

186
TINY_T5 = "patrickvonplaten/t5-tiny-random"
187
TINY_BERT_FOR_TOKEN_CLASSIFICATION = "hf-internal-testing/tiny-bert-for-token-classification"
188
189


190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
def _mock_init_weights(self, module):
    for name, param in module.named_parameters(recurse=False):
        # Use the first letter of the name to get a value and go from a <> -13 to z <> 12
        value = ord(name[0].lower()) - 110
        param.data.fill_(value)


def _mock_all_init_weights(self):
    # Prune heads if needed
    if self.config.pruned_heads:
        self.prune_heads(self.config.pruned_heads)

    import transformers.modeling_utils

    if transformers.modeling_utils._init_weights:
        for module in self.modules():
            module._is_hf_initialized = False
        # Initialize weights
        self.apply(self._initialize_weights)

        # Tie weights should be skipped when not initializing all weights
        # since from_pretrained(...) calls tie weights anyways
        self.tie_weights()


215
216
217
218
@require_torch
class ModelTesterMixin:
    model_tester = None
    all_model_classes = ()
219
    all_generative_model_classes = ()
220
    fx_compatible = False
Patrick von Platen's avatar
Patrick von Platen committed
221
222
223
    test_torchscript = True
    test_pruning = True
    test_resize_embeddings = True
224
    test_resize_position_embeddings = False
Patrick von Platen's avatar
Patrick von Platen committed
225
    test_head_masking = True
226
    test_mismatched_shapes = True
227
    test_missing_keys = True
228
    test_model_parallel = False
229
    is_encoder_decoder = False
230
    has_attentions = True
231
    model_split_percents = [0.5, 0.7, 0.9]
232

233
234
    def _prepare_for_class(self, inputs_dict, model_class, return_labels=False):
        inputs_dict = copy.deepcopy(inputs_dict)
235
        if model_class.__name__ in get_values(MODEL_FOR_MULTIPLE_CHOICE_MAPPING_NAMES):
236
            inputs_dict = {
237
                k: v.unsqueeze(1).expand(-1, self.model_tester.num_choices, -1).contiguous()
238
                if isinstance(v, torch.Tensor) and v.ndim > 1
Sylvain Gugger's avatar
Sylvain Gugger committed
239
                else v
240
241
                for k, v in inputs_dict.items()
            }
242
        elif model_class.__name__ in get_values(MODEL_FOR_AUDIO_XVECTOR_MAPPING_NAMES):
243
            inputs_dict.pop("attention_mask")
244
245

        if return_labels:
246
            if model_class.__name__ in get_values(MODEL_FOR_MULTIPLE_CHOICE_MAPPING_NAMES):
247
                inputs_dict["labels"] = torch.ones(self.model_tester.batch_size, dtype=torch.long, device=torch_device)
248
249
250
            elif model_class.__name__ in [
                *get_values(MODEL_FOR_QUESTION_ANSWERING_MAPPING_NAMES),
                *get_values(MODEL_FOR_DOCUMENT_QUESTION_ANSWERING_MAPPING_NAMES),
251
            ]:
252
253
254
255
256
257
                inputs_dict["start_positions"] = torch.zeros(
                    self.model_tester.batch_size, dtype=torch.long, device=torch_device
                )
                inputs_dict["end_positions"] = torch.zeros(
                    self.model_tester.batch_size, dtype=torch.long, device=torch_device
                )
258
259
260
261
262
263
            elif model_class.__name__ in [
                *get_values(MODEL_FOR_SEQUENCE_CLASSIFICATION_MAPPING_NAMES),
                *get_values(MODEL_FOR_NEXT_SENTENCE_PREDICTION_MAPPING_NAMES),
                *get_values(MODEL_FOR_IMAGE_CLASSIFICATION_MAPPING_NAMES),
                *get_values(MODEL_FOR_VIDEO_CLASSIFICATION_MAPPING_NAMES),
                *get_values(MODEL_FOR_AUDIO_CLASSIFICATION_MAPPING_NAMES),
264
            ]:
265
266
267
                inputs_dict["labels"] = torch.zeros(
                    self.model_tester.batch_size, dtype=torch.long, device=torch_device
                )
268
269
270
271
272
273
            elif model_class.__name__ in [
                *get_values(MODEL_FOR_TOKEN_CLASSIFICATION_MAPPING_NAMES),
                *get_values(MODEL_FOR_CAUSAL_LM_MAPPING_NAMES),
                *get_values(MODEL_FOR_CAUSAL_IMAGE_MODELING_MAPPING_NAMES),
                *get_values(MODEL_FOR_MASKED_LM_MAPPING_NAMES),
                *get_values(MODEL_FOR_SEQ_TO_SEQ_CAUSAL_LM_MAPPING_NAMES),
274
275
276
277
            ]:
                inputs_dict["labels"] = torch.zeros(
                    (self.model_tester.batch_size, self.model_tester.seq_length), dtype=torch.long, device=torch_device
                )
278
            elif model_class.__name__ in get_values(MODEL_FOR_MASKED_IMAGE_MODELING_MAPPING_NAMES):
NielsRogge's avatar
NielsRogge committed
279
280
281
282
                num_patches = self.model_tester.image_size // self.model_tester.patch_size
                inputs_dict["bool_masked_pos"] = torch.zeros(
                    (self.model_tester.batch_size, num_patches**2), dtype=torch.long, device=torch_device
                )
283
            elif model_class.__name__ in get_values(MODEL_FOR_SEMANTIC_SEGMENTATION_MAPPING_NAMES):
NielsRogge's avatar
NielsRogge committed
284
285
286
287
                batch_size, num_channels, height, width = inputs_dict["pixel_values"].shape
                inputs_dict["labels"] = torch.zeros(
                    [self.model_tester.batch_size, height, width], device=torch_device
                ).long()
288

289
290
        return inputs_dict

Patrick von Platen's avatar
Patrick von Platen committed
291
    def test_save_load(self):
292
293
        config, inputs_dict = self.model_tester.prepare_config_and_inputs_for_common()

294
295
296
297
298
299
300
301
302
303
        def check_save_load(out1, out2):
            # make sure we don't have nans
            out_2 = out2.cpu().numpy()
            out_2[np.isnan(out_2)] = 0

            out_1 = out1.cpu().numpy()
            out_1[np.isnan(out_1)] = 0
            max_diff = np.amax(np.abs(out_1 - out_2))
            self.assertLessEqual(max_diff, 1e-5)

304
305
306
307
308
        for model_class in self.all_model_classes:
            model = model_class(config)
            model.to(torch_device)
            model.eval()
            with torch.no_grad():
309
                first = model(**self._prepare_for_class(inputs_dict, model_class))[0]
310

311
            with tempfile.TemporaryDirectory() as tmpdirname:
312
                model.save_pretrained(tmpdirname)
313
314
315
316
317
318
319

                # the config file (and the generation config file, if it can generate) should be saved
                self.assertTrue(os.path.exists(os.path.join(tmpdirname, CONFIG_NAME)))
                self.assertEqual(
                    model.can_generate(), os.path.exists(os.path.join(tmpdirname, GENERATION_CONFIG_NAME))
                )

320
                model = model_class.from_pretrained(tmpdirname)
321
                model.to(torch_device)
322
                with torch.no_grad():
323
                    second = model(**self._prepare_for_class(inputs_dict, model_class))[0]
thomwolf's avatar
thomwolf committed
324

325
326
327
328
329
            if isinstance(first, tuple) and isinstance(second, tuple):
                for tensor1, tensor2 in zip(first, second):
                    check_save_load(tensor1, tensor2)
            else:
                check_save_load(first, second)
330

331
332
333
334
335
336
337
338
339
340
341
342
    def test_from_pretrained_no_checkpoint(self):
        config, _ = self.model_tester.prepare_config_and_inputs_for_common()
        for model_class in self.all_model_classes:
            model = model_class(config)
            state_dict = model.state_dict()

            new_model = model_class.from_pretrained(
                pretrained_model_name_or_path=None, config=config, state_dict=state_dict
            )
            for p1, p2 in zip(model.parameters(), new_model.parameters()):
                self.assertTrue(torch.equal(p1, p2))

343
    def test_save_load_keys_to_ignore_on_save(self):
344
345
346
347
        config, inputs_dict = self.model_tester.prepare_config_and_inputs_for_common()

        for model_class in self.all_model_classes:
            model = model_class(config)
348
349
            _keys_to_ignore_on_save = getattr(model, "_keys_to_ignore_on_save", None)
            if _keys_to_ignore_on_save is None:
350
351
352
                continue

            # check the keys are in the original state_dict
353
            for k in _keys_to_ignore_on_save:
354
                self.assertIn(k, model.state_dict().keys(), "\n".join(model.state_dict().keys()))
355
356
357
358
359
360

            # check that certain keys didn't get saved with the model
            with tempfile.TemporaryDirectory() as tmpdirname:
                model.save_pretrained(tmpdirname)
                output_model_file = os.path.join(tmpdirname, WEIGHTS_NAME)
                state_dict_saved = torch.load(output_model_file)
361
                for k in _keys_to_ignore_on_save:
362
                    self.assertNotIn(k, state_dict_saved.keys(), "\n".join(state_dict_saved.keys()))
363

Sylvain Gugger's avatar
Sylvain Gugger committed
364
365
366
                # Test we can load the state dict in the model, necessary for the checkpointing API in Trainer.
                load_result = model.load_state_dict(state_dict_saved, strict=False)
                self.assertTrue(
367
368
                    len(load_result.missing_keys) == 0
                    or set(load_result.missing_keys) == set(model._keys_to_ignore_on_save)
Sylvain Gugger's avatar
Sylvain Gugger committed
369
370
371
                )
                self.assertTrue(len(load_result.unexpected_keys) == 0)

372
373
374
375
376
377
378
379
380
381
382
    def test_gradient_checkpointing_backward_compatibility(self):
        config, inputs_dict = self.model_tester.prepare_config_and_inputs_for_common()

        for model_class in self.all_model_classes:
            if not model_class.supports_gradient_checkpointing:
                continue

            config.gradient_checkpointing = True
            model = model_class(config)
            self.assertTrue(model.is_gradient_checkpointing)

383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
    def test_gradient_checkpointing_enable_disable(self):
        config, inputs_dict = self.model_tester.prepare_config_and_inputs_for_common()

        for model_class in self.all_model_classes:
            if not model_class.supports_gradient_checkpointing:
                continue

            # at init model should have gradient checkpointing disabled
            model = model_class(config)
            self.assertFalse(model.is_gradient_checkpointing)

            # check enable works
            model.gradient_checkpointing_enable()
            self.assertTrue(model.is_gradient_checkpointing)

            # check disable works
            model.gradient_checkpointing_disable()
            self.assertFalse(model.is_gradient_checkpointing)

402
403
    def test_save_load_fast_init_from_base(self):
        config, inputs_dict = self.model_tester.prepare_config_and_inputs_for_common()
404
405
        if config.__class__ not in MODEL_MAPPING:
            return
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
        base_class = MODEL_MAPPING[config.__class__]

        if isinstance(base_class, tuple):
            base_class = base_class[0]

        for model_class in self.all_model_classes:
            if model_class == base_class:
                continue

            # make a copy of model class to not break future tests
            # from https://stackoverflow.com/questions/9541025/how-to-copy-a-python-class
            class CopyClass(model_class):
                pass

            model_class_copy = CopyClass

            # make sure that all keys are expected for test
            model_class_copy._keys_to_ignore_on_load_missing = []

            # make init deterministic, but make sure that
            # non-initialized weights throw errors nevertheless
427
428
            model_class_copy._init_weights = _mock_init_weights
            model_class_copy.init_weights = _mock_all_init_weights
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444

            model = base_class(config)
            state_dict = model.state_dict()

            # this will often delete a single weight of a multi-weight module
            # to test an edge case
            random_key_to_del = random.choice(list(state_dict.keys()))
            del state_dict[random_key_to_del]

            # check that certain keys didn't get saved with the model
            with tempfile.TemporaryDirectory() as tmpdirname:
                model.save_pretrained(tmpdirname)
                torch.save(state_dict, os.path.join(tmpdirname, "pytorch_model.bin"))

                model_fast_init = model_class_copy.from_pretrained(tmpdirname)
                model_slow_init = model_class_copy.from_pretrained(tmpdirname, _fast_init=False)
445
                # Before we test anything
446
447

                for key in model_fast_init.state_dict().keys():
448
449
450
451
452
                    if isinstance(model_slow_init.state_dict()[key], torch.BoolTensor):
                        max_diff = (model_slow_init.state_dict()[key] ^ model_fast_init.state_dict()[key]).sum().item()
                    else:
                        max_diff = (model_slow_init.state_dict()[key] - model_fast_init.state_dict()[key]).sum().item()
                    self.assertLessEqual(max_diff, 1e-3, msg=f"{key} not identical")
453
454
455

    def test_save_load_fast_init_to_base(self):
        config, inputs_dict = self.model_tester.prepare_config_and_inputs_for_common()
456
457
        if config.__class__ not in MODEL_MAPPING:
            return
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
        base_class = MODEL_MAPPING[config.__class__]

        if isinstance(base_class, tuple):
            base_class = base_class[0]

        for model_class in self.all_model_classes:
            if model_class == base_class:
                continue

            # make a copy of model class to not break future tests
            # from https://stackoverflow.com/questions/9541025/how-to-copy-a-python-class
            class CopyClass(base_class):
                pass

            base_class_copy = CopyClass

            # make sure that all keys are expected for test
            base_class_copy._keys_to_ignore_on_load_missing = []

            # make init deterministic, but make sure that
            # non-initialized weights throw errors nevertheless
479
480
            base_class_copy._init_weights = _mock_init_weights
            base_class_copy.init_weights = _mock_all_init_weights
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498

            model = model_class(config)
            state_dict = model.state_dict()

            # this will often delete a single weight of a multi-weight module
            # to test an edge case
            random_key_to_del = random.choice(list(state_dict.keys()))
            del state_dict[random_key_to_del]

            # check that certain keys didn't get saved with the model
            with tempfile.TemporaryDirectory() as tmpdirname:
                model.config.save_pretrained(tmpdirname)
                torch.save(state_dict, os.path.join(tmpdirname, "pytorch_model.bin"))

                model_fast_init = base_class_copy.from_pretrained(tmpdirname)
                model_slow_init = base_class_copy.from_pretrained(tmpdirname, _fast_init=False)

                for key in model_fast_init.state_dict().keys():
499
500
501
502
503
504
505
506
507
                    if isinstance(model_slow_init.state_dict()[key], torch.BoolTensor):
                        max_diff = torch.max(
                            model_slow_init.state_dict()[key] ^ model_fast_init.state_dict()[key]
                        ).item()
                    else:
                        max_diff = torch.max(
                            torch.abs(model_slow_init.state_dict()[key] - model_fast_init.state_dict()[key])
                        ).item()
                    self.assertLessEqual(max_diff, 1e-3, msg=f"{key} not identical")
508

Patrick von Platen's avatar
Patrick von Platen committed
509
    def test_initialization(self):
510
511
512
513
514
515
516
517
        config, inputs_dict = self.model_tester.prepare_config_and_inputs_for_common()

        configs_no_init = _config_zero_init(config)
        for model_class in self.all_model_classes:
            model = model_class(config=configs_no_init)
            for name, param in model.named_parameters():
                if param.requires_grad:
                    self.assertIn(
Lysandre Debut's avatar
Lysandre Debut committed
518
                        ((param.data.mean() * 1e9).round() / 1e9).item(),
519
                        [0.0, 1.0],
520
                        msg=f"Parameter {name} of model {model_class} seems not properly initialized",
521
                    )
thomwolf's avatar
thomwolf committed
522

Patrick von Platen's avatar
Patrick von Platen committed
523
    def test_determinism(self):
524
        config, inputs_dict = self.model_tester.prepare_config_and_inputs_for_common()
525
526
527
528
529
530
531
532
533

        def check_determinism(first, second):
            out_1 = first.cpu().numpy()
            out_2 = second.cpu().numpy()
            out_1 = out_1[~np.isnan(out_1)]
            out_2 = out_2[~np.isnan(out_2)]
            max_diff = np.amax(np.abs(out_1 - out_2))
            self.assertLessEqual(max_diff, 1e-5)

534
535
536
537
538
        for model_class in self.all_model_classes:
            model = model_class(config)
            model.to(torch_device)
            model.eval()
            with torch.no_grad():
539
540
                first = model(**self._prepare_for_class(inputs_dict, model_class))[0]
                second = model(**self._prepare_for_class(inputs_dict, model_class))[0]
Weizhen's avatar
Weizhen committed
541

542
543
544
545
546
            if isinstance(first, tuple) and isinstance(second, tuple):
                for tensor1, tensor2 in zip(first, second):
                    check_determinism(tensor1, tensor2)
            else:
                check_determinism(first, second)
547

548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
    def test_forward_signature(self):
        config, _ = self.model_tester.prepare_config_and_inputs_for_common()

        for model_class in self.all_model_classes:
            model = model_class(config)
            signature = inspect.signature(model.forward)
            # signature.parameters is an OrderedDict => so arg_names order is deterministic
            arg_names = [*signature.parameters.keys()]

            if model.config.is_encoder_decoder:
                expected_arg_names = [
                    "input_ids",
                    "attention_mask",
                    "decoder_input_ids",
                    "decoder_attention_mask",
                ]
564
                expected_arg_names.extend(
565
566
                    ["head_mask", "decoder_head_mask", "cross_attn_head_mask", "encoder_outputs"]
                    if "head_mask" and "decoder_head_mask" and "cross_attn_head_mask" in arg_names
567
568
569
                    else ["encoder_outputs"]
                )
                self.assertListEqual(arg_names[: len(expected_arg_names)], expected_arg_names)
570
571
572
573
            else:
                expected_arg_names = ["input_ids"]
                self.assertListEqual(arg_names[:1], expected_arg_names)

574
575
576
577
578
    def test_training(self):
        if not self.model_tester.is_training:
            return

        for model_class in self.all_model_classes:
579
580
581
            config, inputs_dict = self.model_tester.prepare_config_and_inputs_for_common()
            config.return_dict = True

582
583
584
            if model_class.__name__ in [
                *get_values(MODEL_MAPPING_NAMES),
                *get_values(MODEL_FOR_BACKBONE_MAPPING_NAMES),
585
            ]:
586
                continue
587

588
589
590
591
592
593
594
595
            model = model_class(config)
            model.to(torch_device)
            model.train()
            inputs = self._prepare_for_class(inputs_dict, model_class, return_labels=True)
            loss = model(**inputs).loss
            loss.backward()

    def test_training_gradient_checkpointing(self):
596
        if not self.model_tester.is_training:
597
598
599
            return

        for model_class in self.all_model_classes:
600
601
602
603
            config, inputs_dict = self.model_tester.prepare_config_and_inputs_for_common()
            config.use_cache = False
            config.return_dict = True

604
            if (
605
606
                model_class.__name__
                in [*get_values(MODEL_MAPPING_NAMES), *get_values(MODEL_FOR_BACKBONE_MAPPING_NAMES)]
607
608
                or not model_class.supports_gradient_checkpointing
            ):
609
610
611
                continue
            model = model_class(config)
            model.to(torch_device)
612
            model.gradient_checkpointing_enable()
613
614
615
616
617
            model.train()
            inputs = self._prepare_for_class(inputs_dict, model_class, return_labels=True)
            loss = model(**inputs).loss
            loss.backward()

Patrick von Platen's avatar
Patrick von Platen committed
618
    def test_attention_outputs(self):
619
620
621
        if not self.has_attentions:
            self.skipTest(reason="Model does not output attentions")

622
623
        config, inputs_dict = self.model_tester.prepare_config_and_inputs_for_common()
        config.return_dict = True
624

625
626
627
628
629
630
631
632
633
634
635
636
        seq_len = getattr(self.model_tester, "seq_length", None)
        decoder_seq_length = getattr(self.model_tester, "decoder_seq_length", seq_len)
        encoder_seq_length = getattr(self.model_tester, "encoder_seq_length", seq_len)
        decoder_key_length = getattr(self.model_tester, "decoder_key_length", decoder_seq_length)
        encoder_key_length = getattr(self.model_tester, "key_length", encoder_seq_length)
        chunk_length = getattr(self.model_tester, "chunk_length", None)
        if chunk_length is not None and hasattr(self.model_tester, "num_hashes"):
            encoder_seq_length = encoder_seq_length * self.model_tester.num_hashes

        for model_class in self.all_model_classes:
            inputs_dict["output_attentions"] = True
            inputs_dict["output_hidden_states"] = False
637
            config.return_dict = True
638
639
640
641
642
643
644
            model = model_class(config)
            model.to(torch_device)
            model.eval()
            with torch.no_grad():
                outputs = model(**self._prepare_for_class(inputs_dict, model_class))
            attentions = outputs.encoder_attentions if config.is_encoder_decoder else outputs.attentions
            self.assertEqual(len(attentions), self.model_tester.num_hidden_layers)
645

646
647
648
649
650
651
652
653
654
655
            # check that output_attentions also work using config
            del inputs_dict["output_attentions"]
            config.output_attentions = True
            model = model_class(config)
            model.to(torch_device)
            model.eval()
            with torch.no_grad():
                outputs = model(**self._prepare_for_class(inputs_dict, model_class))
            attentions = outputs.encoder_attentions if config.is_encoder_decoder else outputs.attentions
            self.assertEqual(len(attentions), self.model_tester.num_hidden_layers)
thomwolf's avatar
thomwolf committed
656

657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
            if chunk_length is not None:
                self.assertListEqual(
                    list(attentions[0].shape[-4:]),
                    [self.model_tester.num_attention_heads, encoder_seq_length, chunk_length, encoder_key_length],
                )
            else:
                self.assertListEqual(
                    list(attentions[0].shape[-3:]),
                    [self.model_tester.num_attention_heads, encoder_seq_length, encoder_key_length],
                )
            out_len = len(outputs)

            if self.is_encoder_decoder:
                correct_outlen = 5

                # loss is at first position
                if "labels" in inputs_dict:
                    correct_outlen += 1  # loss is added to beginning
                # Question Answering model returns start_logits and end_logits
676
677
678
                if model_class.__name__ in [
                    *get_values(MODEL_FOR_QUESTION_ANSWERING_MAPPING_NAMES),
                    *get_values(MODEL_FOR_DOCUMENT_QUESTION_ANSWERING_MAPPING_NAMES),
679
                ]:
680
681
682
683
684
685
686
687
688
689
690
691
692
693
                    correct_outlen += 1  # start_logits and end_logits instead of only 1 output
                if "past_key_values" in outputs:
                    correct_outlen += 1  # past_key_values have been returned

                self.assertEqual(out_len, correct_outlen)

                # decoder attentions
                decoder_attentions = outputs.decoder_attentions
                self.assertIsInstance(decoder_attentions, (list, tuple))
                self.assertEqual(len(decoder_attentions), self.model_tester.num_hidden_layers)
                self.assertListEqual(
                    list(decoder_attentions[0].shape[-3:]),
                    [self.model_tester.num_attention_heads, decoder_seq_length, decoder_key_length],
                )
694

695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
                # cross attentions
                cross_attentions = outputs.cross_attentions
                self.assertIsInstance(cross_attentions, (list, tuple))
                self.assertEqual(len(cross_attentions), self.model_tester.num_hidden_layers)
                self.assertListEqual(
                    list(cross_attentions[0].shape[-3:]),
                    [
                        self.model_tester.num_attention_heads,
                        decoder_seq_length,
                        encoder_key_length,
                    ],
                )

            # Check attention is always last and order is fine
            inputs_dict["output_attentions"] = True
            inputs_dict["output_hidden_states"] = True
            model = model_class(config)
            model.to(torch_device)
            model.eval()
            with torch.no_grad():
                outputs = model(**self._prepare_for_class(inputs_dict, model_class))

            if hasattr(self.model_tester, "num_hidden_states_types"):
                added_hidden_states = self.model_tester.num_hidden_states_types
            elif self.is_encoder_decoder:
                added_hidden_states = 2
            else:
                added_hidden_states = 1
            self.assertEqual(out_len + added_hidden_states, len(outputs))

            self_attentions = outputs.encoder_attentions if config.is_encoder_decoder else outputs.attentions

            self.assertEqual(len(self_attentions), self.model_tester.num_hidden_layers)
            if chunk_length is not None:
                self.assertListEqual(
                    list(self_attentions[0].shape[-4:]),
                    [self.model_tester.num_attention_heads, encoder_seq_length, chunk_length, encoder_key_length],
                )
            else:
                self.assertListEqual(
                    list(self_attentions[0].shape[-3:]),
                    [self.model_tester.num_attention_heads, encoder_seq_length, encoder_key_length],
                )
thomwolf's avatar
thomwolf committed
738

739
    @slow
740
    def test_torchscript_simple(self):
741
742
        config, inputs_dict = self.model_tester.prepare_config_and_inputs_for_common()
        self._create_and_check_torchscript(config, inputs_dict)
thomwolf's avatar
thomwolf committed
743

744
    @slow
Patrick von Platen's avatar
Patrick von Platen committed
745
    def test_torchscript_output_attentions(self):
746
747
748
        config, inputs_dict = self.model_tester.prepare_config_and_inputs_for_common()
        config.output_attentions = True
        self._create_and_check_torchscript(config, inputs_dict)
thomwolf's avatar
thomwolf committed
749

750
    @slow
Patrick von Platen's avatar
Patrick von Platen committed
751
    def test_torchscript_output_hidden_state(self):
752
753
754
        config, inputs_dict = self.model_tester.prepare_config_and_inputs_for_common()
        config.output_hidden_states = True
        self._create_and_check_torchscript(config, inputs_dict)
thomwolf's avatar
thomwolf committed
755

756
757
758
759
    # This is copied from `torch/testing/_internal/jit_utils.py::clear_class_registry`
    def clear_torch_jit_class_registry(self):
        torch._C._jit_clear_class_registry()
        torch.jit._recursive.concrete_type_store = torch.jit._recursive.ConcreteTypeStore()
760
761
762
        # torch 1.8 has no `_clear_class_state` in `torch.jit._state`
        if hasattr(torch.jit._state, "_clear_class_state"):
            torch.jit._state._clear_class_state()
763

764
    def _create_and_check_torchscript(self, config, inputs_dict):
Patrick von Platen's avatar
Patrick von Platen committed
765
        if not self.test_torchscript:
766
            return
767

768
769
770
771
772
773
        configs_no_init = _config_zero_init(config)  # To be sure we have no Nan
        configs_no_init.torchscript = True
        for model_class in self.all_model_classes:
            model = model_class(config=configs_no_init)
            model.to(torch_device)
            model.eval()
774
            inputs = self._prepare_for_class(inputs_dict, model_class)
thomwolf's avatar
thomwolf committed
775

776
777
            main_input_name = model_class.main_input_name

778
            try:
779
                if model.config.is_encoder_decoder:
780
                    model.config.use_cache = False  # FSTM still requires this hack -> FSTM should probably be refactored similar to BART afterward
781
                    main_input = inputs[main_input_name]
782
783
784
                    attention_mask = inputs["attention_mask"]
                    decoder_input_ids = inputs["decoder_input_ids"]
                    decoder_attention_mask = inputs["decoder_attention_mask"]
785
                    model(main_input, attention_mask, decoder_input_ids, decoder_attention_mask)
786
                    traced_model = torch.jit.trace(
787
                        model, (main_input, attention_mask, decoder_input_ids, decoder_attention_mask)
788
                    )
789
790
791
792
                elif "bbox" in inputs and "image" in inputs:  # LayoutLMv2 requires additional inputs
                    input_ids = inputs["input_ids"]
                    bbox = inputs["bbox"]
                    image = inputs["image"].tensor
793
                    model(input_ids, bbox, image)
794
795
796
                    traced_model = torch.jit.trace(
                        model, (input_ids, bbox, image), check_trace=False
                    )  # when traced model is checked, an error is produced due to name mangling
797
                else:
798
                    main_input = inputs[main_input_name]
799
                    model(main_input)
800
                    traced_model = torch.jit.trace(model, main_input)
801
802
            except RuntimeError:
                self.fail("Couldn't trace module.")
thomwolf's avatar
thomwolf committed
803

804
            with tempfile.TemporaryDirectory() as tmp_dir_name:
805
                pt_file_name = os.path.join(tmp_dir_name, "traced_model.pt")
thomwolf's avatar
thomwolf committed
806

807
                try:
808
                    torch.jit.save(traced_model, pt_file_name)
809
810
                except Exception:
                    self.fail("Couldn't save module.")
thomwolf's avatar
thomwolf committed
811

812
813
814
815
                try:
                    loaded_model = torch.jit.load(pt_file_name)
                except Exception:
                    self.fail("Couldn't load module.")
LysandreJik's avatar
LysandreJik committed
816

817
818
            model.to(torch_device)
            model.eval()
thomwolf's avatar
thomwolf committed
819

820
821
            loaded_model.to(torch_device)
            loaded_model.eval()
thomwolf's avatar
thomwolf committed
822

823
824
825
            model_state_dict = model.state_dict()
            loaded_model_state_dict = loaded_model.state_dict()

826
827
828
829
830
831
832
833
834
            non_persistent_buffers = {}
            for key in loaded_model_state_dict.keys():
                if key not in model_state_dict.keys():
                    non_persistent_buffers[key] = loaded_model_state_dict[key]

            loaded_model_state_dict = {
                key: value for key, value in loaded_model_state_dict.items() if key not in non_persistent_buffers
            }

835
            self.assertEqual(set(model_state_dict.keys()), set(loaded_model_state_dict.keys()))
thomwolf's avatar
thomwolf committed
836

837
838
839
840
841
842
843
844
845
846
847
            model_buffers = list(model.buffers())
            for non_persistent_buffer in non_persistent_buffers.values():
                found_buffer = False
                for i, model_buffer in enumerate(model_buffers):
                    if torch.equal(non_persistent_buffer, model_buffer):
                        found_buffer = True
                        break

                self.assertTrue(found_buffer)
                model_buffers.pop(i)

848
            models_equal = True
849
            for layer_name, p1 in model_state_dict.items():
850
851
852
853
                if layer_name in loaded_model_state_dict:
                    p2 = loaded_model_state_dict[layer_name]
                    if p1.data.ne(p2.data).sum() > 0:
                        models_equal = False
thomwolf's avatar
thomwolf committed
854

855
            self.assertTrue(models_equal)
thomwolf's avatar
thomwolf committed
856

857
858
859
860
            # Avoid memory leak. Without this, each call increase RAM usage by ~20MB.
            # (Even with this call, there are still memory leak by ~0.04MB)
            self.clear_torch_jit_class_registry()

861
862
863
864
865
866
867
868
    def test_torch_fx(self):
        config, inputs_dict = self.model_tester.prepare_config_and_inputs_for_common()
        self._create_and_check_torch_fx_tracing(config, inputs_dict)

    def test_torch_fx_output_loss(self):
        config, inputs_dict = self.model_tester.prepare_config_and_inputs_for_common()
        self._create_and_check_torch_fx_tracing(config, inputs_dict, output_loss=True)

869
870
    def _create_and_check_torch_fx_tracing(self, config, inputs_dict, output_loss=False):
        if not is_torch_fx_available() or not self.fx_compatible:
871
872
873
874
875
            return

        configs_no_init = _config_zero_init(config)  # To be sure we have no Nan
        configs_no_init.return_dict = False

876
        for model_class in self.all_model_classes:
877
878
879
880
881
882
883
884
885
            model = model_class(config=configs_no_init)
            model.to(torch_device)
            model.eval()
            inputs = self._prepare_for_class(inputs_dict, model_class, return_labels=output_loss)

            try:
                if model.config.is_encoder_decoder:
                    model.config.use_cache = False  # FSTM still requires this hack -> FSTM should probably be refactored similar to BART afterward
                    labels = inputs.get("labels", None)
886
887
888
                    input_names = [
                        "attention_mask",
                        "decoder_attention_mask",
889
                        "decoder_input_ids",
890
                        "input_features",
891
892
                        "input_ids",
                        "input_values",
893
                    ]
894
895
                    if labels is not None:
                        input_names.append("labels")
896

897
                    filtered_inputs = {k: v for (k, v) in inputs.items() if k in input_names}
898
                    input_names = list(filtered_inputs.keys())
899

900
                    model_output = model(**filtered_inputs)
901

902
                    traced_model = symbolic_trace(model, input_names)
903
                    traced_output = traced_model(**filtered_inputs)
904
                else:
905
906
907
908
                    input_names = [
                        "attention_mask",
                        "bbox",
                        "input_features",
909
910
911
912
913
914
                        "input_ids",
                        "input_values",
                        "pixel_values",
                        "token_type_ids",
                        "visual_feats",
                        "visual_pos",
915
                    ]
916

917
                    labels = inputs.get("labels", None)
918
919
                    start_positions = inputs.get("start_positions", None)
                    end_positions = inputs.get("end_positions", None)
920
921
                    if labels is not None:
                        input_names.append("labels")
922
923
924
925
                    if start_positions is not None:
                        input_names.append("start_positions")
                    if end_positions is not None:
                        input_names.append("end_positions")
926

927
                    filtered_inputs = {k: v for (k, v) in inputs.items() if k in input_names}
928
                    input_names = list(filtered_inputs.keys())
929

930
                    if model.__class__.__name__ in set(MODEL_FOR_SEQUENCE_CLASSIFICATION_MAPPING_NAMES.values()) and (
931
                        not hasattr(model.config, "problem_type") or model.config.problem_type is None
932
933
934
                    ):
                        model.config.problem_type = "single_label_classification"

935
                    traced_model = symbolic_trace(model, input_names)
936
                    traced_output = traced_model(**filtered_inputs)
937
                    model_output = model(**filtered_inputs)
938

939
            except Exception as e:
940
                self.fail(f"Couldn't trace module: {e}")
941

942
943
944
945
946
947
948
949
950
951
952
953
954
            def flatten_output(output):
                flatten = []
                for x in output:
                    if isinstance(x, (tuple, list)):
                        flatten += flatten_output(x)
                    elif not isinstance(x, torch.Tensor):
                        continue
                    else:
                        flatten.append(x)
                return flatten

            model_output = flatten_output(model_output)
            traced_output = flatten_output(traced_output)
955
            num_outputs = len(model_output)
956
957
958
959
960
961

            for i in range(num_outputs):
                self.assertTrue(
                    torch.allclose(model_output[i], traced_output[i]),
                    f"traced {i}th output doesn't match model {i}th output for {model_class}",
                )
962

963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
            # Test that the model can be serialized and restored properly
            with tempfile.TemporaryDirectory() as tmp_dir_name:
                pkl_file_name = os.path.join(tmp_dir_name, "model.pkl")
                try:
                    with open(pkl_file_name, "wb") as f:
                        pickle.dump(traced_model, f)
                    with open(pkl_file_name, "rb") as f:
                        loaded = pickle.load(f)
                except Exception as e:
                    self.fail(f"Couldn't serialize / deserialize the traced model: {e}")

                loaded_output = loaded(**filtered_inputs)
                loaded_output = flatten_output(loaded_output)

                for i in range(num_outputs):
                    self.assertTrue(
                        torch.allclose(model_output[i], loaded_output[i]),
                        f"serialized model {i}th output doesn't match model {i}th output for {model_class}",
                    )

983
984
985
986
            # Avoid memory leak. Without this, each call increase RAM usage by ~20MB.
            # (Even with this call, there are still memory leak by ~0.04MB)
            self.clear_torch_jit_class_registry()

Patrick von Platen's avatar
Patrick von Platen committed
987
988
    def test_headmasking(self):
        if not self.test_head_masking:
989
            return
990

991
992
993
        global_rng.seed(42)
        config, inputs_dict = self.model_tester.prepare_config_and_inputs_for_common()
        global_rng.seed()
LysandreJik's avatar
LysandreJik committed
994

995
        inputs_dict["output_attentions"] = True
996
997
998
999
1000
1001
        config.output_hidden_states = True
        configs_no_init = _config_zero_init(config)  # To be sure we have no Nan
        for model_class in self.all_model_classes:
            model = model_class(config=configs_no_init)
            model.to(torch_device)
            model.eval()
LysandreJik's avatar
LysandreJik committed
1002

1003
1004
1005
            # Prepare head_mask
            # Set require_grad after having prepared the tensor to avoid error (leaf variable has been moved into the graph interior)
            head_mask = torch.ones(
Lysandre's avatar
Lysandre committed
1006
1007
1008
                self.model_tester.num_hidden_layers,
                self.model_tester.num_attention_heads,
                device=torch_device,
1009
1010
1011
1012
            )
            head_mask[0, 0] = 0
            head_mask[-1, :-1] = 0
            head_mask.requires_grad_(requires_grad=True)
1013
            inputs = self._prepare_for_class(inputs_dict, model_class).copy()
1014
            inputs["head_mask"] = head_mask
1015
1016
1017
1018
1019
            if model.config.is_encoder_decoder:
                signature = inspect.signature(model.forward)
                arg_names = [*signature.parameters.keys()]
                if "decoder_head_mask" in arg_names:  # necessary diferentiation because of T5 model
                    inputs["decoder_head_mask"] = head_mask
1020
1021
                if "cross_attn_head_mask" in arg_names:
                    inputs["cross_attn_head_mask"] = head_mask
1022
            outputs = model(**inputs, return_dict=True)
1023
1024
1025
1026
1027
1028
1029
1030
1031

            # Test that we can get a gradient back for importance score computation
            output = sum(t.sum() for t in outputs[0])
            output = output.sum()
            output.backward()
            multihead_outputs = head_mask.grad

            self.assertIsNotNone(multihead_outputs)
            self.assertEqual(len(multihead_outputs), self.model_tester.num_hidden_layers)
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052

            def check_attentions_validity(attentions):
                # Remove Nan
                for t in attentions:
                    self.assertLess(
                        torch.sum(torch.isnan(t)), t.numel() / 4
                    )  # Check we don't have more than 25% nans (arbitrary)
                attentions = [
                    t.masked_fill(torch.isnan(t), 0.0) for t in attentions
                ]  # remove them (the test is less complete)

                self.assertAlmostEqual(attentions[0][..., 0, :, :].flatten().sum().item(), 0.0)
                self.assertNotEqual(attentions[0][..., -1, :, :].flatten().sum().item(), 0.0)
                if len(attentions) > 2:  # encoder-decoder models have only 2 layers in each module
                    self.assertNotEqual(attentions[1][..., 0, :, :].flatten().sum().item(), 0.0)
                self.assertAlmostEqual(attentions[-1][..., -2, :, :].flatten().sum().item(), 0.0)
                self.assertNotEqual(attentions[-1][..., -1, :, :].flatten().sum().item(), 0.0)

            if model.config.is_encoder_decoder:
                check_attentions_validity(outputs.encoder_attentions)
                check_attentions_validity(outputs.decoder_attentions)
1053
                check_attentions_validity(outputs.cross_attentions)
1054
1055
            else:
                check_attentions_validity(outputs.attentions)
1056

Patrick von Platen's avatar
Patrick von Platen committed
1057
1058
    def test_head_pruning(self):
        if not self.test_pruning:
1059
1060
1061
            return

        for model_class in self.all_model_classes:
Lysandre's avatar
Lysandre committed
1062
1063
1064
1065
            (
                config,
                inputs_dict,
            ) = self.model_tester.prepare_config_and_inputs_for_common()
1066

1067
1068
            if "head_mask" in inputs_dict:
                del inputs_dict["head_mask"]
1069

1070
            inputs_dict["output_attentions"] = True
1071
1072
1073
1074
            config.output_hidden_states = False
            model = model_class(config=config)
            model.to(torch_device)
            model.eval()
1075
1076
1077
1078
            heads_to_prune = {
                0: list(range(1, self.model_tester.num_attention_heads)),
                -1: [0],
            }
1079
1080
            model.prune_heads(heads_to_prune)
            with torch.no_grad():
1081
                outputs = model(**self._prepare_for_class(inputs_dict, model_class))
1082

1083
            attentions = outputs[-1]
1084

1085
1086
1087
            self.assertEqual(attentions[0].shape[-3], 1)
            self.assertEqual(attentions[1].shape[-3], self.model_tester.num_attention_heads)
            self.assertEqual(attentions[-1].shape[-3], self.model_tester.num_attention_heads - 1)
LysandreJik's avatar
LysandreJik committed
1088

Patrick von Platen's avatar
Patrick von Platen committed
1089
1090
    def test_head_pruning_save_load_from_pretrained(self):
        if not self.test_pruning:
1091
            return
LysandreJik's avatar
LysandreJik committed
1092

1093
        for model_class in self.all_model_classes:
Lysandre's avatar
Lysandre committed
1094
1095
1096
1097
            (
                config,
                inputs_dict,
            ) = self.model_tester.prepare_config_and_inputs_for_common()
1098
1099
1100

            if "head_mask" in inputs_dict:
                del inputs_dict["head_mask"]
1101

1102
            inputs_dict["output_attentions"] = True
1103
1104
1105
1106
            config.output_hidden_states = False
            model = model_class(config=config)
            model.to(torch_device)
            model.eval()
1107
1108
1109
1110
            heads_to_prune = {
                0: list(range(1, self.model_tester.num_attention_heads)),
                -1: [0],
            }
1111
            model.prune_heads(heads_to_prune)
1112

1113
            with tempfile.TemporaryDirectory() as temp_dir_name:
1114
1115
                model.save_pretrained(temp_dir_name)
                model = model_class.from_pretrained(temp_dir_name)
1116
                model.to(torch_device)
1117

1118
            with torch.no_grad():
1119
                outputs = model(**self._prepare_for_class(inputs_dict, model_class))
1120
1121
1122
1123
            attentions = outputs[-1]
            self.assertEqual(attentions[0].shape[-3], 1)
            self.assertEqual(attentions[1].shape[-3], self.model_tester.num_attention_heads)
            self.assertEqual(attentions[-1].shape[-3], self.model_tester.num_attention_heads - 1)
1124

Patrick von Platen's avatar
Patrick von Platen committed
1125
1126
    def test_head_pruning_save_load_from_config_init(self):
        if not self.test_pruning:
1127
            return
1128

1129
        for model_class in self.all_model_classes:
Lysandre's avatar
Lysandre committed
1130
1131
1132
1133
            (
                config,
                inputs_dict,
            ) = self.model_tester.prepare_config_and_inputs_for_common()
1134

1135
1136
            if "head_mask" in inputs_dict:
                del inputs_dict["head_mask"]
1137

1138
            inputs_dict["output_attentions"] = True
1139
            config.output_hidden_states = False
1140

1141
1142
1143
1144
            heads_to_prune = {
                0: list(range(1, self.model_tester.num_attention_heads)),
                -1: [0],
            }
1145
            config.pruned_heads = heads_to_prune
1146

1147
1148
1149
            model = model_class(config=config)
            model.to(torch_device)
            model.eval()
1150

1151
            with torch.no_grad():
1152
                outputs = model(**self._prepare_for_class(inputs_dict, model_class))
1153
            attentions = outputs[-1]
1154

1155
1156
1157
            self.assertEqual(attentions[0].shape[-3], 1)
            self.assertEqual(attentions[1].shape[-3], self.model_tester.num_attention_heads)
            self.assertEqual(attentions[-1].shape[-3], self.model_tester.num_attention_heads - 1)
1158

Patrick von Platen's avatar
Patrick von Platen committed
1159
1160
    def test_head_pruning_integration(self):
        if not self.test_pruning:
1161
            return
1162

1163
        for model_class in self.all_model_classes:
Lysandre's avatar
Lysandre committed
1164
1165
1166
1167
            (
                config,
                inputs_dict,
            ) = self.model_tester.prepare_config_and_inputs_for_common()
1168

1169
1170
            if "head_mask" in inputs_dict:
                del inputs_dict["head_mask"]
1171

1172
            inputs_dict["output_attentions"] = True
1173
            config.output_hidden_states = False
1174

1175
1176
            heads_to_prune = {0: [0], 1: [1, 2]}
            config.pruned_heads = heads_to_prune
1177

1178
1179
1180
            model = model_class(config=config)
            model.to(torch_device)
            model.eval()
1181

1182
            with torch.no_grad():
1183
                outputs = model(**self._prepare_for_class(inputs_dict, model_class))
1184
            attentions = outputs[-1]
1185

1186
1187
1188
1189
            self.assertEqual(attentions[0].shape[-3], self.model_tester.num_attention_heads - 1)
            self.assertEqual(attentions[1].shape[-3], self.model_tester.num_attention_heads - 2)
            self.assertEqual(attentions[2].shape[-3], self.model_tester.num_attention_heads)
            self.assertEqual(attentions[3].shape[-3], self.model_tester.num_attention_heads)
thomwolf's avatar
thomwolf committed
1190

1191
            with tempfile.TemporaryDirectory() as temp_dir_name:
1192
1193
                model.save_pretrained(temp_dir_name)
                model = model_class.from_pretrained(temp_dir_name)
1194
                model.to(torch_device)
thomwolf's avatar
thomwolf committed
1195

1196
            with torch.no_grad():
1197
                outputs = model(**self._prepare_for_class(inputs_dict, model_class))
1198
            attentions = outputs[-1]
LysandreJik's avatar
LysandreJik committed
1199

1200
1201
1202
1203
            self.assertEqual(attentions[0].shape[-3], self.model_tester.num_attention_heads - 1)
            self.assertEqual(attentions[1].shape[-3], self.model_tester.num_attention_heads - 2)
            self.assertEqual(attentions[2].shape[-3], self.model_tester.num_attention_heads)
            self.assertEqual(attentions[3].shape[-3], self.model_tester.num_attention_heads)
thomwolf's avatar
thomwolf committed
1204

1205
1206
            heads_to_prune = {0: [0], 2: [1, 2]}
            model.prune_heads(heads_to_prune)
1207

1208
            with torch.no_grad():
1209
                outputs = model(**self._prepare_for_class(inputs_dict, model_class))
1210
            attentions = outputs[-1]
1211

1212
1213
1214
1215
            self.assertEqual(attentions[0].shape[-3], self.model_tester.num_attention_heads - 1)
            self.assertEqual(attentions[1].shape[-3], self.model_tester.num_attention_heads - 2)
            self.assertEqual(attentions[2].shape[-3], self.model_tester.num_attention_heads - 2)
            self.assertEqual(attentions[3].shape[-3], self.model_tester.num_attention_heads)
1216

1217
            self.assertDictEqual(model.config.pruned_heads, {0: [0], 1: [1, 2], 2: [1, 2]})
thomwolf's avatar
thomwolf committed
1218

Patrick von Platen's avatar
Patrick von Platen committed
1219
    def test_hidden_states_output(self):
Joseph Liu's avatar
Joseph Liu committed
1220
        def check_hidden_states_output(inputs_dict, config, model_class):
1221
            model = model_class(config)
1222
            model.to(torch_device)
thomwolf's avatar
thomwolf committed
1223
            model.eval()
Joseph Liu's avatar
Joseph Liu committed
1224

thomwolf's avatar
thomwolf committed
1225
            with torch.no_grad():
1226
                outputs = model(**self._prepare_for_class(inputs_dict, model_class))
1227
1228

            hidden_states = outputs.encoder_hidden_states if config.is_encoder_decoder else outputs.hidden_states
Patrick von Platen's avatar
Patrick von Platen committed
1229

Sylvain Gugger's avatar
Sylvain Gugger committed
1230
1231
1232
1233
            expected_num_layers = getattr(
                self.model_tester, "expected_num_hidden_layers", self.model_tester.num_hidden_layers + 1
            )
            self.assertEqual(len(hidden_states), expected_num_layers)
1234

Patrick von Platen's avatar
Patrick von Platen committed
1235
1236
1237
1238
1239
1240
1241
            if hasattr(self.model_tester, "encoder_seq_length"):
                seq_length = self.model_tester.encoder_seq_length
                if hasattr(self.model_tester, "chunk_length") and self.model_tester.chunk_length > 1:
                    seq_length = seq_length * self.model_tester.chunk_length
            else:
                seq_length = self.model_tester.seq_length

1242
            self.assertListEqual(
Lysandre's avatar
Lysandre committed
1243
1244
                list(hidden_states[0].shape[-2:]),
                [seq_length, self.model_tester.hidden_size],
1245
            )
thomwolf's avatar
thomwolf committed
1246

1247
1248
1249
1250
1251
1252
1253
1254
1255
1256
1257
1258
1259
            if config.is_encoder_decoder:
                hidden_states = outputs.decoder_hidden_states

                self.assertIsInstance(hidden_states, (list, tuple))
                self.assertEqual(len(hidden_states), expected_num_layers)
                seq_len = getattr(self.model_tester, "seq_length", None)
                decoder_seq_length = getattr(self.model_tester, "decoder_seq_length", seq_len)

                self.assertListEqual(
                    list(hidden_states[0].shape[-2:]),
                    [decoder_seq_length, self.model_tester.hidden_size],
                )

Joseph Liu's avatar
Joseph Liu committed
1260
1261
1262
1263
1264
1265
1266
1267
1268
1269
1270
1271
        config, inputs_dict = self.model_tester.prepare_config_and_inputs_for_common()

        for model_class in self.all_model_classes:
            inputs_dict["output_hidden_states"] = True
            check_hidden_states_output(inputs_dict, config, model_class)

            # check that output_hidden_states also work using config
            del inputs_dict["output_hidden_states"]
            config.output_hidden_states = True

            check_hidden_states_output(inputs_dict, config, model_class)

1272
1273
1274
    def test_retain_grad_hidden_states_attentions(self):
        config, inputs_dict = self.model_tester.prepare_config_and_inputs_for_common()
        config.output_hidden_states = True
1275
        config.output_attentions = self.has_attentions
1276
1277
1278
1279
1280
1281
1282
1283
1284

        # no need to test all models as different heads yield the same functionality
        model_class = self.all_model_classes[0]
        model = model_class(config)
        model.to(torch_device)

        inputs = self._prepare_for_class(inputs_dict, model_class)

        outputs = model(**inputs)
1285

1286
1287
1288
1289
1290
1291
1292
1293
1294
1295
        output = outputs[0]

        if config.is_encoder_decoder:
            # Seq2Seq models
            encoder_hidden_states = outputs.encoder_hidden_states[0]
            encoder_hidden_states.retain_grad()

            decoder_hidden_states = outputs.decoder_hidden_states[0]
            decoder_hidden_states.retain_grad()

1296
1297
1298
1299
1300
1301
1302
1303
1304
            if self.has_attentions:
                encoder_attentions = outputs.encoder_attentions[0]
                encoder_attentions.retain_grad()

                decoder_attentions = outputs.decoder_attentions[0]
                decoder_attentions.retain_grad()

                cross_attentions = outputs.cross_attentions[0]
                cross_attentions.retain_grad()
1305
1306
1307
1308
1309

            output.flatten()[0].backward(retain_graph=True)

            self.assertIsNotNone(encoder_hidden_states.grad)
            self.assertIsNotNone(decoder_hidden_states.grad)
1310
1311
1312
1313
1314

            if self.has_attentions:
                self.assertIsNotNone(encoder_attentions.grad)
                self.assertIsNotNone(decoder_attentions.grad)
                self.assertIsNotNone(cross_attentions.grad)
1315
1316
1317
1318
        else:
            # Encoder-/Decoder-only models
            hidden_states = outputs.hidden_states[0]
            hidden_states.retain_grad()
1319
1320
1321
1322

            if self.has_attentions:
                attentions = outputs.attentions[0]
                attentions.retain_grad()
1323
1324
1325
1326

            output.flatten()[0].backward(retain_graph=True)

            self.assertIsNotNone(hidden_states.grad)
1327
1328
1329

            if self.has_attentions:
                self.assertIsNotNone(attentions.grad)
1330

Pradhy729's avatar
Pradhy729 committed
1331
    def test_feed_forward_chunking(self):
Lysandre's avatar
Lysandre committed
1332
1333
1334
1335
        (
            original_config,
            inputs_dict,
        ) = self.model_tester.prepare_config_and_inputs_for_common()
Pradhy729's avatar
Pradhy729 committed
1336
1337
1338
1339
1340
1341
1342
1343
1344
1345
1346
1347
1348
1349
1350
1351
1352
1353
        for model_class in self.all_model_classes:
            torch.manual_seed(0)
            config = copy.deepcopy(original_config)
            model = model_class(config)
            model.to(torch_device)
            model.eval()

            hidden_states_no_chunk = model(**self._prepare_for_class(inputs_dict, model_class))[0]

            torch.manual_seed(0)
            config.chunk_size_feed_forward = 1
            model = model_class(config)
            model.to(torch_device)
            model.eval()

            hidden_states_with_chunk = model(**self._prepare_for_class(inputs_dict, model_class))[0]
            self.assertTrue(torch.allclose(hidden_states_no_chunk, hidden_states_with_chunk, atol=1e-3))

1354
1355
1356
1357
1358
1359
1360
1361
1362
1363
1364
1365
1366
1367
1368
1369
1370
1371
1372
1373
1374
1375
1376
1377
1378
1379
1380
1381
1382
1383
1384
1385
1386
1387
1388
1389
1390
1391
1392
1393
1394
1395
1396
1397
1398
1399
1400
1401
1402
1403
1404
1405
1406
1407
1408
1409
1410
1411
1412
1413
1414
1415
1416
1417
1418
1419
1420
1421
1422
1423
1424
1425
1426
1427
1428
1429
1430
1431
1432
    def test_resize_position_vector_embeddings(self):
        if not self.test_resize_position_embeddings:
            return

        (
            original_config,
            inputs_dict,
        ) = self.model_tester.prepare_config_and_inputs_for_common()

        for model_class in self.all_model_classes:
            config = copy.deepcopy(original_config)
            model = model_class(config)
            model.to(torch_device)

            if self.model_tester.is_training is False:
                model.eval()

            max_position_embeddings = config.max_position_embeddings

            # Retrieve the embeddings and clone theme
            if model.config.is_encoder_decoder:
                encoder_model_embed, decoder_model_embed = model.get_position_embeddings()
                encoder_cloned_embeddings = encoder_model_embed.weight.clone()
                decoder_cloned_embeddings = decoder_model_embed.weight.clone()
            else:
                model_embed = model.get_position_embeddings()
                cloned_embeddings = model_embed.weight.clone()

            # Check that resizing the position embeddings with a larger max_position_embeddings increases
            # the model's postion embeddings size
            model.resize_position_embeddings(max_position_embeddings + 10)
            self.assertEqual(model.config.max_position_embeddings, max_position_embeddings + 10)

            # Check that it actually resizes the embeddings matrix
            if model.config.is_encoder_decoder:
                encoder_model_embed, decoder_model_embed = model.get_position_embeddings()
                self.assertEqual(encoder_model_embed.weight.shape[0], encoder_cloned_embeddings.shape[0] + 10)
                self.assertEqual(decoder_model_embed.weight.shape[0], decoder_cloned_embeddings.shape[0] + 10)
            else:
                model_embed = model.get_position_embeddings()
                self.assertEqual(model_embed.weight.shape[0], cloned_embeddings.shape[0] + 10)

            # Check that the model can still do a forward pass successfully (every parameter should be resized)
            model(**self._prepare_for_class(inputs_dict, model_class))

            # Check that resizing the position embeddings with a smaller max_position_embeddings decreases
            # the model's max_position_embeddings
            model.resize_position_embeddings(max_position_embeddings - 5)
            self.assertEqual(model.config.max_position_embeddings, max_position_embeddings - 5)

            # Check that it actually resizes the embeddings matrix
            if model.config.is_encoder_decoder:
                encoder_model_embed, decoder_model_embed = model.get_position_embeddings()
                self.assertEqual(encoder_model_embed.weight.shape[0], encoder_cloned_embeddings.shape[0] - 5)
                self.assertEqual(decoder_model_embed.weight.shape[0], decoder_cloned_embeddings.shape[0] - 5)
            else:
                model_embed = model.get_position_embeddings()
                self.assertEqual(model_embed.weight.shape[0], cloned_embeddings.shape[0] - 5)

            # Check that the model can still do a forward pass successfully (every parameter should be resized)
            model(**self._prepare_for_class(inputs_dict, model_class))

            # Check that adding and removing tokens has not modified the first part of the embedding matrix.
            models_equal = True

            if model.config.is_encoder_decoder:
                for p1, p2 in zip(encoder_cloned_embeddings, encoder_model_embed.weight):
                    if p1.data.ne(p2.data).sum() > 0:
                        models_equal = False
                for p1, p2 in zip(decoder_cloned_embeddings, decoder_model_embed.weight):
                    if p1.data.ne(p2.data).sum() > 0:
                        models_equal = False
            else:
                for p1, p2 in zip(cloned_embeddings, model_embed.weight):
                    if p1.data.ne(p2.data).sum() > 0:
                        models_equal = False

            self.assertTrue(models_equal)

Patrick von Platen's avatar
Patrick von Platen committed
1433
    def test_resize_tokens_embeddings(self):
Lysandre's avatar
Lysandre committed
1434
1435
1436
1437
        (
            original_config,
            inputs_dict,
        ) = self.model_tester.prepare_config_and_inputs_for_common()
Patrick von Platen's avatar
Patrick von Platen committed
1438
        if not self.test_resize_embeddings:
1439
1440
1441
1442
1443
            return

        for model_class in self.all_model_classes:
            config = copy.deepcopy(original_config)
            model = model_class(config)
1444
            model.to(torch_device)
1445

Patrick von Platen's avatar
Patrick von Platen committed
1446
1447
1448
            if self.model_tester.is_training is False:
                model.eval()

1449
1450
1451
1452
1453
1454
1455
1456
1457
1458
            model_vocab_size = config.vocab_size
            # Retrieve the embeddings and clone theme
            model_embed = model.resize_token_embeddings(model_vocab_size)
            cloned_embeddings = model_embed.weight.clone()

            # Check that resizing the token embeddings with a larger vocab size increases the model's vocab size
            model_embed = model.resize_token_embeddings(model_vocab_size + 10)
            self.assertEqual(model.config.vocab_size, model_vocab_size + 10)
            # Check that it actually resizes the embeddings matrix
            self.assertEqual(model_embed.weight.shape[0], cloned_embeddings.shape[0] + 10)
1459
            # Check that the model can still do a forward pass successfully (every parameter should be resized)
1460
            model(**self._prepare_for_class(inputs_dict, model_class))
1461
1462
1463
1464
1465
1466
1467

            # Check that resizing the token embeddings with a smaller vocab size decreases the model's vocab size
            model_embed = model.resize_token_embeddings(model_vocab_size - 15)
            self.assertEqual(model.config.vocab_size, model_vocab_size - 15)
            # Check that it actually resizes the embeddings matrix
            self.assertEqual(model_embed.weight.shape[0], cloned_embeddings.shape[0] - 15)

1468
1469
1470
            # Check that the model can still do a forward pass successfully (every parameter should be resized)
            # Input ids should be clamped to the maximum size of the vocabulary
            inputs_dict["input_ids"].clamp_(max=model_vocab_size - 15 - 1)
1471
1472
1473
1474

            # make sure that decoder_input_ids are resized as well
            if "decoder_input_ids" in inputs_dict:
                inputs_dict["decoder_input_ids"].clamp_(max=model_vocab_size - 15 - 1)
1475
            model(**self._prepare_for_class(inputs_dict, model_class))
1476

1477
1478
1479
1480
1481
1482
1483
1484
            # Check that adding and removing tokens has not modified the first part of the embedding matrix.
            models_equal = True
            for p1, p2 in zip(cloned_embeddings, model_embed.weight):
                if p1.data.ne(p2.data).sum() > 0:
                    models_equal = False

            self.assertTrue(models_equal)

1485
1486
1487
1488
1489
1490
1491
1492
1493
1494
1495
1496
1497
1498
1499
1500
1501
1502
1503
1504
1505
1506
1507
1508
1509
1510
1511
1512
1513
1514
1515
1516
1517
1518
1519
1520
1521
1522
1523
1524
1525
1526
1527
1528
1529
1530
1531
1532
1533
1534
1535
    def test_resize_embeddings_untied(self):
        (
            original_config,
            inputs_dict,
        ) = self.model_tester.prepare_config_and_inputs_for_common()
        if not self.test_resize_embeddings:
            return

        original_config.tie_word_embeddings = False

        # if model cannot untied embeddings -> leave test
        if original_config.tie_word_embeddings:
            return

        for model_class in self.all_model_classes:
            config = copy.deepcopy(original_config)
            model = model_class(config).to(torch_device)

            # if no output embeddings -> leave test
            if model.get_output_embeddings() is None:
                continue

            # Check that resizing the token embeddings with a larger vocab size increases the model's vocab size
            model_vocab_size = config.vocab_size
            model.resize_token_embeddings(model_vocab_size + 10)
            self.assertEqual(model.config.vocab_size, model_vocab_size + 10)
            output_embeds = model.get_output_embeddings()
            self.assertEqual(output_embeds.weight.shape[0], model_vocab_size + 10)
            # Check bias if present
            if output_embeds.bias is not None:
                self.assertEqual(output_embeds.bias.shape[0], model_vocab_size + 10)
            # Check that the model can still do a forward pass successfully (every parameter should be resized)
            model(**self._prepare_for_class(inputs_dict, model_class))

            # Check that resizing the token embeddings with a smaller vocab size decreases the model's vocab size
            model.resize_token_embeddings(model_vocab_size - 15)
            self.assertEqual(model.config.vocab_size, model_vocab_size - 15)
            # Check that it actually resizes the embeddings matrix
            output_embeds = model.get_output_embeddings()
            self.assertEqual(output_embeds.weight.shape[0], model_vocab_size - 15)
            # Check bias if present
            if output_embeds.bias is not None:
                self.assertEqual(output_embeds.bias.shape[0], model_vocab_size - 15)
            # Check that the model can still do a forward pass successfully (every parameter should be resized)
            # Input ids should be clamped to the maximum size of the vocabulary
            inputs_dict["input_ids"].clamp_(max=model_vocab_size - 15 - 1)
            if "decoder_input_ids" in inputs_dict:
                inputs_dict["decoder_input_ids"].clamp_(max=model_vocab_size - 15 - 1)
            # Check that the model can still do a forward pass successfully (every parameter should be resized)
            model(**self._prepare_for_class(inputs_dict, model_class))

Patrick von Platen's avatar
Patrick von Platen committed
1536
    def test_model_common_attributes(self):
1537
1538
1539
1540
        config, inputs_dict = self.model_tester.prepare_config_and_inputs_for_common()

        for model_class in self.all_model_classes:
            model = model_class(config)
1541
1542
            self.assertIsInstance(model.get_input_embeddings(), (nn.Embedding, AdaptiveEmbedding))
            model.set_input_embeddings(nn.Embedding(10, 10))
1543
            x = model.get_output_embeddings()
1544
            self.assertTrue(x is None or isinstance(x, nn.Linear))
1545

1546
1547
1548
1549
1550
1551
1552
    def test_model_main_input_name(self):
        for model_class in self.all_model_classes:
            model_signature = inspect.signature(getattr(model_class, "forward"))
            # The main input is the name of the argument after `self`
            observed_main_input_name = list(model_signature.parameters.keys())[1]
            self.assertEqual(model_class.main_input_name, observed_main_input_name)

1553
    def test_correct_missing_keys(self):
1554
1555
        if not self.test_missing_keys:
            return
1556
1557
1558
1559
1560
1561
1562
        config, _ = self.model_tester.prepare_config_and_inputs_for_common()

        for model_class in self.all_model_classes:
            model = model_class(config)
            base_model_prefix = model.base_model_prefix

            if hasattr(model, base_model_prefix):
1563
1564
1565
1566
1567
1568
1569
1570
1571
1572
1573
1574
1575
                extra_params = {k: v for k, v in model.named_parameters() if not k.startswith(base_model_prefix)}
                extra_params.update({k: v for k, v in model.named_buffers() if not k.startswith(base_model_prefix)})
                # Some models define this as None
                if model._keys_to_ignore_on_load_missing:
                    for key in model._keys_to_ignore_on_load_missing:
                        extra_params.pop(key, None)

                if not extra_params:
                    # In that case, we *are* on a head model, but every
                    # single key is not actual parameters and this is
                    # tested in `test_tied_model_weights_key_ignore` test.
                    continue

1576
1577
1578
                with tempfile.TemporaryDirectory() as temp_dir_name:
                    model.base_model.save_pretrained(temp_dir_name)
                    model, loading_info = model_class.from_pretrained(temp_dir_name, output_loading_info=True)
1579
                    self.assertGreater(len(loading_info["missing_keys"]), 0, model.__class__.__name__)
1580

1581
1582
1583
1584
1585
1586
1587
1588
1589
1590
1591
1592
1593
1594
1595
1596
1597
1598
1599
1600
1601
1602
1603
1604
1605
1606
1607
1608
1609
1610
1611
1612
1613
1614
1615
1616
1617
1618
1619
1620
1621
1622
1623
1624
1625
1626
1627
1628
    def test_tie_model_weights(self):
        if not self.test_torchscript:
            return

        config, inputs_dict = self.model_tester.prepare_config_and_inputs_for_common()

        def check_same_values(layer_1, layer_2):
            equal = True
            for p1, p2 in zip(layer_1.weight, layer_2.weight):
                if p1.data.ne(p2.data).sum() > 0:
                    equal = False
            return equal

        for model_class in self.all_model_classes:
            config.torchscript = True
            model_not_tied = model_class(config)
            if model_not_tied.get_output_embeddings() is None:
                continue

            config_tied = copy.deepcopy(config)
            config_tied.torchscript = False
            model_tied = model_class(config_tied)
            params_tied = list(model_tied.parameters())
            # Check that the embedding layer and decoding layer are the same in size and in value
            # self.assertTrue(check_same_values(embeddings, decoding))

            # # Check that after modification, they remain the same.
            # embeddings.weight.data.div_(2)
            # # Check that the embedding layer and decoding layer are the same in size and in value
            # self.assertTrue(embeddings.weight.shape, decoding.weight.shape)
            # self.assertTrue(check_same_values(embeddings, decoding))

            # # Check that after modification, they remain the same.
            # decoding.weight.data.div_(4)
            # # Check that the embedding layer and decoding layer are the same in size and in value
            # self.assertTrue(embeddings.weight.shape, decoding.weight.shape)
            # self.assertTrue(check_same_values(embeddings, decoding))

            # Check that after resize they remain tied.
            model_tied.resize_token_embeddings(config.vocab_size + 10)
            params_tied_2 = list(model_tied.parameters())
            self.assertEqual(len(params_tied_2), len(params_tied))

            # decoding.weight.data.mul_(20)
            # # Check that the embedding layer and decoding layer are the same in size and in value
            # self.assertTrue(model.transformer.wte.weight.shape, model.lm_head.weight.shape)
            # self.assertTrue(check_same_values(model.transformer.wte, model.lm_head))

1629
1630
1631
1632
1633
1634
1635
1636
1637
1638
1639
1640
1641
1642
1643
1644
1645
1646
1647
1648
1649
1650
1651
1652
1653
1654
1655
1656
    def test_tied_model_weights_key_ignore(self):
        config, inputs_dict = self.model_tester.prepare_config_and_inputs_for_common()
        for model_class in self.all_model_classes:
            model_tied = model_class(config)
            with tempfile.TemporaryDirectory() as d:
                model_tied.save_pretrained(d)

                # We are nuking ALL weights on file, so every parameter should
                # yell on load. We're going to detect if we yell too much, or too little.
                with open(os.path.join(d, "pytorch_model.bin"), "wb") as f:
                    torch.save({}, f)
                model_reloaded, infos = model_class.from_pretrained(d, output_loading_info=True)

                # ! Actually we could use `state_dict()` and check iteratively the tensors which are the same (for instance using `tensor.data_ptr()`). to detect the duplicates.
                # ```python
                # model = GPT2LMHeadModel.from_pretrained("gpt2")
                # "lm_head.weight" in model.state_dict().keys()  # True
                # "lm_head.weight" in model.named_parameters() # False
                # In [6]: model.lm_head.weight.data_ptr()
                # Out[6]: 139901378371648
                # In [9]: model.transformer.wte.weight.data_ptr()
                # Out[9]: 139901378371648  # Same PTR, it's the same DATA ! we would need to check for stride too to be 100% accurate.
                # ```

                prefix = f"{model_reloaded.base_model_prefix}."
                params = dict(model_reloaded.named_parameters())
                params.update(dict(model_reloaded.named_buffers()))
                # param_names = set(k[len(prefix) :] if k.startswith(prefix) else k for k in params.keys())
1657
                param_names = {k[len(prefix) :] if k.startswith(prefix) else k for k in params.keys()}
1658
1659
1660
1661
1662
1663
1664
1665
1666
1667
1668
1669
1670
1671
1672
1673
1674
1675
1676

                missing_keys = set(infos["missing_keys"])

                extra_missing = missing_keys - param_names
                # missed_missing = param_names - missing_keys

                self.assertEqual(
                    extra_missing,
                    set(),
                    f"This model {model_class.__name__} might be missing some `keys_to_ignore`: {extra_missing}",
                )

                # self.assertEqual(
                #     missed_missing,
                #     set(),
                #     f"This model {model_class.__name__} ignores keys {missed_missing} but they look like real"
                #     " parameters",
                # )

1677
1678
1679
    def test_model_outputs_equivalence(self):
        config, inputs_dict = self.model_tester.prepare_config_and_inputs_for_common()

Sam Shleifer's avatar
Sam Shleifer committed
1680
1681
1682
1683
        def set_nan_tensor_to_zero(t):
            t[t != t] = 0
            return t

1684
1685
1686
1687
1688
1689
1690
1691
1692
        def check_equivalence(model, tuple_inputs, dict_inputs, additional_kwargs={}):
            with torch.no_grad():
                tuple_output = model(**tuple_inputs, return_dict=False, **additional_kwargs)
                dict_output = model(**dict_inputs, return_dict=True, **additional_kwargs).to_tuple()

                def recursive_check(tuple_object, dict_object):
                    if isinstance(tuple_object, (List, Tuple)):
                        for tuple_iterable_value, dict_iterable_value in zip(tuple_object, dict_object):
                            recursive_check(tuple_iterable_value, dict_iterable_value)
NielsRogge's avatar
NielsRogge committed
1693
1694
1695
1696
1697
                    elif isinstance(tuple_object, Dict):
                        for tuple_iterable_value, dict_iterable_value in zip(
                            tuple_object.values(), dict_object.values()
                        ):
                            recursive_check(tuple_iterable_value, dict_iterable_value)
1698
1699
1700
1701
                    elif tuple_object is None:
                        return
                    else:
                        self.assertTrue(
Sam Shleifer's avatar
Sam Shleifer committed
1702
1703
1704
                            torch.allclose(
                                set_nan_tensor_to_zero(tuple_object), set_nan_tensor_to_zero(dict_object), atol=1e-5
                            ),
Sylvain Gugger's avatar
Sylvain Gugger committed
1705
1706
1707
1708
1709
1710
                            msg=(
                                "Tuple and dict output are not equal. Difference:"
                                f" {torch.max(torch.abs(tuple_object - dict_object))}. Tuple has `nan`:"
                                f" {torch.isnan(tuple_object).any()} and `inf`: {torch.isinf(tuple_object)}. Dict has"
                                f" `nan`: {torch.isnan(dict_object).any()} and `inf`: {torch.isinf(dict_object)}."
                            ),
1711
1712
1713
1714
1715
1716
1717
1718
1719
1720
1721
1722
1723
1724
1725
1726
1727
1728
1729
1730
1731
1732
1733
1734
1735
                        )

                recursive_check(tuple_output, dict_output)

        for model_class in self.all_model_classes:
            model = model_class(config)
            model.to(torch_device)
            model.eval()

            tuple_inputs = self._prepare_for_class(inputs_dict, model_class)
            dict_inputs = self._prepare_for_class(inputs_dict, model_class)
            check_equivalence(model, tuple_inputs, dict_inputs)

            tuple_inputs = self._prepare_for_class(inputs_dict, model_class, return_labels=True)
            dict_inputs = self._prepare_for_class(inputs_dict, model_class, return_labels=True)
            check_equivalence(model, tuple_inputs, dict_inputs)

            tuple_inputs = self._prepare_for_class(inputs_dict, model_class)
            dict_inputs = self._prepare_for_class(inputs_dict, model_class)
            check_equivalence(model, tuple_inputs, dict_inputs, {"output_hidden_states": True})

            tuple_inputs = self._prepare_for_class(inputs_dict, model_class, return_labels=True)
            dict_inputs = self._prepare_for_class(inputs_dict, model_class, return_labels=True)
            check_equivalence(model, tuple_inputs, dict_inputs, {"output_hidden_states": True})

1736
1737
1738
1739
            if self.has_attentions:
                tuple_inputs = self._prepare_for_class(inputs_dict, model_class)
                dict_inputs = self._prepare_for_class(inputs_dict, model_class)
                check_equivalence(model, tuple_inputs, dict_inputs, {"output_attentions": True})
1740

1741
1742
1743
1744
1745
1746
1747
1748
1749
                tuple_inputs = self._prepare_for_class(inputs_dict, model_class, return_labels=True)
                dict_inputs = self._prepare_for_class(inputs_dict, model_class, return_labels=True)
                check_equivalence(model, tuple_inputs, dict_inputs, {"output_attentions": True})

                tuple_inputs = self._prepare_for_class(inputs_dict, model_class, return_labels=True)
                dict_inputs = self._prepare_for_class(inputs_dict, model_class, return_labels=True)
                check_equivalence(
                    model, tuple_inputs, dict_inputs, {"output_hidden_states": True, "output_attentions": True}
                )
1750

1751
1752
1753
1754
    # Don't copy this method to model specific test file!
    # TODO: remove this method once the issues are all fixed!
    def _make_attention_mask_non_null(self, inputs_dict):
        """Make sure no sequence has all zeros as attention mask"""
1755

1756
1757
1758
        for k in ["attention_mask", "encoder_attention_mask", "decoder_attention_mask"]:
            if k in inputs_dict:
                attention_mask = inputs_dict[k]
1759

1760
1761
1762
1763
1764
1765
                # Make sure no all 0s attention masks - to avoid failure at this moment.
                # Put `1` at the beginning of sequences to make it still work when combining causal attention masks.
                # TODO: remove this line once a fix regarding large negative values for attention mask is done.
                attention_mask = torch.cat(
                    [torch.ones_like(attention_mask[:, :1], dtype=attention_mask.dtype), attention_mask[:, 1:]], dim=-1
                )
1766

1767
1768
1769
1770
1771
1772
1773
1774
1775
1776
1777
1778
1779
1780
1781
1782
1783
                # Here we make the first sequence with all 0s as attention mask.
                # Currently, this will fail for `TFWav2Vec2Model`. This is caused by the different large negative
                # values, like `1e-4`, `1e-9`, `1e-30` and `-inf` for attention mask across models/frameworks.
                # TODO: enable this block once the large negative values thing is cleaned up.
                # (see https://github.com/huggingface/transformers/issues/14859)
                # attention_mask = torch.cat(
                #     [torch.zeros_like(attention_mask[:1], dtype=attention_mask.dtype), attention_mask[1:]],
                #     dim=0
                # )

                inputs_dict[k] = attention_mask

    # Don't copy this method to model specific test file!
    # TODO: remove this method once the issues are all fixed!
    def _postprocessing_to_ignore_test_cases(self, tf_outputs, pt_outputs, model_class):
        """For temporarily ignoring some failed test cases (issues to be fixed)"""

1784
1785
        tf_keys = {k for k, v in tf_outputs.items() if v is not None}
        pt_keys = {k for k, v in pt_outputs.items() if v is not None}
1786
1787
1788
1789
1790
1791
1792
1793
1794
1795
1796
1797
1798
1799
1800
1801
1802
1803
1804
1805
1806
1807
1808
1809
1810
1811
1812

        key_differences = tf_keys.symmetric_difference(pt_keys)

        if model_class.__name__ in [
            "FlaubertWithLMHeadModel",
            "FunnelForPreTraining",
            "ElectraForPreTraining",
            "XLMWithLMHeadModel",
            "TransfoXLLMHeadModel",
        ]:
            for k in key_differences:
                if k in ["loss", "losses"]:
                    tf_keys.discard(k)
                    pt_keys.discard(k)
        elif model_class.__name__.startswith("GPT2"):
            # `TFGPT2` has `past_key_values` as a tensor while `GPT2` has it as a tuple.
            tf_keys.discard("past_key_values")
            pt_keys.discard("past_key_values")

        # create new outputs from the remaining fields
        new_tf_outputs = type(tf_outputs)(**{k: tf_outputs[k] for k in tf_keys})
        new_pt_outputs = type(pt_outputs)(**{k: pt_outputs[k] for k in pt_keys})

        return new_tf_outputs, new_pt_outputs

    # Copied from tests.test_modeling_tf_common.TFModelTesterMixin.check_pt_tf_outputs
    def check_pt_tf_outputs(self, tf_outputs, pt_outputs, model_class, tol=1e-5, name="outputs", attributes=None):
1813
        """Check the outputs from PyTorch and TensorFlow models are close enough. Checks are done in a recursive way.
1814

1815
1816
1817
1818
1819
1820
1821
1822
        Args:
            model_class: The class of the model that is currently testing. For example, `TFBertModel`,
                TFBertForMaskedLM`, `TFBertForSequenceClassification`, etc. Mainly used for providing more informative
                error messages.
            name (`str`): The name of the output. For example, `output.hidden_states`, `output.attentions`, etc.
            attributes (`Tuple[str]`): The names of the output's element if the output is a tuple/list with each element
                being a named field in the output.
        """
1823

1824
1825
1826
        self.assertEqual(type(name), str)
        if attributes is not None:
            self.assertEqual(type(attributes), tuple, f"{name}: The argument `attributes` should be a `tuple`")
1827

1828
1829
1830
1831
1832
1833
        # Allow `ModelOutput` (e.g. `CLIPOutput` has `text_model_output` and `vision_model_output`).
        if isinstance(tf_outputs, ModelOutput):
            self.assertTrue(
                isinstance(pt_outputs, ModelOutput),
                f"{name}: `pt_outputs` should an instance of `ModelOutput` when `tf_outputs` is",
            )
1834

1835
1836
1837
            # Don't copy this block to model specific test file!
            # TODO: remove this method and this line after issues are fixed
            tf_outputs, pt_outputs = self._postprocessing_to_ignore_test_cases(tf_outputs, pt_outputs, model_class)
1838

1839
1840
            tf_keys = [k for k, v in tf_outputs.items() if v is not None]
            pt_keys = [k for k, v in pt_outputs.items() if v is not None]
1841

1842
            self.assertEqual(tf_keys, pt_keys, f"{name}: Output keys differ between TF and PyTorch")
1843

1844
            # convert to the case of `tuple`
1845
            # appending each key to the current (string) `name`
1846
1847
1848
1849
            attributes = tuple([f"{name}.{k}" for k in tf_keys])
            self.check_pt_tf_outputs(
                tf_outputs.to_tuple(), pt_outputs.to_tuple(), model_class, tol=tol, name=name, attributes=attributes
            )
1850

1851
1852
1853
1854
1855
1856
1857
1858
1859
1860
        # Allow `list` (e.g. `TransfoXLModelOutput.mems` is a list of tensors.)
        elif type(tf_outputs) in [tuple, list]:
            self.assertEqual(type(tf_outputs), type(pt_outputs), f"{name}: Output types differ between TF and PyTorch")
            self.assertEqual(len(tf_outputs), len(pt_outputs), f"{name}: Output lengths differ between TF and PyTorch")

            if attributes is not None:
                # case 1: each output has assigned name (e.g. a tuple form of a `ModelOutput`)
                self.assertEqual(
                    len(attributes),
                    len(tf_outputs),
1861
                    f"{name}: The tuple `attributes` should have the same length as `tf_outputs`",
1862
                )
1863
            else:
1864
                # case 2: each output has no assigned name (e.g. hidden states of each layer) -> add an index to `name`
1865
                attributes = tuple([f"{name}_{idx}" for idx in range(len(tf_outputs))])
1866

1867
1868
            for tf_output, pt_output, attr in zip(tf_outputs, pt_outputs, attributes):
                self.check_pt_tf_outputs(tf_output, pt_output, model_class, tol=tol, name=attr)
1869

1870
1871
1872
1873
        elif isinstance(tf_outputs, tf.Tensor):
            self.assertTrue(
                isinstance(pt_outputs, torch.Tensor), f"{name}: `pt_outputs` should a tensor when `tf_outputs` is"
            )
1874

1875
1876
            tf_outputs = tf_outputs.numpy()
            pt_outputs = pt_outputs.detach().to("cpu").numpy()
1877

1878
1879
1880
            self.assertEqual(
                tf_outputs.shape, pt_outputs.shape, f"{name}: Output shapes differ between TF and PyTorch"
            )
1881

1882
1883
1884
1885
            # deal with NumPy's scalars to make replacing nan values by 0 work.
            if np.isscalar(tf_outputs):
                tf_outputs = np.array([tf_outputs])
                pt_outputs = np.array([pt_outputs])
1886

1887
1888
            tf_nans = np.isnan(tf_outputs)
            pt_nans = np.isnan(pt_outputs)
1889

1890
1891
1892
1893
            pt_outputs[tf_nans] = 0
            tf_outputs[tf_nans] = 0
            pt_outputs[pt_nans] = 0
            tf_outputs[pt_nans] = 0
1894

1895
            max_diff = np.amax(np.abs(tf_outputs - pt_outputs))
1896
            self.assertLessEqual(max_diff, tol, f"{name}: Difference between PyTorch and TF is {max_diff} (>= {tol}).")
1897
1898
        else:
            raise ValueError(
1899
                "`tf_outputs` should be an instance of `ModelOutput`, a `tuple`, or an instance of `tf.Tensor`. Got"
Sylvain Gugger's avatar
Sylvain Gugger committed
1900
                f" {type(tf_outputs)} instead."
1901
1902
            )

1903
1904
1905
1906
1907
1908
1909
1910
1911
1912
1913
1914
1915
1916
1917
1918
1919
    def prepare_tf_inputs_from_pt_inputs(self, pt_inputs_dict):
        tf_inputs_dict = {}
        for key, tensor in pt_inputs_dict.items():
            # skip key that does not exist in tf
            if type(tensor) == bool:
                tf_inputs_dict[key] = tensor
            elif key == "input_values":
                tf_inputs_dict[key] = tf.convert_to_tensor(tensor.cpu().numpy(), dtype=tf.float32)
            elif key == "pixel_values":
                tf_inputs_dict[key] = tf.convert_to_tensor(tensor.cpu().numpy(), dtype=tf.float32)
            elif key == "input_features":
                tf_inputs_dict[key] = tf.convert_to_tensor(tensor.cpu().numpy(), dtype=tf.float32)
            # other general float inputs
            elif tensor.is_floating_point():
                tf_inputs_dict[key] = tf.convert_to_tensor(tensor.cpu().numpy(), dtype=tf.float32)
            else:
                tf_inputs_dict[key] = tf.convert_to_tensor(tensor.cpu().numpy(), dtype=tf.int32)
1920

1921
        return tf_inputs_dict
1922

1923
1924
    def check_pt_tf_models(self, tf_model, pt_model, pt_inputs_dict):
        tf_inputs_dict = self.prepare_tf_inputs_from_pt_inputs(pt_inputs_dict)
1925

1926
1927
1928
1929
        # send pytorch inputs to the correct device
        pt_inputs_dict = {
            k: v.to(device=torch_device) if isinstance(v, torch.Tensor) else v for k, v in pt_inputs_dict.items()
        }
1930

1931
1932
        # send pytorch model to the correct device
        pt_model.to(torch_device)
1933

1934
1935
        # Check predictions on first output (logits/hidden-states) are close enough given low-level computational differences
        pt_model.eval()
1936

1937
1938
1939
1940
1941
1942
1943
1944
1945
1946
1947
1948
1949
1950
1951
1952
        with torch.no_grad():
            pt_outputs = pt_model(**pt_inputs_dict)
        tf_outputs = tf_model(tf_inputs_dict)

        # tf models returned loss is usually a tensor rather than a scalar.
        # (see `hf_compute_loss`: it uses `tf.keras.losses.Reduction.NONE`)
        # Change it here to a scalar to match PyTorch models' loss
        tf_loss = getattr(tf_outputs, "loss", None)
        if tf_loss is not None:
            tf_outputs.loss = tf.math.reduce_mean(tf_loss)

        self.check_pt_tf_outputs(tf_outputs, pt_outputs, type(pt_model))

    @is_pt_tf_cross_test
    def test_pt_tf_model_equivalence(self):
        import transformers
1953
1954

        for model_class in self.all_model_classes:
1955
1956
1957
            config, inputs_dict = self.model_tester.prepare_config_and_inputs_for_common()

            tf_model_class_name = "TF" + model_class.__name__  # Add the "TF" at the beginning
1958
            if not hasattr(transformers, tf_model_class_name):
1959
                # transformers does not have this model in TF version yet
1960
1961
                return

1962
1963
1964
            # Output all for aggressive testing
            config.output_hidden_states = True
            config.output_attentions = self.has_attentions
1965

1966
1967
1968
1969
            # Make sure no sequence has all zeros as attention mask, otherwise some tests fail due to the inconsistency
            # of the usage `1e-4`, `1e-9`, `1e-30`, `-inf`.
            # TODO: Use a uniform value for all models, make sure all tests pass without this processing, and remove it.
            self._make_attention_mask_non_null(inputs_dict)
1970
1971

            tf_model_class = getattr(transformers, tf_model_class_name)
1972
1973

            pt_model = model_class(config)
1974
1975
1976
1977
1978
1979
1980
1981
1982
            tf_model = tf_model_class(config)

            pt_inputs_dict = self._prepare_for_class(inputs_dict, model_class)
            pt_inputs_dict_with_labels = self._prepare_for_class(
                inputs_dict,
                model_class,
                # Not all models accept "labels" in the forward pass (yet :) )
                return_labels=True if "labels" in inspect.signature(model_class.forward).parameters.keys() else False,
            )
1983
1984
1985
1986
1987
1988
1989
1990
1991

            # make sure only tf inputs are forward that actually exist in function args
            tf_input_keys = set(inspect.signature(tf_model.call).parameters.keys())

            # remove all head masks
            tf_input_keys.discard("head_mask")
            tf_input_keys.discard("cross_attn_head_mask")
            tf_input_keys.discard("decoder_head_mask")

1992
            pt_inputs_dict = {k: v for k, v in pt_inputs_dict.items() if k in tf_input_keys}
1993
1994
1995
1996
1997
1998
            pt_inputs_dict_with_labels = {k: v for k, v in pt_inputs_dict_with_labels.items() if k in tf_input_keys}

            # For some models (e.g. base models), there is no label returned.
            # Set the input dict to `None` to avoid check outputs twice for the same input dicts.
            if set(pt_inputs_dict_with_labels.keys()).symmetric_difference(pt_inputs_dict.keys()):
                pt_inputs_dict_with_labels = None
1999
2000

            # Check we can load pt model in tf and vice-versa with model => model functions
2001
2002
            # Here requires `tf_inputs_dict` to build `tf_model`
            tf_inputs_dict = self.prepare_tf_inputs_from_pt_inputs(pt_inputs_dict)
2003
            tf_model = transformers.load_pytorch_model_in_tf2_model(tf_model, pt_model, tf_inputs=tf_inputs_dict)
2004
            pt_model = transformers.load_tf2_model_in_pytorch_model(pt_model, tf_model)
2005

2006
2007
2008
2009
2010
            # Original test: check without `labels`
            self.check_pt_tf_models(tf_model, pt_model, pt_inputs_dict)
            # check with `labels`
            if pt_inputs_dict_with_labels:
                self.check_pt_tf_models(tf_model, pt_model, pt_inputs_dict_with_labels)
2011
2012
2013
2014
2015
2016
2017
2018
2019
2020
2021

            # Check we can load pt model in tf and vice-versa with checkpoint => model functions
            with tempfile.TemporaryDirectory() as tmpdirname:
                pt_checkpoint_path = os.path.join(tmpdirname, "pt_model.bin")
                torch.save(pt_model.state_dict(), pt_checkpoint_path)
                tf_model = transformers.load_pytorch_checkpoint_in_tf2_model(tf_model, pt_checkpoint_path)

                tf_checkpoint_path = os.path.join(tmpdirname, "tf_model.h5")
                tf_model.save_weights(tf_checkpoint_path)
                pt_model = transformers.load_tf2_checkpoint_in_pytorch_model(pt_model, tf_checkpoint_path)

2022
2023
2024
2025
2026
            # Original test: check without `labels`
            self.check_pt_tf_models(tf_model, pt_model, pt_inputs_dict)
            # check with `labels`
            if pt_inputs_dict_with_labels:
                self.check_pt_tf_models(tf_model, pt_model, pt_inputs_dict_with_labels)
2027
2028
2029
2030
2031

    def assert_almost_equals(self, a: np.ndarray, b: np.ndarray, tol: float):
        diff = np.abs((a - b)).max()
        self.assertLessEqual(diff, tol, f"Difference between torch and flax is {diff} (>= {tol}).")

2032
    def check_pt_flax_outputs(self, fx_outputs, pt_outputs, model_class, tol=1e-5, name="outputs", attributes=None):
2033
2034
2035
2036
2037
2038
2039
2040
2041
        """
        Args:
            model_class: The class of the model that is currently testing. For example, ..., etc.
            Currently unused, but it could make debugging easier and faster.

            names: A string, or a list of strings. These specify what fx_outputs/pt_outputs represent in the model outputs.
                Currently unused, but in the future, we could use this information to make the error message clearer
                by giving the name(s) of the output tensor(s) with large difference(s) between PT and Flax.
        """
2042
2043
2044
2045
2046
2047
2048
2049
2050
2051
2052
2053
2054
2055
2056
2057
2058
2059
2060
2061
2062
2063
2064
2065
2066
2067
2068
2069
2070
2071
2072
2073
2074
2075
2076
2077
2078
2079
2080
2081

        self.assertEqual(type(name), str)
        if attributes is not None:
            self.assertEqual(type(attributes), tuple, f"{name}: The argument `attributes` should be a `tuple`")

        # Allow `ModelOutput` (e.g. `CLIPOutput` has `text_model_output` and `vision_model_output`).
        if isinstance(fx_outputs, ModelOutput):
            self.assertTrue(
                isinstance(pt_outputs, ModelOutput),
                f"{name}: `pt_outputs` should an instance of `ModelOutput` when `fx_outputs` is",
            )

            fx_keys = tuple([k for k, v in fx_outputs.items() if v is not None])
            pt_keys = tuple([k for k, v in pt_outputs.items() if v is not None])

            self.assertEqual(fx_keys, pt_keys, f"{name}: Output keys differ between Flax and PyTorch")

            # convert to the case of `tuple`
            # appending each key to the current (string) `name`
            attributes = tuple([f"{name}.{k}" for k in fx_keys])
            self.check_pt_flax_outputs(
                fx_outputs.to_tuple(), pt_outputs.to_tuple(), model_class, tol=tol, name=name, attributes=attributes
            )

        # Allow `list` (e.g. `TransfoXLModelOutput.mems` is a list of tensors.)
        elif type(fx_outputs) in [tuple, list]:
            self.assertEqual(
                type(fx_outputs), type(pt_outputs), f"{name}: Output types differ between Flax and PyTorch"
            )
            self.assertEqual(
                len(fx_outputs), len(pt_outputs), f"{name}: Output lengths differ between Flax and PyTorch"
            )

            if attributes is not None:
                # case 1: each output has assigned name (e.g. a tuple form of a `ModelOutput`)
                self.assertEqual(
                    len(attributes),
                    len(fx_outputs),
                    f"{name}: The tuple `attributes` should have the same length as `fx_outputs`",
                )
2082
            else:
2083
2084
2085
2086
2087
2088
                # case 2: each output has no assigned name (e.g. hidden states of each layer) -> add an index to `name`
                attributes = tuple([f"{name}_{idx}" for idx in range(len(fx_outputs))])

            for fx_output, pt_output, attr in zip(fx_outputs, pt_outputs, attributes):
                self.check_pt_flax_outputs(fx_output, pt_output, model_class, tol=tol, name=attr)

2089
        elif isinstance(fx_outputs, jnp.ndarray):
2090
2091
2092
            self.assertTrue(
                isinstance(pt_outputs, torch.Tensor), f"{name}: `pt_outputs` should a tensor when `fx_outputs` is"
            )
2093
2094
2095
2096
2097

            # Using `np.asarray` gives `ValueError: assignment destination is read-only` at the line `fx_outputs[fx_nans] = 0`.
            fx_outputs = np.array(fx_outputs)
            pt_outputs = pt_outputs.detach().to("cpu").numpy()

2098
2099
2100
2101
2102
2103
2104
2105
2106
            self.assertEqual(
                fx_outputs.shape, pt_outputs.shape, f"{name}: Output shapes differ between Flax and PyTorch"
            )

            # deal with NumPy's scalars to make replacing nan values by 0 work.
            if np.isscalar(fx_outputs):
                fx_outputs = np.array([fx_outputs])
                pt_outputs = np.array([pt_outputs])

2107
2108
2109
2110
2111
2112
2113
2114
            fx_nans = np.isnan(fx_outputs)
            pt_nans = np.isnan(pt_outputs)

            pt_outputs[fx_nans] = 0
            fx_outputs[fx_nans] = 0
            pt_outputs[pt_nans] = 0
            fx_outputs[pt_nans] = 0

2115
2116
2117
2118
            max_diff = np.amax(np.abs(fx_outputs - pt_outputs))
            self.assertLessEqual(
                max_diff, tol, f"{name}: Difference between PyTorch and Flax is {max_diff} (>= {tol})."
            )
2119
2120
        else:
            raise ValueError(
2121
2122
                "`fx_outputs` should be an instance of `ModelOutput`, a `tuple`, or an instance of `jnp.ndarray`. Got"
                f" {type(fx_outputs)} instead."
2123
2124
            )

2125
2126
2127
2128
2129
2130
2131
2132
2133
    @is_pt_flax_cross_test
    def test_equivalence_pt_to_flax(self):
        config, inputs_dict = self.model_tester.prepare_config_and_inputs_for_common()

        for model_class in self.all_model_classes:
            with self.subTest(model_class.__name__):
                fx_model_class_name = "Flax" + model_class.__name__

                if not hasattr(transformers, fx_model_class_name):
2134
                    # no flax model exists for this class
2135
2136
                    return

2137
2138
2139
2140
                # Output all for aggressive testing
                config.output_hidden_states = True
                config.output_attentions = self.has_attentions

2141
2142
                fx_model_class = getattr(transformers, fx_model_class_name)

2143
2144
2145
2146
2147
2148
                # load PyTorch class
                pt_model = model_class(config).eval()
                # Flax models don't use the `use_cache` option and cache is not returned as a default.
                # So we disable `use_cache` here for PyTorch model.
                pt_model.config.use_cache = False

2149
2150
                # load Flax class
                fx_model = fx_model_class(config, dtype=jnp.float32)
2151

2152
2153
2154
2155
2156
2157
2158
2159
2160
                # make sure only flax inputs are forward that actually exist in function args
                fx_input_keys = inspect.signature(fx_model.__call__).parameters.keys()

                # prepare inputs
                pt_inputs = self._prepare_for_class(inputs_dict, model_class)

                # remove function args that don't exist in Flax
                pt_inputs = {k: v for k, v in pt_inputs.items() if k in fx_input_keys}

2161
2162
2163
2164
2165
2166
2167
2168
                # send pytorch inputs to the correct device
                pt_inputs = {
                    k: v.to(device=torch_device) if isinstance(v, torch.Tensor) else v for k, v in pt_inputs.items()
                }

                # convert inputs to Flax
                fx_inputs = {k: np.array(v) for k, v in pt_inputs.items() if torch.is_tensor(v)}

2169
2170
2171
                fx_state = convert_pytorch_state_dict_to_flax(pt_model.state_dict(), fx_model)
                fx_model.params = fx_state

2172
2173
2174
                # send pytorch model to the correct device
                pt_model.to(torch_device)

2175
                with torch.no_grad():
2176
2177
                    pt_outputs = pt_model(**pt_inputs)
                fx_outputs = fx_model(**fx_inputs)
2178

2179
2180
2181
2182
                fx_keys = tuple([k for k, v in fx_outputs.items() if v is not None])
                pt_keys = tuple([k for k, v in pt_outputs.items() if v is not None])

                self.assertEqual(fx_keys, pt_keys)
2183
                self.check_pt_flax_outputs(fx_outputs, pt_outputs, model_class)
2184
2185
2186
2187
2188

                with tempfile.TemporaryDirectory() as tmpdirname:
                    pt_model.save_pretrained(tmpdirname)
                    fx_model_loaded = fx_model_class.from_pretrained(tmpdirname, from_pt=True)

2189
2190
2191
2192
2193
2194
                fx_outputs_loaded = fx_model_loaded(**fx_inputs)

                fx_keys = tuple([k for k, v in fx_outputs_loaded.items() if v is not None])
                pt_keys = tuple([k for k, v in pt_outputs.items() if v is not None])

                self.assertEqual(fx_keys, pt_keys)
2195
                self.check_pt_flax_outputs(fx_outputs_loaded, pt_outputs, model_class)
2196
2197
2198
2199
2200
2201
2202
2203
2204
2205
2206
2207
2208

    @is_pt_flax_cross_test
    def test_equivalence_flax_to_pt(self):
        config, inputs_dict = self.model_tester.prepare_config_and_inputs_for_common()

        for model_class in self.all_model_classes:
            with self.subTest(model_class.__name__):
                fx_model_class_name = "Flax" + model_class.__name__

                if not hasattr(transformers, fx_model_class_name):
                    # no flax model exists for this class
                    return

2209
2210
2211
2212
                # Output all for aggressive testing
                config.output_hidden_states = True
                config.output_attentions = self.has_attentions

2213
2214
                fx_model_class = getattr(transformers, fx_model_class_name)

2215
2216
2217
2218
2219
2220
                # load PyTorch class
                pt_model = model_class(config).eval()
                # Flax models don't use the `use_cache` option and cache is not returned as a default.
                # So we disable `use_cache` here for PyTorch model.
                pt_model.config.use_cache = False

2221
2222
                # load Flax class
                fx_model = fx_model_class(config, dtype=jnp.float32)
2223

2224
2225
2226
2227
2228
2229
2230
2231
2232
                # make sure only flax inputs are forward that actually exist in function args
                fx_input_keys = inspect.signature(fx_model.__call__).parameters.keys()

                # prepare inputs
                pt_inputs = self._prepare_for_class(inputs_dict, model_class)

                # remove function args that don't exist in Flax
                pt_inputs = {k: v for k, v in pt_inputs.items() if k in fx_input_keys}

2233
2234
2235
2236
                # send pytorch inputs to the correct device
                pt_inputs = {
                    k: v.to(device=torch_device) if isinstance(v, torch.Tensor) else v for k, v in pt_inputs.items()
                }
2237

2238
                # convert inputs to Flax
2239
2240
                fx_inputs = {k: np.array(v) for k, v in pt_inputs.items() if torch.is_tensor(v)}

2241
2242
2243
2244
2245
2246
2247
                pt_model = load_flax_weights_in_pytorch_model(pt_model, fx_model.params)

                # make sure weights are tied in PyTorch
                pt_model.tie_weights()

                # send pytorch model to the correct device
                pt_model.to(torch_device)
2248

2249
2250
2251
2252
2253
2254
2255
2256
                with torch.no_grad():
                    pt_outputs = pt_model(**pt_inputs)
                fx_outputs = fx_model(**fx_inputs)

                fx_keys = tuple([k for k, v in fx_outputs.items() if v is not None])
                pt_keys = tuple([k for k, v in pt_outputs.items() if v is not None])

                self.assertEqual(fx_keys, pt_keys)
2257
                self.check_pt_flax_outputs(fx_outputs, pt_outputs, model_class)
2258
2259
2260
2261
2262

                with tempfile.TemporaryDirectory() as tmpdirname:
                    fx_model.save_pretrained(tmpdirname)
                    pt_model_loaded = model_class.from_pretrained(tmpdirname, from_flax=True)

2263
2264
2265
2266
                # send pytorch model to the correct device
                pt_model_loaded.to(torch_device)
                pt_model_loaded.eval()

2267
                with torch.no_grad():
2268
                    pt_outputs_loaded = pt_model_loaded(**pt_inputs)
2269

2270
2271
2272
2273
                fx_keys = tuple([k for k, v in fx_outputs.items() if v is not None])
                pt_keys = tuple([k for k, v in pt_outputs_loaded.items() if v is not None])

                self.assertEqual(fx_keys, pt_keys)
2274
                self.check_pt_flax_outputs(fx_outputs, pt_outputs_loaded, model_class)
2275

Patrick von Platen's avatar
Patrick von Platen committed
2276
    def test_inputs_embeds(self):
2277
2278
2279
2280
        config, inputs_dict = self.model_tester.prepare_config_and_inputs_for_common()

        for model_class in self.all_model_classes:
            model = model_class(config)
2281
            model.to(torch_device)
thomwolf's avatar
thomwolf committed
2282
            model.eval()
2283

2284
            inputs = copy.deepcopy(self._prepare_for_class(inputs_dict, model_class))
Weizhen's avatar
Weizhen committed
2285

2286
2287
2288
2289
2290
2291
2292
2293
2294
            if not self.is_encoder_decoder:
                input_ids = inputs["input_ids"]
                del inputs["input_ids"]
            else:
                encoder_input_ids = inputs["input_ids"]
                decoder_input_ids = inputs.get("decoder_input_ids", encoder_input_ids)
                del inputs["input_ids"]
                inputs.pop("decoder_input_ids", None)

2295
2296
            wte = model.get_input_embeddings()
            if not self.is_encoder_decoder:
2297
                inputs["inputs_embeds"] = wte(input_ids)
2298
            else:
2299
2300
                inputs["inputs_embeds"] = wte(encoder_input_ids)
                inputs["decoder_inputs_embeds"] = wte(decoder_input_ids)
2301

thomwolf's avatar
thomwolf committed
2302
            with torch.no_grad():
Weizhen's avatar
Weizhen committed
2303
                model(**inputs)[0]
2304

2305
2306
    @require_torch_multi_gpu
    def test_multi_gpu_data_parallel_forward(self):
2307
2308
2309
2310
        config, inputs_dict = self.model_tester.prepare_config_and_inputs_for_common()

        # some params shouldn't be scattered by nn.DataParallel
        # so just remove them if they are present.
2311
        blacklist_non_batched_params = ["head_mask", "decoder_head_mask", "cross_attn_head_mask"]
2312
2313
2314
2315
2316
2317
2318
2319
2320
2321
2322
2323
2324
2325
        for k in blacklist_non_batched_params:
            inputs_dict.pop(k, None)

        # move input tensors to cuda:O
        for k, v in inputs_dict.items():
            if torch.is_tensor(v):
                inputs_dict[k] = v.to(0)

        for model_class in self.all_model_classes:
            model = model_class(config=config)
            model.to(0)
            model.eval()

            # Wrap model in nn.DataParallel
2326
            model = nn.DataParallel(model)
2327
            with torch.no_grad():
2328
                _ = model(**self._prepare_for_class(inputs_dict, model_class))
2329

2330
2331
2332
    @require_torch_multi_gpu
    def test_model_parallelization(self):
        if not self.test_model_parallel:
2333
            return
2334

2335
        # a candidate for testing_utils
2336
        def get_current_gpu_memory_use():
Patrick von Platen's avatar
Patrick von Platen committed
2337
            """returns a list of cuda memory allocations per GPU in MBs"""
2338
2339
2340
2341
2342

            per_device_memory = []
            for id in range(torch.cuda.device_count()):
                with torch.cuda.device(id):
                    per_device_memory.append(torch.cuda.memory_allocated() >> 20)
2343
2344
2345
2346
2347
2348
2349
2350
2351

            return per_device_memory

        # Needs a large model to see the difference.
        config = self.model_tester.get_large_model_config()

        for model_class in self.all_parallelizable_model_classes:
            torch.cuda.empty_cache()

2352
2353
2354
            # 1. single gpu memory load + unload + memory measurements
            # Retrieve initial memory usage (can easily be ~0.6-1.5GB if cuda-kernels have been preloaded by previous tests)
            memory_at_start = get_current_gpu_memory_use()
2355

2356
2357
            # Put model on device 0 and take a memory snapshot
            model = model_class(config)
2358
2359
2360
            model.to("cuda:0")
            memory_after_model_load = get_current_gpu_memory_use()

2361
2362
2363
            # The memory use on device 0 should be higher than it was initially.
            self.assertGreater(memory_after_model_load[0], memory_at_start[0])

2364
            del model
2365
            gc.collect()
2366
2367
            torch.cuda.empty_cache()

2368
2369
2370
            # 2. MP test
            # it's essential to re-calibrate the usage before the next stage
            memory_at_start = get_current_gpu_memory_use()
2371
2372

            # Spread model layers over multiple devices
2373
            model = model_class(config)
2374
2375
2376
2377
            model.parallelize()
            memory_after_parallelization = get_current_gpu_memory_use()

            # Assert that the memory use on all devices is higher than it was when loaded only on CPU
2378
            for n in range(len(model.device_map.keys())):
2379
                self.assertGreater(memory_after_parallelization[n], memory_at_start[n])
2380

2381
            # Assert that the memory use of device 0 is lower than it was when the entire model was loaded on it
2382
2383
            self.assertLess(memory_after_parallelization[0], memory_after_model_load[0])

2384
2385
            # Assert that the memory use of device 1 is higher than it was when the entire model was loaded
            # on device 0 and device 1 wasn't used at all
2386
2387
2388
            self.assertGreater(memory_after_parallelization[1], memory_after_model_load[1])

            del model
2389
            gc.collect()
2390
2391
2392
2393
2394
            torch.cuda.empty_cache()

    @require_torch_multi_gpu
    def test_model_parallel_equal_results(self):
        if not self.test_model_parallel:
2395
            return
2396
2397
2398
2399
2400
2401

        config, inputs_dict = self.model_tester.prepare_config_and_inputs_for_common()

        for model_class in self.all_parallelizable_model_classes:
            inputs_dict = self._prepare_for_class(inputs_dict, model_class)

2402
            def cast_to_device(dictionary, device):
2403
2404
2405
                output = {}
                for k, v in dictionary.items():
                    if isinstance(v, torch.Tensor):
2406
                        output[k] = v.to(device)
2407
2408
2409
2410
2411
                    else:
                        output[k] = v

                return output

2412
2413
2414
2415
2416
2417
            model = model_class(config)
            output = model(**cast_to_device(inputs_dict, "cpu"))

            model.parallelize()

            parallel_output = model(**cast_to_device(inputs_dict, "cuda:0"))
2418
2419
2420
2421
2422
2423
2424
2425

            for value, parallel_value in zip(output, parallel_output):
                if isinstance(value, torch.Tensor):
                    self.assertTrue(torch.allclose(value, parallel_value.to("cpu"), atol=1e-7))
                elif isinstance(value, (Tuple, List)):
                    for value_, parallel_value_ in zip(value, parallel_value):
                        self.assertTrue(torch.allclose(value_, parallel_value_.to("cpu"), atol=1e-7))

2426
2427
2428
2429
2430
2431
2432
2433
2434
2435
2436
2437
2438
2439
2440
2441
2442
2443
2444
2445
2446
2447
2448
2449
2450
2451
2452
2453
    @require_torch_multi_gpu
    def test_model_parallel_beam_search(self):
        if not self.test_model_parallel:
            return

        all_generative_and_parallelizable_model_classes = tuple(
            set(self.all_generative_model_classes).intersection(self.all_parallelizable_model_classes)
        )

        config, inputs_dict = self.model_tester.prepare_config_and_inputs_for_common()

        for model_class in all_generative_and_parallelizable_model_classes:
            inputs_dict = self._prepare_for_class(inputs_dict, model_class)
            model = model_class(config)

            def cast_to_device(dictionary, device):
                output = {}
                for k, v in dictionary.items():
                    if isinstance(v, torch.Tensor):
                        output[k] = v.to(device)
                    else:
                        output[k] = v

                return output

            model.parallelize()
            model.generate(**cast_to_device(inputs_dict, "cuda:0"), num_beams=2)

2454
2455
2456
2457
2458
2459
2460
2461
2462
2463
2464
2465
2466
2467
    def check_device_map_is_respected(self, model, device_map):
        for param_name, param in model.named_parameters():
            # Find device in device_map
            while len(param_name) > 0 and param_name not in device_map:
                param_name = ".".join(param_name.split(".")[:-1])
            if param_name not in device_map:
                raise ValueError("device map is incomplete, it does not contain any device for `param_name`.")

            param_device = device_map[param_name]
            if param_device in ["cpu", "disk"]:
                self.assertEqual(param.device, torch.device("meta"))
            else:
                self.assertEqual(param.device, torch.device(param_device))

Sylvain Gugger's avatar
Sylvain Gugger committed
2468
    @require_accelerate
2469
    @mark.accelerate_tests
Sylvain Gugger's avatar
Sylvain Gugger committed
2470
2471
2472
2473
2474
2475
2476
2477
    @require_torch_gpu
    def test_disk_offload(self):
        config, inputs_dict = self.model_tester.prepare_config_and_inputs_for_common()

        for model_class in self.all_model_classes:
            if model_class._no_split_modules is None:
                continue

2478
            inputs_dict_class = self._prepare_for_class(inputs_dict, model_class)
Sylvain Gugger's avatar
Sylvain Gugger committed
2479
2480
            model = model_class(config).eval()
            model = model.to(torch_device)
2481
            torch.manual_seed(0)
2482
            base_output = model(**inputs_dict_class)
Sylvain Gugger's avatar
Sylvain Gugger committed
2483
2484

            model_size = compute_module_sizes(model)[""]
2485
            max_size = int(self.model_split_percents[0] * model_size)
Sylvain Gugger's avatar
Sylvain Gugger committed
2486
2487
2488
2489
2490
2491
2492
2493
2494
2495
2496
2497
2498
            with tempfile.TemporaryDirectory() as tmp_dir:
                model.cpu().save_pretrained(tmp_dir)

                max_memory = {0: max_size, "cpu": max_size}
                with self.assertRaises(ValueError):
                    # This errors out cause it's missing an offload folder
                    new_model = model_class.from_pretrained(tmp_dir, device_map="auto", max_memory=max_memory)

                new_model = model_class.from_pretrained(
                    tmp_dir, device_map="auto", max_memory=max_memory, offload_folder=tmp_dir
                )

                self.check_device_map_is_respected(new_model, new_model.hf_device_map)
2499
                torch.manual_seed(0)
2500
                new_output = new_model(**inputs_dict_class)
Sylvain Gugger's avatar
Sylvain Gugger committed
2501

2502
                self.assertTrue(torch.allclose(base_output[0], new_output[0], atol=1e-5))
Sylvain Gugger's avatar
Sylvain Gugger committed
2503

2504
    @require_accelerate
2505
    @mark.accelerate_tests
2506
2507
2508
2509
2510
2511
2512
2513
    @require_torch_gpu
    def test_cpu_offload(self):
        config, inputs_dict = self.model_tester.prepare_config_and_inputs_for_common()

        for model_class in self.all_model_classes:
            if model_class._no_split_modules is None:
                continue

2514
            inputs_dict_class = self._prepare_for_class(inputs_dict, model_class)
2515
2516
            model = model_class(config).eval()
            model = model.to(torch_device)
2517
2518

            torch.manual_seed(0)
2519
            base_output = model(**inputs_dict_class)
2520
2521
2522

            model_size = compute_module_sizes(model)[""]
            # We test several splits of sizes to make sure it works.
2523
            max_gpu_sizes = [int(p * model_size) for p in self.model_split_percents]
2524
2525
2526
2527
2528
2529
2530
2531
2532
2533
            with tempfile.TemporaryDirectory() as tmp_dir:
                model.cpu().save_pretrained(tmp_dir)

                for max_size in max_gpu_sizes:
                    max_memory = {0: max_size, "cpu": model_size * 2}
                    new_model = model_class.from_pretrained(tmp_dir, device_map="auto", max_memory=max_memory)
                    # Making sure part of the model will actually end up offloaded
                    self.assertSetEqual(set(new_model.hf_device_map.values()), {0, "cpu"})

                    self.check_device_map_is_respected(new_model, new_model.hf_device_map)
2534
2535

                    torch.manual_seed(0)
2536
                    new_output = new_model(**inputs_dict_class)
2537

2538
                    self.assertTrue(torch.allclose(base_output[0], new_output[0], atol=1e-5))
2539
2540

    @require_accelerate
2541
    @mark.accelerate_tests
2542
2543
2544
2545
2546
2547
2548
2549
    @require_torch_multi_gpu
    def test_model_parallelism(self):
        config, inputs_dict = self.model_tester.prepare_config_and_inputs_for_common()

        for model_class in self.all_model_classes:
            if model_class._no_split_modules is None:
                continue

2550
            inputs_dict_class = self._prepare_for_class(inputs_dict, model_class)
2551
2552
            model = model_class(config).eval()
            model = model.to(torch_device)
2553
2554

            torch.manual_seed(0)
2555
            base_output = model(**inputs_dict_class)
2556
2557
2558

            model_size = compute_module_sizes(model)[""]
            # We test several splits of sizes to make sure it works.
2559
            max_gpu_sizes = [int(p * model_size) for p in self.model_split_percents]
2560
2561
2562
2563
2564
2565
2566
2567
2568
2569
            with tempfile.TemporaryDirectory() as tmp_dir:
                model.cpu().save_pretrained(tmp_dir)

                for max_size in max_gpu_sizes:
                    max_memory = {0: max_size, 1: model_size * 2, "cpu": model_size * 2}
                    new_model = model_class.from_pretrained(tmp_dir, device_map="auto", max_memory=max_memory)
                    # Making sure part of the model will actually end up offloaded
                    self.assertSetEqual(set(new_model.hf_device_map.values()), {0, 1})

                    self.check_device_map_is_respected(new_model, new_model.hf_device_map)
2570
2571

                    torch.manual_seed(0)
2572
                    new_output = new_model(**inputs_dict_class)
2573

2574
                    self.assertTrue(torch.allclose(base_output[0], new_output[0], atol=1e-5))
2575

2576
2577
2578
2579
2580
2581
2582
2583
2584
2585
    def test_problem_types(self):
        config, inputs_dict = self.model_tester.prepare_config_and_inputs_for_common()

        problem_types = [
            {"title": "multi_label_classification", "num_labels": 2, "dtype": torch.float},
            {"title": "single_label_classification", "num_labels": 1, "dtype": torch.long},
            {"title": "regression", "num_labels": 1, "dtype": torch.float},
        ]

        for model_class in self.all_model_classes:
2586
2587
2588
            if model_class.__name__ not in [
                *get_values(MODEL_FOR_SEQUENCE_CLASSIFICATION_MAPPING_NAMES),
                *get_values(MODEL_FOR_IMAGE_CLASSIFICATION_MAPPING_NAMES),
2589
            ]:
2590
2591
2592
2593
2594
2595
2596
2597
2598
2599
2600
2601
2602
2603
2604
2605
2606
2607
                continue

            for problem_type in problem_types:
                with self.subTest(msg=f"Testing {model_class} with {problem_type['title']}"):
                    config.problem_type = problem_type["title"]
                    config.num_labels = problem_type["num_labels"]

                    model = model_class(config)
                    model.to(torch_device)
                    model.train()

                    inputs = self._prepare_for_class(inputs_dict, model_class, return_labels=True)

                    if problem_type["num_labels"] > 1:
                        inputs["labels"] = inputs["labels"].unsqueeze(1).repeat(1, problem_type["num_labels"])

                    inputs["labels"] = inputs["labels"].to(problem_type["dtype"])

2608
2609
2610
2611
2612
2613
                    # This tests that we do not trigger the warning form PyTorch "Using a target size that is different
                    # to the input size. This will likely lead to incorrect results due to broadcasting. Please ensure
                    # they have the same size." which is a symptom something in wrong for the regression problem.
                    # See https://github.com/huggingface/transformers/issues/11780
                    with warnings.catch_warnings(record=True) as warning_list:
                        loss = model(**inputs).loss
2614
2615
2616
2617
2618
                    for w in warning_list:
                        if "Using a target size that is different to the input size" in str(w.message):
                            raise ValueError(
                                f"Something is going wrong in the regression problem: intercepted {w.message}"
                            )
2619

2620
2621
                    loss.backward()

2622
    def test_load_with_mismatched_shapes(self):
2623
2624
        if not self.test_mismatched_shapes:
            return
2625
2626
2627
        config, inputs_dict = self.model_tester.prepare_config_and_inputs_for_common()

        for model_class in self.all_model_classes:
2628
            if model_class.__name__ not in get_values(MODEL_FOR_SEQUENCE_CLASSIFICATION_MAPPING_NAMES):
2629
2630
2631
2632
2633
2634
2635
2636
                continue

            with self.subTest(msg=f"Testing {model_class}"):
                with tempfile.TemporaryDirectory() as tmp_dir:
                    model = model_class(config)
                    model.save_pretrained(tmp_dir)

                    # Fails when we don't set ignore_mismatched_sizes=True
2637
                    with self.assertRaises(RuntimeError):
2638
                        new_model = AutoModelForSequenceClassification.from_pretrained(tmp_dir, num_labels=42)
2639
2640
                    with self.assertRaises(RuntimeError):
                        new_model_without_prefix = AutoModel.from_pretrained(tmp_dir, vocab_size=10)
2641
2642

                    logger = logging.get_logger("transformers.modeling_utils")
2643

2644
2645
2646
2647
2648
2649
2650
2651
2652
2653
                    with CaptureLogger(logger) as cl:
                        new_model = AutoModelForSequenceClassification.from_pretrained(
                            tmp_dir, num_labels=42, ignore_mismatched_sizes=True
                        )
                    self.assertIn("the shapes did not match", cl.out)
                    new_model.to(torch_device)
                    inputs = self._prepare_for_class(inputs_dict, model_class)
                    logits = new_model(**inputs).logits
                    self.assertEqual(logits.shape[1], 42)

2654
2655
2656
2657
2658
2659
2660
2661
2662
2663
2664
2665
                    with CaptureLogger(logger) as cl:
                        new_model_without_prefix = AutoModel.from_pretrained(
                            tmp_dir, vocab_size=10, ignore_mismatched_sizes=True
                        )
                    self.assertIn("the shapes did not match", cl.out)
                    input_ids = ids_tensor((2, 8), 10)
                    new_model_without_prefix.to(torch_device)
                    if self.is_encoder_decoder:
                        new_model_without_prefix(input_ids, decoder_input_ids=input_ids)
                    else:
                        new_model_without_prefix(input_ids)

2666

2667
global_rng = random.Random()
thomwolf's avatar
thomwolf committed
2668
2669


thomwolf's avatar
thomwolf committed
2670
def ids_tensor(shape, vocab_size, rng=None, name=None):
2671
    #  Creates a random int32 tensor of the shape within the vocab size
thomwolf's avatar
thomwolf committed
2672
    if rng is None:
2673
        rng = global_rng
thomwolf's avatar
thomwolf committed
2674

thomwolf's avatar
thomwolf committed
2675
2676
2677
    total_dims = 1
    for dim in shape:
        total_dims *= dim
thomwolf's avatar
thomwolf committed
2678

thomwolf's avatar
thomwolf committed
2679
2680
2681
    values = []
    for _ in range(total_dims):
        values.append(rng.randint(0, vocab_size - 1))
thomwolf's avatar
thomwolf committed
2682

2683
    return torch.tensor(data=values, dtype=torch.long, device=torch_device).view(shape).contiguous()
thomwolf's avatar
thomwolf committed
2684
2685


2686
2687
2688
2689
2690
2691
2692
def random_attention_mask(shape, rng=None, name=None):
    attn_mask = ids_tensor(shape, vocab_size=2, rng=None, name=None)
    # make sure that at least one token is attended to for each batch
    attn_mask[:, -1] = 1
    return attn_mask


2693
def floats_tensor(shape, scale=1.0, rng=None, name=None):
Patrick von Platen's avatar
Patrick von Platen committed
2694
    """Creates a random float32 tensor"""
2695
2696
2697
2698
2699
2700
2701
2702
2703
2704
2705
    if rng is None:
        rng = global_rng

    total_dims = 1
    for dim in shape:
        total_dims *= dim

    values = []
    for _ in range(total_dims):
        values.append(rng.random() * scale)

2706
    return torch.tensor(data=values, dtype=torch.float, device=torch_device).view(shape).contiguous()
2707
2708


2709
2710
2711
2712
2713
2714
2715
2716
2717
def check_models_equal(model1, model2):
    models_are_equal = True
    for model1_p, model2_p in zip(model1.parameters(), model2.parameters()):
        if model1_p.data.ne(model2_p.data).sum() > 0:
            models_are_equal = False

    return models_are_equal


2718
@require_torch
2719
class ModelUtilsTest(TestCasePlus):
2720
    @slow
Patrick von Platen's avatar
Patrick von Platen committed
2721
    def test_model_from_pretrained(self):
2722
        for model_name in BERT_PRETRAINED_MODEL_ARCHIVE_LIST[:1]:
thomwolf's avatar
thomwolf committed
2723
2724
2725
2726
2727
2728
2729
2730
            config = BertConfig.from_pretrained(model_name)
            self.assertIsNotNone(config)
            self.assertIsInstance(config, PretrainedConfig)

            model = BertModel.from_pretrained(model_name)
            model, loading_info = BertModel.from_pretrained(model_name, output_loading_info=True)
            self.assertIsNotNone(model)
            self.assertIsInstance(model, PreTrainedModel)
Lysandre Debut's avatar
Lysandre Debut committed
2731
2732
2733
2734
2735

            self.assertEqual(len(loading_info["missing_keys"]), 0)
            self.assertEqual(len(loading_info["unexpected_keys"]), 8)
            self.assertEqual(len(loading_info["mismatched_keys"]), 0)
            self.assertEqual(len(loading_info["error_msgs"]), 0)
thomwolf's avatar
thomwolf committed
2736
2737

            config = BertConfig.from_pretrained(model_name, output_attentions=True, output_hidden_states=True)
Lysandre Debut's avatar
Lysandre Debut committed
2738
2739
2740
2741

            # Not sure this is the intended behavior. TODO fix Lysandre & Thom
            config.name_or_path = model_name

thomwolf's avatar
thomwolf committed
2742
2743
2744
            model = BertModel.from_pretrained(model_name, output_attentions=True, output_hidden_states=True)
            self.assertEqual(model.config.output_hidden_states, True)
            self.assertEqual(model.config, config)
2745

2746
2747
2748
2749
2750
2751
2752
2753
2754
2755
2756
2757
2758
2759
2760
2761
2762
2763
2764
2765
2766
2767
2768
2769
2770
2771
2772
2773
2774
2775
2776
2777
2778
2779
2780
2781
2782
2783
2784
2785
2786
2787
2788
2789
2790
2791
2792
2793
2794
2795
    def test_model_from_pretrained_subfolder(self):
        config = BertConfig.from_pretrained("hf-internal-testing/tiny-random-bert")
        model = BertModel(config)

        subfolder = "bert"
        with tempfile.TemporaryDirectory() as tmp_dir:
            model.save_pretrained(os.path.join(tmp_dir, subfolder))

            with self.assertRaises(OSError):
                _ = BertModel.from_pretrained(tmp_dir)

            model_loaded = BertModel.from_pretrained(tmp_dir, subfolder=subfolder)

        self.assertTrue(check_models_equal(model, model_loaded))

    def test_model_from_pretrained_subfolder_sharded(self):
        config = BertConfig.from_pretrained("hf-internal-testing/tiny-random-bert")
        model = BertModel(config)

        subfolder = "bert"
        with tempfile.TemporaryDirectory() as tmp_dir:
            model.save_pretrained(os.path.join(tmp_dir, subfolder), max_shard_size="10KB")

            with self.assertRaises(OSError):
                _ = BertModel.from_pretrained(tmp_dir)

            model_loaded = BertModel.from_pretrained(tmp_dir, subfolder=subfolder)

        self.assertTrue(check_models_equal(model, model_loaded))

    def test_model_from_pretrained_hub_subfolder(self):
        subfolder = "bert"
        model_id = "hf-internal-testing/tiny-random-bert-subfolder"
        with self.assertRaises(OSError):
            _ = BertModel.from_pretrained(model_id)

        model = BertModel.from_pretrained(model_id, subfolder=subfolder)

        self.assertIsNotNone(model)

    def test_model_from_pretrained_hub_subfolder_sharded(self):
        subfolder = "bert"
        model_id = "hf-internal-testing/tiny-random-bert-sharded-subfolder"
        with self.assertRaises(OSError):
            _ = BertModel.from_pretrained(model_id)

        model = BertModel.from_pretrained(model_id, subfolder=subfolder)

        self.assertIsNotNone(model)

2796
2797
2798
2799
    def test_model_from_pretrained_with_different_pretrained_model_name(self):
        model = T5ForConditionalGeneration.from_pretrained(TINY_T5)
        self.assertIsNotNone(model)

2800
2801
        logger = logging.get_logger("transformers.configuration_utils")
        with CaptureLogger(logger) as cl:
2802
            BertModel.from_pretrained(TINY_T5)
2803
        self.assertTrue("You are using a model of type t5 to instantiate a model of type bert" in cl.out)
Sylvain Gugger's avatar
Sylvain Gugger committed
2804

2805
2806
2807
2808
2809
2810
2811
2812
2813
2814
2815
2816
2817
2818
2819
2820
2821
2822
2823
2824
    def test_model_from_config_torch_dtype(self):
        # test that the model can be instantiated with dtype of user's choice - as long as it's a
        # float dtype. To make it happen config.torch_dtype needs to be set before instantiating the
        # model from the config object.

        config = T5Config.from_pretrained(TINY_T5)
        model = AutoModel.from_config(config)
        # XXX: isn't supported
        # model = T5ForConditionalGeneration.from_config(config)
        self.assertEqual(model.dtype, torch.float32)

        model = AutoModel.from_config(config, torch_dtype=torch.float16)
        self.assertEqual(model.dtype, torch.float16)

        # torch.set_default_dtype() supports only float dtypes, so will fail with non-float type
        with self.assertRaises(ValueError):
            model = AutoModel.from_config(config, torch_dtype=torch.int64)

    def test_model_from_pretrained_torch_dtype(self):
        # test that the model can be instantiated with dtype of either
2825
2826
        # 1. explicit from_pretrained's torch_dtype argument
        # 2. via autodiscovery by looking at model weights (torch_dtype="auto")
2827
        # so if a model.half() was saved, we want it to be instantiated as such.
2828
2829
        #
        # test an explicit model class, but also AutoModel separately as the latter goes through a different code path
2830
2831
2832
2833
2834
2835
        model_path = self.get_auto_remove_tmp_dir()

        # baseline - we know TINY_T5 is fp32 model
        model = T5ForConditionalGeneration.from_pretrained(TINY_T5)
        self.assertEqual(model.dtype, torch.float32)

2836
2837
2838
2839
2840
2841
2842
2843
        def remove_torch_dtype(model_path):
            file = f"{model_path}/config.json"
            with open(file, "r", encoding="utf-8") as f:
                s = json.load(f)
            s.pop("torch_dtype")
            with open(file, "w", encoding="utf-8") as f:
                json.dump(s, f)

2844
2845
2846
2847
        # test the default fp32 save_pretrained => from_pretrained cycle
        model.save_pretrained(model_path)
        model = T5ForConditionalGeneration.from_pretrained(model_path)
        self.assertEqual(model.dtype, torch.float32)
2848
2849
2850
2851
2852
2853
2854
        # 1. test torch_dtype="auto" via `config.torch_dtype`
        model = T5ForConditionalGeneration.from_pretrained(model_path, torch_dtype="auto")
        self.assertEqual(model.dtype, torch.float32)
        # 2. test torch_dtype="auto" via auto-derivation
        # now remove the torch_dtype entry from config.json and try "auto" again which should
        # perform auto-derivation from weights
        remove_torch_dtype(model_path)
2855
2856
2857
2858
2859
2860
2861
2862
2863
2864
        model = T5ForConditionalGeneration.from_pretrained(model_path, torch_dtype="auto")
        self.assertEqual(model.dtype, torch.float32)

        # test forced loading in fp16 (even though the weights are in fp32)
        model = T5ForConditionalGeneration.from_pretrained(model_path, torch_dtype=torch.float16)
        self.assertEqual(model.dtype, torch.float16)

        # test fp16 save_pretrained, loaded with auto-detection
        model = model.half()
        model.save_pretrained(model_path)
2865
        # 1. test torch_dtype="auto" via `config.torch_dtype`
2866
        model = T5ForConditionalGeneration.from_pretrained(model_path, torch_dtype="auto")
2867
        self.assertEqual(model.config.torch_dtype, torch.float16)
2868
        self.assertEqual(model.dtype, torch.float16)
2869
2870
2871
2872
        # tests `config.torch_dtype` saving
        with open(f"{model_path}/config.json") as f:
            config_dict = json.load(f)
        self.assertEqual(config_dict["torch_dtype"], "float16")
2873
2874
2875
2876
2877
        # 2. test torch_dtype="auto" via auto-derivation
        # now same with using config info
        remove_torch_dtype(model_path)
        model = T5ForConditionalGeneration.from_pretrained(model_path, torch_dtype="auto")
        self.assertEqual(model.dtype, torch.float16)
2878

2879
2880
2881
2882
        # test fp16 save_pretrained, loaded with the explicit fp16
        model = T5ForConditionalGeneration.from_pretrained(model_path, torch_dtype=torch.float16)
        self.assertEqual(model.dtype, torch.float16)

2883
        # test AutoModel separately as it goes through a different path
2884
        # test auto-detection - as currently TINY_T5 doesn't have torch_dtype entry
2885
        model = AutoModel.from_pretrained(TINY_T5, torch_dtype="auto")
2886
2887
2888
2889
        # test that the config object didn't get polluted with torch_dtype="auto"
        # there was a bug that after this call we ended up with config.torch_dtype=="auto"
        self.assertNotEqual(model.config.torch_dtype, "auto")
        # now test the outcome
2890
2891
2892
2893
        self.assertEqual(model.dtype, torch.float32)
        model = AutoModel.from_pretrained(TINY_T5, torch_dtype=torch.float16)
        self.assertEqual(model.dtype, torch.float16)

2894
2895
2896
2897
        # test model whose first param is not of a floating type, but int
        model = AutoModel.from_pretrained(TINY_BERT_FOR_TOKEN_CLASSIFICATION, torch_dtype="auto")
        self.assertEqual(model.dtype, torch.float32)

2898
2899
2900
2901
2902
2903
2904
    def test_no_super_init_config_and_model(self):
        config = NoSuperInitConfig(attribute=32)
        model = NoSuperInitModel(config)

        with tempfile.TemporaryDirectory() as tmp_dir:
            model.save_pretrained(tmp_dir)

2905
2906
2907
2908
            new_model = NoSuperInitModel.from_pretrained(tmp_dir)

        for p1, p2 in zip(model.parameters(), new_model.parameters()):
            self.assertTrue(torch.equal(p1, p2))
2909

Sylvain Gugger's avatar
Sylvain Gugger committed
2910
2911
2912
2913
2914
2915
2916
2917
2918
2919
2920
2921
2922
2923
2924
2925
2926
2927
2928
2929
2930
2931
2932
2933
2934
2935
2936
2937
2938
2939
2940
2941
2942
2943
2944
2945
2946
2947
2948
2949
2950
2951
2952
2953
2954
2955
2956
2957
2958
2959
2960
2961
2962
2963
2964
2965
2966
2967
2968
2969
2970
2971
2972
2973
2974
2975
2976
2977
2978
2979
2980
2981
2982
2983
2984
2985
2986
2987
2988
2989
2990
2991
2992
2993
2994
2995
2996
2997
2998
2999
3000
3001
3002
3003
3004
3005
3006
3007
3008
3009
3010
3011
    def test_shard_checkpoint(self):
        # This is the model we will use, total size 340,000 bytes.
        model = torch.nn.Sequential(
            torch.nn.Linear(100, 200, bias=False),  # size 80,000
            torch.nn.Linear(200, 200, bias=False),  # size 160,000
            torch.nn.Linear(200, 100, bias=False),  # size 80,000
            torch.nn.Linear(100, 50, bias=False),  # size 20,000
        )
        state_dict = model.state_dict()

        with self.subTest("No shard when max size is bigger than model size"):
            shards, index = shard_checkpoint(state_dict)
            self.assertIsNone(index)
            self.assertDictEqual(shards, {WEIGHTS_NAME: state_dict})

        with self.subTest("Test sharding, no weights bigger than max size"):
            shards, index = shard_checkpoint(state_dict, max_shard_size="300kB")
            # Split is first two layers then last two.
            self.assertDictEqual(
                index,
                {
                    "metadata": {"total_size": 340000},
                    "weight_map": {
                        "0.weight": "pytorch_model-00001-of-00002.bin",
                        "1.weight": "pytorch_model-00001-of-00002.bin",
                        "2.weight": "pytorch_model-00002-of-00002.bin",
                        "3.weight": "pytorch_model-00002-of-00002.bin",
                    },
                },
            )

            shard1 = {"0.weight": state_dict["0.weight"], "1.weight": state_dict["1.weight"]}
            shard2 = {"2.weight": state_dict["2.weight"], "3.weight": state_dict["3.weight"]}
            self.assertDictEqual(
                shards, {"pytorch_model-00001-of-00002.bin": shard1, "pytorch_model-00002-of-00002.bin": shard2}
            )

        with self.subTest("Test sharding with weights bigger than max size"):
            shards, index = shard_checkpoint(state_dict, max_shard_size="100kB")
            # Split is first layer, second layer then last 2.
            self.assertDictEqual(
                index,
                {
                    "metadata": {"total_size": 340000},
                    "weight_map": {
                        "0.weight": "pytorch_model-00001-of-00003.bin",
                        "1.weight": "pytorch_model-00002-of-00003.bin",
                        "2.weight": "pytorch_model-00003-of-00003.bin",
                        "3.weight": "pytorch_model-00003-of-00003.bin",
                    },
                },
            )

            shard1 = {"0.weight": state_dict["0.weight"]}
            shard2 = {"1.weight": state_dict["1.weight"]}
            shard3 = {"2.weight": state_dict["2.weight"], "3.weight": state_dict["3.weight"]}
            self.assertDictEqual(
                shards,
                {
                    "pytorch_model-00001-of-00003.bin": shard1,
                    "pytorch_model-00002-of-00003.bin": shard2,
                    "pytorch_model-00003-of-00003.bin": shard3,
                },
            )

    def test_checkpoint_sharding_local(self):
        model = BertModel.from_pretrained("hf-internal-testing/tiny-random-bert")

        with tempfile.TemporaryDirectory() as tmp_dir:
            # We use the same folder for various sizes to make sure a new save erases the old checkpoint.
            for max_size in ["50kB", "50kiB", "100kB", "100kiB", "200kB", "200kiB"]:
                model.save_pretrained(tmp_dir, max_shard_size=max_size)

                # Get each shard file and its size
                shard_to_size = {}
                for shard in os.listdir(tmp_dir):
                    if shard.endswith(".bin"):
                        shard_file = os.path.join(tmp_dir, shard)
                        shard_to_size[shard_file] = os.path.getsize(shard_file)

                index_file = os.path.join(tmp_dir, WEIGHTS_INDEX_NAME)
                # Check there is an index but no regular weight file
                self.assertTrue(os.path.isfile(index_file))
                self.assertFalse(os.path.isfile(os.path.join(tmp_dir, WEIGHTS_NAME)))

                # Check a file is bigger than max_size only when it has a single weight
                for shard_file, size in shard_to_size.items():
                    if max_size.endswith("kiB"):
                        max_size_int = int(max_size[:-3]) * 2**10
                    else:
                        max_size_int = int(max_size[:-2]) * 10**3
                    # Note: pickle adds some junk so the weight of the file can end up being slightly bigger than
                    # the size asked for (since we count parameters)
                    if size >= max_size_int + 50000:
                        state_dict = torch.load(shard_file)
                        self.assertEqual(len(state_dict), 1)

                # Check the index and the shard files found match
                with open(index_file, "r", encoding="utf-8") as f:
                    index = json.loads(f.read())

                all_shards = set(index["weight_map"].values())
3012
                shards_found = {f for f in os.listdir(tmp_dir) if f.endswith(".bin")}
Sylvain Gugger's avatar
Sylvain Gugger committed
3013
3014
3015
3016
3017
3018
3019
3020
3021
3022
3023
3024
3025
3026
                self.assertSetEqual(all_shards, shards_found)

                # Finally, check the model can be reloaded
                new_model = BertModel.from_pretrained(tmp_dir)
                for p1, p2 in zip(model.parameters(), new_model.parameters()):
                    self.assertTrue(torch.allclose(p1, p2))

    def test_checkpoint_sharding_from_hub(self):
        model = BertModel.from_pretrained("hf-internal-testing/tiny-random-bert-sharded")
        # the model above is the same as the model below, just a sharded version.
        ref_model = BertModel.from_pretrained("hf-internal-testing/tiny-random-bert")
        for p1, p2 in zip(model.parameters(), ref_model.parameters()):
            self.assertTrue(torch.allclose(p1, p2))

3027
3028
3029
3030
3031
3032
3033
3034
3035
3036
3037
3038
3039
3040
3041
3042
3043
3044
3045
3046
3047
3048
3049
3050
3051
3052
3053
3054
3055
3056
3057
3058
3059
3060
3061
3062
3063
3064
3065
3066
3067
3068
3069
3070
3071
3072
3073
3074
3075
3076
3077
3078
3079
3080
3081
3082
3083
3084
3085
3086
3087
3088
3089
3090
3091
3092
3093
3094
3095
3096
3097
3098
3099
3100
3101
3102
3103
3104
3105
3106
3107
3108
3109
3110
3111
3112
3113
3114
3115
3116
3117
3118
3119
3120
3121
3122
3123
3124
3125
3126
3127
3128
3129
3130
3131
3132
3133
3134
3135
3136
3137
3138
3139
3140
3141
3142
3143
3144
3145
3146
3147
3148
3149
3150
3151
3152
3153
3154
3155
3156
3157
3158
    def test_checkpoint_variant_local(self):
        model = BertModel.from_pretrained("hf-internal-testing/tiny-random-bert")

        with tempfile.TemporaryDirectory() as tmp_dir:
            model.save_pretrained(tmp_dir, variant="v2")

            weights_name = ".".join(WEIGHTS_NAME.split(".")[:-1] + ["v2"] + ["bin"])

            weights_file = os.path.join(tmp_dir, weights_name)
            self.assertTrue(os.path.isfile(weights_file))
            self.assertFalse(os.path.isfile(os.path.join(tmp_dir, WEIGHTS_NAME)))

            with self.assertRaises(EnvironmentError):
                _ = BertModel.from_pretrained(tmp_dir)

            new_model = BertModel.from_pretrained(tmp_dir, variant="v2")

        for p1, p2 in zip(model.parameters(), new_model.parameters()):
            self.assertTrue(torch.allclose(p1, p2))

    def test_checkpoint_variant_local_sharded(self):
        model = BertModel.from_pretrained("hf-internal-testing/tiny-random-bert")

        with tempfile.TemporaryDirectory() as tmp_dir:
            model.save_pretrained(tmp_dir, variant="v2", max_shard_size="50kB")

            weights_index_name = ".".join(WEIGHTS_INDEX_NAME.split(".")[:-1] + ["v2"] + ["json"])
            weights_index_file = os.path.join(tmp_dir, weights_index_name)
            self.assertTrue(os.path.isfile(weights_index_file))
            self.assertFalse(os.path.isfile(os.path.join(tmp_dir, WEIGHTS_INDEX_NAME)))

            for i in range(1, 6):
                weights_name = ".".join(WEIGHTS_NAME.split(".")[:-1] + [f"v2-0000{i}-of-00006"] + ["bin"])
                weights_name_file = os.path.join(tmp_dir, weights_name)
                self.assertTrue(os.path.isfile(weights_name_file))

            with self.assertRaises(EnvironmentError):
                _ = BertModel.from_pretrained(tmp_dir)

            new_model = BertModel.from_pretrained(tmp_dir, variant="v2")

        for p1, p2 in zip(model.parameters(), new_model.parameters()):
            self.assertTrue(torch.allclose(p1, p2))

    @require_safetensors
    def test_checkpoint_variant_local_safe(self):
        model = BertModel.from_pretrained("hf-internal-testing/tiny-random-bert")

        with tempfile.TemporaryDirectory() as tmp_dir:
            model.save_pretrained(tmp_dir, variant="v2", safe_serialization=True)

            weights_name = ".".join(SAFE_WEIGHTS_NAME.split(".")[:-1] + ["v2"] + ["safetensors"])

            weights_file = os.path.join(tmp_dir, weights_name)
            self.assertTrue(os.path.isfile(weights_file))
            self.assertFalse(os.path.isfile(os.path.join(tmp_dir, SAFE_WEIGHTS_NAME)))

            with self.assertRaises(EnvironmentError):
                _ = BertModel.from_pretrained(tmp_dir)

            new_model = BertModel.from_pretrained(tmp_dir, variant="v2")

        for p1, p2 in zip(model.parameters(), new_model.parameters()):
            self.assertTrue(torch.allclose(p1, p2))

    @require_safetensors
    def test_checkpoint_variant_local_sharded_safe(self):
        model = BertModel.from_pretrained("hf-internal-testing/tiny-random-bert")

        with tempfile.TemporaryDirectory() as tmp_dir:
            model.save_pretrained(tmp_dir, variant="v2", max_shard_size="50kB", safe_serialization=True)

            weights_index_name = ".".join(SAFE_WEIGHTS_INDEX_NAME.split(".")[:-1] + ["v2"] + ["json"])
            weights_index_file = os.path.join(tmp_dir, weights_index_name)
            self.assertTrue(os.path.isfile(weights_index_file))
            self.assertFalse(os.path.isfile(os.path.join(tmp_dir, SAFE_WEIGHTS_INDEX_NAME)))

            for i in range(1, 6):
                weights_name = ".".join(SAFE_WEIGHTS_NAME.split(".")[:-1] + [f"v2-0000{i}-of-00006"] + ["safetensors"])
                weights_name_file = os.path.join(tmp_dir, weights_name)
                self.assertTrue(os.path.isfile(weights_name_file))

            with self.assertRaises(EnvironmentError):
                _ = BertModel.from_pretrained(tmp_dir)

            new_model = BertModel.from_pretrained(tmp_dir, variant="v2")

        for p1, p2 in zip(model.parameters(), new_model.parameters()):
            self.assertTrue(torch.allclose(p1, p2))

    def test_checkpoint_variant_hub(self):
        with tempfile.TemporaryDirectory() as tmp_dir:
            with self.assertRaises(EnvironmentError):
                _ = BertModel.from_pretrained("hf-internal-testing/tiny-random-bert-variant", cache_dir=tmp_dir)
            model = BertModel.from_pretrained(
                "hf-internal-testing/tiny-random-bert-variant", cache_dir=tmp_dir, variant="v2"
            )
        self.assertIsNotNone(model)

    def test_checkpoint_variant_hub_sharded(self):
        with tempfile.TemporaryDirectory() as tmp_dir:
            with self.assertRaises(EnvironmentError):
                _ = BertModel.from_pretrained(
                    "hf-internal-testing/tiny-random-bert-variant-sharded", cache_dir=tmp_dir
                )
            model = BertModel.from_pretrained(
                "hf-internal-testing/tiny-random-bert-variant-sharded", cache_dir=tmp_dir, variant="v2"
            )
        self.assertIsNotNone(model)

    @require_safetensors
    def test_checkpoint_variant_hub_safe(self):
        with tempfile.TemporaryDirectory() as tmp_dir:
            with self.assertRaises(EnvironmentError):
                _ = BertModel.from_pretrained("hf-internal-testing/tiny-random-bert-variant-safe", cache_dir=tmp_dir)
            model = BertModel.from_pretrained(
                "hf-internal-testing/tiny-random-bert-variant-safe", cache_dir=tmp_dir, variant="v2"
            )
        self.assertIsNotNone(model)

    @require_safetensors
    def test_checkpoint_variant_hub_sharded_safe(self):
        with tempfile.TemporaryDirectory() as tmp_dir:
            with self.assertRaises(EnvironmentError):
                _ = BertModel.from_pretrained(
                    "hf-internal-testing/tiny-random-bert-variant-sharded-safe", cache_dir=tmp_dir
                )
            model = BertModel.from_pretrained(
                "hf-internal-testing/tiny-random-bert-variant-sharded-safe", cache_dir=tmp_dir, variant="v2"
            )
        self.assertIsNotNone(model)

3159
3160
3161
3162
3163
3164
3165
3166
3167
3168
3169
3170
3171
3172
3173
3174
3175
3176
3177
3178
3179
    def test_checkpoint_variant_save_load(self):
        with tempfile.TemporaryDirectory() as tmp_dir:
            model = BertModel.from_pretrained(
                "hf-internal-testing/tiny-random-bert-variant", cache_dir=tmp_dir, variant="v2"
            )
            weights_name = ".".join(WEIGHTS_NAME.split(".")[:-1] + ["v2"] + ["bin"])

            model.save_pretrained(tmp_dir, variant="v2")
            # saving will create a variant checkpoint
            self.assertTrue(os.path.isfile(os.path.join(tmp_dir, weights_name)))

            model.save_pretrained(tmp_dir)
            # saving shouldn't delete variant checkpoints
            weights_name = ".".join(WEIGHTS_NAME.split(".")[:-1] + ["v2"] + ["bin"])
            self.assertTrue(os.path.isfile(os.path.join(tmp_dir, weights_name)))

            # there should be a normal checkpoint
            self.assertTrue(os.path.isfile(os.path.join(tmp_dir, WEIGHTS_NAME)))

        self.assertIsNotNone(model)

3180
    @require_accelerate
3181
    @mark.accelerate_tests
3182
3183
3184
3185
3186
3187
3188
3189
3190
3191
3192
3193
    def test_from_pretrained_low_cpu_mem_usage_functional(self):
        # test that we can use `from_pretrained(..., low_cpu_mem_usage=True)` with normal and
        # sharded models

        mnames = [
            "hf-internal-testing/tiny-random-bert-sharded",
            "hf-internal-testing/tiny-random-bert",
        ]
        for mname in mnames:
            _ = BertModel.from_pretrained(mname, low_cpu_mem_usage=True)

    @require_usr_bin_time
3194
    @require_accelerate
3195
    @mark.accelerate_tests
3196
3197
3198
3199
3200
3201
3202
3203
3204
3205
3206
3207
3208
3209
3210
3211
3212
3213
3214
3215
3216
3217
3218
3219
3220
3221
3222
3223
3224
3225
3226
3227
3228
3229
3230
3231
3232
3233
    def test_from_pretrained_low_cpu_mem_usage_measured(self):
        # test that `from_pretrained(..., low_cpu_mem_usage=True)` uses less cpu memory than default

        mname = "bert-base-cased"

        preamble = "from transformers import AutoModel"
        one_liner_str = f'{preamble}; AutoModel.from_pretrained("{mname}", low_cpu_mem_usage=False)'
        max_rss_normal = self.python_one_liner_max_rss(one_liner_str)
        # print(f"{max_rss_normal=}")

        one_liner_str = f'{preamble};  AutoModel.from_pretrained("{mname}", low_cpu_mem_usage=True)'
        max_rss_low_mem = self.python_one_liner_max_rss(one_liner_str)
        # print(f"{max_rss_low_mem=}")

        diff_bytes = max_rss_normal - max_rss_low_mem
        diff_percent = diff_bytes / max_rss_low_mem
        # print(f"{diff_bytes=}, {diff_percent=}")
        # ideally we would compare that the diff is close to ~1x checkpoint size in bytes, but
        # measuring cpu memory on linux is very tricky and inconsistent, so instead let's check that
        # it's at least 15% less cpu memory consumed

        self.assertGreater(
            diff_percent,
            0.15,
            "should use less CPU memory for low_cpu_mem_usage=True, "
            f"but got max_rss_normal={max_rss_normal} and max_rss_low_mem={max_rss_low_mem}",
        )

        # if you want to compare things manually, let's first look at the size of the model in bytes
        # model = BertModel.from_pretrained(mname, low_cpu_mem_usage=False)
        # total_numel = sum(dict((p.data_ptr(), p.numel()) for p in model.parameters()).values())
        # total_bytes = total_numel * 4  # 420MB
        # Now the diff_bytes should be very close to total_bytes, but the reports are inconsistent.
        # The easiest way to test this is to switch the model and torch.load to do all the work on
        # gpu - that way one can measure exactly the total and peak memory used. Perhaps once we add
        # functionality to load models directly on gpu, this test can be rewritten to use torch's
        # cuda memory tracking and then we should be able to do a much more precise test.

3234
    @require_accelerate
3235
    @mark.accelerate_tests
3236
3237
3238
3239
3240
3241
3242
3243
3244
3245
3246
3247
3248
3249
3250
3251
    @require_torch_multi_gpu
    @slow
    def test_model_parallelism_gpt2(self):
        device_map = {"transformer.wte": 0, "transformer.wpe": 0, "lm_head": 0, "transformer.ln_f": 1}
        for i in range(12):
            device_map[f"transformer.h.{i}"] = 0 if i <= 5 else 1

        model = AutoModelForCausalLM.from_pretrained("gpt2", device_map=device_map)

        tokenizer = AutoTokenizer.from_pretrained("gpt2")
        inputs = tokenizer("Hello, my name is", return_tensors="pt")
        output = model.generate(inputs["input_ids"].to(0))

        text_output = tokenizer.decode(output[0].tolist())
        self.assertEqual(text_output, "Hello, my name is John. I'm a writer, and I'm a writer. I'm")

Sylvain Gugger's avatar
Sylvain Gugger committed
3252
    @require_accelerate
3253
    @mark.accelerate_tests
Sylvain Gugger's avatar
Sylvain Gugger committed
3254
3255
3256
3257
3258
3259
3260
3261
3262
3263
3264
3265
3266
3267
3268
3269
3270
3271
3272
3273
3274
3275
3276
3277
3278
3279
3280
3281
3282
3283
3284
3285
3286
3287
3288
3289
3290
3291
3292
3293
3294
    @require_torch_gpu
    def test_from_pretrained_disk_offload_task_model(self):
        model = AutoModel.from_pretrained("hf-internal-testing/tiny-random-gpt2")
        device_map = {
            "transformer.wte": 0,
            "transformer.wpe": 0,
            "transformer.h.0": "cpu",
            "transformer.h.1": "cpu",
            "transformer.h.2": "cpu",
            "transformer.h.3": "disk",
            "transformer.h.4": "disk",
            "transformer.ln_f": 0,
            "lm_head": 0,
        }
        with tempfile.TemporaryDirectory() as tmp_dir:
            inputs = torch.tensor([[1, 2, 3]]).to(0)

            model.save_pretrained(tmp_dir)
            new_model = AutoModelForCausalLM.from_pretrained(tmp_dir).to(0)
            outputs1 = new_model.to(0)(inputs)

            offload_folder = os.path.join(tmp_dir, "offload")
            new_model_with_offload = AutoModelForCausalLM.from_pretrained(
                tmp_dir, device_map=device_map, offload_folder=offload_folder
            )
            outputs2 = new_model_with_offload(inputs)

            self.assertTrue(torch.allclose(outputs1.logits.cpu(), outputs2.logits.cpu()))

            # With state dict temp offload
            offload_folder = os.path.join(tmp_dir, "offload")
            new_model_with_offload = AutoModelForCausalLM.from_pretrained(
                tmp_dir,
                device_map=device_map,
                offload_folder=offload_folder,
                offload_state_dict=True,
            )
            outputs2 = new_model_with_offload(inputs)

            self.assertTrue(torch.allclose(outputs1.logits.cpu(), outputs2.logits.cpu()))

3295
3296
3297
3298
    def test_cached_files_are_used_when_internet_is_down(self):
        # A mock response for an HTTP head request to emulate server down
        response_mock = mock.Mock()
        response_mock.status_code = 500
3299
        response_mock.headers = {}
3300
        response_mock.raise_for_status.side_effect = HTTPError
3301
        response_mock.json.return_value = {}
3302
3303
3304
3305
3306

        # Download this model to make sure it's in the cache.
        _ = BertModel.from_pretrained("hf-internal-testing/tiny-random-bert")

        # Under the mock environment we get a 500 error when trying to reach the model.
3307
        with mock.patch("requests.request", return_value=response_mock) as mock_head:
3308
3309
3310
3311
            _ = BertModel.from_pretrained("hf-internal-testing/tiny-random-bert")
            # This check we did call the fake head request
            mock_head.assert_called()

3312
3313
3314
3315
3316
3317
3318
3319
3320
3321
3322
3323
3324
3325
3326
3327
3328
3329
3330
3331
    def test_load_from_one_file(self):
        try:
            tmp_file = tempfile.mktemp()
            with open(tmp_file, "wb") as f:
                http_get(
                    "https://huggingface.co/hf-internal-testing/tiny-random-bert/resolve/main/pytorch_model.bin", f
                )

            config = BertConfig.from_pretrained("hf-internal-testing/tiny-random-bert")
            _ = BertModel.from_pretrained(tmp_file, config=config)
        finally:
            os.remove(tmp_file)

    def test_legacy_load_from_url(self):
        # This test is for deprecated behavior and can be removed in v5
        config = BertConfig.from_pretrained("hf-internal-testing/tiny-random-bert")
        _ = BertModel.from_pretrained(
            "https://huggingface.co/hf-internal-testing/tiny-random-bert/resolve/main/pytorch_model.bin", config=config
        )

3332
3333
3334
3335
3336
3337
3338
3339
3340
3341
3342
3343
3344
3345
3346
3347
3348
3349
3350
3351
3352
3353
3354
3355
3356
3357
3358
3359
3360
3361
3362
3363
3364
3365
3366
3367
3368
3369
3370
3371
3372
3373
3374
    @require_safetensors
    def test_use_safetensors(self):
        # test nice error message if no safetensor files available
        with self.assertRaises(OSError) as env_error:
            AutoModel.from_pretrained("hf-internal-testing/tiny-random-RobertaModel", use_safetensors=True)

        self.assertTrue(
            "model.safetensors or model.safetensors.index.json and thus cannot be loaded with `safetensors`"
            in str(env_error.exception)
        )

        # test that error if only safetensors is available
        with self.assertRaises(OSError) as env_error:
            BertModel.from_pretrained("hf-internal-testing/tiny-random-bert-safetensors", use_safetensors=False)

        self.assertTrue("does not appear to have a file named pytorch_model.bin" in str(env_error.exception))

        # test that only safetensors if both available and use_safetensors=False
        with tempfile.TemporaryDirectory() as tmp_dir:
            CLIPTextModel.from_pretrained(
                "hf-internal-testing/diffusers-stable-diffusion-tiny-all",
                subfolder="text_encoder",
                use_safetensors=False,
                cache_dir=tmp_dir,
            )

            all_downloaded_files = glob.glob(os.path.join(tmp_dir, "*", "snapshots", "*", "*", "*"))
            self.assertTrue(any(f.endswith("bin") for f in all_downloaded_files))
            self.assertFalse(any(f.endswith("safetensors") for f in all_downloaded_files))

        # test that no safetensors if both available and use_safetensors=True
        with tempfile.TemporaryDirectory() as tmp_dir:
            CLIPTextModel.from_pretrained(
                "hf-internal-testing/diffusers-stable-diffusion-tiny-all",
                subfolder="text_encoder",
                use_safetensors=True,
                cache_dir=tmp_dir,
            )

            all_downloaded_files = glob.glob(os.path.join(tmp_dir, "*", "snapshots", "*", "*", "*"))
            self.assertTrue(any(f.endswith("safetensors") for f in all_downloaded_files))
            self.assertFalse(any(f.endswith("bin") for f in all_downloaded_files))

3375
3376
3377
3378
3379
3380
3381
3382
3383
3384
3385
3386
3387
3388
3389
3390
3391
3392
3393
3394
3395
3396
3397
3398
3399
3400
3401
3402
3403
3404
3405
3406
3407
3408
3409
3410
3411
3412
3413
3414
3415
3416
3417
3418
3419
3420
3421
3422
3423
3424
3425
    @require_safetensors
    def test_safetensors_save_and_load(self):
        model = BertModel.from_pretrained("hf-internal-testing/tiny-random-bert")
        with tempfile.TemporaryDirectory() as tmp_dir:
            model.save_pretrained(tmp_dir, safe_serialization=True)
            # No pytorch_model.bin file, only a model.safetensors
            self.assertTrue(os.path.isfile(os.path.join(tmp_dir, SAFE_WEIGHTS_NAME)))
            self.assertFalse(os.path.isfile(os.path.join(tmp_dir, WEIGHTS_NAME)))

            new_model = BertModel.from_pretrained(tmp_dir)

            # Check models are equal
            for p1, p2 in zip(model.parameters(), new_model.parameters()):
                self.assertTrue(torch.allclose(p1, p2))

    @require_safetensors
    def test_safetensors_load_from_hub(self):
        safetensors_model = BertModel.from_pretrained("hf-internal-testing/tiny-random-bert-safetensors")
        pytorch_model = BertModel.from_pretrained("hf-internal-testing/tiny-random-bert")

        # Check models are equal
        for p1, p2 in zip(safetensors_model.parameters(), pytorch_model.parameters()):
            self.assertTrue(torch.allclose(p1, p2))

    @require_safetensors
    def test_safetensors_save_and_load_sharded(self):
        model = BertModel.from_pretrained("hf-internal-testing/tiny-random-bert")
        with tempfile.TemporaryDirectory() as tmp_dir:
            model.save_pretrained(tmp_dir, safe_serialization=True, max_shard_size="100kB")
            # No pytorch_model.bin index file, only a model.safetensors index
            self.assertFalse(os.path.isfile(os.path.join(tmp_dir, WEIGHTS_INDEX_NAME)))
            self.assertTrue(os.path.isfile(os.path.join(tmp_dir, SAFE_WEIGHTS_INDEX_NAME)))
            # No regular weights file
            self.assertFalse(os.path.isfile(os.path.join(tmp_dir, WEIGHTS_NAME)))
            self.assertFalse(os.path.isfile(os.path.join(tmp_dir, SAFE_WEIGHTS_NAME)))

            new_model = BertModel.from_pretrained(tmp_dir)

            # Check models are equal
            for p1, p2 in zip(model.parameters(), new_model.parameters()):
                self.assertTrue(torch.allclose(p1, p2))

    @require_safetensors
    def test_safetensors_load_from_hub_sharded(self):
        safetensors_model = BertModel.from_pretrained("hf-internal-testing/tiny-random-bert-sharded-safetensors")
        pytorch_model = BertModel.from_pretrained("hf-internal-testing/tiny-random-bert-sharded")

        # Check models are equal
        for p1, p2 in zip(safetensors_model.parameters(), pytorch_model.parameters()):
            self.assertTrue(torch.allclose(p1, p2))

Sylvain Gugger's avatar
Sylvain Gugger committed
3426
3427
3428
3429
3430
3431
3432
3433
3434
3435
3436
3437
3438
3439
3440
3441
3442
3443
3444
3445
3446
3447
    def test_base_model_to_head_model_load(self):
        base_model = BaseModel(PretrainedConfig())
        with tempfile.TemporaryDirectory() as tmp_dir:
            base_model.save_pretrained(tmp_dir)

            # Can load a base model in a model with head
            model = ModelWithHead.from_pretrained(tmp_dir)
            for p1, p2 in zip(model.base.parameters(), base_model.parameters()):
                self.assertTrue(torch.allclose(p1, p2))

            # It doesn't work if the state dict has a mix of keys of the head and base without prefix though.
            base_state_dict = base_model.state_dict()
            head_state_dict = model.state_dict()
            base_state_dict["linear2.weight"] = head_state_dict["linear2.weight"]
            base_state_dict["linear2.bias"] = head_state_dict["linear2.bias"]
            torch.save(base_state_dict, os.path.join(tmp_dir, WEIGHTS_NAME))

            with self.assertRaisesRegex(
                ValueError, "The state dictionary of the model you are trying to load is corrupted."
            ):
                _ = ModelWithHead.from_pretrained(tmp_dir)

Susnato Dhar's avatar
Susnato Dhar committed
3448
    @require_torch_gpu
Joao Gante's avatar
Joao Gante committed
3449
    @slow
Susnato Dhar's avatar
Susnato Dhar committed
3450
3451
3452
3453
3454
3455
3456
3457
3458
3459
3460
3461
3462
3463
3464
3465
3466
3467
3468
3469
    def test_pretrained_low_mem_new_config(self):
        # Checking for 1 model(the same one which was described in the issue) .
        model_ids = ["gpt2"]

        for model_id in model_ids:
            model_config = AutoConfig.from_pretrained(pretrained_model_name_or_path=model_id)
            model_config.n_layer = 48
            model_config.n_head = 25
            model_config.n_embd = 1600
            model = AutoModelForCausalLM.from_pretrained(
                pretrained_model_name_or_path=model_id,
                config=model_config,
                ignore_mismatched_sizes=True,
                torch_dtype=torch.float16,
                low_cpu_mem_usage=True,
            )
            model_ref = AutoModelForCausalLM.from_pretrained(pretrained_model_name_or_path=model_id)

            self.assertEqual(model.__class__.__name__, model_ref.__class__.__name__)

Sylvain Gugger's avatar
Sylvain Gugger committed
3470
3471
3472
3473
3474
3475

@require_torch
@is_staging_test
class ModelPushToHubTester(unittest.TestCase):
    @classmethod
    def setUpClass(cls):
3476
3477
        cls._token = TOKEN
        HfFolder.save_token(TOKEN)
Sylvain Gugger's avatar
Sylvain Gugger committed
3478
3479
3480
3481

    @classmethod
    def tearDownClass(cls):
        try:
3482
            delete_repo(token=cls._token, repo_id="test-model")
Sylvain Gugger's avatar
Sylvain Gugger committed
3483
3484
3485
3486
        except HTTPError:
            pass

        try:
3487
            delete_repo(token=cls._token, repo_id="valid_org/test-model-org")
Sylvain Gugger's avatar
Sylvain Gugger committed
3488
3489
3490
        except HTTPError:
            pass

3491
        try:
3492
            delete_repo(token=cls._token, repo_id="test-dynamic-model")
3493
3494
3495
        except HTTPError:
            pass

Sylvain Gugger's avatar
Sylvain Gugger committed
3496
3497
3498
3499
3500
    def test_push_to_hub(self):
        config = BertConfig(
            vocab_size=99, hidden_size=32, num_hidden_layers=5, num_attention_heads=4, intermediate_size=37
        )
        model = BertModel(config)
3501
3502
3503
3504
3505
3506
3507
3508
3509
3510
        model.push_to_hub("test-model", use_auth_token=self._token)

        new_model = BertModel.from_pretrained(f"{USER}/test-model")
        for p1, p2 in zip(model.parameters(), new_model.parameters()):
            self.assertTrue(torch.equal(p1, p2))

        # Reset repo
        delete_repo(token=self._token, repo_id="test-model")

        # Push to hub via save_pretrained
Sylvain Gugger's avatar
Sylvain Gugger committed
3511
        with tempfile.TemporaryDirectory() as tmp_dir:
3512
            model.save_pretrained(tmp_dir, repo_id="test-model", push_to_hub=True, use_auth_token=self._token)
Sylvain Gugger's avatar
Sylvain Gugger committed
3513

3514
3515
3516
        new_model = BertModel.from_pretrained(f"{USER}/test-model")
        for p1, p2 in zip(model.parameters(), new_model.parameters()):
            self.assertTrue(torch.equal(p1, p2))
Sylvain Gugger's avatar
Sylvain Gugger committed
3517
3518
3519
3520
3521
3522

    def test_push_to_hub_in_organization(self):
        config = BertConfig(
            vocab_size=99, hidden_size=32, num_hidden_layers=5, num_attention_heads=4, intermediate_size=37
        )
        model = BertModel(config)
3523
3524
3525
3526
3527
3528
3529
3530
3531
3532
        model.push_to_hub("valid_org/test-model-org", use_auth_token=self._token)

        new_model = BertModel.from_pretrained("valid_org/test-model-org")
        for p1, p2 in zip(model.parameters(), new_model.parameters()):
            self.assertTrue(torch.equal(p1, p2))

        # Reset repo
        delete_repo(token=self._token, repo_id="valid_org/test-model-org")

        # Push to hub via save_pretrained
Sylvain Gugger's avatar
Sylvain Gugger committed
3533
3534
        with tempfile.TemporaryDirectory() as tmp_dir:
            model.save_pretrained(
3535
                tmp_dir, push_to_hub=True, use_auth_token=self._token, repo_id="valid_org/test-model-org"
Sylvain Gugger's avatar
Sylvain Gugger committed
3536
3537
            )

3538
3539
3540
        new_model = BertModel.from_pretrained("valid_org/test-model-org")
        for p1, p2 in zip(model.parameters(), new_model.parameters()):
            self.assertTrue(torch.equal(p1, p2))
3541
3542

    def test_push_to_hub_dynamic_model(self):
3543
3544
3545
3546
3547
        CustomConfig.register_for_auto_class()
        CustomModel.register_for_auto_class()

        config = CustomConfig(hidden_size=32)
        model = CustomModel(config)
3548

3549
3550
3551
3552
3553
3554
        model.push_to_hub("test-dynamic-model", use_auth_token=self._token)
        # checks
        self.assertDictEqual(
            config.auto_map,
            {"AutoConfig": "custom_configuration.CustomConfig", "AutoModel": "custom_modeling.CustomModel"},
        )
3555
3556

        new_model = AutoModel.from_pretrained(f"{USER}/test-dynamic-model", trust_remote_code=True)
3557
3558
        # Can't make an isinstance check because the new_model is from the CustomModel class of a dynamic module
        self.assertEqual(new_model.__class__.__name__, "CustomModel")
3559
3560
        for p1, p2 in zip(model.parameters(), new_model.parameters()):
            self.assertTrue(torch.equal(p1, p2))
3561

3562
        config = AutoConfig.from_pretrained(f"{USER}/test-dynamic-model", trust_remote_code=True)
3563
        new_model = AutoModel.from_config(config, trust_remote_code=True)
3564
        self.assertEqual(new_model.__class__.__name__, "CustomModel")