test_modeling_common.py 156 KB
Newer Older
thomwolf's avatar
thomwolf committed
1
2
3
4
5
6
7
8
9
10
11
12
13
14
# coding=utf-8
# Copyright 2019 HuggingFace Inc.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
#     http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
Aymeric Augustin's avatar
Aymeric Augustin committed
15

16
import copy
17
import gc
18
import inspect
19
import json
20
import os
21
import os.path
22
import pickle
Aymeric Augustin's avatar
Aymeric Augustin committed
23
import random
24
import sys
25
import tempfile
thomwolf's avatar
thomwolf committed
26
import unittest
27
import unittest.mock as mock
28
import warnings
29
from pathlib import Path
NielsRogge's avatar
NielsRogge committed
30
from typing import Dict, List, Tuple
thomwolf's avatar
thomwolf committed
31

32
import numpy as np
33
from huggingface_hub import HfFolder, delete_repo, set_access_token
34
from huggingface_hub.file_download import http_get
Sylvain Gugger's avatar
Sylvain Gugger committed
35
from requests.exceptions import HTTPError
36
37

import transformers
38
39
40
41
42
43
44
45
from transformers import (
    AutoConfig,
    AutoModel,
    AutoModelForSequenceClassification,
    PretrainedConfig,
    is_torch_available,
    logging,
)
46
from transformers.models.auto import get_values
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
from transformers.models.auto.modeling_auto import (
    MODEL_FOR_AUDIO_CLASSIFICATION_MAPPING_NAMES,
    MODEL_FOR_AUDIO_XVECTOR_MAPPING_NAMES,
    MODEL_FOR_BACKBONE_MAPPING_NAMES,
    MODEL_FOR_CAUSAL_IMAGE_MODELING_MAPPING_NAMES,
    MODEL_FOR_CAUSAL_LM_MAPPING_NAMES,
    MODEL_FOR_DOCUMENT_QUESTION_ANSWERING_MAPPING_NAMES,
    MODEL_FOR_IMAGE_CLASSIFICATION_MAPPING_NAMES,
    MODEL_FOR_MASKED_IMAGE_MODELING_MAPPING_NAMES,
    MODEL_FOR_MASKED_LM_MAPPING_NAMES,
    MODEL_FOR_MULTIPLE_CHOICE_MAPPING_NAMES,
    MODEL_FOR_NEXT_SENTENCE_PREDICTION_MAPPING_NAMES,
    MODEL_FOR_QUESTION_ANSWERING_MAPPING_NAMES,
    MODEL_FOR_SEMANTIC_SEGMENTATION_MAPPING_NAMES,
    MODEL_FOR_SEQ_TO_SEQ_CAUSAL_LM_MAPPING_NAMES,
    MODEL_FOR_SEQUENCE_CLASSIFICATION_MAPPING_NAMES,
    MODEL_FOR_TOKEN_CLASSIFICATION_MAPPING_NAMES,
    MODEL_FOR_VIDEO_CLASSIFICATION_MAPPING_NAMES,
    MODEL_MAPPING_NAMES,
)
Sylvain Gugger's avatar
Sylvain Gugger committed
67
from transformers.testing_utils import (
68
    TOKEN,
Sylvain Gugger's avatar
Sylvain Gugger committed
69
70
    USER,
    CaptureLogger,
71
    TestCasePlus,
72
73
    is_pt_flax_cross_test,
    is_pt_tf_cross_test,
Sylvain Gugger's avatar
Sylvain Gugger committed
74
    is_staging_test,
75
    require_accelerate,
76
    require_safetensors,
Sylvain Gugger's avatar
Sylvain Gugger committed
77
    require_torch,
78
    require_torch_gpu,
Sylvain Gugger's avatar
Sylvain Gugger committed
79
    require_torch_multi_gpu,
80
    require_usr_bin_time,
Sylvain Gugger's avatar
Sylvain Gugger committed
81
82
83
    slow,
    torch_device,
)
84
from transformers.utils import (
85
86
    CONFIG_NAME,
    GENERATION_CONFIG_NAME,
87
88
    SAFE_WEIGHTS_INDEX_NAME,
    SAFE_WEIGHTS_NAME,
89
90
    WEIGHTS_INDEX_NAME,
    WEIGHTS_NAME,
91
    is_accelerate_available,
92
93
94
95
96
    is_flax_available,
    is_tf_available,
    is_torch_fx_available,
)
from transformers.utils.generic import ModelOutput
97

Aymeric Augustin's avatar
Aymeric Augustin committed
98

99
100
sys.path.append(str(Path(__file__).parent.parent / "utils"))

101
from test_module.custom_configuration import CustomConfig, NoSuperInitConfig  # noqa E402
102
103


104
105
106
107
if is_accelerate_available():
    from accelerate.utils import compute_module_sizes


108
if is_torch_available():
109
    import torch
110
    from test_module.custom_modeling import CustomModel, NoSuperInitModel
111
    from torch import nn
thomwolf's avatar
thomwolf committed
112

113
    from transformers import (
114
        BERT_PRETRAINED_MODEL_ARCHIVE_LIST,
115
        MODEL_MAPPING,
116
        AdaptiveEmbedding,
117
118
        AutoModelForCausalLM,
        AutoTokenizer,
119
120
121
        BertConfig,
        BertModel,
        PreTrainedModel,
122
        T5Config,
123
        T5ForConditionalGeneration,
124
    )
Sylvain Gugger's avatar
Sylvain Gugger committed
125
    from transformers.modeling_utils import shard_checkpoint
thomwolf's avatar
thomwolf committed
126

Sylvain Gugger's avatar
Sylvain Gugger committed
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
    # Fake pretrained models for tests
    class BaseModel(PreTrainedModel):
        config_class = PretrainedConfig

        def __init__(self, config):
            super().__init__(config)
            self.linear = nn.Linear(4, 5)
            self.linear_2 = nn.Linear(5, 6)

        def forward(self, x):
            return self.linear_2(self.linear(x))

    class ModelWithHead(PreTrainedModel):
        base_model_prefix = "base"
        config_class = PretrainedConfig

        def _init_weights(self, module):
            pass

        def __init__(self, config):
            super().__init__(config)
            self.base = BaseModel(config)
            # linear is a common name between Base and Head on purpose.
            self.linear = nn.Linear(6, 3)
            self.linear2 = nn.Linear(3, 5)

        def forward(self, x):
            return self.linear2(self.linear(self.base(x)))


157
158
159
if is_tf_available():
    import tensorflow as tf

160
161
if is_flax_available():
    import jax.numpy as jnp
162

163
164
165
166
167
    from transformers.modeling_flax_pytorch_utils import (
        convert_pytorch_state_dict_to_flax,
        load_flax_weights_in_pytorch_model,
    )

168
if is_torch_fx_available():
169
    from transformers.utils.fx import symbolic_trace
170

171

172
173
174
def _config_zero_init(config):
    configs_no_init = copy.deepcopy(config)
    for key in configs_no_init.__dict__.keys():
175
        if "_range" in key or "_std" in key or "initializer_factor" in key or "layer_scale" in key:
Lysandre Debut's avatar
Lysandre Debut committed
176
            setattr(configs_no_init, key, 1e-10)
177
178
179
        if isinstance(getattr(configs_no_init, key, None), PretrainedConfig):
            no_init_subconfig = _config_zero_init(getattr(configs_no_init, key))
            setattr(configs_no_init, key, no_init_subconfig)
180
181
    return configs_no_init

thomwolf's avatar
thomwolf committed
182

183
TINY_T5 = "patrickvonplaten/t5-tiny-random"
184
TINY_BERT_FOR_TOKEN_CLASSIFICATION = "hf-internal-testing/tiny-bert-for-token-classification"
185
186


187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
def _mock_init_weights(self, module):
    for name, param in module.named_parameters(recurse=False):
        # Use the first letter of the name to get a value and go from a <> -13 to z <> 12
        value = ord(name[0].lower()) - 110
        param.data.fill_(value)


def _mock_all_init_weights(self):
    # Prune heads if needed
    if self.config.pruned_heads:
        self.prune_heads(self.config.pruned_heads)

    import transformers.modeling_utils

    if transformers.modeling_utils._init_weights:
        for module in self.modules():
            module._is_hf_initialized = False
        # Initialize weights
        self.apply(self._initialize_weights)

        # Tie weights should be skipped when not initializing all weights
        # since from_pretrained(...) calls tie weights anyways
        self.tie_weights()


212
213
214
215
@require_torch
class ModelTesterMixin:
    model_tester = None
    all_model_classes = ()
216
    all_generative_model_classes = ()
217
    fx_compatible = False
Patrick von Platen's avatar
Patrick von Platen committed
218
219
220
    test_torchscript = True
    test_pruning = True
    test_resize_embeddings = True
221
    test_resize_position_embeddings = False
Patrick von Platen's avatar
Patrick von Platen committed
222
    test_head_masking = True
223
    test_mismatched_shapes = True
224
    test_missing_keys = True
225
    test_model_parallel = False
226
    is_encoder_decoder = False
227
    has_attentions = True
228
    model_split_percents = [0.5, 0.7, 0.9]
229

230
231
    def _prepare_for_class(self, inputs_dict, model_class, return_labels=False):
        inputs_dict = copy.deepcopy(inputs_dict)
232
        if model_class.__name__ in get_values(MODEL_FOR_MULTIPLE_CHOICE_MAPPING_NAMES):
233
            inputs_dict = {
234
                k: v.unsqueeze(1).expand(-1, self.model_tester.num_choices, -1).contiguous()
235
                if isinstance(v, torch.Tensor) and v.ndim > 1
Sylvain Gugger's avatar
Sylvain Gugger committed
236
                else v
237
238
                for k, v in inputs_dict.items()
            }
239
        elif model_class.__name__ in get_values(MODEL_FOR_AUDIO_XVECTOR_MAPPING_NAMES):
240
            inputs_dict.pop("attention_mask")
241
242

        if return_labels:
243
            if model_class.__name__ in get_values(MODEL_FOR_MULTIPLE_CHOICE_MAPPING_NAMES):
244
                inputs_dict["labels"] = torch.ones(self.model_tester.batch_size, dtype=torch.long, device=torch_device)
245
246
247
            elif model_class.__name__ in [
                *get_values(MODEL_FOR_QUESTION_ANSWERING_MAPPING_NAMES),
                *get_values(MODEL_FOR_DOCUMENT_QUESTION_ANSWERING_MAPPING_NAMES),
248
            ]:
249
250
251
252
253
254
                inputs_dict["start_positions"] = torch.zeros(
                    self.model_tester.batch_size, dtype=torch.long, device=torch_device
                )
                inputs_dict["end_positions"] = torch.zeros(
                    self.model_tester.batch_size, dtype=torch.long, device=torch_device
                )
255
256
257
258
259
260
            elif model_class.__name__ in [
                *get_values(MODEL_FOR_SEQUENCE_CLASSIFICATION_MAPPING_NAMES),
                *get_values(MODEL_FOR_NEXT_SENTENCE_PREDICTION_MAPPING_NAMES),
                *get_values(MODEL_FOR_IMAGE_CLASSIFICATION_MAPPING_NAMES),
                *get_values(MODEL_FOR_VIDEO_CLASSIFICATION_MAPPING_NAMES),
                *get_values(MODEL_FOR_AUDIO_CLASSIFICATION_MAPPING_NAMES),
261
            ]:
262
263
264
                inputs_dict["labels"] = torch.zeros(
                    self.model_tester.batch_size, dtype=torch.long, device=torch_device
                )
265
266
267
268
269
270
            elif model_class.__name__ in [
                *get_values(MODEL_FOR_TOKEN_CLASSIFICATION_MAPPING_NAMES),
                *get_values(MODEL_FOR_CAUSAL_LM_MAPPING_NAMES),
                *get_values(MODEL_FOR_CAUSAL_IMAGE_MODELING_MAPPING_NAMES),
                *get_values(MODEL_FOR_MASKED_LM_MAPPING_NAMES),
                *get_values(MODEL_FOR_SEQ_TO_SEQ_CAUSAL_LM_MAPPING_NAMES),
271
272
273
274
            ]:
                inputs_dict["labels"] = torch.zeros(
                    (self.model_tester.batch_size, self.model_tester.seq_length), dtype=torch.long, device=torch_device
                )
275
            elif model_class.__name__ in get_values(MODEL_FOR_MASKED_IMAGE_MODELING_MAPPING_NAMES):
NielsRogge's avatar
NielsRogge committed
276
277
278
279
                num_patches = self.model_tester.image_size // self.model_tester.patch_size
                inputs_dict["bool_masked_pos"] = torch.zeros(
                    (self.model_tester.batch_size, num_patches**2), dtype=torch.long, device=torch_device
                )
280
            elif model_class.__name__ in get_values(MODEL_FOR_SEMANTIC_SEGMENTATION_MAPPING_NAMES):
NielsRogge's avatar
NielsRogge committed
281
282
283
284
                batch_size, num_channels, height, width = inputs_dict["pixel_values"].shape
                inputs_dict["labels"] = torch.zeros(
                    [self.model_tester.batch_size, height, width], device=torch_device
                ).long()
285

286
287
        return inputs_dict

Patrick von Platen's avatar
Patrick von Platen committed
288
    def test_save_load(self):
289
290
        config, inputs_dict = self.model_tester.prepare_config_and_inputs_for_common()

291
292
293
294
295
296
297
298
299
300
        def check_save_load(out1, out2):
            # make sure we don't have nans
            out_2 = out2.cpu().numpy()
            out_2[np.isnan(out_2)] = 0

            out_1 = out1.cpu().numpy()
            out_1[np.isnan(out_1)] = 0
            max_diff = np.amax(np.abs(out_1 - out_2))
            self.assertLessEqual(max_diff, 1e-5)

301
302
303
304
305
        for model_class in self.all_model_classes:
            model = model_class(config)
            model.to(torch_device)
            model.eval()
            with torch.no_grad():
306
                first = model(**self._prepare_for_class(inputs_dict, model_class))[0]
307

308
            with tempfile.TemporaryDirectory() as tmpdirname:
309
                model.save_pretrained(tmpdirname)
310
311
312
313
314
315
316

                # the config file (and the generation config file, if it can generate) should be saved
                self.assertTrue(os.path.exists(os.path.join(tmpdirname, CONFIG_NAME)))
                self.assertEqual(
                    model.can_generate(), os.path.exists(os.path.join(tmpdirname, GENERATION_CONFIG_NAME))
                )

317
                model = model_class.from_pretrained(tmpdirname)
318
                model.to(torch_device)
319
                with torch.no_grad():
320
                    second = model(**self._prepare_for_class(inputs_dict, model_class))[0]
thomwolf's avatar
thomwolf committed
321

322
323
324
325
326
            if isinstance(first, tuple) and isinstance(second, tuple):
                for tensor1, tensor2 in zip(first, second):
                    check_save_load(tensor1, tensor2)
            else:
                check_save_load(first, second)
327

328
329
330
331
332
333
334
335
336
337
338
339
    def test_from_pretrained_no_checkpoint(self):
        config, _ = self.model_tester.prepare_config_and_inputs_for_common()
        for model_class in self.all_model_classes:
            model = model_class(config)
            state_dict = model.state_dict()

            new_model = model_class.from_pretrained(
                pretrained_model_name_or_path=None, config=config, state_dict=state_dict
            )
            for p1, p2 in zip(model.parameters(), new_model.parameters()):
                self.assertTrue(torch.equal(p1, p2))

340
    def test_save_load_keys_to_ignore_on_save(self):
341
342
343
344
        config, inputs_dict = self.model_tester.prepare_config_and_inputs_for_common()

        for model_class in self.all_model_classes:
            model = model_class(config)
345
346
            _keys_to_ignore_on_save = getattr(model, "_keys_to_ignore_on_save", None)
            if _keys_to_ignore_on_save is None:
347
348
349
                continue

            # check the keys are in the original state_dict
350
            for k in _keys_to_ignore_on_save:
351
                self.assertIn(k, model.state_dict().keys(), "\n".join(model.state_dict().keys()))
352
353
354
355
356
357

            # check that certain keys didn't get saved with the model
            with tempfile.TemporaryDirectory() as tmpdirname:
                model.save_pretrained(tmpdirname)
                output_model_file = os.path.join(tmpdirname, WEIGHTS_NAME)
                state_dict_saved = torch.load(output_model_file)
358
                for k in _keys_to_ignore_on_save:
359
                    self.assertNotIn(k, state_dict_saved.keys(), "\n".join(state_dict_saved.keys()))
360

Sylvain Gugger's avatar
Sylvain Gugger committed
361
362
363
                # Test we can load the state dict in the model, necessary for the checkpointing API in Trainer.
                load_result = model.load_state_dict(state_dict_saved, strict=False)
                self.assertTrue(
364
365
                    len(load_result.missing_keys) == 0
                    or set(load_result.missing_keys) == set(model._keys_to_ignore_on_save)
Sylvain Gugger's avatar
Sylvain Gugger committed
366
367
368
                )
                self.assertTrue(len(load_result.unexpected_keys) == 0)

369
370
371
372
373
374
375
376
377
378
379
    def test_gradient_checkpointing_backward_compatibility(self):
        config, inputs_dict = self.model_tester.prepare_config_and_inputs_for_common()

        for model_class in self.all_model_classes:
            if not model_class.supports_gradient_checkpointing:
                continue

            config.gradient_checkpointing = True
            model = model_class(config)
            self.assertTrue(model.is_gradient_checkpointing)

380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
    def test_gradient_checkpointing_enable_disable(self):
        config, inputs_dict = self.model_tester.prepare_config_and_inputs_for_common()

        for model_class in self.all_model_classes:
            if not model_class.supports_gradient_checkpointing:
                continue

            # at init model should have gradient checkpointing disabled
            model = model_class(config)
            self.assertFalse(model.is_gradient_checkpointing)

            # check enable works
            model.gradient_checkpointing_enable()
            self.assertTrue(model.is_gradient_checkpointing)

            # check disable works
            model.gradient_checkpointing_disable()
            self.assertFalse(model.is_gradient_checkpointing)

399
400
    def test_save_load_fast_init_from_base(self):
        config, inputs_dict = self.model_tester.prepare_config_and_inputs_for_common()
401
402
        if config.__class__ not in MODEL_MAPPING:
            return
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
        base_class = MODEL_MAPPING[config.__class__]

        if isinstance(base_class, tuple):
            base_class = base_class[0]

        for model_class in self.all_model_classes:
            if model_class == base_class:
                continue

            # make a copy of model class to not break future tests
            # from https://stackoverflow.com/questions/9541025/how-to-copy-a-python-class
            class CopyClass(model_class):
                pass

            model_class_copy = CopyClass

            # make sure that all keys are expected for test
            model_class_copy._keys_to_ignore_on_load_missing = []

            # make init deterministic, but make sure that
            # non-initialized weights throw errors nevertheless
424
425
            model_class_copy._init_weights = _mock_init_weights
            model_class_copy.init_weights = _mock_all_init_weights
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441

            model = base_class(config)
            state_dict = model.state_dict()

            # this will often delete a single weight of a multi-weight module
            # to test an edge case
            random_key_to_del = random.choice(list(state_dict.keys()))
            del state_dict[random_key_to_del]

            # check that certain keys didn't get saved with the model
            with tempfile.TemporaryDirectory() as tmpdirname:
                model.save_pretrained(tmpdirname)
                torch.save(state_dict, os.path.join(tmpdirname, "pytorch_model.bin"))

                model_fast_init = model_class_copy.from_pretrained(tmpdirname)
                model_slow_init = model_class_copy.from_pretrained(tmpdirname, _fast_init=False)
442
                # Before we test anything
443
444

                for key in model_fast_init.state_dict().keys():
445
446
447
448
449
                    if isinstance(model_slow_init.state_dict()[key], torch.BoolTensor):
                        max_diff = (model_slow_init.state_dict()[key] ^ model_fast_init.state_dict()[key]).sum().item()
                    else:
                        max_diff = (model_slow_init.state_dict()[key] - model_fast_init.state_dict()[key]).sum().item()
                    self.assertLessEqual(max_diff, 1e-3, msg=f"{key} not identical")
450
451
452

    def test_save_load_fast_init_to_base(self):
        config, inputs_dict = self.model_tester.prepare_config_and_inputs_for_common()
453
454
        if config.__class__ not in MODEL_MAPPING:
            return
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
        base_class = MODEL_MAPPING[config.__class__]

        if isinstance(base_class, tuple):
            base_class = base_class[0]

        for model_class in self.all_model_classes:
            if model_class == base_class:
                continue

            # make a copy of model class to not break future tests
            # from https://stackoverflow.com/questions/9541025/how-to-copy-a-python-class
            class CopyClass(base_class):
                pass

            base_class_copy = CopyClass

            # make sure that all keys are expected for test
            base_class_copy._keys_to_ignore_on_load_missing = []

            # make init deterministic, but make sure that
            # non-initialized weights throw errors nevertheless
476
477
            base_class_copy._init_weights = _mock_init_weights
            base_class_copy.init_weights = _mock_all_init_weights
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495

            model = model_class(config)
            state_dict = model.state_dict()

            # this will often delete a single weight of a multi-weight module
            # to test an edge case
            random_key_to_del = random.choice(list(state_dict.keys()))
            del state_dict[random_key_to_del]

            # check that certain keys didn't get saved with the model
            with tempfile.TemporaryDirectory() as tmpdirname:
                model.config.save_pretrained(tmpdirname)
                torch.save(state_dict, os.path.join(tmpdirname, "pytorch_model.bin"))

                model_fast_init = base_class_copy.from_pretrained(tmpdirname)
                model_slow_init = base_class_copy.from_pretrained(tmpdirname, _fast_init=False)

                for key in model_fast_init.state_dict().keys():
496
497
498
499
500
501
502
503
504
                    if isinstance(model_slow_init.state_dict()[key], torch.BoolTensor):
                        max_diff = torch.max(
                            model_slow_init.state_dict()[key] ^ model_fast_init.state_dict()[key]
                        ).item()
                    else:
                        max_diff = torch.max(
                            torch.abs(model_slow_init.state_dict()[key] - model_fast_init.state_dict()[key])
                        ).item()
                    self.assertLessEqual(max_diff, 1e-3, msg=f"{key} not identical")
505

Patrick von Platen's avatar
Patrick von Platen committed
506
    def test_initialization(self):
507
508
509
510
511
512
513
514
        config, inputs_dict = self.model_tester.prepare_config_and_inputs_for_common()

        configs_no_init = _config_zero_init(config)
        for model_class in self.all_model_classes:
            model = model_class(config=configs_no_init)
            for name, param in model.named_parameters():
                if param.requires_grad:
                    self.assertIn(
Lysandre Debut's avatar
Lysandre Debut committed
515
                        ((param.data.mean() * 1e9).round() / 1e9).item(),
516
                        [0.0, 1.0],
517
                        msg=f"Parameter {name} of model {model_class} seems not properly initialized",
518
                    )
thomwolf's avatar
thomwolf committed
519

Patrick von Platen's avatar
Patrick von Platen committed
520
    def test_determinism(self):
521
        config, inputs_dict = self.model_tester.prepare_config_and_inputs_for_common()
522
523
524
525
526
527
528
529
530

        def check_determinism(first, second):
            out_1 = first.cpu().numpy()
            out_2 = second.cpu().numpy()
            out_1 = out_1[~np.isnan(out_1)]
            out_2 = out_2[~np.isnan(out_2)]
            max_diff = np.amax(np.abs(out_1 - out_2))
            self.assertLessEqual(max_diff, 1e-5)

531
532
533
534
535
        for model_class in self.all_model_classes:
            model = model_class(config)
            model.to(torch_device)
            model.eval()
            with torch.no_grad():
536
537
                first = model(**self._prepare_for_class(inputs_dict, model_class))[0]
                second = model(**self._prepare_for_class(inputs_dict, model_class))[0]
Weizhen's avatar
Weizhen committed
538

539
540
541
542
543
            if isinstance(first, tuple) and isinstance(second, tuple):
                for tensor1, tensor2 in zip(first, second):
                    check_determinism(tensor1, tensor2)
            else:
                check_determinism(first, second)
544

545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
    def test_forward_signature(self):
        config, _ = self.model_tester.prepare_config_and_inputs_for_common()

        for model_class in self.all_model_classes:
            model = model_class(config)
            signature = inspect.signature(model.forward)
            # signature.parameters is an OrderedDict => so arg_names order is deterministic
            arg_names = [*signature.parameters.keys()]

            if model.config.is_encoder_decoder:
                expected_arg_names = [
                    "input_ids",
                    "attention_mask",
                    "decoder_input_ids",
                    "decoder_attention_mask",
                ]
561
                expected_arg_names.extend(
562
563
                    ["head_mask", "decoder_head_mask", "cross_attn_head_mask", "encoder_outputs"]
                    if "head_mask" and "decoder_head_mask" and "cross_attn_head_mask" in arg_names
564
565
566
                    else ["encoder_outputs"]
                )
                self.assertListEqual(arg_names[: len(expected_arg_names)], expected_arg_names)
567
568
569
570
            else:
                expected_arg_names = ["input_ids"]
                self.assertListEqual(arg_names[:1], expected_arg_names)

571
572
573
574
575
    def test_training(self):
        if not self.model_tester.is_training:
            return

        for model_class in self.all_model_classes:
576
577
578
            config, inputs_dict = self.model_tester.prepare_config_and_inputs_for_common()
            config.return_dict = True

579
580
581
            if model_class.__name__ in [
                *get_values(MODEL_MAPPING_NAMES),
                *get_values(MODEL_FOR_BACKBONE_MAPPING_NAMES),
582
            ]:
583
                continue
584

585
586
587
588
589
590
591
592
            model = model_class(config)
            model.to(torch_device)
            model.train()
            inputs = self._prepare_for_class(inputs_dict, model_class, return_labels=True)
            loss = model(**inputs).loss
            loss.backward()

    def test_training_gradient_checkpointing(self):
593
        if not self.model_tester.is_training:
594
595
596
            return

        for model_class in self.all_model_classes:
597
598
599
600
            config, inputs_dict = self.model_tester.prepare_config_and_inputs_for_common()
            config.use_cache = False
            config.return_dict = True

601
            if (
602
603
                model_class.__name__
                in [*get_values(MODEL_MAPPING_NAMES), *get_values(MODEL_FOR_BACKBONE_MAPPING_NAMES)]
604
605
                or not model_class.supports_gradient_checkpointing
            ):
606
607
608
                continue
            model = model_class(config)
            model.to(torch_device)
609
            model.gradient_checkpointing_enable()
610
611
612
613
614
            model.train()
            inputs = self._prepare_for_class(inputs_dict, model_class, return_labels=True)
            loss = model(**inputs).loss
            loss.backward()

Patrick von Platen's avatar
Patrick von Platen committed
615
    def test_attention_outputs(self):
616
617
618
        if not self.has_attentions:
            self.skipTest(reason="Model does not output attentions")

619
620
        config, inputs_dict = self.model_tester.prepare_config_and_inputs_for_common()
        config.return_dict = True
621

622
623
624
625
626
627
628
629
630
631
632
633
        seq_len = getattr(self.model_tester, "seq_length", None)
        decoder_seq_length = getattr(self.model_tester, "decoder_seq_length", seq_len)
        encoder_seq_length = getattr(self.model_tester, "encoder_seq_length", seq_len)
        decoder_key_length = getattr(self.model_tester, "decoder_key_length", decoder_seq_length)
        encoder_key_length = getattr(self.model_tester, "key_length", encoder_seq_length)
        chunk_length = getattr(self.model_tester, "chunk_length", None)
        if chunk_length is not None and hasattr(self.model_tester, "num_hashes"):
            encoder_seq_length = encoder_seq_length * self.model_tester.num_hashes

        for model_class in self.all_model_classes:
            inputs_dict["output_attentions"] = True
            inputs_dict["output_hidden_states"] = False
634
            config.return_dict = True
635
636
637
638
639
640
641
            model = model_class(config)
            model.to(torch_device)
            model.eval()
            with torch.no_grad():
                outputs = model(**self._prepare_for_class(inputs_dict, model_class))
            attentions = outputs.encoder_attentions if config.is_encoder_decoder else outputs.attentions
            self.assertEqual(len(attentions), self.model_tester.num_hidden_layers)
642

643
644
645
646
647
648
649
650
651
652
            # check that output_attentions also work using config
            del inputs_dict["output_attentions"]
            config.output_attentions = True
            model = model_class(config)
            model.to(torch_device)
            model.eval()
            with torch.no_grad():
                outputs = model(**self._prepare_for_class(inputs_dict, model_class))
            attentions = outputs.encoder_attentions if config.is_encoder_decoder else outputs.attentions
            self.assertEqual(len(attentions), self.model_tester.num_hidden_layers)
thomwolf's avatar
thomwolf committed
653

654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
            if chunk_length is not None:
                self.assertListEqual(
                    list(attentions[0].shape[-4:]),
                    [self.model_tester.num_attention_heads, encoder_seq_length, chunk_length, encoder_key_length],
                )
            else:
                self.assertListEqual(
                    list(attentions[0].shape[-3:]),
                    [self.model_tester.num_attention_heads, encoder_seq_length, encoder_key_length],
                )
            out_len = len(outputs)

            if self.is_encoder_decoder:
                correct_outlen = 5

                # loss is at first position
                if "labels" in inputs_dict:
                    correct_outlen += 1  # loss is added to beginning
                # Question Answering model returns start_logits and end_logits
673
674
675
                if model_class.__name__ in [
                    *get_values(MODEL_FOR_QUESTION_ANSWERING_MAPPING_NAMES),
                    *get_values(MODEL_FOR_DOCUMENT_QUESTION_ANSWERING_MAPPING_NAMES),
676
                ]:
677
678
679
680
681
682
683
684
685
686
687
688
689
690
                    correct_outlen += 1  # start_logits and end_logits instead of only 1 output
                if "past_key_values" in outputs:
                    correct_outlen += 1  # past_key_values have been returned

                self.assertEqual(out_len, correct_outlen)

                # decoder attentions
                decoder_attentions = outputs.decoder_attentions
                self.assertIsInstance(decoder_attentions, (list, tuple))
                self.assertEqual(len(decoder_attentions), self.model_tester.num_hidden_layers)
                self.assertListEqual(
                    list(decoder_attentions[0].shape[-3:]),
                    [self.model_tester.num_attention_heads, decoder_seq_length, decoder_key_length],
                )
691

692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
                # cross attentions
                cross_attentions = outputs.cross_attentions
                self.assertIsInstance(cross_attentions, (list, tuple))
                self.assertEqual(len(cross_attentions), self.model_tester.num_hidden_layers)
                self.assertListEqual(
                    list(cross_attentions[0].shape[-3:]),
                    [
                        self.model_tester.num_attention_heads,
                        decoder_seq_length,
                        encoder_key_length,
                    ],
                )

            # Check attention is always last and order is fine
            inputs_dict["output_attentions"] = True
            inputs_dict["output_hidden_states"] = True
            model = model_class(config)
            model.to(torch_device)
            model.eval()
            with torch.no_grad():
                outputs = model(**self._prepare_for_class(inputs_dict, model_class))

            if hasattr(self.model_tester, "num_hidden_states_types"):
                added_hidden_states = self.model_tester.num_hidden_states_types
            elif self.is_encoder_decoder:
                added_hidden_states = 2
            else:
                added_hidden_states = 1
            self.assertEqual(out_len + added_hidden_states, len(outputs))

            self_attentions = outputs.encoder_attentions if config.is_encoder_decoder else outputs.attentions

            self.assertEqual(len(self_attentions), self.model_tester.num_hidden_layers)
            if chunk_length is not None:
                self.assertListEqual(
                    list(self_attentions[0].shape[-4:]),
                    [self.model_tester.num_attention_heads, encoder_seq_length, chunk_length, encoder_key_length],
                )
            else:
                self.assertListEqual(
                    list(self_attentions[0].shape[-3:]),
                    [self.model_tester.num_attention_heads, encoder_seq_length, encoder_key_length],
                )
thomwolf's avatar
thomwolf committed
735

736
    @slow
737
    def test_torchscript_simple(self):
738
739
        config, inputs_dict = self.model_tester.prepare_config_and_inputs_for_common()
        self._create_and_check_torchscript(config, inputs_dict)
thomwolf's avatar
thomwolf committed
740

741
    @slow
Patrick von Platen's avatar
Patrick von Platen committed
742
    def test_torchscript_output_attentions(self):
743
744
745
        config, inputs_dict = self.model_tester.prepare_config_and_inputs_for_common()
        config.output_attentions = True
        self._create_and_check_torchscript(config, inputs_dict)
thomwolf's avatar
thomwolf committed
746

747
    @slow
Patrick von Platen's avatar
Patrick von Platen committed
748
    def test_torchscript_output_hidden_state(self):
749
750
751
        config, inputs_dict = self.model_tester.prepare_config_and_inputs_for_common()
        config.output_hidden_states = True
        self._create_and_check_torchscript(config, inputs_dict)
thomwolf's avatar
thomwolf committed
752

753
754
755
756
    # This is copied from `torch/testing/_internal/jit_utils.py::clear_class_registry`
    def clear_torch_jit_class_registry(self):
        torch._C._jit_clear_class_registry()
        torch.jit._recursive.concrete_type_store = torch.jit._recursive.ConcreteTypeStore()
757
758
759
        # torch 1.8 has no `_clear_class_state` in `torch.jit._state`
        if hasattr(torch.jit._state, "_clear_class_state"):
            torch.jit._state._clear_class_state()
760

761
    def _create_and_check_torchscript(self, config, inputs_dict):
Patrick von Platen's avatar
Patrick von Platen committed
762
        if not self.test_torchscript:
763
            return
764

765
766
767
768
769
770
        configs_no_init = _config_zero_init(config)  # To be sure we have no Nan
        configs_no_init.torchscript = True
        for model_class in self.all_model_classes:
            model = model_class(config=configs_no_init)
            model.to(torch_device)
            model.eval()
771
            inputs = self._prepare_for_class(inputs_dict, model_class)
thomwolf's avatar
thomwolf committed
772

773
774
            main_input_name = model_class.main_input_name

775
            try:
776
                if model.config.is_encoder_decoder:
777
                    model.config.use_cache = False  # FSTM still requires this hack -> FSTM should probably be refactored similar to BART afterward
778
                    main_input = inputs[main_input_name]
779
780
781
                    attention_mask = inputs["attention_mask"]
                    decoder_input_ids = inputs["decoder_input_ids"]
                    decoder_attention_mask = inputs["decoder_attention_mask"]
782
                    model(main_input, attention_mask, decoder_input_ids, decoder_attention_mask)
783
                    traced_model = torch.jit.trace(
784
                        model, (main_input, attention_mask, decoder_input_ids, decoder_attention_mask)
785
                    )
786
787
788
789
                elif "bbox" in inputs and "image" in inputs:  # LayoutLMv2 requires additional inputs
                    input_ids = inputs["input_ids"]
                    bbox = inputs["bbox"]
                    image = inputs["image"].tensor
790
                    model(input_ids, bbox, image)
791
792
793
                    traced_model = torch.jit.trace(
                        model, (input_ids, bbox, image), check_trace=False
                    )  # when traced model is checked, an error is produced due to name mangling
794
                else:
795
                    main_input = inputs[main_input_name]
796
                    model(main_input)
797
                    traced_model = torch.jit.trace(model, main_input)
798
799
            except RuntimeError:
                self.fail("Couldn't trace module.")
thomwolf's avatar
thomwolf committed
800

801
            with tempfile.TemporaryDirectory() as tmp_dir_name:
802
                pt_file_name = os.path.join(tmp_dir_name, "traced_model.pt")
thomwolf's avatar
thomwolf committed
803

804
                try:
805
                    torch.jit.save(traced_model, pt_file_name)
806
807
                except Exception:
                    self.fail("Couldn't save module.")
thomwolf's avatar
thomwolf committed
808

809
810
811
812
                try:
                    loaded_model = torch.jit.load(pt_file_name)
                except Exception:
                    self.fail("Couldn't load module.")
LysandreJik's avatar
LysandreJik committed
813

814
815
            model.to(torch_device)
            model.eval()
thomwolf's avatar
thomwolf committed
816

817
818
            loaded_model.to(torch_device)
            loaded_model.eval()
thomwolf's avatar
thomwolf committed
819

820
821
822
            model_state_dict = model.state_dict()
            loaded_model_state_dict = loaded_model.state_dict()

823
824
825
826
827
828
829
830
831
            non_persistent_buffers = {}
            for key in loaded_model_state_dict.keys():
                if key not in model_state_dict.keys():
                    non_persistent_buffers[key] = loaded_model_state_dict[key]

            loaded_model_state_dict = {
                key: value for key, value in loaded_model_state_dict.items() if key not in non_persistent_buffers
            }

832
            self.assertEqual(set(model_state_dict.keys()), set(loaded_model_state_dict.keys()))
thomwolf's avatar
thomwolf committed
833

834
835
836
837
838
839
840
841
842
843
844
            model_buffers = list(model.buffers())
            for non_persistent_buffer in non_persistent_buffers.values():
                found_buffer = False
                for i, model_buffer in enumerate(model_buffers):
                    if torch.equal(non_persistent_buffer, model_buffer):
                        found_buffer = True
                        break

                self.assertTrue(found_buffer)
                model_buffers.pop(i)

845
            models_equal = True
846
            for layer_name, p1 in model_state_dict.items():
847
848
849
850
                if layer_name in loaded_model_state_dict:
                    p2 = loaded_model_state_dict[layer_name]
                    if p1.data.ne(p2.data).sum() > 0:
                        models_equal = False
thomwolf's avatar
thomwolf committed
851

852
            self.assertTrue(models_equal)
thomwolf's avatar
thomwolf committed
853

854
855
856
857
            # Avoid memory leak. Without this, each call increase RAM usage by ~20MB.
            # (Even with this call, there are still memory leak by ~0.04MB)
            self.clear_torch_jit_class_registry()

858
859
860
861
862
863
864
865
    def test_torch_fx(self):
        config, inputs_dict = self.model_tester.prepare_config_and_inputs_for_common()
        self._create_and_check_torch_fx_tracing(config, inputs_dict)

    def test_torch_fx_output_loss(self):
        config, inputs_dict = self.model_tester.prepare_config_and_inputs_for_common()
        self._create_and_check_torch_fx_tracing(config, inputs_dict, output_loss=True)

866
867
    def _create_and_check_torch_fx_tracing(self, config, inputs_dict, output_loss=False):
        if not is_torch_fx_available() or not self.fx_compatible:
868
869
870
871
872
            return

        configs_no_init = _config_zero_init(config)  # To be sure we have no Nan
        configs_no_init.return_dict = False

873
        for model_class in self.all_model_classes:
874
875
876
877
878
879
880
881
882
            model = model_class(config=configs_no_init)
            model.to(torch_device)
            model.eval()
            inputs = self._prepare_for_class(inputs_dict, model_class, return_labels=output_loss)

            try:
                if model.config.is_encoder_decoder:
                    model.config.use_cache = False  # FSTM still requires this hack -> FSTM should probably be refactored similar to BART afterward
                    labels = inputs.get("labels", None)
883
884
885
                    input_names = [
                        "attention_mask",
                        "decoder_attention_mask",
886
                        "decoder_input_ids",
887
                        "input_features",
888
889
                        "input_ids",
                        "input_values",
890
                    ]
891
892
                    if labels is not None:
                        input_names.append("labels")
893

894
                    filtered_inputs = {k: v for (k, v) in inputs.items() if k in input_names}
895
                    input_names = list(filtered_inputs.keys())
896

897
                    model_output = model(**filtered_inputs)
898

899
                    traced_model = symbolic_trace(model, input_names)
900
                    traced_output = traced_model(**filtered_inputs)
901
                else:
902
903
904
905
                    input_names = [
                        "attention_mask",
                        "bbox",
                        "input_features",
906
907
908
909
910
911
                        "input_ids",
                        "input_values",
                        "pixel_values",
                        "token_type_ids",
                        "visual_feats",
                        "visual_pos",
912
                    ]
913

914
                    labels = inputs.get("labels", None)
915
916
                    start_positions = inputs.get("start_positions", None)
                    end_positions = inputs.get("end_positions", None)
917
918
                    if labels is not None:
                        input_names.append("labels")
919
920
921
922
                    if start_positions is not None:
                        input_names.append("start_positions")
                    if end_positions is not None:
                        input_names.append("end_positions")
923

924
                    filtered_inputs = {k: v for (k, v) in inputs.items() if k in input_names}
925
                    input_names = list(filtered_inputs.keys())
926

927
                    if model.__class__.__name__ in set(MODEL_FOR_SEQUENCE_CLASSIFICATION_MAPPING_NAMES.values()) and (
928
                        not hasattr(model.config, "problem_type") or model.config.problem_type is None
929
930
931
                    ):
                        model.config.problem_type = "single_label_classification"

932
                    traced_model = symbolic_trace(model, input_names)
933
                    traced_output = traced_model(**filtered_inputs)
934
                    model_output = model(**filtered_inputs)
935

936
            except Exception as e:
937
                self.fail(f"Couldn't trace module: {e}")
938

939
940
941
942
943
944
945
946
947
948
949
950
951
            def flatten_output(output):
                flatten = []
                for x in output:
                    if isinstance(x, (tuple, list)):
                        flatten += flatten_output(x)
                    elif not isinstance(x, torch.Tensor):
                        continue
                    else:
                        flatten.append(x)
                return flatten

            model_output = flatten_output(model_output)
            traced_output = flatten_output(traced_output)
952
            num_outputs = len(model_output)
953
954
955
956
957
958

            for i in range(num_outputs):
                self.assertTrue(
                    torch.allclose(model_output[i], traced_output[i]),
                    f"traced {i}th output doesn't match model {i}th output for {model_class}",
                )
959

960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
            # Test that the model can be serialized and restored properly
            with tempfile.TemporaryDirectory() as tmp_dir_name:
                pkl_file_name = os.path.join(tmp_dir_name, "model.pkl")
                try:
                    with open(pkl_file_name, "wb") as f:
                        pickle.dump(traced_model, f)
                    with open(pkl_file_name, "rb") as f:
                        loaded = pickle.load(f)
                except Exception as e:
                    self.fail(f"Couldn't serialize / deserialize the traced model: {e}")

                loaded_output = loaded(**filtered_inputs)
                loaded_output = flatten_output(loaded_output)

                for i in range(num_outputs):
                    self.assertTrue(
                        torch.allclose(model_output[i], loaded_output[i]),
                        f"serialized model {i}th output doesn't match model {i}th output for {model_class}",
                    )

980
981
982
983
            # Avoid memory leak. Without this, each call increase RAM usage by ~20MB.
            # (Even with this call, there are still memory leak by ~0.04MB)
            self.clear_torch_jit_class_registry()

Patrick von Platen's avatar
Patrick von Platen committed
984
985
    def test_headmasking(self):
        if not self.test_head_masking:
986
            return
987

988
989
990
        global_rng.seed(42)
        config, inputs_dict = self.model_tester.prepare_config_and_inputs_for_common()
        global_rng.seed()
LysandreJik's avatar
LysandreJik committed
991

992
        inputs_dict["output_attentions"] = True
993
994
995
996
997
998
        config.output_hidden_states = True
        configs_no_init = _config_zero_init(config)  # To be sure we have no Nan
        for model_class in self.all_model_classes:
            model = model_class(config=configs_no_init)
            model.to(torch_device)
            model.eval()
LysandreJik's avatar
LysandreJik committed
999

1000
1001
1002
            # Prepare head_mask
            # Set require_grad after having prepared the tensor to avoid error (leaf variable has been moved into the graph interior)
            head_mask = torch.ones(
Lysandre's avatar
Lysandre committed
1003
1004
1005
                self.model_tester.num_hidden_layers,
                self.model_tester.num_attention_heads,
                device=torch_device,
1006
1007
1008
1009
            )
            head_mask[0, 0] = 0
            head_mask[-1, :-1] = 0
            head_mask.requires_grad_(requires_grad=True)
1010
            inputs = self._prepare_for_class(inputs_dict, model_class).copy()
1011
            inputs["head_mask"] = head_mask
1012
1013
1014
1015
1016
            if model.config.is_encoder_decoder:
                signature = inspect.signature(model.forward)
                arg_names = [*signature.parameters.keys()]
                if "decoder_head_mask" in arg_names:  # necessary diferentiation because of T5 model
                    inputs["decoder_head_mask"] = head_mask
1017
1018
                if "cross_attn_head_mask" in arg_names:
                    inputs["cross_attn_head_mask"] = head_mask
1019
            outputs = model(**inputs, return_dict=True)
1020
1021
1022
1023
1024
1025
1026
1027
1028

            # Test that we can get a gradient back for importance score computation
            output = sum(t.sum() for t in outputs[0])
            output = output.sum()
            output.backward()
            multihead_outputs = head_mask.grad

            self.assertIsNotNone(multihead_outputs)
            self.assertEqual(len(multihead_outputs), self.model_tester.num_hidden_layers)
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049

            def check_attentions_validity(attentions):
                # Remove Nan
                for t in attentions:
                    self.assertLess(
                        torch.sum(torch.isnan(t)), t.numel() / 4
                    )  # Check we don't have more than 25% nans (arbitrary)
                attentions = [
                    t.masked_fill(torch.isnan(t), 0.0) for t in attentions
                ]  # remove them (the test is less complete)

                self.assertAlmostEqual(attentions[0][..., 0, :, :].flatten().sum().item(), 0.0)
                self.assertNotEqual(attentions[0][..., -1, :, :].flatten().sum().item(), 0.0)
                if len(attentions) > 2:  # encoder-decoder models have only 2 layers in each module
                    self.assertNotEqual(attentions[1][..., 0, :, :].flatten().sum().item(), 0.0)
                self.assertAlmostEqual(attentions[-1][..., -2, :, :].flatten().sum().item(), 0.0)
                self.assertNotEqual(attentions[-1][..., -1, :, :].flatten().sum().item(), 0.0)

            if model.config.is_encoder_decoder:
                check_attentions_validity(outputs.encoder_attentions)
                check_attentions_validity(outputs.decoder_attentions)
1050
                check_attentions_validity(outputs.cross_attentions)
1051
1052
            else:
                check_attentions_validity(outputs.attentions)
1053

Patrick von Platen's avatar
Patrick von Platen committed
1054
1055
    def test_head_pruning(self):
        if not self.test_pruning:
1056
1057
1058
            return

        for model_class in self.all_model_classes:
Lysandre's avatar
Lysandre committed
1059
1060
1061
1062
            (
                config,
                inputs_dict,
            ) = self.model_tester.prepare_config_and_inputs_for_common()
1063

1064
1065
            if "head_mask" in inputs_dict:
                del inputs_dict["head_mask"]
1066

1067
            inputs_dict["output_attentions"] = True
1068
1069
1070
1071
            config.output_hidden_states = False
            model = model_class(config=config)
            model.to(torch_device)
            model.eval()
1072
1073
1074
1075
            heads_to_prune = {
                0: list(range(1, self.model_tester.num_attention_heads)),
                -1: [0],
            }
1076
1077
            model.prune_heads(heads_to_prune)
            with torch.no_grad():
1078
                outputs = model(**self._prepare_for_class(inputs_dict, model_class))
1079

1080
            attentions = outputs[-1]
1081

1082
1083
1084
            self.assertEqual(attentions[0].shape[-3], 1)
            self.assertEqual(attentions[1].shape[-3], self.model_tester.num_attention_heads)
            self.assertEqual(attentions[-1].shape[-3], self.model_tester.num_attention_heads - 1)
LysandreJik's avatar
LysandreJik committed
1085

Patrick von Platen's avatar
Patrick von Platen committed
1086
1087
    def test_head_pruning_save_load_from_pretrained(self):
        if not self.test_pruning:
1088
            return
LysandreJik's avatar
LysandreJik committed
1089

1090
        for model_class in self.all_model_classes:
Lysandre's avatar
Lysandre committed
1091
1092
1093
1094
            (
                config,
                inputs_dict,
            ) = self.model_tester.prepare_config_and_inputs_for_common()
1095
1096
1097

            if "head_mask" in inputs_dict:
                del inputs_dict["head_mask"]
1098

1099
            inputs_dict["output_attentions"] = True
1100
1101
1102
1103
            config.output_hidden_states = False
            model = model_class(config=config)
            model.to(torch_device)
            model.eval()
1104
1105
1106
1107
            heads_to_prune = {
                0: list(range(1, self.model_tester.num_attention_heads)),
                -1: [0],
            }
1108
            model.prune_heads(heads_to_prune)
1109

1110
            with tempfile.TemporaryDirectory() as temp_dir_name:
1111
1112
                model.save_pretrained(temp_dir_name)
                model = model_class.from_pretrained(temp_dir_name)
1113
                model.to(torch_device)
1114

1115
            with torch.no_grad():
1116
                outputs = model(**self._prepare_for_class(inputs_dict, model_class))
1117
1118
1119
1120
            attentions = outputs[-1]
            self.assertEqual(attentions[0].shape[-3], 1)
            self.assertEqual(attentions[1].shape[-3], self.model_tester.num_attention_heads)
            self.assertEqual(attentions[-1].shape[-3], self.model_tester.num_attention_heads - 1)
1121

Patrick von Platen's avatar
Patrick von Platen committed
1122
1123
    def test_head_pruning_save_load_from_config_init(self):
        if not self.test_pruning:
1124
            return
1125

1126
        for model_class in self.all_model_classes:
Lysandre's avatar
Lysandre committed
1127
1128
1129
1130
            (
                config,
                inputs_dict,
            ) = self.model_tester.prepare_config_and_inputs_for_common()
1131

1132
1133
            if "head_mask" in inputs_dict:
                del inputs_dict["head_mask"]
1134

1135
            inputs_dict["output_attentions"] = True
1136
            config.output_hidden_states = False
1137

1138
1139
1140
1141
            heads_to_prune = {
                0: list(range(1, self.model_tester.num_attention_heads)),
                -1: [0],
            }
1142
            config.pruned_heads = heads_to_prune
1143

1144
1145
1146
            model = model_class(config=config)
            model.to(torch_device)
            model.eval()
1147

1148
            with torch.no_grad():
1149
                outputs = model(**self._prepare_for_class(inputs_dict, model_class))
1150
            attentions = outputs[-1]
1151

1152
1153
1154
            self.assertEqual(attentions[0].shape[-3], 1)
            self.assertEqual(attentions[1].shape[-3], self.model_tester.num_attention_heads)
            self.assertEqual(attentions[-1].shape[-3], self.model_tester.num_attention_heads - 1)
1155

Patrick von Platen's avatar
Patrick von Platen committed
1156
1157
    def test_head_pruning_integration(self):
        if not self.test_pruning:
1158
            return
1159

1160
        for model_class in self.all_model_classes:
Lysandre's avatar
Lysandre committed
1161
1162
1163
1164
            (
                config,
                inputs_dict,
            ) = self.model_tester.prepare_config_and_inputs_for_common()
1165

1166
1167
            if "head_mask" in inputs_dict:
                del inputs_dict["head_mask"]
1168

1169
            inputs_dict["output_attentions"] = True
1170
            config.output_hidden_states = False
1171

1172
1173
            heads_to_prune = {0: [0], 1: [1, 2]}
            config.pruned_heads = heads_to_prune
1174

1175
1176
1177
            model = model_class(config=config)
            model.to(torch_device)
            model.eval()
1178

1179
            with torch.no_grad():
1180
                outputs = model(**self._prepare_for_class(inputs_dict, model_class))
1181
            attentions = outputs[-1]
1182

1183
1184
1185
1186
            self.assertEqual(attentions[0].shape[-3], self.model_tester.num_attention_heads - 1)
            self.assertEqual(attentions[1].shape[-3], self.model_tester.num_attention_heads - 2)
            self.assertEqual(attentions[2].shape[-3], self.model_tester.num_attention_heads)
            self.assertEqual(attentions[3].shape[-3], self.model_tester.num_attention_heads)
thomwolf's avatar
thomwolf committed
1187

1188
            with tempfile.TemporaryDirectory() as temp_dir_name:
1189
1190
                model.save_pretrained(temp_dir_name)
                model = model_class.from_pretrained(temp_dir_name)
1191
                model.to(torch_device)
thomwolf's avatar
thomwolf committed
1192

1193
            with torch.no_grad():
1194
                outputs = model(**self._prepare_for_class(inputs_dict, model_class))
1195
            attentions = outputs[-1]
LysandreJik's avatar
LysandreJik committed
1196

1197
1198
1199
1200
            self.assertEqual(attentions[0].shape[-3], self.model_tester.num_attention_heads - 1)
            self.assertEqual(attentions[1].shape[-3], self.model_tester.num_attention_heads - 2)
            self.assertEqual(attentions[2].shape[-3], self.model_tester.num_attention_heads)
            self.assertEqual(attentions[3].shape[-3], self.model_tester.num_attention_heads)
thomwolf's avatar
thomwolf committed
1201

1202
1203
            heads_to_prune = {0: [0], 2: [1, 2]}
            model.prune_heads(heads_to_prune)
1204

1205
            with torch.no_grad():
1206
                outputs = model(**self._prepare_for_class(inputs_dict, model_class))
1207
            attentions = outputs[-1]
1208

1209
1210
1211
1212
            self.assertEqual(attentions[0].shape[-3], self.model_tester.num_attention_heads - 1)
            self.assertEqual(attentions[1].shape[-3], self.model_tester.num_attention_heads - 2)
            self.assertEqual(attentions[2].shape[-3], self.model_tester.num_attention_heads - 2)
            self.assertEqual(attentions[3].shape[-3], self.model_tester.num_attention_heads)
1213

1214
            self.assertDictEqual(model.config.pruned_heads, {0: [0], 1: [1, 2], 2: [1, 2]})
thomwolf's avatar
thomwolf committed
1215

Patrick von Platen's avatar
Patrick von Platen committed
1216
    def test_hidden_states_output(self):
Joseph Liu's avatar
Joseph Liu committed
1217
        def check_hidden_states_output(inputs_dict, config, model_class):
1218
            model = model_class(config)
1219
            model.to(torch_device)
thomwolf's avatar
thomwolf committed
1220
            model.eval()
Joseph Liu's avatar
Joseph Liu committed
1221

thomwolf's avatar
thomwolf committed
1222
            with torch.no_grad():
1223
                outputs = model(**self._prepare_for_class(inputs_dict, model_class))
1224
1225

            hidden_states = outputs.encoder_hidden_states if config.is_encoder_decoder else outputs.hidden_states
Patrick von Platen's avatar
Patrick von Platen committed
1226

Sylvain Gugger's avatar
Sylvain Gugger committed
1227
1228
1229
1230
            expected_num_layers = getattr(
                self.model_tester, "expected_num_hidden_layers", self.model_tester.num_hidden_layers + 1
            )
            self.assertEqual(len(hidden_states), expected_num_layers)
1231

Patrick von Platen's avatar
Patrick von Platen committed
1232
1233
1234
1235
1236
1237
1238
            if hasattr(self.model_tester, "encoder_seq_length"):
                seq_length = self.model_tester.encoder_seq_length
                if hasattr(self.model_tester, "chunk_length") and self.model_tester.chunk_length > 1:
                    seq_length = seq_length * self.model_tester.chunk_length
            else:
                seq_length = self.model_tester.seq_length

1239
            self.assertListEqual(
Lysandre's avatar
Lysandre committed
1240
1241
                list(hidden_states[0].shape[-2:]),
                [seq_length, self.model_tester.hidden_size],
1242
            )
thomwolf's avatar
thomwolf committed
1243

1244
1245
1246
1247
1248
1249
1250
1251
1252
1253
1254
1255
1256
            if config.is_encoder_decoder:
                hidden_states = outputs.decoder_hidden_states

                self.assertIsInstance(hidden_states, (list, tuple))
                self.assertEqual(len(hidden_states), expected_num_layers)
                seq_len = getattr(self.model_tester, "seq_length", None)
                decoder_seq_length = getattr(self.model_tester, "decoder_seq_length", seq_len)

                self.assertListEqual(
                    list(hidden_states[0].shape[-2:]),
                    [decoder_seq_length, self.model_tester.hidden_size],
                )

Joseph Liu's avatar
Joseph Liu committed
1257
1258
1259
1260
1261
1262
1263
1264
1265
1266
1267
1268
        config, inputs_dict = self.model_tester.prepare_config_and_inputs_for_common()

        for model_class in self.all_model_classes:
            inputs_dict["output_hidden_states"] = True
            check_hidden_states_output(inputs_dict, config, model_class)

            # check that output_hidden_states also work using config
            del inputs_dict["output_hidden_states"]
            config.output_hidden_states = True

            check_hidden_states_output(inputs_dict, config, model_class)

1269
1270
1271
    def test_retain_grad_hidden_states_attentions(self):
        config, inputs_dict = self.model_tester.prepare_config_and_inputs_for_common()
        config.output_hidden_states = True
1272
        config.output_attentions = self.has_attentions
1273
1274
1275
1276
1277
1278
1279
1280
1281

        # no need to test all models as different heads yield the same functionality
        model_class = self.all_model_classes[0]
        model = model_class(config)
        model.to(torch_device)

        inputs = self._prepare_for_class(inputs_dict, model_class)

        outputs = model(**inputs)
1282

1283
1284
1285
1286
1287
1288
1289
1290
1291
1292
        output = outputs[0]

        if config.is_encoder_decoder:
            # Seq2Seq models
            encoder_hidden_states = outputs.encoder_hidden_states[0]
            encoder_hidden_states.retain_grad()

            decoder_hidden_states = outputs.decoder_hidden_states[0]
            decoder_hidden_states.retain_grad()

1293
1294
1295
1296
1297
1298
1299
1300
1301
            if self.has_attentions:
                encoder_attentions = outputs.encoder_attentions[0]
                encoder_attentions.retain_grad()

                decoder_attentions = outputs.decoder_attentions[0]
                decoder_attentions.retain_grad()

                cross_attentions = outputs.cross_attentions[0]
                cross_attentions.retain_grad()
1302
1303
1304
1305
1306

            output.flatten()[0].backward(retain_graph=True)

            self.assertIsNotNone(encoder_hidden_states.grad)
            self.assertIsNotNone(decoder_hidden_states.grad)
1307
1308
1309
1310
1311

            if self.has_attentions:
                self.assertIsNotNone(encoder_attentions.grad)
                self.assertIsNotNone(decoder_attentions.grad)
                self.assertIsNotNone(cross_attentions.grad)
1312
1313
1314
1315
        else:
            # Encoder-/Decoder-only models
            hidden_states = outputs.hidden_states[0]
            hidden_states.retain_grad()
1316
1317
1318
1319

            if self.has_attentions:
                attentions = outputs.attentions[0]
                attentions.retain_grad()
1320
1321
1322
1323

            output.flatten()[0].backward(retain_graph=True)

            self.assertIsNotNone(hidden_states.grad)
1324
1325
1326

            if self.has_attentions:
                self.assertIsNotNone(attentions.grad)
1327

Pradhy729's avatar
Pradhy729 committed
1328
    def test_feed_forward_chunking(self):
Lysandre's avatar
Lysandre committed
1329
1330
1331
1332
        (
            original_config,
            inputs_dict,
        ) = self.model_tester.prepare_config_and_inputs_for_common()
Pradhy729's avatar
Pradhy729 committed
1333
1334
1335
1336
1337
1338
1339
1340
1341
1342
1343
1344
1345
1346
1347
1348
1349
1350
        for model_class in self.all_model_classes:
            torch.manual_seed(0)
            config = copy.deepcopy(original_config)
            model = model_class(config)
            model.to(torch_device)
            model.eval()

            hidden_states_no_chunk = model(**self._prepare_for_class(inputs_dict, model_class))[0]

            torch.manual_seed(0)
            config.chunk_size_feed_forward = 1
            model = model_class(config)
            model.to(torch_device)
            model.eval()

            hidden_states_with_chunk = model(**self._prepare_for_class(inputs_dict, model_class))[0]
            self.assertTrue(torch.allclose(hidden_states_no_chunk, hidden_states_with_chunk, atol=1e-3))

1351
1352
1353
1354
1355
1356
1357
1358
1359
1360
1361
1362
1363
1364
1365
1366
1367
1368
1369
1370
1371
1372
1373
1374
1375
1376
1377
1378
1379
1380
1381
1382
1383
1384
1385
1386
1387
1388
1389
1390
1391
1392
1393
1394
1395
1396
1397
1398
1399
1400
1401
1402
1403
1404
1405
1406
1407
1408
1409
1410
1411
1412
1413
1414
1415
1416
1417
1418
1419
1420
1421
1422
1423
1424
1425
1426
1427
1428
1429
    def test_resize_position_vector_embeddings(self):
        if not self.test_resize_position_embeddings:
            return

        (
            original_config,
            inputs_dict,
        ) = self.model_tester.prepare_config_and_inputs_for_common()

        for model_class in self.all_model_classes:
            config = copy.deepcopy(original_config)
            model = model_class(config)
            model.to(torch_device)

            if self.model_tester.is_training is False:
                model.eval()

            max_position_embeddings = config.max_position_embeddings

            # Retrieve the embeddings and clone theme
            if model.config.is_encoder_decoder:
                encoder_model_embed, decoder_model_embed = model.get_position_embeddings()
                encoder_cloned_embeddings = encoder_model_embed.weight.clone()
                decoder_cloned_embeddings = decoder_model_embed.weight.clone()
            else:
                model_embed = model.get_position_embeddings()
                cloned_embeddings = model_embed.weight.clone()

            # Check that resizing the position embeddings with a larger max_position_embeddings increases
            # the model's postion embeddings size
            model.resize_position_embeddings(max_position_embeddings + 10)
            self.assertEqual(model.config.max_position_embeddings, max_position_embeddings + 10)

            # Check that it actually resizes the embeddings matrix
            if model.config.is_encoder_decoder:
                encoder_model_embed, decoder_model_embed = model.get_position_embeddings()
                self.assertEqual(encoder_model_embed.weight.shape[0], encoder_cloned_embeddings.shape[0] + 10)
                self.assertEqual(decoder_model_embed.weight.shape[0], decoder_cloned_embeddings.shape[0] + 10)
            else:
                model_embed = model.get_position_embeddings()
                self.assertEqual(model_embed.weight.shape[0], cloned_embeddings.shape[0] + 10)

            # Check that the model can still do a forward pass successfully (every parameter should be resized)
            model(**self._prepare_for_class(inputs_dict, model_class))

            # Check that resizing the position embeddings with a smaller max_position_embeddings decreases
            # the model's max_position_embeddings
            model.resize_position_embeddings(max_position_embeddings - 5)
            self.assertEqual(model.config.max_position_embeddings, max_position_embeddings - 5)

            # Check that it actually resizes the embeddings matrix
            if model.config.is_encoder_decoder:
                encoder_model_embed, decoder_model_embed = model.get_position_embeddings()
                self.assertEqual(encoder_model_embed.weight.shape[0], encoder_cloned_embeddings.shape[0] - 5)
                self.assertEqual(decoder_model_embed.weight.shape[0], decoder_cloned_embeddings.shape[0] - 5)
            else:
                model_embed = model.get_position_embeddings()
                self.assertEqual(model_embed.weight.shape[0], cloned_embeddings.shape[0] - 5)

            # Check that the model can still do a forward pass successfully (every parameter should be resized)
            model(**self._prepare_for_class(inputs_dict, model_class))

            # Check that adding and removing tokens has not modified the first part of the embedding matrix.
            models_equal = True

            if model.config.is_encoder_decoder:
                for p1, p2 in zip(encoder_cloned_embeddings, encoder_model_embed.weight):
                    if p1.data.ne(p2.data).sum() > 0:
                        models_equal = False
                for p1, p2 in zip(decoder_cloned_embeddings, decoder_model_embed.weight):
                    if p1.data.ne(p2.data).sum() > 0:
                        models_equal = False
            else:
                for p1, p2 in zip(cloned_embeddings, model_embed.weight):
                    if p1.data.ne(p2.data).sum() > 0:
                        models_equal = False

            self.assertTrue(models_equal)

Patrick von Platen's avatar
Patrick von Platen committed
1430
    def test_resize_tokens_embeddings(self):
Lysandre's avatar
Lysandre committed
1431
1432
1433
1434
        (
            original_config,
            inputs_dict,
        ) = self.model_tester.prepare_config_and_inputs_for_common()
Patrick von Platen's avatar
Patrick von Platen committed
1435
        if not self.test_resize_embeddings:
1436
1437
1438
1439
1440
            return

        for model_class in self.all_model_classes:
            config = copy.deepcopy(original_config)
            model = model_class(config)
1441
            model.to(torch_device)
1442

Patrick von Platen's avatar
Patrick von Platen committed
1443
1444
1445
            if self.model_tester.is_training is False:
                model.eval()

1446
1447
1448
1449
1450
1451
1452
1453
1454
1455
            model_vocab_size = config.vocab_size
            # Retrieve the embeddings and clone theme
            model_embed = model.resize_token_embeddings(model_vocab_size)
            cloned_embeddings = model_embed.weight.clone()

            # Check that resizing the token embeddings with a larger vocab size increases the model's vocab size
            model_embed = model.resize_token_embeddings(model_vocab_size + 10)
            self.assertEqual(model.config.vocab_size, model_vocab_size + 10)
            # Check that it actually resizes the embeddings matrix
            self.assertEqual(model_embed.weight.shape[0], cloned_embeddings.shape[0] + 10)
1456
            # Check that the model can still do a forward pass successfully (every parameter should be resized)
1457
            model(**self._prepare_for_class(inputs_dict, model_class))
1458
1459
1460
1461
1462
1463
1464

            # Check that resizing the token embeddings with a smaller vocab size decreases the model's vocab size
            model_embed = model.resize_token_embeddings(model_vocab_size - 15)
            self.assertEqual(model.config.vocab_size, model_vocab_size - 15)
            # Check that it actually resizes the embeddings matrix
            self.assertEqual(model_embed.weight.shape[0], cloned_embeddings.shape[0] - 15)

1465
1466
1467
            # Check that the model can still do a forward pass successfully (every parameter should be resized)
            # Input ids should be clamped to the maximum size of the vocabulary
            inputs_dict["input_ids"].clamp_(max=model_vocab_size - 15 - 1)
1468
1469
1470
1471

            # make sure that decoder_input_ids are resized as well
            if "decoder_input_ids" in inputs_dict:
                inputs_dict["decoder_input_ids"].clamp_(max=model_vocab_size - 15 - 1)
1472
            model(**self._prepare_for_class(inputs_dict, model_class))
1473

1474
1475
1476
1477
1478
1479
1480
1481
            # Check that adding and removing tokens has not modified the first part of the embedding matrix.
            models_equal = True
            for p1, p2 in zip(cloned_embeddings, model_embed.weight):
                if p1.data.ne(p2.data).sum() > 0:
                    models_equal = False

            self.assertTrue(models_equal)

1482
1483
1484
1485
1486
1487
1488
1489
1490
1491
1492
1493
1494
1495
1496
1497
1498
1499
1500
1501
1502
1503
1504
1505
1506
1507
1508
1509
1510
1511
1512
1513
1514
1515
1516
1517
1518
1519
1520
1521
1522
1523
1524
1525
1526
1527
1528
1529
1530
1531
1532
    def test_resize_embeddings_untied(self):
        (
            original_config,
            inputs_dict,
        ) = self.model_tester.prepare_config_and_inputs_for_common()
        if not self.test_resize_embeddings:
            return

        original_config.tie_word_embeddings = False

        # if model cannot untied embeddings -> leave test
        if original_config.tie_word_embeddings:
            return

        for model_class in self.all_model_classes:
            config = copy.deepcopy(original_config)
            model = model_class(config).to(torch_device)

            # if no output embeddings -> leave test
            if model.get_output_embeddings() is None:
                continue

            # Check that resizing the token embeddings with a larger vocab size increases the model's vocab size
            model_vocab_size = config.vocab_size
            model.resize_token_embeddings(model_vocab_size + 10)
            self.assertEqual(model.config.vocab_size, model_vocab_size + 10)
            output_embeds = model.get_output_embeddings()
            self.assertEqual(output_embeds.weight.shape[0], model_vocab_size + 10)
            # Check bias if present
            if output_embeds.bias is not None:
                self.assertEqual(output_embeds.bias.shape[0], model_vocab_size + 10)
            # Check that the model can still do a forward pass successfully (every parameter should be resized)
            model(**self._prepare_for_class(inputs_dict, model_class))

            # Check that resizing the token embeddings with a smaller vocab size decreases the model's vocab size
            model.resize_token_embeddings(model_vocab_size - 15)
            self.assertEqual(model.config.vocab_size, model_vocab_size - 15)
            # Check that it actually resizes the embeddings matrix
            output_embeds = model.get_output_embeddings()
            self.assertEqual(output_embeds.weight.shape[0], model_vocab_size - 15)
            # Check bias if present
            if output_embeds.bias is not None:
                self.assertEqual(output_embeds.bias.shape[0], model_vocab_size - 15)
            # Check that the model can still do a forward pass successfully (every parameter should be resized)
            # Input ids should be clamped to the maximum size of the vocabulary
            inputs_dict["input_ids"].clamp_(max=model_vocab_size - 15 - 1)
            if "decoder_input_ids" in inputs_dict:
                inputs_dict["decoder_input_ids"].clamp_(max=model_vocab_size - 15 - 1)
            # Check that the model can still do a forward pass successfully (every parameter should be resized)
            model(**self._prepare_for_class(inputs_dict, model_class))

Patrick von Platen's avatar
Patrick von Platen committed
1533
    def test_model_common_attributes(self):
1534
1535
1536
1537
        config, inputs_dict = self.model_tester.prepare_config_and_inputs_for_common()

        for model_class in self.all_model_classes:
            model = model_class(config)
1538
1539
            self.assertIsInstance(model.get_input_embeddings(), (nn.Embedding, AdaptiveEmbedding))
            model.set_input_embeddings(nn.Embedding(10, 10))
1540
            x = model.get_output_embeddings()
1541
            self.assertTrue(x is None or isinstance(x, nn.Linear))
1542

1543
1544
1545
1546
1547
1548
1549
    def test_model_main_input_name(self):
        for model_class in self.all_model_classes:
            model_signature = inspect.signature(getattr(model_class, "forward"))
            # The main input is the name of the argument after `self`
            observed_main_input_name = list(model_signature.parameters.keys())[1]
            self.assertEqual(model_class.main_input_name, observed_main_input_name)

1550
    def test_correct_missing_keys(self):
1551
1552
        if not self.test_missing_keys:
            return
1553
1554
1555
1556
1557
1558
1559
        config, _ = self.model_tester.prepare_config_and_inputs_for_common()

        for model_class in self.all_model_classes:
            model = model_class(config)
            base_model_prefix = model.base_model_prefix

            if hasattr(model, base_model_prefix):
1560
1561
1562
1563
1564
1565
1566
1567
1568
1569
1570
1571
1572
                extra_params = {k: v for k, v in model.named_parameters() if not k.startswith(base_model_prefix)}
                extra_params.update({k: v for k, v in model.named_buffers() if not k.startswith(base_model_prefix)})
                # Some models define this as None
                if model._keys_to_ignore_on_load_missing:
                    for key in model._keys_to_ignore_on_load_missing:
                        extra_params.pop(key, None)

                if not extra_params:
                    # In that case, we *are* on a head model, but every
                    # single key is not actual parameters and this is
                    # tested in `test_tied_model_weights_key_ignore` test.
                    continue

1573
1574
1575
                with tempfile.TemporaryDirectory() as temp_dir_name:
                    model.base_model.save_pretrained(temp_dir_name)
                    model, loading_info = model_class.from_pretrained(temp_dir_name, output_loading_info=True)
1576
                    self.assertGreater(len(loading_info["missing_keys"]), 0, model.__class__.__name__)
1577

1578
1579
1580
1581
1582
1583
1584
1585
1586
1587
1588
1589
1590
1591
1592
1593
1594
1595
1596
1597
1598
1599
1600
1601
1602
1603
1604
1605
1606
1607
1608
1609
1610
1611
1612
1613
1614
1615
1616
1617
1618
1619
1620
1621
1622
1623
1624
1625
    def test_tie_model_weights(self):
        if not self.test_torchscript:
            return

        config, inputs_dict = self.model_tester.prepare_config_and_inputs_for_common()

        def check_same_values(layer_1, layer_2):
            equal = True
            for p1, p2 in zip(layer_1.weight, layer_2.weight):
                if p1.data.ne(p2.data).sum() > 0:
                    equal = False
            return equal

        for model_class in self.all_model_classes:
            config.torchscript = True
            model_not_tied = model_class(config)
            if model_not_tied.get_output_embeddings() is None:
                continue

            config_tied = copy.deepcopy(config)
            config_tied.torchscript = False
            model_tied = model_class(config_tied)
            params_tied = list(model_tied.parameters())
            # Check that the embedding layer and decoding layer are the same in size and in value
            # self.assertTrue(check_same_values(embeddings, decoding))

            # # Check that after modification, they remain the same.
            # embeddings.weight.data.div_(2)
            # # Check that the embedding layer and decoding layer are the same in size and in value
            # self.assertTrue(embeddings.weight.shape, decoding.weight.shape)
            # self.assertTrue(check_same_values(embeddings, decoding))

            # # Check that after modification, they remain the same.
            # decoding.weight.data.div_(4)
            # # Check that the embedding layer and decoding layer are the same in size and in value
            # self.assertTrue(embeddings.weight.shape, decoding.weight.shape)
            # self.assertTrue(check_same_values(embeddings, decoding))

            # Check that after resize they remain tied.
            model_tied.resize_token_embeddings(config.vocab_size + 10)
            params_tied_2 = list(model_tied.parameters())
            self.assertEqual(len(params_tied_2), len(params_tied))

            # decoding.weight.data.mul_(20)
            # # Check that the embedding layer and decoding layer are the same in size and in value
            # self.assertTrue(model.transformer.wte.weight.shape, model.lm_head.weight.shape)
            # self.assertTrue(check_same_values(model.transformer.wte, model.lm_head))

1626
1627
1628
1629
1630
1631
1632
1633
1634
1635
1636
1637
1638
1639
1640
1641
1642
1643
1644
1645
1646
1647
1648
1649
1650
1651
1652
1653
    def test_tied_model_weights_key_ignore(self):
        config, inputs_dict = self.model_tester.prepare_config_and_inputs_for_common()
        for model_class in self.all_model_classes:
            model_tied = model_class(config)
            with tempfile.TemporaryDirectory() as d:
                model_tied.save_pretrained(d)

                # We are nuking ALL weights on file, so every parameter should
                # yell on load. We're going to detect if we yell too much, or too little.
                with open(os.path.join(d, "pytorch_model.bin"), "wb") as f:
                    torch.save({}, f)
                model_reloaded, infos = model_class.from_pretrained(d, output_loading_info=True)

                # ! Actually we could use `state_dict()` and check iteratively the tensors which are the same (for instance using `tensor.data_ptr()`). to detect the duplicates.
                # ```python
                # model = GPT2LMHeadModel.from_pretrained("gpt2")
                # "lm_head.weight" in model.state_dict().keys()  # True
                # "lm_head.weight" in model.named_parameters() # False
                # In [6]: model.lm_head.weight.data_ptr()
                # Out[6]: 139901378371648
                # In [9]: model.transformer.wte.weight.data_ptr()
                # Out[9]: 139901378371648  # Same PTR, it's the same DATA ! we would need to check for stride too to be 100% accurate.
                # ```

                prefix = f"{model_reloaded.base_model_prefix}."
                params = dict(model_reloaded.named_parameters())
                params.update(dict(model_reloaded.named_buffers()))
                # param_names = set(k[len(prefix) :] if k.startswith(prefix) else k for k in params.keys())
1654
                param_names = {k[len(prefix) :] if k.startswith(prefix) else k for k in params.keys()}
1655
1656
1657
1658
1659
1660
1661
1662
1663
1664
1665
1666
1667
1668
1669
1670
1671
1672
1673

                missing_keys = set(infos["missing_keys"])

                extra_missing = missing_keys - param_names
                # missed_missing = param_names - missing_keys

                self.assertEqual(
                    extra_missing,
                    set(),
                    f"This model {model_class.__name__} might be missing some `keys_to_ignore`: {extra_missing}",
                )

                # self.assertEqual(
                #     missed_missing,
                #     set(),
                #     f"This model {model_class.__name__} ignores keys {missed_missing} but they look like real"
                #     " parameters",
                # )

1674
1675
1676
    def test_model_outputs_equivalence(self):
        config, inputs_dict = self.model_tester.prepare_config_and_inputs_for_common()

Sam Shleifer's avatar
Sam Shleifer committed
1677
1678
1679
1680
        def set_nan_tensor_to_zero(t):
            t[t != t] = 0
            return t

1681
1682
1683
1684
1685
1686
1687
1688
1689
        def check_equivalence(model, tuple_inputs, dict_inputs, additional_kwargs={}):
            with torch.no_grad():
                tuple_output = model(**tuple_inputs, return_dict=False, **additional_kwargs)
                dict_output = model(**dict_inputs, return_dict=True, **additional_kwargs).to_tuple()

                def recursive_check(tuple_object, dict_object):
                    if isinstance(tuple_object, (List, Tuple)):
                        for tuple_iterable_value, dict_iterable_value in zip(tuple_object, dict_object):
                            recursive_check(tuple_iterable_value, dict_iterable_value)
NielsRogge's avatar
NielsRogge committed
1690
1691
1692
1693
1694
                    elif isinstance(tuple_object, Dict):
                        for tuple_iterable_value, dict_iterable_value in zip(
                            tuple_object.values(), dict_object.values()
                        ):
                            recursive_check(tuple_iterable_value, dict_iterable_value)
1695
1696
1697
1698
                    elif tuple_object is None:
                        return
                    else:
                        self.assertTrue(
Sam Shleifer's avatar
Sam Shleifer committed
1699
1700
1701
                            torch.allclose(
                                set_nan_tensor_to_zero(tuple_object), set_nan_tensor_to_zero(dict_object), atol=1e-5
                            ),
Sylvain Gugger's avatar
Sylvain Gugger committed
1702
1703
1704
1705
1706
1707
                            msg=(
                                "Tuple and dict output are not equal. Difference:"
                                f" {torch.max(torch.abs(tuple_object - dict_object))}. Tuple has `nan`:"
                                f" {torch.isnan(tuple_object).any()} and `inf`: {torch.isinf(tuple_object)}. Dict has"
                                f" `nan`: {torch.isnan(dict_object).any()} and `inf`: {torch.isinf(dict_object)}."
                            ),
1708
1709
1710
1711
1712
1713
1714
1715
1716
1717
1718
1719
1720
1721
1722
1723
1724
1725
1726
1727
1728
1729
1730
1731
1732
                        )

                recursive_check(tuple_output, dict_output)

        for model_class in self.all_model_classes:
            model = model_class(config)
            model.to(torch_device)
            model.eval()

            tuple_inputs = self._prepare_for_class(inputs_dict, model_class)
            dict_inputs = self._prepare_for_class(inputs_dict, model_class)
            check_equivalence(model, tuple_inputs, dict_inputs)

            tuple_inputs = self._prepare_for_class(inputs_dict, model_class, return_labels=True)
            dict_inputs = self._prepare_for_class(inputs_dict, model_class, return_labels=True)
            check_equivalence(model, tuple_inputs, dict_inputs)

            tuple_inputs = self._prepare_for_class(inputs_dict, model_class)
            dict_inputs = self._prepare_for_class(inputs_dict, model_class)
            check_equivalence(model, tuple_inputs, dict_inputs, {"output_hidden_states": True})

            tuple_inputs = self._prepare_for_class(inputs_dict, model_class, return_labels=True)
            dict_inputs = self._prepare_for_class(inputs_dict, model_class, return_labels=True)
            check_equivalence(model, tuple_inputs, dict_inputs, {"output_hidden_states": True})

1733
1734
1735
1736
            if self.has_attentions:
                tuple_inputs = self._prepare_for_class(inputs_dict, model_class)
                dict_inputs = self._prepare_for_class(inputs_dict, model_class)
                check_equivalence(model, tuple_inputs, dict_inputs, {"output_attentions": True})
1737

1738
1739
1740
1741
1742
1743
1744
1745
1746
                tuple_inputs = self._prepare_for_class(inputs_dict, model_class, return_labels=True)
                dict_inputs = self._prepare_for_class(inputs_dict, model_class, return_labels=True)
                check_equivalence(model, tuple_inputs, dict_inputs, {"output_attentions": True})

                tuple_inputs = self._prepare_for_class(inputs_dict, model_class, return_labels=True)
                dict_inputs = self._prepare_for_class(inputs_dict, model_class, return_labels=True)
                check_equivalence(
                    model, tuple_inputs, dict_inputs, {"output_hidden_states": True, "output_attentions": True}
                )
1747

1748
1749
1750
1751
    # Don't copy this method to model specific test file!
    # TODO: remove this method once the issues are all fixed!
    def _make_attention_mask_non_null(self, inputs_dict):
        """Make sure no sequence has all zeros as attention mask"""
1752

1753
1754
1755
        for k in ["attention_mask", "encoder_attention_mask", "decoder_attention_mask"]:
            if k in inputs_dict:
                attention_mask = inputs_dict[k]
1756

1757
1758
1759
1760
1761
1762
                # Make sure no all 0s attention masks - to avoid failure at this moment.
                # Put `1` at the beginning of sequences to make it still work when combining causal attention masks.
                # TODO: remove this line once a fix regarding large negative values for attention mask is done.
                attention_mask = torch.cat(
                    [torch.ones_like(attention_mask[:, :1], dtype=attention_mask.dtype), attention_mask[:, 1:]], dim=-1
                )
1763

1764
1765
1766
1767
1768
1769
1770
1771
1772
1773
1774
1775
1776
1777
1778
1779
1780
                # Here we make the first sequence with all 0s as attention mask.
                # Currently, this will fail for `TFWav2Vec2Model`. This is caused by the different large negative
                # values, like `1e-4`, `1e-9`, `1e-30` and `-inf` for attention mask across models/frameworks.
                # TODO: enable this block once the large negative values thing is cleaned up.
                # (see https://github.com/huggingface/transformers/issues/14859)
                # attention_mask = torch.cat(
                #     [torch.zeros_like(attention_mask[:1], dtype=attention_mask.dtype), attention_mask[1:]],
                #     dim=0
                # )

                inputs_dict[k] = attention_mask

    # Don't copy this method to model specific test file!
    # TODO: remove this method once the issues are all fixed!
    def _postprocessing_to_ignore_test_cases(self, tf_outputs, pt_outputs, model_class):
        """For temporarily ignoring some failed test cases (issues to be fixed)"""

1781
1782
        tf_keys = {k for k, v in tf_outputs.items() if v is not None}
        pt_keys = {k for k, v in pt_outputs.items() if v is not None}
1783
1784
1785
1786
1787
1788
1789
1790
1791
1792
1793
1794
1795
1796
1797
1798
1799
1800
1801
1802
1803
1804
1805
1806
1807
1808
1809

        key_differences = tf_keys.symmetric_difference(pt_keys)

        if model_class.__name__ in [
            "FlaubertWithLMHeadModel",
            "FunnelForPreTraining",
            "ElectraForPreTraining",
            "XLMWithLMHeadModel",
            "TransfoXLLMHeadModel",
        ]:
            for k in key_differences:
                if k in ["loss", "losses"]:
                    tf_keys.discard(k)
                    pt_keys.discard(k)
        elif model_class.__name__.startswith("GPT2"):
            # `TFGPT2` has `past_key_values` as a tensor while `GPT2` has it as a tuple.
            tf_keys.discard("past_key_values")
            pt_keys.discard("past_key_values")

        # create new outputs from the remaining fields
        new_tf_outputs = type(tf_outputs)(**{k: tf_outputs[k] for k in tf_keys})
        new_pt_outputs = type(pt_outputs)(**{k: pt_outputs[k] for k in pt_keys})

        return new_tf_outputs, new_pt_outputs

    # Copied from tests.test_modeling_tf_common.TFModelTesterMixin.check_pt_tf_outputs
    def check_pt_tf_outputs(self, tf_outputs, pt_outputs, model_class, tol=1e-5, name="outputs", attributes=None):
1810
        """Check the outputs from PyTorch and TensorFlow models are close enough. Checks are done in a recursive way.
1811

1812
1813
1814
1815
1816
1817
1818
1819
        Args:
            model_class: The class of the model that is currently testing. For example, `TFBertModel`,
                TFBertForMaskedLM`, `TFBertForSequenceClassification`, etc. Mainly used for providing more informative
                error messages.
            name (`str`): The name of the output. For example, `output.hidden_states`, `output.attentions`, etc.
            attributes (`Tuple[str]`): The names of the output's element if the output is a tuple/list with each element
                being a named field in the output.
        """
1820

1821
1822
1823
        self.assertEqual(type(name), str)
        if attributes is not None:
            self.assertEqual(type(attributes), tuple, f"{name}: The argument `attributes` should be a `tuple`")
1824

1825
1826
1827
1828
1829
1830
        # Allow `ModelOutput` (e.g. `CLIPOutput` has `text_model_output` and `vision_model_output`).
        if isinstance(tf_outputs, ModelOutput):
            self.assertTrue(
                isinstance(pt_outputs, ModelOutput),
                f"{name}: `pt_outputs` should an instance of `ModelOutput` when `tf_outputs` is",
            )
1831

1832
1833
1834
            # Don't copy this block to model specific test file!
            # TODO: remove this method and this line after issues are fixed
            tf_outputs, pt_outputs = self._postprocessing_to_ignore_test_cases(tf_outputs, pt_outputs, model_class)
1835

1836
1837
            tf_keys = [k for k, v in tf_outputs.items() if v is not None]
            pt_keys = [k for k, v in pt_outputs.items() if v is not None]
1838

1839
            self.assertEqual(tf_keys, pt_keys, f"{name}: Output keys differ between TF and PyTorch")
1840

1841
            # convert to the case of `tuple`
1842
            # appending each key to the current (string) `name`
1843
1844
1845
1846
            attributes = tuple([f"{name}.{k}" for k in tf_keys])
            self.check_pt_tf_outputs(
                tf_outputs.to_tuple(), pt_outputs.to_tuple(), model_class, tol=tol, name=name, attributes=attributes
            )
1847

1848
1849
1850
1851
1852
1853
1854
1855
1856
1857
        # Allow `list` (e.g. `TransfoXLModelOutput.mems` is a list of tensors.)
        elif type(tf_outputs) in [tuple, list]:
            self.assertEqual(type(tf_outputs), type(pt_outputs), f"{name}: Output types differ between TF and PyTorch")
            self.assertEqual(len(tf_outputs), len(pt_outputs), f"{name}: Output lengths differ between TF and PyTorch")

            if attributes is not None:
                # case 1: each output has assigned name (e.g. a tuple form of a `ModelOutput`)
                self.assertEqual(
                    len(attributes),
                    len(tf_outputs),
1858
                    f"{name}: The tuple `attributes` should have the same length as `tf_outputs`",
1859
                )
1860
            else:
1861
                # case 2: each output has no assigned name (e.g. hidden states of each layer) -> add an index to `name`
1862
                attributes = tuple([f"{name}_{idx}" for idx in range(len(tf_outputs))])
1863

1864
1865
            for tf_output, pt_output, attr in zip(tf_outputs, pt_outputs, attributes):
                self.check_pt_tf_outputs(tf_output, pt_output, model_class, tol=tol, name=attr)
1866

1867
1868
1869
1870
        elif isinstance(tf_outputs, tf.Tensor):
            self.assertTrue(
                isinstance(pt_outputs, torch.Tensor), f"{name}: `pt_outputs` should a tensor when `tf_outputs` is"
            )
1871

1872
1873
            tf_outputs = tf_outputs.numpy()
            pt_outputs = pt_outputs.detach().to("cpu").numpy()
1874

1875
1876
1877
            self.assertEqual(
                tf_outputs.shape, pt_outputs.shape, f"{name}: Output shapes differ between TF and PyTorch"
            )
1878

1879
1880
1881
1882
            # deal with NumPy's scalars to make replacing nan values by 0 work.
            if np.isscalar(tf_outputs):
                tf_outputs = np.array([tf_outputs])
                pt_outputs = np.array([pt_outputs])
1883

1884
1885
            tf_nans = np.isnan(tf_outputs)
            pt_nans = np.isnan(pt_outputs)
1886

1887
1888
1889
1890
            pt_outputs[tf_nans] = 0
            tf_outputs[tf_nans] = 0
            pt_outputs[pt_nans] = 0
            tf_outputs[pt_nans] = 0
1891

1892
            max_diff = np.amax(np.abs(tf_outputs - pt_outputs))
1893
            self.assertLessEqual(max_diff, tol, f"{name}: Difference between PyTorch and TF is {max_diff} (>= {tol}).")
1894
1895
        else:
            raise ValueError(
1896
                "`tf_outputs` should be an instance of `ModelOutput`, a `tuple`, or an instance of `tf.Tensor`. Got"
Sylvain Gugger's avatar
Sylvain Gugger committed
1897
                f" {type(tf_outputs)} instead."
1898
1899
            )

1900
1901
1902
1903
1904
1905
1906
1907
1908
1909
1910
1911
1912
1913
1914
1915
1916
    def prepare_tf_inputs_from_pt_inputs(self, pt_inputs_dict):
        tf_inputs_dict = {}
        for key, tensor in pt_inputs_dict.items():
            # skip key that does not exist in tf
            if type(tensor) == bool:
                tf_inputs_dict[key] = tensor
            elif key == "input_values":
                tf_inputs_dict[key] = tf.convert_to_tensor(tensor.cpu().numpy(), dtype=tf.float32)
            elif key == "pixel_values":
                tf_inputs_dict[key] = tf.convert_to_tensor(tensor.cpu().numpy(), dtype=tf.float32)
            elif key == "input_features":
                tf_inputs_dict[key] = tf.convert_to_tensor(tensor.cpu().numpy(), dtype=tf.float32)
            # other general float inputs
            elif tensor.is_floating_point():
                tf_inputs_dict[key] = tf.convert_to_tensor(tensor.cpu().numpy(), dtype=tf.float32)
            else:
                tf_inputs_dict[key] = tf.convert_to_tensor(tensor.cpu().numpy(), dtype=tf.int32)
1917

1918
        return tf_inputs_dict
1919

1920
1921
    def check_pt_tf_models(self, tf_model, pt_model, pt_inputs_dict):
        tf_inputs_dict = self.prepare_tf_inputs_from_pt_inputs(pt_inputs_dict)
1922

1923
1924
1925
1926
        # send pytorch inputs to the correct device
        pt_inputs_dict = {
            k: v.to(device=torch_device) if isinstance(v, torch.Tensor) else v for k, v in pt_inputs_dict.items()
        }
1927

1928
1929
        # send pytorch model to the correct device
        pt_model.to(torch_device)
1930

1931
1932
        # Check predictions on first output (logits/hidden-states) are close enough given low-level computational differences
        pt_model.eval()
1933

1934
1935
1936
1937
1938
1939
1940
1941
1942
1943
1944
1945
1946
1947
1948
1949
        with torch.no_grad():
            pt_outputs = pt_model(**pt_inputs_dict)
        tf_outputs = tf_model(tf_inputs_dict)

        # tf models returned loss is usually a tensor rather than a scalar.
        # (see `hf_compute_loss`: it uses `tf.keras.losses.Reduction.NONE`)
        # Change it here to a scalar to match PyTorch models' loss
        tf_loss = getattr(tf_outputs, "loss", None)
        if tf_loss is not None:
            tf_outputs.loss = tf.math.reduce_mean(tf_loss)

        self.check_pt_tf_outputs(tf_outputs, pt_outputs, type(pt_model))

    @is_pt_tf_cross_test
    def test_pt_tf_model_equivalence(self):
        import transformers
1950
1951

        for model_class in self.all_model_classes:
1952
1953
1954
            config, inputs_dict = self.model_tester.prepare_config_and_inputs_for_common()

            tf_model_class_name = "TF" + model_class.__name__  # Add the "TF" at the beginning
1955
            if not hasattr(transformers, tf_model_class_name):
1956
                # transformers does not have this model in TF version yet
1957
1958
                return

1959
1960
1961
            # Output all for aggressive testing
            config.output_hidden_states = True
            config.output_attentions = self.has_attentions
1962

1963
1964
1965
1966
            # Make sure no sequence has all zeros as attention mask, otherwise some tests fail due to the inconsistency
            # of the usage `1e-4`, `1e-9`, `1e-30`, `-inf`.
            # TODO: Use a uniform value for all models, make sure all tests pass without this processing, and remove it.
            self._make_attention_mask_non_null(inputs_dict)
1967
1968

            tf_model_class = getattr(transformers, tf_model_class_name)
1969
1970

            pt_model = model_class(config)
1971
1972
1973
1974
1975
1976
1977
1978
1979
            tf_model = tf_model_class(config)

            pt_inputs_dict = self._prepare_for_class(inputs_dict, model_class)
            pt_inputs_dict_with_labels = self._prepare_for_class(
                inputs_dict,
                model_class,
                # Not all models accept "labels" in the forward pass (yet :) )
                return_labels=True if "labels" in inspect.signature(model_class.forward).parameters.keys() else False,
            )
1980
1981
1982
1983
1984
1985
1986
1987
1988

            # make sure only tf inputs are forward that actually exist in function args
            tf_input_keys = set(inspect.signature(tf_model.call).parameters.keys())

            # remove all head masks
            tf_input_keys.discard("head_mask")
            tf_input_keys.discard("cross_attn_head_mask")
            tf_input_keys.discard("decoder_head_mask")

1989
            pt_inputs_dict = {k: v for k, v in pt_inputs_dict.items() if k in tf_input_keys}
1990
1991
1992
1993
1994
1995
            pt_inputs_dict_with_labels = {k: v for k, v in pt_inputs_dict_with_labels.items() if k in tf_input_keys}

            # For some models (e.g. base models), there is no label returned.
            # Set the input dict to `None` to avoid check outputs twice for the same input dicts.
            if set(pt_inputs_dict_with_labels.keys()).symmetric_difference(pt_inputs_dict.keys()):
                pt_inputs_dict_with_labels = None
1996
1997

            # Check we can load pt model in tf and vice-versa with model => model functions
1998
1999
            # Here requires `tf_inputs_dict` to build `tf_model`
            tf_inputs_dict = self.prepare_tf_inputs_from_pt_inputs(pt_inputs_dict)
2000
            tf_model = transformers.load_pytorch_model_in_tf2_model(tf_model, pt_model, tf_inputs=tf_inputs_dict)
2001
            pt_model = transformers.load_tf2_model_in_pytorch_model(pt_model, tf_model)
2002

2003
2004
2005
2006
2007
            # Original test: check without `labels`
            self.check_pt_tf_models(tf_model, pt_model, pt_inputs_dict)
            # check with `labels`
            if pt_inputs_dict_with_labels:
                self.check_pt_tf_models(tf_model, pt_model, pt_inputs_dict_with_labels)
2008
2009
2010
2011
2012
2013
2014
2015
2016
2017
2018

            # Check we can load pt model in tf and vice-versa with checkpoint => model functions
            with tempfile.TemporaryDirectory() as tmpdirname:
                pt_checkpoint_path = os.path.join(tmpdirname, "pt_model.bin")
                torch.save(pt_model.state_dict(), pt_checkpoint_path)
                tf_model = transformers.load_pytorch_checkpoint_in_tf2_model(tf_model, pt_checkpoint_path)

                tf_checkpoint_path = os.path.join(tmpdirname, "tf_model.h5")
                tf_model.save_weights(tf_checkpoint_path)
                pt_model = transformers.load_tf2_checkpoint_in_pytorch_model(pt_model, tf_checkpoint_path)

2019
2020
2021
2022
2023
            # Original test: check without `labels`
            self.check_pt_tf_models(tf_model, pt_model, pt_inputs_dict)
            # check with `labels`
            if pt_inputs_dict_with_labels:
                self.check_pt_tf_models(tf_model, pt_model, pt_inputs_dict_with_labels)
2024
2025
2026
2027
2028

    def assert_almost_equals(self, a: np.ndarray, b: np.ndarray, tol: float):
        diff = np.abs((a - b)).max()
        self.assertLessEqual(diff, tol, f"Difference between torch and flax is {diff} (>= {tol}).")

2029
    def check_pt_flax_outputs(self, fx_outputs, pt_outputs, model_class, tol=1e-5, name="outputs", attributes=None):
2030
2031
2032
2033
2034
2035
2036
2037
2038
        """
        Args:
            model_class: The class of the model that is currently testing. For example, ..., etc.
            Currently unused, but it could make debugging easier and faster.

            names: A string, or a list of strings. These specify what fx_outputs/pt_outputs represent in the model outputs.
                Currently unused, but in the future, we could use this information to make the error message clearer
                by giving the name(s) of the output tensor(s) with large difference(s) between PT and Flax.
        """
2039
2040
2041
2042
2043
2044
2045
2046
2047
2048
2049
2050
2051
2052
2053
2054
2055
2056
2057
2058
2059
2060
2061
2062
2063
2064
2065
2066
2067
2068
2069
2070
2071
2072
2073
2074
2075
2076
2077
2078

        self.assertEqual(type(name), str)
        if attributes is not None:
            self.assertEqual(type(attributes), tuple, f"{name}: The argument `attributes` should be a `tuple`")

        # Allow `ModelOutput` (e.g. `CLIPOutput` has `text_model_output` and `vision_model_output`).
        if isinstance(fx_outputs, ModelOutput):
            self.assertTrue(
                isinstance(pt_outputs, ModelOutput),
                f"{name}: `pt_outputs` should an instance of `ModelOutput` when `fx_outputs` is",
            )

            fx_keys = tuple([k for k, v in fx_outputs.items() if v is not None])
            pt_keys = tuple([k for k, v in pt_outputs.items() if v is not None])

            self.assertEqual(fx_keys, pt_keys, f"{name}: Output keys differ between Flax and PyTorch")

            # convert to the case of `tuple`
            # appending each key to the current (string) `name`
            attributes = tuple([f"{name}.{k}" for k in fx_keys])
            self.check_pt_flax_outputs(
                fx_outputs.to_tuple(), pt_outputs.to_tuple(), model_class, tol=tol, name=name, attributes=attributes
            )

        # Allow `list` (e.g. `TransfoXLModelOutput.mems` is a list of tensors.)
        elif type(fx_outputs) in [tuple, list]:
            self.assertEqual(
                type(fx_outputs), type(pt_outputs), f"{name}: Output types differ between Flax and PyTorch"
            )
            self.assertEqual(
                len(fx_outputs), len(pt_outputs), f"{name}: Output lengths differ between Flax and PyTorch"
            )

            if attributes is not None:
                # case 1: each output has assigned name (e.g. a tuple form of a `ModelOutput`)
                self.assertEqual(
                    len(attributes),
                    len(fx_outputs),
                    f"{name}: The tuple `attributes` should have the same length as `fx_outputs`",
                )
2079
            else:
2080
2081
2082
2083
2084
2085
                # case 2: each output has no assigned name (e.g. hidden states of each layer) -> add an index to `name`
                attributes = tuple([f"{name}_{idx}" for idx in range(len(fx_outputs))])

            for fx_output, pt_output, attr in zip(fx_outputs, pt_outputs, attributes):
                self.check_pt_flax_outputs(fx_output, pt_output, model_class, tol=tol, name=attr)

2086
        elif isinstance(fx_outputs, jnp.ndarray):
2087
2088
2089
            self.assertTrue(
                isinstance(pt_outputs, torch.Tensor), f"{name}: `pt_outputs` should a tensor when `fx_outputs` is"
            )
2090
2091
2092
2093
2094

            # Using `np.asarray` gives `ValueError: assignment destination is read-only` at the line `fx_outputs[fx_nans] = 0`.
            fx_outputs = np.array(fx_outputs)
            pt_outputs = pt_outputs.detach().to("cpu").numpy()

2095
2096
2097
2098
2099
2100
2101
2102
2103
            self.assertEqual(
                fx_outputs.shape, pt_outputs.shape, f"{name}: Output shapes differ between Flax and PyTorch"
            )

            # deal with NumPy's scalars to make replacing nan values by 0 work.
            if np.isscalar(fx_outputs):
                fx_outputs = np.array([fx_outputs])
                pt_outputs = np.array([pt_outputs])

2104
2105
2106
2107
2108
2109
2110
2111
            fx_nans = np.isnan(fx_outputs)
            pt_nans = np.isnan(pt_outputs)

            pt_outputs[fx_nans] = 0
            fx_outputs[fx_nans] = 0
            pt_outputs[pt_nans] = 0
            fx_outputs[pt_nans] = 0

2112
2113
2114
2115
            max_diff = np.amax(np.abs(fx_outputs - pt_outputs))
            self.assertLessEqual(
                max_diff, tol, f"{name}: Difference between PyTorch and Flax is {max_diff} (>= {tol})."
            )
2116
2117
        else:
            raise ValueError(
2118
2119
                "`fx_outputs` should be an instance of `ModelOutput`, a `tuple`, or an instance of `jnp.ndarray`. Got"
                f" {type(fx_outputs)} instead."
2120
2121
            )

2122
2123
2124
2125
2126
2127
2128
2129
2130
    @is_pt_flax_cross_test
    def test_equivalence_pt_to_flax(self):
        config, inputs_dict = self.model_tester.prepare_config_and_inputs_for_common()

        for model_class in self.all_model_classes:
            with self.subTest(model_class.__name__):
                fx_model_class_name = "Flax" + model_class.__name__

                if not hasattr(transformers, fx_model_class_name):
2131
                    # no flax model exists for this class
2132
2133
                    return

2134
2135
2136
2137
                # Output all for aggressive testing
                config.output_hidden_states = True
                config.output_attentions = self.has_attentions

2138
2139
                fx_model_class = getattr(transformers, fx_model_class_name)

2140
2141
2142
2143
2144
2145
                # load PyTorch class
                pt_model = model_class(config).eval()
                # Flax models don't use the `use_cache` option and cache is not returned as a default.
                # So we disable `use_cache` here for PyTorch model.
                pt_model.config.use_cache = False

2146
2147
                # load Flax class
                fx_model = fx_model_class(config, dtype=jnp.float32)
2148

2149
2150
2151
2152
2153
2154
2155
2156
2157
                # make sure only flax inputs are forward that actually exist in function args
                fx_input_keys = inspect.signature(fx_model.__call__).parameters.keys()

                # prepare inputs
                pt_inputs = self._prepare_for_class(inputs_dict, model_class)

                # remove function args that don't exist in Flax
                pt_inputs = {k: v for k, v in pt_inputs.items() if k in fx_input_keys}

2158
2159
2160
2161
2162
2163
2164
2165
                # send pytorch inputs to the correct device
                pt_inputs = {
                    k: v.to(device=torch_device) if isinstance(v, torch.Tensor) else v for k, v in pt_inputs.items()
                }

                # convert inputs to Flax
                fx_inputs = {k: np.array(v) for k, v in pt_inputs.items() if torch.is_tensor(v)}

2166
2167
2168
                fx_state = convert_pytorch_state_dict_to_flax(pt_model.state_dict(), fx_model)
                fx_model.params = fx_state

2169
2170
2171
                # send pytorch model to the correct device
                pt_model.to(torch_device)

2172
                with torch.no_grad():
2173
2174
                    pt_outputs = pt_model(**pt_inputs)
                fx_outputs = fx_model(**fx_inputs)
2175

2176
2177
2178
2179
                fx_keys = tuple([k for k, v in fx_outputs.items() if v is not None])
                pt_keys = tuple([k for k, v in pt_outputs.items() if v is not None])

                self.assertEqual(fx_keys, pt_keys)
2180
                self.check_pt_flax_outputs(fx_outputs, pt_outputs, model_class)
2181
2182
2183
2184
2185

                with tempfile.TemporaryDirectory() as tmpdirname:
                    pt_model.save_pretrained(tmpdirname)
                    fx_model_loaded = fx_model_class.from_pretrained(tmpdirname, from_pt=True)

2186
2187
2188
2189
2190
2191
                fx_outputs_loaded = fx_model_loaded(**fx_inputs)

                fx_keys = tuple([k for k, v in fx_outputs_loaded.items() if v is not None])
                pt_keys = tuple([k for k, v in pt_outputs.items() if v is not None])

                self.assertEqual(fx_keys, pt_keys)
2192
                self.check_pt_flax_outputs(fx_outputs_loaded, pt_outputs, model_class)
2193
2194
2195
2196
2197
2198
2199
2200
2201
2202
2203
2204
2205

    @is_pt_flax_cross_test
    def test_equivalence_flax_to_pt(self):
        config, inputs_dict = self.model_tester.prepare_config_and_inputs_for_common()

        for model_class in self.all_model_classes:
            with self.subTest(model_class.__name__):
                fx_model_class_name = "Flax" + model_class.__name__

                if not hasattr(transformers, fx_model_class_name):
                    # no flax model exists for this class
                    return

2206
2207
2208
2209
                # Output all for aggressive testing
                config.output_hidden_states = True
                config.output_attentions = self.has_attentions

2210
2211
                fx_model_class = getattr(transformers, fx_model_class_name)

2212
2213
2214
2215
2216
2217
                # load PyTorch class
                pt_model = model_class(config).eval()
                # Flax models don't use the `use_cache` option and cache is not returned as a default.
                # So we disable `use_cache` here for PyTorch model.
                pt_model.config.use_cache = False

2218
2219
                # load Flax class
                fx_model = fx_model_class(config, dtype=jnp.float32)
2220

2221
2222
2223
2224
2225
2226
2227
2228
2229
                # make sure only flax inputs are forward that actually exist in function args
                fx_input_keys = inspect.signature(fx_model.__call__).parameters.keys()

                # prepare inputs
                pt_inputs = self._prepare_for_class(inputs_dict, model_class)

                # remove function args that don't exist in Flax
                pt_inputs = {k: v for k, v in pt_inputs.items() if k in fx_input_keys}

2230
2231
2232
2233
                # send pytorch inputs to the correct device
                pt_inputs = {
                    k: v.to(device=torch_device) if isinstance(v, torch.Tensor) else v for k, v in pt_inputs.items()
                }
2234

2235
                # convert inputs to Flax
2236
2237
                fx_inputs = {k: np.array(v) for k, v in pt_inputs.items() if torch.is_tensor(v)}

2238
2239
2240
2241
2242
2243
2244
                pt_model = load_flax_weights_in_pytorch_model(pt_model, fx_model.params)

                # make sure weights are tied in PyTorch
                pt_model.tie_weights()

                # send pytorch model to the correct device
                pt_model.to(torch_device)
2245

2246
2247
2248
2249
2250
2251
2252
2253
                with torch.no_grad():
                    pt_outputs = pt_model(**pt_inputs)
                fx_outputs = fx_model(**fx_inputs)

                fx_keys = tuple([k for k, v in fx_outputs.items() if v is not None])
                pt_keys = tuple([k for k, v in pt_outputs.items() if v is not None])

                self.assertEqual(fx_keys, pt_keys)
2254
                self.check_pt_flax_outputs(fx_outputs, pt_outputs, model_class)
2255
2256
2257
2258
2259

                with tempfile.TemporaryDirectory() as tmpdirname:
                    fx_model.save_pretrained(tmpdirname)
                    pt_model_loaded = model_class.from_pretrained(tmpdirname, from_flax=True)

2260
2261
2262
2263
                # send pytorch model to the correct device
                pt_model_loaded.to(torch_device)
                pt_model_loaded.eval()

2264
                with torch.no_grad():
2265
                    pt_outputs_loaded = pt_model_loaded(**pt_inputs)
2266

2267
2268
2269
2270
                fx_keys = tuple([k for k, v in fx_outputs.items() if v is not None])
                pt_keys = tuple([k for k, v in pt_outputs_loaded.items() if v is not None])

                self.assertEqual(fx_keys, pt_keys)
2271
                self.check_pt_flax_outputs(fx_outputs, pt_outputs_loaded, model_class)
2272

Patrick von Platen's avatar
Patrick von Platen committed
2273
    def test_inputs_embeds(self):
2274
2275
2276
2277
        config, inputs_dict = self.model_tester.prepare_config_and_inputs_for_common()

        for model_class in self.all_model_classes:
            model = model_class(config)
2278
            model.to(torch_device)
thomwolf's avatar
thomwolf committed
2279
            model.eval()
2280

2281
            inputs = copy.deepcopy(self._prepare_for_class(inputs_dict, model_class))
Weizhen's avatar
Weizhen committed
2282

2283
2284
2285
2286
2287
2288
2289
2290
2291
            if not self.is_encoder_decoder:
                input_ids = inputs["input_ids"]
                del inputs["input_ids"]
            else:
                encoder_input_ids = inputs["input_ids"]
                decoder_input_ids = inputs.get("decoder_input_ids", encoder_input_ids)
                del inputs["input_ids"]
                inputs.pop("decoder_input_ids", None)

2292
2293
            wte = model.get_input_embeddings()
            if not self.is_encoder_decoder:
2294
                inputs["inputs_embeds"] = wte(input_ids)
2295
            else:
2296
2297
                inputs["inputs_embeds"] = wte(encoder_input_ids)
                inputs["decoder_inputs_embeds"] = wte(decoder_input_ids)
2298

thomwolf's avatar
thomwolf committed
2299
            with torch.no_grad():
Weizhen's avatar
Weizhen committed
2300
                model(**inputs)[0]
2301

2302
2303
    @require_torch_multi_gpu
    def test_multi_gpu_data_parallel_forward(self):
2304
2305
2306
2307
        config, inputs_dict = self.model_tester.prepare_config_and_inputs_for_common()

        # some params shouldn't be scattered by nn.DataParallel
        # so just remove them if they are present.
2308
        blacklist_non_batched_params = ["head_mask", "decoder_head_mask", "cross_attn_head_mask"]
2309
2310
2311
2312
2313
2314
2315
2316
2317
2318
2319
2320
2321
2322
        for k in blacklist_non_batched_params:
            inputs_dict.pop(k, None)

        # move input tensors to cuda:O
        for k, v in inputs_dict.items():
            if torch.is_tensor(v):
                inputs_dict[k] = v.to(0)

        for model_class in self.all_model_classes:
            model = model_class(config=config)
            model.to(0)
            model.eval()

            # Wrap model in nn.DataParallel
2323
            model = nn.DataParallel(model)
2324
            with torch.no_grad():
2325
                _ = model(**self._prepare_for_class(inputs_dict, model_class))
2326

2327
2328
2329
    @require_torch_multi_gpu
    def test_model_parallelization(self):
        if not self.test_model_parallel:
2330
            return
2331

2332
        # a candidate for testing_utils
2333
        def get_current_gpu_memory_use():
Patrick von Platen's avatar
Patrick von Platen committed
2334
            """returns a list of cuda memory allocations per GPU in MBs"""
2335
2336
2337
2338
2339

            per_device_memory = []
            for id in range(torch.cuda.device_count()):
                with torch.cuda.device(id):
                    per_device_memory.append(torch.cuda.memory_allocated() >> 20)
2340
2341
2342
2343
2344
2345
2346
2347
2348

            return per_device_memory

        # Needs a large model to see the difference.
        config = self.model_tester.get_large_model_config()

        for model_class in self.all_parallelizable_model_classes:
            torch.cuda.empty_cache()

2349
2350
2351
            # 1. single gpu memory load + unload + memory measurements
            # Retrieve initial memory usage (can easily be ~0.6-1.5GB if cuda-kernels have been preloaded by previous tests)
            memory_at_start = get_current_gpu_memory_use()
2352

2353
2354
            # Put model on device 0 and take a memory snapshot
            model = model_class(config)
2355
2356
2357
            model.to("cuda:0")
            memory_after_model_load = get_current_gpu_memory_use()

2358
2359
2360
            # The memory use on device 0 should be higher than it was initially.
            self.assertGreater(memory_after_model_load[0], memory_at_start[0])

2361
            del model
2362
            gc.collect()
2363
2364
            torch.cuda.empty_cache()

2365
2366
2367
            # 2. MP test
            # it's essential to re-calibrate the usage before the next stage
            memory_at_start = get_current_gpu_memory_use()
2368
2369

            # Spread model layers over multiple devices
2370
            model = model_class(config)
2371
2372
2373
2374
            model.parallelize()
            memory_after_parallelization = get_current_gpu_memory_use()

            # Assert that the memory use on all devices is higher than it was when loaded only on CPU
2375
            for n in range(len(model.device_map.keys())):
2376
                self.assertGreater(memory_after_parallelization[n], memory_at_start[n])
2377

2378
            # Assert that the memory use of device 0 is lower than it was when the entire model was loaded on it
2379
2380
            self.assertLess(memory_after_parallelization[0], memory_after_model_load[0])

2381
2382
            # Assert that the memory use of device 1 is higher than it was when the entire model was loaded
            # on device 0 and device 1 wasn't used at all
2383
2384
2385
            self.assertGreater(memory_after_parallelization[1], memory_after_model_load[1])

            del model
2386
            gc.collect()
2387
2388
2389
2390
2391
            torch.cuda.empty_cache()

    @require_torch_multi_gpu
    def test_model_parallel_equal_results(self):
        if not self.test_model_parallel:
2392
            return
2393
2394
2395
2396
2397
2398

        config, inputs_dict = self.model_tester.prepare_config_and_inputs_for_common()

        for model_class in self.all_parallelizable_model_classes:
            inputs_dict = self._prepare_for_class(inputs_dict, model_class)

2399
            def cast_to_device(dictionary, device):
2400
2401
2402
                output = {}
                for k, v in dictionary.items():
                    if isinstance(v, torch.Tensor):
2403
                        output[k] = v.to(device)
2404
2405
2406
2407
2408
                    else:
                        output[k] = v

                return output

2409
2410
2411
2412
2413
2414
            model = model_class(config)
            output = model(**cast_to_device(inputs_dict, "cpu"))

            model.parallelize()

            parallel_output = model(**cast_to_device(inputs_dict, "cuda:0"))
2415
2416
2417
2418
2419
2420
2421
2422

            for value, parallel_value in zip(output, parallel_output):
                if isinstance(value, torch.Tensor):
                    self.assertTrue(torch.allclose(value, parallel_value.to("cpu"), atol=1e-7))
                elif isinstance(value, (Tuple, List)):
                    for value_, parallel_value_ in zip(value, parallel_value):
                        self.assertTrue(torch.allclose(value_, parallel_value_.to("cpu"), atol=1e-7))

2423
2424
2425
2426
2427
2428
2429
2430
2431
2432
2433
2434
2435
2436
2437
2438
2439
2440
2441
2442
2443
2444
2445
2446
2447
2448
2449
2450
    @require_torch_multi_gpu
    def test_model_parallel_beam_search(self):
        if not self.test_model_parallel:
            return

        all_generative_and_parallelizable_model_classes = tuple(
            set(self.all_generative_model_classes).intersection(self.all_parallelizable_model_classes)
        )

        config, inputs_dict = self.model_tester.prepare_config_and_inputs_for_common()

        for model_class in all_generative_and_parallelizable_model_classes:
            inputs_dict = self._prepare_for_class(inputs_dict, model_class)
            model = model_class(config)

            def cast_to_device(dictionary, device):
                output = {}
                for k, v in dictionary.items():
                    if isinstance(v, torch.Tensor):
                        output[k] = v.to(device)
                    else:
                        output[k] = v

                return output

            model.parallelize()
            model.generate(**cast_to_device(inputs_dict, "cuda:0"), num_beams=2)

2451
2452
2453
2454
2455
2456
2457
2458
2459
2460
2461
2462
2463
2464
    def check_device_map_is_respected(self, model, device_map):
        for param_name, param in model.named_parameters():
            # Find device in device_map
            while len(param_name) > 0 and param_name not in device_map:
                param_name = ".".join(param_name.split(".")[:-1])
            if param_name not in device_map:
                raise ValueError("device map is incomplete, it does not contain any device for `param_name`.")

            param_device = device_map[param_name]
            if param_device in ["cpu", "disk"]:
                self.assertEqual(param.device, torch.device("meta"))
            else:
                self.assertEqual(param.device, torch.device(param_device))

Sylvain Gugger's avatar
Sylvain Gugger committed
2465
2466
2467
2468
2469
2470
2471
2472
2473
    @require_accelerate
    @require_torch_gpu
    def test_disk_offload(self):
        config, inputs_dict = self.model_tester.prepare_config_and_inputs_for_common()

        for model_class in self.all_model_classes:
            if model_class._no_split_modules is None:
                continue

2474
            inputs_dict_class = self._prepare_for_class(inputs_dict, model_class)
Sylvain Gugger's avatar
Sylvain Gugger committed
2475
2476
            model = model_class(config).eval()
            model = model.to(torch_device)
2477
            torch.manual_seed(0)
2478
            base_output = model(**inputs_dict_class)
Sylvain Gugger's avatar
Sylvain Gugger committed
2479
2480

            model_size = compute_module_sizes(model)[""]
2481
            max_size = int(self.model_split_percents[0] * model_size)
Sylvain Gugger's avatar
Sylvain Gugger committed
2482
2483
2484
2485
2486
2487
2488
2489
2490
2491
2492
2493
2494
            with tempfile.TemporaryDirectory() as tmp_dir:
                model.cpu().save_pretrained(tmp_dir)

                max_memory = {0: max_size, "cpu": max_size}
                with self.assertRaises(ValueError):
                    # This errors out cause it's missing an offload folder
                    new_model = model_class.from_pretrained(tmp_dir, device_map="auto", max_memory=max_memory)

                new_model = model_class.from_pretrained(
                    tmp_dir, device_map="auto", max_memory=max_memory, offload_folder=tmp_dir
                )

                self.check_device_map_is_respected(new_model, new_model.hf_device_map)
2495
                torch.manual_seed(0)
2496
                new_output = new_model(**inputs_dict_class)
Sylvain Gugger's avatar
Sylvain Gugger committed
2497
2498
2499

                self.assertTrue(torch.allclose(base_output[0], new_output[0]))

2500
2501
2502
2503
2504
2505
2506
2507
2508
    @require_accelerate
    @require_torch_gpu
    def test_cpu_offload(self):
        config, inputs_dict = self.model_tester.prepare_config_and_inputs_for_common()

        for model_class in self.all_model_classes:
            if model_class._no_split_modules is None:
                continue

2509
            inputs_dict_class = self._prepare_for_class(inputs_dict, model_class)
2510
2511
            model = model_class(config).eval()
            model = model.to(torch_device)
2512
2513

            torch.manual_seed(0)
2514
            base_output = model(**inputs_dict_class)
2515
2516
2517

            model_size = compute_module_sizes(model)[""]
            # We test several splits of sizes to make sure it works.
2518
            max_gpu_sizes = [int(p * model_size) for p in self.model_split_percents]
2519
2520
2521
2522
2523
2524
2525
2526
2527
2528
            with tempfile.TemporaryDirectory() as tmp_dir:
                model.cpu().save_pretrained(tmp_dir)

                for max_size in max_gpu_sizes:
                    max_memory = {0: max_size, "cpu": model_size * 2}
                    new_model = model_class.from_pretrained(tmp_dir, device_map="auto", max_memory=max_memory)
                    # Making sure part of the model will actually end up offloaded
                    self.assertSetEqual(set(new_model.hf_device_map.values()), {0, "cpu"})

                    self.check_device_map_is_respected(new_model, new_model.hf_device_map)
2529
2530

                    torch.manual_seed(0)
2531
                    new_output = new_model(**inputs_dict_class)
2532
2533
2534
2535
2536
2537
2538
2539
2540
2541
2542
2543

                    self.assertTrue(torch.allclose(base_output[0], new_output[0]))

    @require_accelerate
    @require_torch_multi_gpu
    def test_model_parallelism(self):
        config, inputs_dict = self.model_tester.prepare_config_and_inputs_for_common()

        for model_class in self.all_model_classes:
            if model_class._no_split_modules is None:
                continue

2544
            inputs_dict_class = self._prepare_for_class(inputs_dict, model_class)
2545
2546
            model = model_class(config).eval()
            model = model.to(torch_device)
2547
2548

            torch.manual_seed(0)
2549
            base_output = model(**inputs_dict_class)
2550
2551
2552

            model_size = compute_module_sizes(model)[""]
            # We test several splits of sizes to make sure it works.
2553
            max_gpu_sizes = [int(p * model_size) for p in self.model_split_percents]
2554
2555
2556
2557
2558
2559
2560
2561
2562
2563
            with tempfile.TemporaryDirectory() as tmp_dir:
                model.cpu().save_pretrained(tmp_dir)

                for max_size in max_gpu_sizes:
                    max_memory = {0: max_size, 1: model_size * 2, "cpu": model_size * 2}
                    new_model = model_class.from_pretrained(tmp_dir, device_map="auto", max_memory=max_memory)
                    # Making sure part of the model will actually end up offloaded
                    self.assertSetEqual(set(new_model.hf_device_map.values()), {0, 1})

                    self.check_device_map_is_respected(new_model, new_model.hf_device_map)
2564
2565

                    torch.manual_seed(0)
2566
                    new_output = new_model(**inputs_dict_class)
2567
2568
2569

                    self.assertTrue(torch.allclose(base_output[0], new_output[0]))

2570
2571
2572
2573
2574
2575
2576
2577
2578
2579
    def test_problem_types(self):
        config, inputs_dict = self.model_tester.prepare_config_and_inputs_for_common()

        problem_types = [
            {"title": "multi_label_classification", "num_labels": 2, "dtype": torch.float},
            {"title": "single_label_classification", "num_labels": 1, "dtype": torch.long},
            {"title": "regression", "num_labels": 1, "dtype": torch.float},
        ]

        for model_class in self.all_model_classes:
2580
2581
2582
            if model_class.__name__ not in [
                *get_values(MODEL_FOR_SEQUENCE_CLASSIFICATION_MAPPING_NAMES),
                *get_values(MODEL_FOR_IMAGE_CLASSIFICATION_MAPPING_NAMES),
2583
            ]:
2584
2585
2586
2587
2588
2589
2590
2591
2592
2593
2594
2595
2596
2597
2598
2599
2600
2601
                continue

            for problem_type in problem_types:
                with self.subTest(msg=f"Testing {model_class} with {problem_type['title']}"):
                    config.problem_type = problem_type["title"]
                    config.num_labels = problem_type["num_labels"]

                    model = model_class(config)
                    model.to(torch_device)
                    model.train()

                    inputs = self._prepare_for_class(inputs_dict, model_class, return_labels=True)

                    if problem_type["num_labels"] > 1:
                        inputs["labels"] = inputs["labels"].unsqueeze(1).repeat(1, problem_type["num_labels"])

                    inputs["labels"] = inputs["labels"].to(problem_type["dtype"])

2602
2603
2604
2605
2606
2607
                    # This tests that we do not trigger the warning form PyTorch "Using a target size that is different
                    # to the input size. This will likely lead to incorrect results due to broadcasting. Please ensure
                    # they have the same size." which is a symptom something in wrong for the regression problem.
                    # See https://github.com/huggingface/transformers/issues/11780
                    with warnings.catch_warnings(record=True) as warning_list:
                        loss = model(**inputs).loss
2608
2609
2610
2611
2612
                    for w in warning_list:
                        if "Using a target size that is different to the input size" in str(w.message):
                            raise ValueError(
                                f"Something is going wrong in the regression problem: intercepted {w.message}"
                            )
2613

2614
2615
                    loss.backward()

2616
    def test_load_with_mismatched_shapes(self):
2617
2618
        if not self.test_mismatched_shapes:
            return
2619
2620
2621
        config, inputs_dict = self.model_tester.prepare_config_and_inputs_for_common()

        for model_class in self.all_model_classes:
2622
            if model_class.__name__ not in get_values(MODEL_FOR_SEQUENCE_CLASSIFICATION_MAPPING_NAMES):
2623
2624
2625
2626
2627
2628
2629
2630
                continue

            with self.subTest(msg=f"Testing {model_class}"):
                with tempfile.TemporaryDirectory() as tmp_dir:
                    model = model_class(config)
                    model.save_pretrained(tmp_dir)

                    # Fails when we don't set ignore_mismatched_sizes=True
2631
                    with self.assertRaises(RuntimeError):
2632
                        new_model = AutoModelForSequenceClassification.from_pretrained(tmp_dir, num_labels=42)
2633
2634
                    with self.assertRaises(RuntimeError):
                        new_model_without_prefix = AutoModel.from_pretrained(tmp_dir, vocab_size=10)
2635
2636

                    logger = logging.get_logger("transformers.modeling_utils")
2637

2638
2639
2640
2641
2642
2643
2644
2645
2646
2647
                    with CaptureLogger(logger) as cl:
                        new_model = AutoModelForSequenceClassification.from_pretrained(
                            tmp_dir, num_labels=42, ignore_mismatched_sizes=True
                        )
                    self.assertIn("the shapes did not match", cl.out)
                    new_model.to(torch_device)
                    inputs = self._prepare_for_class(inputs_dict, model_class)
                    logits = new_model(**inputs).logits
                    self.assertEqual(logits.shape[1], 42)

2648
2649
2650
2651
2652
2653
2654
2655
2656
2657
2658
2659
                    with CaptureLogger(logger) as cl:
                        new_model_without_prefix = AutoModel.from_pretrained(
                            tmp_dir, vocab_size=10, ignore_mismatched_sizes=True
                        )
                    self.assertIn("the shapes did not match", cl.out)
                    input_ids = ids_tensor((2, 8), 10)
                    new_model_without_prefix.to(torch_device)
                    if self.is_encoder_decoder:
                        new_model_without_prefix(input_ids, decoder_input_ids=input_ids)
                    else:
                        new_model_without_prefix(input_ids)

2660

2661
global_rng = random.Random()
thomwolf's avatar
thomwolf committed
2662
2663


thomwolf's avatar
thomwolf committed
2664
def ids_tensor(shape, vocab_size, rng=None, name=None):
2665
    #  Creates a random int32 tensor of the shape within the vocab size
thomwolf's avatar
thomwolf committed
2666
    if rng is None:
2667
        rng = global_rng
thomwolf's avatar
thomwolf committed
2668

thomwolf's avatar
thomwolf committed
2669
2670
2671
    total_dims = 1
    for dim in shape:
        total_dims *= dim
thomwolf's avatar
thomwolf committed
2672

thomwolf's avatar
thomwolf committed
2673
2674
2675
    values = []
    for _ in range(total_dims):
        values.append(rng.randint(0, vocab_size - 1))
thomwolf's avatar
thomwolf committed
2676

2677
    return torch.tensor(data=values, dtype=torch.long, device=torch_device).view(shape).contiguous()
thomwolf's avatar
thomwolf committed
2678
2679


2680
2681
2682
2683
2684
2685
2686
def random_attention_mask(shape, rng=None, name=None):
    attn_mask = ids_tensor(shape, vocab_size=2, rng=None, name=None)
    # make sure that at least one token is attended to for each batch
    attn_mask[:, -1] = 1
    return attn_mask


2687
def floats_tensor(shape, scale=1.0, rng=None, name=None):
Patrick von Platen's avatar
Patrick von Platen committed
2688
    """Creates a random float32 tensor"""
2689
2690
2691
2692
2693
2694
2695
2696
2697
2698
2699
    if rng is None:
        rng = global_rng

    total_dims = 1
    for dim in shape:
        total_dims *= dim

    values = []
    for _ in range(total_dims):
        values.append(rng.random() * scale)

2700
    return torch.tensor(data=values, dtype=torch.float, device=torch_device).view(shape).contiguous()
2701
2702


2703
2704
2705
2706
2707
2708
2709
2710
2711
def check_models_equal(model1, model2):
    models_are_equal = True
    for model1_p, model2_p in zip(model1.parameters(), model2.parameters()):
        if model1_p.data.ne(model2_p.data).sum() > 0:
            models_are_equal = False

    return models_are_equal


2712
@require_torch
2713
class ModelUtilsTest(TestCasePlus):
2714
    @slow
Patrick von Platen's avatar
Patrick von Platen committed
2715
    def test_model_from_pretrained(self):
2716
        for model_name in BERT_PRETRAINED_MODEL_ARCHIVE_LIST[:1]:
thomwolf's avatar
thomwolf committed
2717
2718
2719
2720
2721
2722
2723
2724
            config = BertConfig.from_pretrained(model_name)
            self.assertIsNotNone(config)
            self.assertIsInstance(config, PretrainedConfig)

            model = BertModel.from_pretrained(model_name)
            model, loading_info = BertModel.from_pretrained(model_name, output_loading_info=True)
            self.assertIsNotNone(model)
            self.assertIsInstance(model, PreTrainedModel)
Lysandre Debut's avatar
Lysandre Debut committed
2725
2726
2727
2728
2729

            self.assertEqual(len(loading_info["missing_keys"]), 0)
            self.assertEqual(len(loading_info["unexpected_keys"]), 8)
            self.assertEqual(len(loading_info["mismatched_keys"]), 0)
            self.assertEqual(len(loading_info["error_msgs"]), 0)
thomwolf's avatar
thomwolf committed
2730
2731

            config = BertConfig.from_pretrained(model_name, output_attentions=True, output_hidden_states=True)
Lysandre Debut's avatar
Lysandre Debut committed
2732
2733
2734
2735

            # Not sure this is the intended behavior. TODO fix Lysandre & Thom
            config.name_or_path = model_name

thomwolf's avatar
thomwolf committed
2736
2737
2738
            model = BertModel.from_pretrained(model_name, output_attentions=True, output_hidden_states=True)
            self.assertEqual(model.config.output_hidden_states, True)
            self.assertEqual(model.config, config)
2739

2740
2741
2742
2743
2744
2745
2746
2747
2748
2749
2750
2751
2752
2753
2754
2755
2756
2757
2758
2759
2760
2761
2762
2763
2764
2765
2766
2767
2768
2769
2770
2771
2772
2773
2774
2775
2776
2777
2778
2779
2780
2781
2782
2783
2784
2785
2786
2787
2788
2789
    def test_model_from_pretrained_subfolder(self):
        config = BertConfig.from_pretrained("hf-internal-testing/tiny-random-bert")
        model = BertModel(config)

        subfolder = "bert"
        with tempfile.TemporaryDirectory() as tmp_dir:
            model.save_pretrained(os.path.join(tmp_dir, subfolder))

            with self.assertRaises(OSError):
                _ = BertModel.from_pretrained(tmp_dir)

            model_loaded = BertModel.from_pretrained(tmp_dir, subfolder=subfolder)

        self.assertTrue(check_models_equal(model, model_loaded))

    def test_model_from_pretrained_subfolder_sharded(self):
        config = BertConfig.from_pretrained("hf-internal-testing/tiny-random-bert")
        model = BertModel(config)

        subfolder = "bert"
        with tempfile.TemporaryDirectory() as tmp_dir:
            model.save_pretrained(os.path.join(tmp_dir, subfolder), max_shard_size="10KB")

            with self.assertRaises(OSError):
                _ = BertModel.from_pretrained(tmp_dir)

            model_loaded = BertModel.from_pretrained(tmp_dir, subfolder=subfolder)

        self.assertTrue(check_models_equal(model, model_loaded))

    def test_model_from_pretrained_hub_subfolder(self):
        subfolder = "bert"
        model_id = "hf-internal-testing/tiny-random-bert-subfolder"
        with self.assertRaises(OSError):
            _ = BertModel.from_pretrained(model_id)

        model = BertModel.from_pretrained(model_id, subfolder=subfolder)

        self.assertIsNotNone(model)

    def test_model_from_pretrained_hub_subfolder_sharded(self):
        subfolder = "bert"
        model_id = "hf-internal-testing/tiny-random-bert-sharded-subfolder"
        with self.assertRaises(OSError):
            _ = BertModel.from_pretrained(model_id)

        model = BertModel.from_pretrained(model_id, subfolder=subfolder)

        self.assertIsNotNone(model)

2790
2791
2792
2793
    def test_model_from_pretrained_with_different_pretrained_model_name(self):
        model = T5ForConditionalGeneration.from_pretrained(TINY_T5)
        self.assertIsNotNone(model)

2794
2795
        logger = logging.get_logger("transformers.configuration_utils")
        with CaptureLogger(logger) as cl:
2796
            BertModel.from_pretrained(TINY_T5)
2797
        self.assertTrue("You are using a model of type t5 to instantiate a model of type bert" in cl.out)
Sylvain Gugger's avatar
Sylvain Gugger committed
2798

2799
2800
2801
2802
2803
2804
2805
2806
2807
2808
2809
2810
2811
2812
2813
2814
2815
2816
2817
2818
    def test_model_from_config_torch_dtype(self):
        # test that the model can be instantiated with dtype of user's choice - as long as it's a
        # float dtype. To make it happen config.torch_dtype needs to be set before instantiating the
        # model from the config object.

        config = T5Config.from_pretrained(TINY_T5)
        model = AutoModel.from_config(config)
        # XXX: isn't supported
        # model = T5ForConditionalGeneration.from_config(config)
        self.assertEqual(model.dtype, torch.float32)

        model = AutoModel.from_config(config, torch_dtype=torch.float16)
        self.assertEqual(model.dtype, torch.float16)

        # torch.set_default_dtype() supports only float dtypes, so will fail with non-float type
        with self.assertRaises(ValueError):
            model = AutoModel.from_config(config, torch_dtype=torch.int64)

    def test_model_from_pretrained_torch_dtype(self):
        # test that the model can be instantiated with dtype of either
2819
2820
        # 1. explicit from_pretrained's torch_dtype argument
        # 2. via autodiscovery by looking at model weights (torch_dtype="auto")
2821
        # so if a model.half() was saved, we want it to be instantiated as such.
2822
2823
        #
        # test an explicit model class, but also AutoModel separately as the latter goes through a different code path
2824
2825
2826
2827
2828
2829
        model_path = self.get_auto_remove_tmp_dir()

        # baseline - we know TINY_T5 is fp32 model
        model = T5ForConditionalGeneration.from_pretrained(TINY_T5)
        self.assertEqual(model.dtype, torch.float32)

2830
2831
2832
2833
2834
2835
2836
2837
        def remove_torch_dtype(model_path):
            file = f"{model_path}/config.json"
            with open(file, "r", encoding="utf-8") as f:
                s = json.load(f)
            s.pop("torch_dtype")
            with open(file, "w", encoding="utf-8") as f:
                json.dump(s, f)

2838
2839
2840
2841
        # test the default fp32 save_pretrained => from_pretrained cycle
        model.save_pretrained(model_path)
        model = T5ForConditionalGeneration.from_pretrained(model_path)
        self.assertEqual(model.dtype, torch.float32)
2842
2843
2844
2845
2846
2847
2848
        # 1. test torch_dtype="auto" via `config.torch_dtype`
        model = T5ForConditionalGeneration.from_pretrained(model_path, torch_dtype="auto")
        self.assertEqual(model.dtype, torch.float32)
        # 2. test torch_dtype="auto" via auto-derivation
        # now remove the torch_dtype entry from config.json and try "auto" again which should
        # perform auto-derivation from weights
        remove_torch_dtype(model_path)
2849
2850
2851
2852
2853
2854
2855
2856
2857
2858
        model = T5ForConditionalGeneration.from_pretrained(model_path, torch_dtype="auto")
        self.assertEqual(model.dtype, torch.float32)

        # test forced loading in fp16 (even though the weights are in fp32)
        model = T5ForConditionalGeneration.from_pretrained(model_path, torch_dtype=torch.float16)
        self.assertEqual(model.dtype, torch.float16)

        # test fp16 save_pretrained, loaded with auto-detection
        model = model.half()
        model.save_pretrained(model_path)
2859
        # 1. test torch_dtype="auto" via `config.torch_dtype`
2860
        model = T5ForConditionalGeneration.from_pretrained(model_path, torch_dtype="auto")
2861
        self.assertEqual(model.config.torch_dtype, torch.float16)
2862
        self.assertEqual(model.dtype, torch.float16)
2863
2864
2865
2866
        # tests `config.torch_dtype` saving
        with open(f"{model_path}/config.json") as f:
            config_dict = json.load(f)
        self.assertEqual(config_dict["torch_dtype"], "float16")
2867
2868
2869
2870
2871
        # 2. test torch_dtype="auto" via auto-derivation
        # now same with using config info
        remove_torch_dtype(model_path)
        model = T5ForConditionalGeneration.from_pretrained(model_path, torch_dtype="auto")
        self.assertEqual(model.dtype, torch.float16)
2872

2873
2874
2875
2876
        # test fp16 save_pretrained, loaded with the explicit fp16
        model = T5ForConditionalGeneration.from_pretrained(model_path, torch_dtype=torch.float16)
        self.assertEqual(model.dtype, torch.float16)

2877
        # test AutoModel separately as it goes through a different path
2878
        # test auto-detection - as currently TINY_T5 doesn't have torch_dtype entry
2879
        model = AutoModel.from_pretrained(TINY_T5, torch_dtype="auto")
2880
2881
2882
2883
        # test that the config object didn't get polluted with torch_dtype="auto"
        # there was a bug that after this call we ended up with config.torch_dtype=="auto"
        self.assertNotEqual(model.config.torch_dtype, "auto")
        # now test the outcome
2884
2885
2886
2887
        self.assertEqual(model.dtype, torch.float32)
        model = AutoModel.from_pretrained(TINY_T5, torch_dtype=torch.float16)
        self.assertEqual(model.dtype, torch.float16)

2888
2889
2890
2891
        # test model whose first param is not of a floating type, but int
        model = AutoModel.from_pretrained(TINY_BERT_FOR_TOKEN_CLASSIFICATION, torch_dtype="auto")
        self.assertEqual(model.dtype, torch.float32)

2892
2893
2894
2895
2896
2897
2898
    def test_no_super_init_config_and_model(self):
        config = NoSuperInitConfig(attribute=32)
        model = NoSuperInitModel(config)

        with tempfile.TemporaryDirectory() as tmp_dir:
            model.save_pretrained(tmp_dir)

2899
2900
2901
2902
            new_model = NoSuperInitModel.from_pretrained(tmp_dir)

        for p1, p2 in zip(model.parameters(), new_model.parameters()):
            self.assertTrue(torch.equal(p1, p2))
2903

Sylvain Gugger's avatar
Sylvain Gugger committed
2904
2905
2906
2907
2908
2909
2910
2911
2912
2913
2914
2915
2916
2917
2918
2919
2920
2921
2922
2923
2924
2925
2926
2927
2928
2929
2930
2931
2932
2933
2934
2935
2936
2937
2938
2939
2940
2941
2942
2943
2944
2945
2946
2947
2948
2949
2950
2951
2952
2953
2954
2955
2956
2957
2958
2959
2960
2961
2962
2963
2964
2965
2966
2967
2968
2969
2970
2971
2972
2973
2974
2975
2976
2977
2978
2979
2980
2981
2982
2983
2984
2985
2986
2987
2988
2989
2990
2991
2992
2993
2994
2995
2996
2997
2998
2999
3000
3001
3002
3003
3004
3005
    def test_shard_checkpoint(self):
        # This is the model we will use, total size 340,000 bytes.
        model = torch.nn.Sequential(
            torch.nn.Linear(100, 200, bias=False),  # size 80,000
            torch.nn.Linear(200, 200, bias=False),  # size 160,000
            torch.nn.Linear(200, 100, bias=False),  # size 80,000
            torch.nn.Linear(100, 50, bias=False),  # size 20,000
        )
        state_dict = model.state_dict()

        with self.subTest("No shard when max size is bigger than model size"):
            shards, index = shard_checkpoint(state_dict)
            self.assertIsNone(index)
            self.assertDictEqual(shards, {WEIGHTS_NAME: state_dict})

        with self.subTest("Test sharding, no weights bigger than max size"):
            shards, index = shard_checkpoint(state_dict, max_shard_size="300kB")
            # Split is first two layers then last two.
            self.assertDictEqual(
                index,
                {
                    "metadata": {"total_size": 340000},
                    "weight_map": {
                        "0.weight": "pytorch_model-00001-of-00002.bin",
                        "1.weight": "pytorch_model-00001-of-00002.bin",
                        "2.weight": "pytorch_model-00002-of-00002.bin",
                        "3.weight": "pytorch_model-00002-of-00002.bin",
                    },
                },
            )

            shard1 = {"0.weight": state_dict["0.weight"], "1.weight": state_dict["1.weight"]}
            shard2 = {"2.weight": state_dict["2.weight"], "3.weight": state_dict["3.weight"]}
            self.assertDictEqual(
                shards, {"pytorch_model-00001-of-00002.bin": shard1, "pytorch_model-00002-of-00002.bin": shard2}
            )

        with self.subTest("Test sharding with weights bigger than max size"):
            shards, index = shard_checkpoint(state_dict, max_shard_size="100kB")
            # Split is first layer, second layer then last 2.
            self.assertDictEqual(
                index,
                {
                    "metadata": {"total_size": 340000},
                    "weight_map": {
                        "0.weight": "pytorch_model-00001-of-00003.bin",
                        "1.weight": "pytorch_model-00002-of-00003.bin",
                        "2.weight": "pytorch_model-00003-of-00003.bin",
                        "3.weight": "pytorch_model-00003-of-00003.bin",
                    },
                },
            )

            shard1 = {"0.weight": state_dict["0.weight"]}
            shard2 = {"1.weight": state_dict["1.weight"]}
            shard3 = {"2.weight": state_dict["2.weight"], "3.weight": state_dict["3.weight"]}
            self.assertDictEqual(
                shards,
                {
                    "pytorch_model-00001-of-00003.bin": shard1,
                    "pytorch_model-00002-of-00003.bin": shard2,
                    "pytorch_model-00003-of-00003.bin": shard3,
                },
            )

    def test_checkpoint_sharding_local(self):
        model = BertModel.from_pretrained("hf-internal-testing/tiny-random-bert")

        with tempfile.TemporaryDirectory() as tmp_dir:
            # We use the same folder for various sizes to make sure a new save erases the old checkpoint.
            for max_size in ["50kB", "50kiB", "100kB", "100kiB", "200kB", "200kiB"]:
                model.save_pretrained(tmp_dir, max_shard_size=max_size)

                # Get each shard file and its size
                shard_to_size = {}
                for shard in os.listdir(tmp_dir):
                    if shard.endswith(".bin"):
                        shard_file = os.path.join(tmp_dir, shard)
                        shard_to_size[shard_file] = os.path.getsize(shard_file)

                index_file = os.path.join(tmp_dir, WEIGHTS_INDEX_NAME)
                # Check there is an index but no regular weight file
                self.assertTrue(os.path.isfile(index_file))
                self.assertFalse(os.path.isfile(os.path.join(tmp_dir, WEIGHTS_NAME)))

                # Check a file is bigger than max_size only when it has a single weight
                for shard_file, size in shard_to_size.items():
                    if max_size.endswith("kiB"):
                        max_size_int = int(max_size[:-3]) * 2**10
                    else:
                        max_size_int = int(max_size[:-2]) * 10**3
                    # Note: pickle adds some junk so the weight of the file can end up being slightly bigger than
                    # the size asked for (since we count parameters)
                    if size >= max_size_int + 50000:
                        state_dict = torch.load(shard_file)
                        self.assertEqual(len(state_dict), 1)

                # Check the index and the shard files found match
                with open(index_file, "r", encoding="utf-8") as f:
                    index = json.loads(f.read())

                all_shards = set(index["weight_map"].values())
3006
                shards_found = {f for f in os.listdir(tmp_dir) if f.endswith(".bin")}
Sylvain Gugger's avatar
Sylvain Gugger committed
3007
3008
3009
3010
3011
3012
3013
3014
3015
3016
3017
3018
3019
3020
                self.assertSetEqual(all_shards, shards_found)

                # Finally, check the model can be reloaded
                new_model = BertModel.from_pretrained(tmp_dir)
                for p1, p2 in zip(model.parameters(), new_model.parameters()):
                    self.assertTrue(torch.allclose(p1, p2))

    def test_checkpoint_sharding_from_hub(self):
        model = BertModel.from_pretrained("hf-internal-testing/tiny-random-bert-sharded")
        # the model above is the same as the model below, just a sharded version.
        ref_model = BertModel.from_pretrained("hf-internal-testing/tiny-random-bert")
        for p1, p2 in zip(model.parameters(), ref_model.parameters()):
            self.assertTrue(torch.allclose(p1, p2))

3021
3022
3023
3024
3025
3026
3027
3028
3029
3030
3031
3032
3033
3034
3035
3036
3037
3038
3039
3040
3041
3042
3043
3044
3045
3046
3047
3048
3049
3050
3051
3052
3053
3054
3055
3056
3057
3058
3059
3060
3061
3062
3063
3064
3065
3066
3067
3068
3069
3070
3071
3072
3073
3074
3075
3076
3077
3078
3079
3080
3081
3082
3083
3084
3085
3086
3087
3088
3089
3090
3091
3092
3093
3094
3095
3096
3097
3098
3099
3100
3101
3102
3103
3104
3105
3106
3107
3108
3109
3110
3111
3112
3113
3114
3115
3116
3117
3118
3119
3120
3121
3122
3123
3124
3125
3126
3127
3128
3129
3130
3131
3132
3133
3134
3135
3136
3137
3138
3139
3140
3141
3142
3143
3144
3145
3146
3147
3148
3149
3150
3151
3152
    def test_checkpoint_variant_local(self):
        model = BertModel.from_pretrained("hf-internal-testing/tiny-random-bert")

        with tempfile.TemporaryDirectory() as tmp_dir:
            model.save_pretrained(tmp_dir, variant="v2")

            weights_name = ".".join(WEIGHTS_NAME.split(".")[:-1] + ["v2"] + ["bin"])

            weights_file = os.path.join(tmp_dir, weights_name)
            self.assertTrue(os.path.isfile(weights_file))
            self.assertFalse(os.path.isfile(os.path.join(tmp_dir, WEIGHTS_NAME)))

            with self.assertRaises(EnvironmentError):
                _ = BertModel.from_pretrained(tmp_dir)

            new_model = BertModel.from_pretrained(tmp_dir, variant="v2")

        for p1, p2 in zip(model.parameters(), new_model.parameters()):
            self.assertTrue(torch.allclose(p1, p2))

    def test_checkpoint_variant_local_sharded(self):
        model = BertModel.from_pretrained("hf-internal-testing/tiny-random-bert")

        with tempfile.TemporaryDirectory() as tmp_dir:
            model.save_pretrained(tmp_dir, variant="v2", max_shard_size="50kB")

            weights_index_name = ".".join(WEIGHTS_INDEX_NAME.split(".")[:-1] + ["v2"] + ["json"])
            weights_index_file = os.path.join(tmp_dir, weights_index_name)
            self.assertTrue(os.path.isfile(weights_index_file))
            self.assertFalse(os.path.isfile(os.path.join(tmp_dir, WEIGHTS_INDEX_NAME)))

            for i in range(1, 6):
                weights_name = ".".join(WEIGHTS_NAME.split(".")[:-1] + [f"v2-0000{i}-of-00006"] + ["bin"])
                weights_name_file = os.path.join(tmp_dir, weights_name)
                self.assertTrue(os.path.isfile(weights_name_file))

            with self.assertRaises(EnvironmentError):
                _ = BertModel.from_pretrained(tmp_dir)

            new_model = BertModel.from_pretrained(tmp_dir, variant="v2")

        for p1, p2 in zip(model.parameters(), new_model.parameters()):
            self.assertTrue(torch.allclose(p1, p2))

    @require_safetensors
    def test_checkpoint_variant_local_safe(self):
        model = BertModel.from_pretrained("hf-internal-testing/tiny-random-bert")

        with tempfile.TemporaryDirectory() as tmp_dir:
            model.save_pretrained(tmp_dir, variant="v2", safe_serialization=True)

            weights_name = ".".join(SAFE_WEIGHTS_NAME.split(".")[:-1] + ["v2"] + ["safetensors"])

            weights_file = os.path.join(tmp_dir, weights_name)
            self.assertTrue(os.path.isfile(weights_file))
            self.assertFalse(os.path.isfile(os.path.join(tmp_dir, SAFE_WEIGHTS_NAME)))

            with self.assertRaises(EnvironmentError):
                _ = BertModel.from_pretrained(tmp_dir)

            new_model = BertModel.from_pretrained(tmp_dir, variant="v2")

        for p1, p2 in zip(model.parameters(), new_model.parameters()):
            self.assertTrue(torch.allclose(p1, p2))

    @require_safetensors
    def test_checkpoint_variant_local_sharded_safe(self):
        model = BertModel.from_pretrained("hf-internal-testing/tiny-random-bert")

        with tempfile.TemporaryDirectory() as tmp_dir:
            model.save_pretrained(tmp_dir, variant="v2", max_shard_size="50kB", safe_serialization=True)

            weights_index_name = ".".join(SAFE_WEIGHTS_INDEX_NAME.split(".")[:-1] + ["v2"] + ["json"])
            weights_index_file = os.path.join(tmp_dir, weights_index_name)
            self.assertTrue(os.path.isfile(weights_index_file))
            self.assertFalse(os.path.isfile(os.path.join(tmp_dir, SAFE_WEIGHTS_INDEX_NAME)))

            for i in range(1, 6):
                weights_name = ".".join(SAFE_WEIGHTS_NAME.split(".")[:-1] + [f"v2-0000{i}-of-00006"] + ["safetensors"])
                weights_name_file = os.path.join(tmp_dir, weights_name)
                self.assertTrue(os.path.isfile(weights_name_file))

            with self.assertRaises(EnvironmentError):
                _ = BertModel.from_pretrained(tmp_dir)

            new_model = BertModel.from_pretrained(tmp_dir, variant="v2")

        for p1, p2 in zip(model.parameters(), new_model.parameters()):
            self.assertTrue(torch.allclose(p1, p2))

    def test_checkpoint_variant_hub(self):
        with tempfile.TemporaryDirectory() as tmp_dir:
            with self.assertRaises(EnvironmentError):
                _ = BertModel.from_pretrained("hf-internal-testing/tiny-random-bert-variant", cache_dir=tmp_dir)
            model = BertModel.from_pretrained(
                "hf-internal-testing/tiny-random-bert-variant", cache_dir=tmp_dir, variant="v2"
            )
        self.assertIsNotNone(model)

    def test_checkpoint_variant_hub_sharded(self):
        with tempfile.TemporaryDirectory() as tmp_dir:
            with self.assertRaises(EnvironmentError):
                _ = BertModel.from_pretrained(
                    "hf-internal-testing/tiny-random-bert-variant-sharded", cache_dir=tmp_dir
                )
            model = BertModel.from_pretrained(
                "hf-internal-testing/tiny-random-bert-variant-sharded", cache_dir=tmp_dir, variant="v2"
            )
        self.assertIsNotNone(model)

    @require_safetensors
    def test_checkpoint_variant_hub_safe(self):
        with tempfile.TemporaryDirectory() as tmp_dir:
            with self.assertRaises(EnvironmentError):
                _ = BertModel.from_pretrained("hf-internal-testing/tiny-random-bert-variant-safe", cache_dir=tmp_dir)
            model = BertModel.from_pretrained(
                "hf-internal-testing/tiny-random-bert-variant-safe", cache_dir=tmp_dir, variant="v2"
            )
        self.assertIsNotNone(model)

    @require_safetensors
    def test_checkpoint_variant_hub_sharded_safe(self):
        with tempfile.TemporaryDirectory() as tmp_dir:
            with self.assertRaises(EnvironmentError):
                _ = BertModel.from_pretrained(
                    "hf-internal-testing/tiny-random-bert-variant-sharded-safe", cache_dir=tmp_dir
                )
            model = BertModel.from_pretrained(
                "hf-internal-testing/tiny-random-bert-variant-sharded-safe", cache_dir=tmp_dir, variant="v2"
            )
        self.assertIsNotNone(model)

3153
3154
3155
3156
3157
3158
3159
3160
3161
3162
3163
3164
3165
3166
3167
3168
3169
3170
3171
3172
3173
    def test_checkpoint_variant_save_load(self):
        with tempfile.TemporaryDirectory() as tmp_dir:
            model = BertModel.from_pretrained(
                "hf-internal-testing/tiny-random-bert-variant", cache_dir=tmp_dir, variant="v2"
            )
            weights_name = ".".join(WEIGHTS_NAME.split(".")[:-1] + ["v2"] + ["bin"])

            model.save_pretrained(tmp_dir, variant="v2")
            # saving will create a variant checkpoint
            self.assertTrue(os.path.isfile(os.path.join(tmp_dir, weights_name)))

            model.save_pretrained(tmp_dir)
            # saving shouldn't delete variant checkpoints
            weights_name = ".".join(WEIGHTS_NAME.split(".")[:-1] + ["v2"] + ["bin"])
            self.assertTrue(os.path.isfile(os.path.join(tmp_dir, weights_name)))

            # there should be a normal checkpoint
            self.assertTrue(os.path.isfile(os.path.join(tmp_dir, WEIGHTS_NAME)))

        self.assertIsNotNone(model)

3174
    @require_accelerate
3175
3176
3177
3178
3179
3180
3181
3182
3183
3184
3185
3186
    def test_from_pretrained_low_cpu_mem_usage_functional(self):
        # test that we can use `from_pretrained(..., low_cpu_mem_usage=True)` with normal and
        # sharded models

        mnames = [
            "hf-internal-testing/tiny-random-bert-sharded",
            "hf-internal-testing/tiny-random-bert",
        ]
        for mname in mnames:
            _ = BertModel.from_pretrained(mname, low_cpu_mem_usage=True)

    @require_usr_bin_time
3187
    @require_accelerate
3188
3189
3190
3191
3192
3193
3194
3195
3196
3197
3198
3199
3200
3201
3202
3203
3204
3205
3206
3207
3208
3209
3210
3211
3212
3213
3214
3215
3216
3217
3218
3219
3220
3221
3222
3223
3224
3225
    def test_from_pretrained_low_cpu_mem_usage_measured(self):
        # test that `from_pretrained(..., low_cpu_mem_usage=True)` uses less cpu memory than default

        mname = "bert-base-cased"

        preamble = "from transformers import AutoModel"
        one_liner_str = f'{preamble}; AutoModel.from_pretrained("{mname}", low_cpu_mem_usage=False)'
        max_rss_normal = self.python_one_liner_max_rss(one_liner_str)
        # print(f"{max_rss_normal=}")

        one_liner_str = f'{preamble};  AutoModel.from_pretrained("{mname}", low_cpu_mem_usage=True)'
        max_rss_low_mem = self.python_one_liner_max_rss(one_liner_str)
        # print(f"{max_rss_low_mem=}")

        diff_bytes = max_rss_normal - max_rss_low_mem
        diff_percent = diff_bytes / max_rss_low_mem
        # print(f"{diff_bytes=}, {diff_percent=}")
        # ideally we would compare that the diff is close to ~1x checkpoint size in bytes, but
        # measuring cpu memory on linux is very tricky and inconsistent, so instead let's check that
        # it's at least 15% less cpu memory consumed

        self.assertGreater(
            diff_percent,
            0.15,
            "should use less CPU memory for low_cpu_mem_usage=True, "
            f"but got max_rss_normal={max_rss_normal} and max_rss_low_mem={max_rss_low_mem}",
        )

        # if you want to compare things manually, let's first look at the size of the model in bytes
        # model = BertModel.from_pretrained(mname, low_cpu_mem_usage=False)
        # total_numel = sum(dict((p.data_ptr(), p.numel()) for p in model.parameters()).values())
        # total_bytes = total_numel * 4  # 420MB
        # Now the diff_bytes should be very close to total_bytes, but the reports are inconsistent.
        # The easiest way to test this is to switch the model and torch.load to do all the work on
        # gpu - that way one can measure exactly the total and peak memory used. Perhaps once we add
        # functionality to load models directly on gpu, this test can be rewritten to use torch's
        # cuda memory tracking and then we should be able to do a much more precise test.

3226
    @require_accelerate
3227
3228
3229
3230
3231
3232
3233
3234
3235
3236
3237
3238
3239
3240
3241
3242
    @require_torch_multi_gpu
    @slow
    def test_model_parallelism_gpt2(self):
        device_map = {"transformer.wte": 0, "transformer.wpe": 0, "lm_head": 0, "transformer.ln_f": 1}
        for i in range(12):
            device_map[f"transformer.h.{i}"] = 0 if i <= 5 else 1

        model = AutoModelForCausalLM.from_pretrained("gpt2", device_map=device_map)

        tokenizer = AutoTokenizer.from_pretrained("gpt2")
        inputs = tokenizer("Hello, my name is", return_tensors="pt")
        output = model.generate(inputs["input_ids"].to(0))

        text_output = tokenizer.decode(output[0].tolist())
        self.assertEqual(text_output, "Hello, my name is John. I'm a writer, and I'm a writer. I'm")

Sylvain Gugger's avatar
Sylvain Gugger committed
3243
3244
3245
3246
3247
3248
3249
3250
3251
3252
3253
3254
3255
3256
3257
3258
3259
3260
3261
3262
3263
3264
3265
3266
3267
3268
3269
3270
3271
3272
3273
3274
3275
3276
3277
3278
3279
3280
3281
3282
3283
3284
    @require_accelerate
    @require_torch_gpu
    def test_from_pretrained_disk_offload_task_model(self):
        model = AutoModel.from_pretrained("hf-internal-testing/tiny-random-gpt2")
        device_map = {
            "transformer.wte": 0,
            "transformer.wpe": 0,
            "transformer.h.0": "cpu",
            "transformer.h.1": "cpu",
            "transformer.h.2": "cpu",
            "transformer.h.3": "disk",
            "transformer.h.4": "disk",
            "transformer.ln_f": 0,
            "lm_head": 0,
        }
        with tempfile.TemporaryDirectory() as tmp_dir:
            inputs = torch.tensor([[1, 2, 3]]).to(0)

            model.save_pretrained(tmp_dir)
            new_model = AutoModelForCausalLM.from_pretrained(tmp_dir).to(0)
            outputs1 = new_model.to(0)(inputs)

            offload_folder = os.path.join(tmp_dir, "offload")
            new_model_with_offload = AutoModelForCausalLM.from_pretrained(
                tmp_dir, device_map=device_map, offload_folder=offload_folder
            )
            outputs2 = new_model_with_offload(inputs)

            self.assertTrue(torch.allclose(outputs1.logits.cpu(), outputs2.logits.cpu()))

            # With state dict temp offload
            offload_folder = os.path.join(tmp_dir, "offload")
            new_model_with_offload = AutoModelForCausalLM.from_pretrained(
                tmp_dir,
                device_map=device_map,
                offload_folder=offload_folder,
                offload_state_dict=True,
            )
            outputs2 = new_model_with_offload(inputs)

            self.assertTrue(torch.allclose(outputs1.logits.cpu(), outputs2.logits.cpu()))

3285
3286
3287
3288
    def test_cached_files_are_used_when_internet_is_down(self):
        # A mock response for an HTTP head request to emulate server down
        response_mock = mock.Mock()
        response_mock.status_code = 500
3289
        response_mock.headers = {}
3290
        response_mock.raise_for_status.side_effect = HTTPError
3291
        response_mock.json.return_value = {}
3292
3293
3294
3295
3296

        # Download this model to make sure it's in the cache.
        _ = BertModel.from_pretrained("hf-internal-testing/tiny-random-bert")

        # Under the mock environment we get a 500 error when trying to reach the model.
3297
        with mock.patch("requests.request", return_value=response_mock) as mock_head:
3298
3299
3300
3301
            _ = BertModel.from_pretrained("hf-internal-testing/tiny-random-bert")
            # This check we did call the fake head request
            mock_head.assert_called()

3302
3303
3304
3305
3306
3307
3308
3309
3310
3311
3312
3313
3314
3315
3316
3317
3318
3319
3320
3321
    def test_load_from_one_file(self):
        try:
            tmp_file = tempfile.mktemp()
            with open(tmp_file, "wb") as f:
                http_get(
                    "https://huggingface.co/hf-internal-testing/tiny-random-bert/resolve/main/pytorch_model.bin", f
                )

            config = BertConfig.from_pretrained("hf-internal-testing/tiny-random-bert")
            _ = BertModel.from_pretrained(tmp_file, config=config)
        finally:
            os.remove(tmp_file)

    def test_legacy_load_from_url(self):
        # This test is for deprecated behavior and can be removed in v5
        config = BertConfig.from_pretrained("hf-internal-testing/tiny-random-bert")
        _ = BertModel.from_pretrained(
            "https://huggingface.co/hf-internal-testing/tiny-random-bert/resolve/main/pytorch_model.bin", config=config
        )

3322
3323
3324
3325
3326
3327
3328
3329
3330
3331
3332
3333
3334
3335
3336
3337
3338
3339
3340
3341
3342
3343
3344
3345
3346
3347
3348
3349
3350
3351
3352
3353
3354
3355
3356
3357
3358
3359
3360
3361
3362
3363
3364
3365
3366
3367
3368
3369
3370
3371
3372
    @require_safetensors
    def test_safetensors_save_and_load(self):
        model = BertModel.from_pretrained("hf-internal-testing/tiny-random-bert")
        with tempfile.TemporaryDirectory() as tmp_dir:
            model.save_pretrained(tmp_dir, safe_serialization=True)
            # No pytorch_model.bin file, only a model.safetensors
            self.assertTrue(os.path.isfile(os.path.join(tmp_dir, SAFE_WEIGHTS_NAME)))
            self.assertFalse(os.path.isfile(os.path.join(tmp_dir, WEIGHTS_NAME)))

            new_model = BertModel.from_pretrained(tmp_dir)

            # Check models are equal
            for p1, p2 in zip(model.parameters(), new_model.parameters()):
                self.assertTrue(torch.allclose(p1, p2))

    @require_safetensors
    def test_safetensors_load_from_hub(self):
        safetensors_model = BertModel.from_pretrained("hf-internal-testing/tiny-random-bert-safetensors")
        pytorch_model = BertModel.from_pretrained("hf-internal-testing/tiny-random-bert")

        # Check models are equal
        for p1, p2 in zip(safetensors_model.parameters(), pytorch_model.parameters()):
            self.assertTrue(torch.allclose(p1, p2))

    @require_safetensors
    def test_safetensors_save_and_load_sharded(self):
        model = BertModel.from_pretrained("hf-internal-testing/tiny-random-bert")
        with tempfile.TemporaryDirectory() as tmp_dir:
            model.save_pretrained(tmp_dir, safe_serialization=True, max_shard_size="100kB")
            # No pytorch_model.bin index file, only a model.safetensors index
            self.assertFalse(os.path.isfile(os.path.join(tmp_dir, WEIGHTS_INDEX_NAME)))
            self.assertTrue(os.path.isfile(os.path.join(tmp_dir, SAFE_WEIGHTS_INDEX_NAME)))
            # No regular weights file
            self.assertFalse(os.path.isfile(os.path.join(tmp_dir, WEIGHTS_NAME)))
            self.assertFalse(os.path.isfile(os.path.join(tmp_dir, SAFE_WEIGHTS_NAME)))

            new_model = BertModel.from_pretrained(tmp_dir)

            # Check models are equal
            for p1, p2 in zip(model.parameters(), new_model.parameters()):
                self.assertTrue(torch.allclose(p1, p2))

    @require_safetensors
    def test_safetensors_load_from_hub_sharded(self):
        safetensors_model = BertModel.from_pretrained("hf-internal-testing/tiny-random-bert-sharded-safetensors")
        pytorch_model = BertModel.from_pretrained("hf-internal-testing/tiny-random-bert-sharded")

        # Check models are equal
        for p1, p2 in zip(safetensors_model.parameters(), pytorch_model.parameters()):
            self.assertTrue(torch.allclose(p1, p2))

Sylvain Gugger's avatar
Sylvain Gugger committed
3373
3374
3375
3376
3377
3378
3379
3380
3381
3382
3383
3384
3385
3386
3387
3388
3389
3390
3391
3392
3393
3394
    def test_base_model_to_head_model_load(self):
        base_model = BaseModel(PretrainedConfig())
        with tempfile.TemporaryDirectory() as tmp_dir:
            base_model.save_pretrained(tmp_dir)

            # Can load a base model in a model with head
            model = ModelWithHead.from_pretrained(tmp_dir)
            for p1, p2 in zip(model.base.parameters(), base_model.parameters()):
                self.assertTrue(torch.allclose(p1, p2))

            # It doesn't work if the state dict has a mix of keys of the head and base without prefix though.
            base_state_dict = base_model.state_dict()
            head_state_dict = model.state_dict()
            base_state_dict["linear2.weight"] = head_state_dict["linear2.weight"]
            base_state_dict["linear2.bias"] = head_state_dict["linear2.bias"]
            torch.save(base_state_dict, os.path.join(tmp_dir, WEIGHTS_NAME))

            with self.assertRaisesRegex(
                ValueError, "The state dictionary of the model you are trying to load is corrupted."
            ):
                _ = ModelWithHead.from_pretrained(tmp_dir)

Susnato Dhar's avatar
Susnato Dhar committed
3395
    @require_torch_gpu
Joao Gante's avatar
Joao Gante committed
3396
    @slow
Susnato Dhar's avatar
Susnato Dhar committed
3397
3398
3399
3400
3401
3402
3403
3404
3405
3406
3407
3408
3409
3410
3411
3412
3413
3414
3415
3416
    def test_pretrained_low_mem_new_config(self):
        # Checking for 1 model(the same one which was described in the issue) .
        model_ids = ["gpt2"]

        for model_id in model_ids:
            model_config = AutoConfig.from_pretrained(pretrained_model_name_or_path=model_id)
            model_config.n_layer = 48
            model_config.n_head = 25
            model_config.n_embd = 1600
            model = AutoModelForCausalLM.from_pretrained(
                pretrained_model_name_or_path=model_id,
                config=model_config,
                ignore_mismatched_sizes=True,
                torch_dtype=torch.float16,
                low_cpu_mem_usage=True,
            )
            model_ref = AutoModelForCausalLM.from_pretrained(pretrained_model_name_or_path=model_id)

            self.assertEqual(model.__class__.__name__, model_ref.__class__.__name__)

Sylvain Gugger's avatar
Sylvain Gugger committed
3417
3418
3419
3420
3421
3422

@require_torch
@is_staging_test
class ModelPushToHubTester(unittest.TestCase):
    @classmethod
    def setUpClass(cls):
3423
3424
3425
        cls._token = TOKEN
        set_access_token(TOKEN)
        HfFolder.save_token(TOKEN)
Sylvain Gugger's avatar
Sylvain Gugger committed
3426
3427
3428
3429

    @classmethod
    def tearDownClass(cls):
        try:
3430
            delete_repo(token=cls._token, repo_id="test-model")
Sylvain Gugger's avatar
Sylvain Gugger committed
3431
3432
3433
3434
        except HTTPError:
            pass

        try:
3435
            delete_repo(token=cls._token, repo_id="valid_org/test-model-org")
Sylvain Gugger's avatar
Sylvain Gugger committed
3436
3437
3438
        except HTTPError:
            pass

3439
        try:
3440
            delete_repo(token=cls._token, repo_id="test-dynamic-model")
3441
3442
3443
        except HTTPError:
            pass

Sylvain Gugger's avatar
Sylvain Gugger committed
3444
3445
3446
3447
3448
    def test_push_to_hub(self):
        config = BertConfig(
            vocab_size=99, hidden_size=32, num_hidden_layers=5, num_attention_heads=4, intermediate_size=37
        )
        model = BertModel(config)
3449
3450
3451
3452
3453
3454
3455
3456
3457
3458
        model.push_to_hub("test-model", use_auth_token=self._token)

        new_model = BertModel.from_pretrained(f"{USER}/test-model")
        for p1, p2 in zip(model.parameters(), new_model.parameters()):
            self.assertTrue(torch.equal(p1, p2))

        # Reset repo
        delete_repo(token=self._token, repo_id="test-model")

        # Push to hub via save_pretrained
Sylvain Gugger's avatar
Sylvain Gugger committed
3459
        with tempfile.TemporaryDirectory() as tmp_dir:
3460
            model.save_pretrained(tmp_dir, repo_id="test-model", push_to_hub=True, use_auth_token=self._token)
Sylvain Gugger's avatar
Sylvain Gugger committed
3461

3462
3463
3464
        new_model = BertModel.from_pretrained(f"{USER}/test-model")
        for p1, p2 in zip(model.parameters(), new_model.parameters()):
            self.assertTrue(torch.equal(p1, p2))
Sylvain Gugger's avatar
Sylvain Gugger committed
3465
3466
3467
3468
3469
3470

    def test_push_to_hub_in_organization(self):
        config = BertConfig(
            vocab_size=99, hidden_size=32, num_hidden_layers=5, num_attention_heads=4, intermediate_size=37
        )
        model = BertModel(config)
3471
3472
3473
3474
3475
3476
3477
3478
3479
3480
        model.push_to_hub("valid_org/test-model-org", use_auth_token=self._token)

        new_model = BertModel.from_pretrained("valid_org/test-model-org")
        for p1, p2 in zip(model.parameters(), new_model.parameters()):
            self.assertTrue(torch.equal(p1, p2))

        # Reset repo
        delete_repo(token=self._token, repo_id="valid_org/test-model-org")

        # Push to hub via save_pretrained
Sylvain Gugger's avatar
Sylvain Gugger committed
3481
3482
        with tempfile.TemporaryDirectory() as tmp_dir:
            model.save_pretrained(
3483
                tmp_dir, push_to_hub=True, use_auth_token=self._token, repo_id="valid_org/test-model-org"
Sylvain Gugger's avatar
Sylvain Gugger committed
3484
3485
            )

3486
3487
3488
        new_model = BertModel.from_pretrained("valid_org/test-model-org")
        for p1, p2 in zip(model.parameters(), new_model.parameters()):
            self.assertTrue(torch.equal(p1, p2))
3489
3490

    def test_push_to_hub_dynamic_model(self):
3491
3492
3493
3494
3495
        CustomConfig.register_for_auto_class()
        CustomModel.register_for_auto_class()

        config = CustomConfig(hidden_size=32)
        model = CustomModel(config)
3496

3497
3498
3499
3500
3501
3502
        model.push_to_hub("test-dynamic-model", use_auth_token=self._token)
        # checks
        self.assertDictEqual(
            config.auto_map,
            {"AutoConfig": "custom_configuration.CustomConfig", "AutoModel": "custom_modeling.CustomModel"},
        )
3503
3504

        new_model = AutoModel.from_pretrained(f"{USER}/test-dynamic-model", trust_remote_code=True)
3505
3506
        # Can't make an isinstance check because the new_model is from the CustomModel class of a dynamic module
        self.assertEqual(new_model.__class__.__name__, "CustomModel")
3507
3508
        for p1, p2 in zip(model.parameters(), new_model.parameters()):
            self.assertTrue(torch.equal(p1, p2))
3509

3510
        config = AutoConfig.from_pretrained(f"{USER}/test-dynamic-model", trust_remote_code=True)
3511
        new_model = AutoModel.from_config(config, trust_remote_code=True)
3512
        self.assertEqual(new_model.__class__.__name__, "CustomModel")