test_modeling_common.py 41.3 KB
Newer Older
thomwolf's avatar
thomwolf committed
1
2
3
4
5
6
7
8
9
10
11
12
13
14
# coding=utf-8
# Copyright 2019 HuggingFace Inc.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
#     http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
Aymeric Augustin's avatar
Aymeric Augustin committed
15

16
import copy
17
import inspect
18
import os.path
Aymeric Augustin's avatar
Aymeric Augustin committed
19
import random
20
import tempfile
thomwolf's avatar
thomwolf committed
21
import unittest
22
from typing import List, Tuple
thomwolf's avatar
thomwolf committed
23

24
from transformers import is_torch_available
25
from transformers.file_utils import WEIGHTS_NAME
26
from transformers.testing_utils import require_torch, require_torch_multigpu, slow, torch_device
27

Aymeric Augustin's avatar
Aymeric Augustin committed
28

29
if is_torch_available():
30
    import numpy as np
31
    import torch
thomwolf's avatar
thomwolf committed
32

33
    from transformers import (
34
        BERT_PRETRAINED_MODEL_ARCHIVE_LIST,
35
36
        MODEL_FOR_CAUSAL_LM_MAPPING,
        MODEL_FOR_MASKED_LM_MAPPING,
37
38
        MODEL_FOR_MULTIPLE_CHOICE_MAPPING,
        MODEL_FOR_QUESTION_ANSWERING_MAPPING,
39
40
41
        MODEL_FOR_SEQ_TO_SEQ_CAUSAL_LM_MAPPING,
        MODEL_FOR_SEQUENCE_CLASSIFICATION_MAPPING,
        MODEL_FOR_TOKEN_CLASSIFICATION_MAPPING,
42
43
44
45
46
        AdaptiveEmbedding,
        BertConfig,
        BertModel,
        PretrainedConfig,
        PreTrainedModel,
47
    )
thomwolf's avatar
thomwolf committed
48

49

50
51
52
def _config_zero_init(config):
    configs_no_init = copy.deepcopy(config)
    for key in configs_no_init.__dict__.keys():
53
        if "_range" in key or "_std" in key or "initializer_factor" in key:
Lysandre Debut's avatar
Lysandre Debut committed
54
            setattr(configs_no_init, key, 1e-10)
55
56
    return configs_no_init

thomwolf's avatar
thomwolf committed
57

58
59
60
61
62
@require_torch
class ModelTesterMixin:

    model_tester = None
    all_model_classes = ()
63
    all_generative_model_classes = ()
Patrick von Platen's avatar
Patrick von Platen committed
64
65
66
67
    test_torchscript = True
    test_pruning = True
    test_resize_embeddings = True
    test_head_masking = True
68
    test_missing_keys = True
69
70
    is_encoder_decoder = False

71
72
    def _prepare_for_class(self, inputs_dict, model_class, return_labels=False):
        inputs_dict = copy.deepcopy(inputs_dict)
73
        if model_class in MODEL_FOR_MULTIPLE_CHOICE_MAPPING.values():
74
            inputs_dict = {
75
                k: v.unsqueeze(1).expand(-1, self.model_tester.num_choices, -1).contiguous()
76
                if isinstance(v, torch.Tensor) and v.ndim > 1
Sylvain Gugger's avatar
Sylvain Gugger committed
77
                else v
78
79
                for k, v in inputs_dict.items()
            }
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103

        if return_labels:
            if model_class in MODEL_FOR_MULTIPLE_CHOICE_MAPPING.values():
                inputs_dict["labels"] = torch.ones(self.model_tester.batch_size, dtype=torch.long, device=torch_device)
            elif model_class in MODEL_FOR_QUESTION_ANSWERING_MAPPING.values():
                inputs_dict["start_positions"] = torch.zeros(
                    self.model_tester.batch_size, dtype=torch.long, device=torch_device
                )
                inputs_dict["end_positions"] = torch.zeros(
                    self.model_tester.batch_size, dtype=torch.long, device=torch_device
                )
            elif model_class in MODEL_FOR_SEQUENCE_CLASSIFICATION_MAPPING.values():
                inputs_dict["labels"] = torch.zeros(
                    self.model_tester.batch_size, dtype=torch.long, device=torch_device
                )
            elif model_class in [
                *MODEL_FOR_TOKEN_CLASSIFICATION_MAPPING.values(),
                *MODEL_FOR_CAUSAL_LM_MAPPING.values(),
                *MODEL_FOR_MASKED_LM_MAPPING.values(),
                *MODEL_FOR_SEQ_TO_SEQ_CAUSAL_LM_MAPPING.values(),
            ]:
                inputs_dict["labels"] = torch.zeros(
                    (self.model_tester.batch_size, self.model_tester.seq_length), dtype=torch.long, device=torch_device
                )
104
105
        return inputs_dict

Patrick von Platen's avatar
Patrick von Platen committed
106
    def test_save_load(self):
107
108
109
110
111
112
113
        config, inputs_dict = self.model_tester.prepare_config_and_inputs_for_common()

        for model_class in self.all_model_classes:
            model = model_class(config)
            model.to(torch_device)
            model.eval()
            with torch.no_grad():
114
                outputs = model(**self._prepare_for_class(inputs_dict, model_class))
Weizhen's avatar
Weizhen committed
115

116
            out_2 = outputs[0].cpu().numpy()
117
            out_2[np.isnan(out_2)] = 0
118

119
            with tempfile.TemporaryDirectory() as tmpdirname:
120
121
                model.save_pretrained(tmpdirname)
                model = model_class.from_pretrained(tmpdirname)
122
                model.to(torch_device)
123
                with torch.no_grad():
124
                    after_outputs = model(**self._prepare_for_class(inputs_dict, model_class))
thomwolf's avatar
thomwolf committed
125

126
127
128
                # Make sure we don't have nans
                out_1 = after_outputs[0].cpu().numpy()
                out_1[np.isnan(out_1)] = 0
thomwolf's avatar
thomwolf committed
129
130
                max_diff = np.amax(np.abs(out_1 - out_2))
                self.assertLessEqual(max_diff, 1e-5)
131

132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
    def test_save_load_keys_to_never_save(self):
        config, inputs_dict = self.model_tester.prepare_config_and_inputs_for_common()

        for model_class in self.all_model_classes:
            model = model_class(config)
            keys_to_never_save = getattr(model, "keys_to_never_save", None)
            if keys_to_never_save is None:
                continue

            # check the keys are in the original state_dict
            for k in keys_to_never_save:
                self.assertIn(k, model.state_dict())

            # check that certain keys didn't get saved with the model
            with tempfile.TemporaryDirectory() as tmpdirname:
                model.save_pretrained(tmpdirname)
                output_model_file = os.path.join(tmpdirname, WEIGHTS_NAME)
                state_dict_saved = torch.load(output_model_file)
                for k in keys_to_never_save:
                    self.assertNotIn(k, state_dict_saved)

Patrick von Platen's avatar
Patrick von Platen committed
153
    def test_initialization(self):
154
155
156
157
158
159
160
161
        config, inputs_dict = self.model_tester.prepare_config_and_inputs_for_common()

        configs_no_init = _config_zero_init(config)
        for model_class in self.all_model_classes:
            model = model_class(config=configs_no_init)
            for name, param in model.named_parameters():
                if param.requires_grad:
                    self.assertIn(
Lysandre Debut's avatar
Lysandre Debut committed
162
                        ((param.data.mean() * 1e9).round() / 1e9).item(),
163
164
165
                        [0.0, 1.0],
                        msg="Parameter {} of model {} seems not properly initialized".format(name, model_class),
                    )
thomwolf's avatar
thomwolf committed
166

Patrick von Platen's avatar
Patrick von Platen committed
167
    def test_determinism(self):
168
169
170
171
172
173
174
        config, inputs_dict = self.model_tester.prepare_config_and_inputs_for_common()

        for model_class in self.all_model_classes:
            model = model_class(config)
            model.to(torch_device)
            model.eval()
            with torch.no_grad():
175
176
                first = model(**self._prepare_for_class(inputs_dict, model_class))[0]
                second = model(**self._prepare_for_class(inputs_dict, model_class))[0]
Weizhen's avatar
Weizhen committed
177

178
179
180
181
182
183
184
            out_1 = first.cpu().numpy()
            out_2 = second.cpu().numpy()
            out_1 = out_1[~np.isnan(out_1)]
            out_2 = out_2[~np.isnan(out_2)]
            max_diff = np.amax(np.abs(out_1 - out_2))
            self.assertLessEqual(max_diff, 1e-5)

185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
    def test_forward_signature(self):
        config, _ = self.model_tester.prepare_config_and_inputs_for_common()

        for model_class in self.all_model_classes:
            model = model_class(config)
            signature = inspect.signature(model.forward)
            # signature.parameters is an OrderedDict => so arg_names order is deterministic
            arg_names = [*signature.parameters.keys()]

            if model.config.is_encoder_decoder:
                expected_arg_names = [
                    "input_ids",
                    "attention_mask",
                    "decoder_input_ids",
                    "decoder_attention_mask",
                    "encoder_outputs",
                ]
                self.assertListEqual(arg_names[:5], expected_arg_names)
            else:
                expected_arg_names = ["input_ids"]
                self.assertListEqual(arg_names[:1], expected_arg_names)

Patrick von Platen's avatar
Patrick von Platen committed
207
    def test_attention_outputs(self):
208
        config, inputs_dict = self.model_tester.prepare_config_and_inputs_for_common()
Weizhen's avatar
Weizhen committed
209
210
        config.return_dict = True

sshleifer's avatar
sshleifer committed
211
        seq_len = getattr(self.model_tester, "seq_length", None)
sshleifer's avatar
sshleifer committed
212
213
        decoder_seq_length = getattr(self.model_tester, "decoder_seq_length", seq_len)
        encoder_seq_length = getattr(self.model_tester, "encoder_seq_length", seq_len)
Weizhen's avatar
Weizhen committed
214
        decoder_key_length = getattr(self.model_tester, "decoder_key_length", decoder_seq_length)
215
        encoder_key_length = getattr(self.model_tester, "key_length", encoder_seq_length)
Patrick von Platen's avatar
Patrick von Platen committed
216
217
218
        chunk_length = getattr(self.model_tester, "chunk_length", None)
        if chunk_length is not None and hasattr(self.model_tester, "num_hashes"):
            encoder_seq_length = encoder_seq_length * self.model_tester.num_hashes
219
220

        for model_class in self.all_model_classes:
221
            inputs_dict["output_attentions"] = True
Joseph Liu's avatar
Joseph Liu committed
222
            inputs_dict["output_hidden_states"] = False
223
            config.return_dict = True
224
225
226
227
            model = model_class(config)
            model.to(torch_device)
            model.eval()
            with torch.no_grad():
228
                outputs = model(**self._prepare_for_class(inputs_dict, model_class))
229
            attentions = outputs.encoder_attentions if config.is_encoder_decoder else outputs.attentions
230
231
232
233
234
235
236
237
238
            self.assertEqual(len(attentions), self.model_tester.num_hidden_layers)

            # check that output_attentions also work using config
            del inputs_dict["output_attentions"]
            config.output_attentions = True
            model = model_class(config)
            model.to(torch_device)
            model.eval()
            with torch.no_grad():
239
240
                outputs = model(**self._prepare_for_class(inputs_dict, model_class))
            attentions = outputs.encoder_attentions if config.is_encoder_decoder else outputs.attentions
241
            self.assertEqual(len(attentions), self.model_tester.num_hidden_layers)
Patrick von Platen's avatar
Patrick von Platen committed
242
243
244
245
246
247
248
249
250
251
252

            if chunk_length is not None:
                self.assertListEqual(
                    list(attentions[0].shape[-4:]),
                    [self.model_tester.num_attention_heads, encoder_seq_length, chunk_length, encoder_key_length],
                )
            else:
                self.assertListEqual(
                    list(attentions[0].shape[-3:]),
                    [self.model_tester.num_attention_heads, encoder_seq_length, encoder_key_length],
                )
253
            out_len = len(outputs)
thomwolf's avatar
thomwolf committed
254

255
            if self.is_encoder_decoder:
Weizhen's avatar
Weizhen committed
256
257
258
                correct_outlen = (
                    self.model_tester.base_model_out_len if hasattr(self.model_tester, "base_model_out_len") else 4
                )
259

260
261
262
263
264
265
                # loss is at first position
                if "labels" in inputs_dict:
                    correct_outlen += 1  # loss is added to beginning
                # Question Answering model returns start_logits and end_logits
                if model_class in MODEL_FOR_QUESTION_ANSWERING_MAPPING.values():
                    correct_outlen += 1  # start_logits and end_logits instead of only 1 output
Weizhen's avatar
Weizhen committed
266

Sam Shleifer's avatar
Sam Shleifer committed
267
268
                self.assertEqual(out_len, correct_outlen)

269
                decoder_attentions = outputs.decoder_attentions
Sam Shleifer's avatar
Sam Shleifer committed
270
                self.assertIsInstance(decoder_attentions, (list, tuple))
271
                self.assertEqual(len(decoder_attentions), self.model_tester.num_hidden_layers)
thomwolf's avatar
thomwolf committed
272
                self.assertListEqual(
273
274
                    list(decoder_attentions[0].shape[-3:]),
                    [self.model_tester.num_attention_heads, decoder_seq_length, decoder_key_length],
275
                )
thomwolf's avatar
thomwolf committed
276

277
            # Check attention is always last and order is fine
278
            inputs_dict["output_attentions"] = True
Joseph Liu's avatar
Joseph Liu committed
279
            inputs_dict["output_hidden_states"] = True
280
281
282
283
            model = model_class(config)
            model.to(torch_device)
            model.eval()
            with torch.no_grad():
284
                outputs = model(**self._prepare_for_class(inputs_dict, model_class))
285

Weizhen's avatar
Weizhen committed
286
287
288
289
290
291
292
293
            if hasattr(self.model_tester, "num_hidden_states_types"):
                added_hidden_states = self.model_tester.num_hidden_states_types
            elif self.is_encoder_decoder:
                added_hidden_states = 2
            else:
                added_hidden_states = 1
            self.assertEqual(out_len + added_hidden_states, len(outputs))

294
295
            self_attentions = outputs.encoder_attentions if config.is_encoder_decoder else outputs.attentions

296
            self.assertEqual(len(self_attentions), self.model_tester.num_hidden_layers)
Patrick von Platen's avatar
Patrick von Platen committed
297
298
299
300
301
302
303
304
305
306
            if chunk_length is not None:
                self.assertListEqual(
                    list(self_attentions[0].shape[-4:]),
                    [self.model_tester.num_attention_heads, encoder_seq_length, chunk_length, encoder_key_length],
                )
            else:
                self.assertListEqual(
                    list(self_attentions[0].shape[-3:]),
                    [self.model_tester.num_attention_heads, encoder_seq_length, encoder_key_length],
                )
thomwolf's avatar
thomwolf committed
307

Patrick von Platen's avatar
Patrick von Platen committed
308
    def test_torchscript(self):
309
310
        config, inputs_dict = self.model_tester.prepare_config_and_inputs_for_common()
        self._create_and_check_torchscript(config, inputs_dict)
thomwolf's avatar
thomwolf committed
311

Patrick von Platen's avatar
Patrick von Platen committed
312
    def test_torchscript_output_attentions(self):
313
314
315
        config, inputs_dict = self.model_tester.prepare_config_and_inputs_for_common()
        config.output_attentions = True
        self._create_and_check_torchscript(config, inputs_dict)
thomwolf's avatar
thomwolf committed
316

Patrick von Platen's avatar
Patrick von Platen committed
317
    def test_torchscript_output_hidden_state(self):
318
319
320
        config, inputs_dict = self.model_tester.prepare_config_and_inputs_for_common()
        config.output_hidden_states = True
        self._create_and_check_torchscript(config, inputs_dict)
thomwolf's avatar
thomwolf committed
321

322
    def _create_and_check_torchscript(self, config, inputs_dict):
Patrick von Platen's avatar
Patrick von Platen committed
323
        if not self.test_torchscript:
324
            return
325

326
327
328
329
330
331
        configs_no_init = _config_zero_init(config)  # To be sure we have no Nan
        configs_no_init.torchscript = True
        for model_class in self.all_model_classes:
            model = model_class(config=configs_no_init)
            model.to(torch_device)
            model.eval()
332
            inputs = self._prepare_for_class(inputs_dict, model_class)
thomwolf's avatar
thomwolf committed
333

334
            try:
335
336
337
338
339
340
341
342
343
344
345
346
347
                if model.config.is_encoder_decoder:
                    model.config.use_cache = False  # TODO: this should be deleted after bug #7474 is solved
                    input_ids = inputs["input_ids"]
                    attention_mask = inputs["attention_mask"]
                    decoder_input_ids = inputs["decoder_input_ids"]
                    decoder_attention_mask = inputs["decoder_attention_mask"]

                    traced_model = torch.jit.trace(
                        model, (input_ids, attention_mask, decoder_input_ids, decoder_attention_mask)
                    )
                else:
                    input_ids = inputs["input_ids"]
                    traced_model = torch.jit.trace(model, input_ids)
348
349
            except RuntimeError:
                self.fail("Couldn't trace module.")
thomwolf's avatar
thomwolf committed
350

351
            with tempfile.TemporaryDirectory() as tmp_dir_name:
352
                pt_file_name = os.path.join(tmp_dir_name, "traced_model.pt")
thomwolf's avatar
thomwolf committed
353

354
                try:
355
                    torch.jit.save(traced_model, pt_file_name)
356
357
                except Exception:
                    self.fail("Couldn't save module.")
thomwolf's avatar
thomwolf committed
358

359
360
361
362
                try:
                    loaded_model = torch.jit.load(pt_file_name)
                except Exception:
                    self.fail("Couldn't load module.")
LysandreJik's avatar
LysandreJik committed
363

364
365
            model.to(torch_device)
            model.eval()
thomwolf's avatar
thomwolf committed
366

367
368
            loaded_model.to(torch_device)
            loaded_model.eval()
thomwolf's avatar
thomwolf committed
369

370
371
372
373
            model_state_dict = model.state_dict()
            loaded_model_state_dict = loaded_model.state_dict()

            self.assertEqual(set(model_state_dict.keys()), set(loaded_model_state_dict.keys()))
thomwolf's avatar
thomwolf committed
374

375
            models_equal = True
376
377
            for layer_name, p1 in model_state_dict.items():
                p2 = loaded_model_state_dict[layer_name]
378
379
                if p1.data.ne(p2.data).sum() > 0:
                    models_equal = False
thomwolf's avatar
thomwolf committed
380

381
            self.assertTrue(models_equal)
thomwolf's avatar
thomwolf committed
382

Patrick von Platen's avatar
Patrick von Platen committed
383
384
    def test_headmasking(self):
        if not self.test_head_masking:
385
            return
386

387
388
389
        global_rng.seed(42)
        config, inputs_dict = self.model_tester.prepare_config_and_inputs_for_common()
        global_rng.seed()
LysandreJik's avatar
LysandreJik committed
390

391
        inputs_dict["output_attentions"] = True
392
393
394
395
396
397
        config.output_hidden_states = True
        configs_no_init = _config_zero_init(config)  # To be sure we have no Nan
        for model_class in self.all_model_classes:
            model = model_class(config=configs_no_init)
            model.to(torch_device)
            model.eval()
LysandreJik's avatar
LysandreJik committed
398

399
400
401
            # Prepare head_mask
            # Set require_grad after having prepared the tensor to avoid error (leaf variable has been moved into the graph interior)
            head_mask = torch.ones(
Lysandre's avatar
Lysandre committed
402
403
404
                self.model_tester.num_hidden_layers,
                self.model_tester.num_attention_heads,
                device=torch_device,
405
406
407
408
            )
            head_mask[0, 0] = 0
            head_mask[-1, :-1] = 0
            head_mask.requires_grad_(requires_grad=True)
409
            inputs = self._prepare_for_class(inputs_dict, model_class).copy()
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
            inputs["head_mask"] = head_mask

            outputs = model(**inputs)

            # Test that we can get a gradient back for importance score computation
            output = sum(t.sum() for t in outputs[0])
            output = output.sum()
            output.backward()
            multihead_outputs = head_mask.grad

            attentions = outputs[-1]

            # Remove Nan
            for t in attentions:
                self.assertLess(
                    torch.sum(torch.isnan(t)), t.numel() / 4
                )  # Check we don't have more than 25% nans (arbitrary)
            attentions = [
                t.masked_fill(torch.isnan(t), 0.0) for t in attentions
            ]  # remove them (the test is less complete)

            self.assertIsNotNone(multihead_outputs)
            self.assertEqual(len(multihead_outputs), self.model_tester.num_hidden_layers)
            self.assertAlmostEqual(attentions[0][..., 0, :, :].flatten().sum().item(), 0.0)
            self.assertNotEqual(attentions[0][..., -1, :, :].flatten().sum().item(), 0.0)
            self.assertNotEqual(attentions[1][..., 0, :, :].flatten().sum().item(), 0.0)
            self.assertAlmostEqual(attentions[-1][..., -2, :, :].flatten().sum().item(), 0.0)
            self.assertNotEqual(attentions[-1][..., -1, :, :].flatten().sum().item(), 0.0)

Patrick von Platen's avatar
Patrick von Platen committed
439
440
    def test_head_pruning(self):
        if not self.test_pruning:
441
442
443
            return

        for model_class in self.all_model_classes:
Lysandre's avatar
Lysandre committed
444
445
446
447
            (
                config,
                inputs_dict,
            ) = self.model_tester.prepare_config_and_inputs_for_common()
448

449
450
            if "head_mask" in inputs_dict:
                del inputs_dict["head_mask"]
451

452
            inputs_dict["output_attentions"] = True
453
454
455
456
            config.output_hidden_states = False
            model = model_class(config=config)
            model.to(torch_device)
            model.eval()
457
458
459
460
            heads_to_prune = {
                0: list(range(1, self.model_tester.num_attention_heads)),
                -1: [0],
            }
461
462
            model.prune_heads(heads_to_prune)
            with torch.no_grad():
463
                outputs = model(**self._prepare_for_class(inputs_dict, model_class))
464

465
            attentions = outputs[-1]
466

467
468
469
            self.assertEqual(attentions[0].shape[-3], 1)
            self.assertEqual(attentions[1].shape[-3], self.model_tester.num_attention_heads)
            self.assertEqual(attentions[-1].shape[-3], self.model_tester.num_attention_heads - 1)
LysandreJik's avatar
LysandreJik committed
470

Patrick von Platen's avatar
Patrick von Platen committed
471
472
    def test_head_pruning_save_load_from_pretrained(self):
        if not self.test_pruning:
473
            return
LysandreJik's avatar
LysandreJik committed
474

475
        for model_class in self.all_model_classes:
Lysandre's avatar
Lysandre committed
476
477
478
479
            (
                config,
                inputs_dict,
            ) = self.model_tester.prepare_config_and_inputs_for_common()
480
481
482

            if "head_mask" in inputs_dict:
                del inputs_dict["head_mask"]
483

484
            inputs_dict["output_attentions"] = True
485
486
487
488
            config.output_hidden_states = False
            model = model_class(config=config)
            model.to(torch_device)
            model.eval()
489
490
491
492
            heads_to_prune = {
                0: list(range(1, self.model_tester.num_attention_heads)),
                -1: [0],
            }
493
            model.prune_heads(heads_to_prune)
494

495
            with tempfile.TemporaryDirectory() as temp_dir_name:
496
497
                model.save_pretrained(temp_dir_name)
                model = model_class.from_pretrained(temp_dir_name)
498
                model.to(torch_device)
499

500
            with torch.no_grad():
501
                outputs = model(**self._prepare_for_class(inputs_dict, model_class))
502
503
504
505
            attentions = outputs[-1]
            self.assertEqual(attentions[0].shape[-3], 1)
            self.assertEqual(attentions[1].shape[-3], self.model_tester.num_attention_heads)
            self.assertEqual(attentions[-1].shape[-3], self.model_tester.num_attention_heads - 1)
506

Patrick von Platen's avatar
Patrick von Platen committed
507
508
    def test_head_pruning_save_load_from_config_init(self):
        if not self.test_pruning:
509
            return
510

511
        for model_class in self.all_model_classes:
Lysandre's avatar
Lysandre committed
512
513
514
515
            (
                config,
                inputs_dict,
            ) = self.model_tester.prepare_config_and_inputs_for_common()
516

517
518
            if "head_mask" in inputs_dict:
                del inputs_dict["head_mask"]
519

520
            inputs_dict["output_attentions"] = True
521
            config.output_hidden_states = False
522

523
524
525
526
            heads_to_prune = {
                0: list(range(1, self.model_tester.num_attention_heads)),
                -1: [0],
            }
527
            config.pruned_heads = heads_to_prune
528

529
530
531
            model = model_class(config=config)
            model.to(torch_device)
            model.eval()
532

533
            with torch.no_grad():
534
                outputs = model(**self._prepare_for_class(inputs_dict, model_class))
535
            attentions = outputs[-1]
536

537
538
539
            self.assertEqual(attentions[0].shape[-3], 1)
            self.assertEqual(attentions[1].shape[-3], self.model_tester.num_attention_heads)
            self.assertEqual(attentions[-1].shape[-3], self.model_tester.num_attention_heads - 1)
540

Patrick von Platen's avatar
Patrick von Platen committed
541
542
    def test_head_pruning_integration(self):
        if not self.test_pruning:
543
            return
544

545
        for model_class in self.all_model_classes:
Lysandre's avatar
Lysandre committed
546
547
548
549
            (
                config,
                inputs_dict,
            ) = self.model_tester.prepare_config_and_inputs_for_common()
550

551
552
            if "head_mask" in inputs_dict:
                del inputs_dict["head_mask"]
553

554
            inputs_dict["output_attentions"] = True
555
            config.output_hidden_states = False
556

557
558
            heads_to_prune = {0: [0], 1: [1, 2]}
            config.pruned_heads = heads_to_prune
559

560
561
562
            model = model_class(config=config)
            model.to(torch_device)
            model.eval()
563

564
            with torch.no_grad():
565
                outputs = model(**self._prepare_for_class(inputs_dict, model_class))
566
            attentions = outputs[-1]
567

568
569
570
571
            self.assertEqual(attentions[0].shape[-3], self.model_tester.num_attention_heads - 1)
            self.assertEqual(attentions[1].shape[-3], self.model_tester.num_attention_heads - 2)
            self.assertEqual(attentions[2].shape[-3], self.model_tester.num_attention_heads)
            self.assertEqual(attentions[3].shape[-3], self.model_tester.num_attention_heads)
thomwolf's avatar
thomwolf committed
572

573
            with tempfile.TemporaryDirectory() as temp_dir_name:
574
575
                model.save_pretrained(temp_dir_name)
                model = model_class.from_pretrained(temp_dir_name)
576
                model.to(torch_device)
thomwolf's avatar
thomwolf committed
577

578
            with torch.no_grad():
579
                outputs = model(**self._prepare_for_class(inputs_dict, model_class))
580
            attentions = outputs[-1]
LysandreJik's avatar
LysandreJik committed
581

582
583
584
585
            self.assertEqual(attentions[0].shape[-3], self.model_tester.num_attention_heads - 1)
            self.assertEqual(attentions[1].shape[-3], self.model_tester.num_attention_heads - 2)
            self.assertEqual(attentions[2].shape[-3], self.model_tester.num_attention_heads)
            self.assertEqual(attentions[3].shape[-3], self.model_tester.num_attention_heads)
thomwolf's avatar
thomwolf committed
586

587
588
            heads_to_prune = {0: [0], 2: [1, 2]}
            model.prune_heads(heads_to_prune)
589

590
            with torch.no_grad():
591
                outputs = model(**self._prepare_for_class(inputs_dict, model_class))
592
            attentions = outputs[-1]
593

594
595
596
597
            self.assertEqual(attentions[0].shape[-3], self.model_tester.num_attention_heads - 1)
            self.assertEqual(attentions[1].shape[-3], self.model_tester.num_attention_heads - 2)
            self.assertEqual(attentions[2].shape[-3], self.model_tester.num_attention_heads - 2)
            self.assertEqual(attentions[3].shape[-3], self.model_tester.num_attention_heads)
598

599
            self.assertDictEqual(model.config.pruned_heads, {0: [0], 1: [1, 2], 2: [1, 2]})
thomwolf's avatar
thomwolf committed
600

Patrick von Platen's avatar
Patrick von Platen committed
601
    def test_hidden_states_output(self):
Joseph Liu's avatar
Joseph Liu committed
602
        def check_hidden_states_output(inputs_dict, config, model_class):
603
            model = model_class(config)
604
            model.to(torch_device)
thomwolf's avatar
thomwolf committed
605
            model.eval()
Joseph Liu's avatar
Joseph Liu committed
606

thomwolf's avatar
thomwolf committed
607
            with torch.no_grad():
Weizhen's avatar
Weizhen committed
608
609
                outputs = model(**self._prepare_for_class(inputs_dict, model_class), return_dict=True)
            hidden_states = outputs["hidden_states"] if "hidden_states" in outputs else outputs[-1]
Patrick von Platen's avatar
Patrick von Platen committed
610

Sylvain Gugger's avatar
Sylvain Gugger committed
611
612
613
614
            expected_num_layers = getattr(
                self.model_tester, "expected_num_hidden_layers", self.model_tester.num_hidden_layers + 1
            )
            self.assertEqual(len(hidden_states), expected_num_layers)
Patrick von Platen's avatar
Patrick von Platen committed
615
616
617
618
619
620
621
            if hasattr(self.model_tester, "encoder_seq_length"):
                seq_length = self.model_tester.encoder_seq_length
                if hasattr(self.model_tester, "chunk_length") and self.model_tester.chunk_length > 1:
                    seq_length = seq_length * self.model_tester.chunk_length
            else:
                seq_length = self.model_tester.seq_length

622
            self.assertListEqual(
Lysandre's avatar
Lysandre committed
623
624
                list(hidden_states[0].shape[-2:]),
                [seq_length, self.model_tester.hidden_size],
625
            )
thomwolf's avatar
thomwolf committed
626

Joseph Liu's avatar
Joseph Liu committed
627
628
629
630
631
632
633
634
635
636
637
638
        config, inputs_dict = self.model_tester.prepare_config_and_inputs_for_common()

        for model_class in self.all_model_classes:
            inputs_dict["output_hidden_states"] = True
            check_hidden_states_output(inputs_dict, config, model_class)

            # check that output_hidden_states also work using config
            del inputs_dict["output_hidden_states"]
            config.output_hidden_states = True

            check_hidden_states_output(inputs_dict, config, model_class)

Pradhy729's avatar
Pradhy729 committed
639
    def test_feed_forward_chunking(self):
Lysandre's avatar
Lysandre committed
640
641
642
643
        (
            original_config,
            inputs_dict,
        ) = self.model_tester.prepare_config_and_inputs_for_common()
Pradhy729's avatar
Pradhy729 committed
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
        for model_class in self.all_model_classes:
            torch.manual_seed(0)
            config = copy.deepcopy(original_config)
            model = model_class(config)
            model.to(torch_device)
            model.eval()

            hidden_states_no_chunk = model(**self._prepare_for_class(inputs_dict, model_class))[0]

            torch.manual_seed(0)
            config.chunk_size_feed_forward = 1
            model = model_class(config)
            model.to(torch_device)
            model.eval()

            hidden_states_with_chunk = model(**self._prepare_for_class(inputs_dict, model_class))[0]
            self.assertTrue(torch.allclose(hidden_states_no_chunk, hidden_states_with_chunk, atol=1e-3))

Patrick von Platen's avatar
Patrick von Platen committed
662
    def test_resize_tokens_embeddings(self):
Lysandre's avatar
Lysandre committed
663
664
665
666
        (
            original_config,
            inputs_dict,
        ) = self.model_tester.prepare_config_and_inputs_for_common()
Patrick von Platen's avatar
Patrick von Platen committed
667
        if not self.test_resize_embeddings:
668
669
670
671
672
            return

        for model_class in self.all_model_classes:
            config = copy.deepcopy(original_config)
            model = model_class(config)
673
            model.to(torch_device)
674

Patrick von Platen's avatar
Patrick von Platen committed
675
676
677
            if self.model_tester.is_training is False:
                model.eval()

678
679
680
681
682
683
684
685
686
687
            model_vocab_size = config.vocab_size
            # Retrieve the embeddings and clone theme
            model_embed = model.resize_token_embeddings(model_vocab_size)
            cloned_embeddings = model_embed.weight.clone()

            # Check that resizing the token embeddings with a larger vocab size increases the model's vocab size
            model_embed = model.resize_token_embeddings(model_vocab_size + 10)
            self.assertEqual(model.config.vocab_size, model_vocab_size + 10)
            # Check that it actually resizes the embeddings matrix
            self.assertEqual(model_embed.weight.shape[0], cloned_embeddings.shape[0] + 10)
688
            # Check that the model can still do a forward pass successfully (every parameter should be resized)
689
            model(**self._prepare_for_class(inputs_dict, model_class))
690
691
692
693
694
695
696

            # Check that resizing the token embeddings with a smaller vocab size decreases the model's vocab size
            model_embed = model.resize_token_embeddings(model_vocab_size - 15)
            self.assertEqual(model.config.vocab_size, model_vocab_size - 15)
            # Check that it actually resizes the embeddings matrix
            self.assertEqual(model_embed.weight.shape[0], cloned_embeddings.shape[0] - 15)

697
698
699
            # Check that the model can still do a forward pass successfully (every parameter should be resized)
            # Input ids should be clamped to the maximum size of the vocabulary
            inputs_dict["input_ids"].clamp_(max=model_vocab_size - 15 - 1)
700
            model(**self._prepare_for_class(inputs_dict, model_class))
701

702
703
704
705
706
707
708
709
            # Check that adding and removing tokens has not modified the first part of the embedding matrix.
            models_equal = True
            for p1, p2 in zip(cloned_embeddings, model_embed.weight):
                if p1.data.ne(p2.data).sum() > 0:
                    models_equal = False

            self.assertTrue(models_equal)

Patrick von Platen's avatar
Patrick von Platen committed
710
    def test_model_common_attributes(self):
711
712
713
714
715
716
717
718
719
        config, inputs_dict = self.model_tester.prepare_config_and_inputs_for_common()

        for model_class in self.all_model_classes:
            model = model_class(config)
            self.assertIsInstance(model.get_input_embeddings(), (torch.nn.Embedding, AdaptiveEmbedding))
            model.set_input_embeddings(torch.nn.Embedding(10, 10))
            x = model.get_output_embeddings()
            self.assertTrue(x is None or isinstance(x, torch.nn.Linear))

720
    def test_correct_missing_keys(self):
721
722
        if not self.test_missing_keys:
            return
723
724
725
726
727
728
729
730
731
732
733
734
735
736
        config, _ = self.model_tester.prepare_config_and_inputs_for_common()

        for model_class in self.all_model_classes:
            model = model_class(config)
            base_model_prefix = model.base_model_prefix

            if hasattr(model, base_model_prefix):
                with tempfile.TemporaryDirectory() as temp_dir_name:
                    model.base_model.save_pretrained(temp_dir_name)
                    model, loading_info = model_class.from_pretrained(temp_dir_name, output_loading_info=True)

                    with self.subTest(msg="Missing keys for {}".format(model.__class__.__name__)):
                        self.assertGreater(len(loading_info["missing_keys"]), 0)

737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
    def test_tie_model_weights(self):
        if not self.test_torchscript:
            return

        config, inputs_dict = self.model_tester.prepare_config_and_inputs_for_common()

        def check_same_values(layer_1, layer_2):
            equal = True
            for p1, p2 in zip(layer_1.weight, layer_2.weight):
                if p1.data.ne(p2.data).sum() > 0:
                    equal = False
            return equal

        for model_class in self.all_model_classes:
            config.torchscript = True
            model_not_tied = model_class(config)
            if model_not_tied.get_output_embeddings() is None:
                continue

            config_tied = copy.deepcopy(config)
            config_tied.torchscript = False
            model_tied = model_class(config_tied)
            params_tied = list(model_tied.parameters())
            # Check that the embedding layer and decoding layer are the same in size and in value
            # self.assertTrue(check_same_values(embeddings, decoding))

            # # Check that after modification, they remain the same.
            # embeddings.weight.data.div_(2)
            # # Check that the embedding layer and decoding layer are the same in size and in value
            # self.assertTrue(embeddings.weight.shape, decoding.weight.shape)
            # self.assertTrue(check_same_values(embeddings, decoding))

            # # Check that after modification, they remain the same.
            # decoding.weight.data.div_(4)
            # # Check that the embedding layer and decoding layer are the same in size and in value
            # self.assertTrue(embeddings.weight.shape, decoding.weight.shape)
            # self.assertTrue(check_same_values(embeddings, decoding))

            # Check that after resize they remain tied.
            model_tied.resize_token_embeddings(config.vocab_size + 10)
            params_tied_2 = list(model_tied.parameters())
            self.assertEqual(len(params_tied_2), len(params_tied))

            # decoding.weight.data.mul_(20)
            # # Check that the embedding layer and decoding layer are the same in size and in value
            # self.assertTrue(model.transformer.wte.weight.shape, model.lm_head.weight.shape)
            # self.assertTrue(check_same_values(model.transformer.wte, model.lm_head))

785
786
787
788
    def test_model_outputs_equivalence(self):

        config, inputs_dict = self.model_tester.prepare_config_and_inputs_for_common()

Sam Shleifer's avatar
Sam Shleifer committed
789
790
791
792
        def set_nan_tensor_to_zero(t):
            t[t != t] = 0
            return t

793
794
795
796
797
798
799
800
801
802
803
804
805
        def check_equivalence(model, tuple_inputs, dict_inputs, additional_kwargs={}):
            with torch.no_grad():
                tuple_output = model(**tuple_inputs, return_dict=False, **additional_kwargs)
                dict_output = model(**dict_inputs, return_dict=True, **additional_kwargs).to_tuple()

                def recursive_check(tuple_object, dict_object):
                    if isinstance(tuple_object, (List, Tuple)):
                        for tuple_iterable_value, dict_iterable_value in zip(tuple_object, dict_object):
                            recursive_check(tuple_iterable_value, dict_iterable_value)
                    elif tuple_object is None:
                        return
                    else:
                        self.assertTrue(
Sam Shleifer's avatar
Sam Shleifer committed
806
807
808
                            torch.allclose(
                                set_nan_tensor_to_zero(tuple_object), set_nan_tensor_to_zero(dict_object), atol=1e-5
                            ),
809
                            msg=f"Tuple and dict output are not equal. Difference: {torch.max(torch.abs(tuple_object - dict_object))}. Tuple has `nan`: {torch.isnan(tuple_object).any()} and `inf`: {torch.isinf(tuple_object)}. Dict has `nan`: {torch.isnan(dict_object).any()} and `inf`: {torch.isinf(dict_object)}.",
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
                        )

                recursive_check(tuple_output, dict_output)

        for model_class in self.all_model_classes:
            model = model_class(config)
            model.to(torch_device)
            model.eval()

            tuple_inputs = self._prepare_for_class(inputs_dict, model_class)
            dict_inputs = self._prepare_for_class(inputs_dict, model_class)
            check_equivalence(model, tuple_inputs, dict_inputs)

            tuple_inputs = self._prepare_for_class(inputs_dict, model_class, return_labels=True)
            dict_inputs = self._prepare_for_class(inputs_dict, model_class, return_labels=True)
            check_equivalence(model, tuple_inputs, dict_inputs)

            tuple_inputs = self._prepare_for_class(inputs_dict, model_class)
            dict_inputs = self._prepare_for_class(inputs_dict, model_class)
            check_equivalence(model, tuple_inputs, dict_inputs, {"output_hidden_states": True})

            tuple_inputs = self._prepare_for_class(inputs_dict, model_class)
            dict_inputs = self._prepare_for_class(inputs_dict, model_class)
            check_equivalence(model, tuple_inputs, dict_inputs, {"output_attentions": True})

            tuple_inputs = self._prepare_for_class(inputs_dict, model_class, return_labels=True)
            dict_inputs = self._prepare_for_class(inputs_dict, model_class, return_labels=True)
            check_equivalence(model, tuple_inputs, dict_inputs, {"output_hidden_states": True})

            tuple_inputs = self._prepare_for_class(inputs_dict, model_class, return_labels=True)
            dict_inputs = self._prepare_for_class(inputs_dict, model_class, return_labels=True)
            check_equivalence(model, tuple_inputs, dict_inputs, {"output_attentions": True})

            tuple_inputs = self._prepare_for_class(inputs_dict, model_class, return_labels=True)
            dict_inputs = self._prepare_for_class(inputs_dict, model_class, return_labels=True)
            check_equivalence(
                model, tuple_inputs, dict_inputs, {"output_hidden_states": True, "output_attentions": True}
            )

Patrick von Platen's avatar
Patrick von Platen committed
849
    def test_inputs_embeds(self):
Sam Shleifer's avatar
Sam Shleifer committed
850

851
852
853
854
        config, inputs_dict = self.model_tester.prepare_config_and_inputs_for_common()

        for model_class in self.all_model_classes:
            model = model_class(config)
855
            model.to(torch_device)
thomwolf's avatar
thomwolf committed
856
            model.eval()
857

858
            inputs = copy.deepcopy(self._prepare_for_class(inputs_dict, model_class))
Weizhen's avatar
Weizhen committed
859

860
861
862
863
864
865
866
867
868
            if not self.is_encoder_decoder:
                input_ids = inputs["input_ids"]
                del inputs["input_ids"]
            else:
                encoder_input_ids = inputs["input_ids"]
                decoder_input_ids = inputs.get("decoder_input_ids", encoder_input_ids)
                del inputs["input_ids"]
                inputs.pop("decoder_input_ids", None)

869
870
            wte = model.get_input_embeddings()
            if not self.is_encoder_decoder:
871
                inputs["inputs_embeds"] = wte(input_ids)
872
            else:
873
874
                inputs["inputs_embeds"] = wte(encoder_input_ids)
                inputs["decoder_inputs_embeds"] = wte(decoder_input_ids)
875

thomwolf's avatar
thomwolf committed
876
            with torch.no_grad():
Weizhen's avatar
Weizhen committed
877
                model(**inputs)[0]
878

879
    @require_torch_multigpu
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
    def test_multigpu_data_parallel_forward(self):
        config, inputs_dict = self.model_tester.prepare_config_and_inputs_for_common()

        # some params shouldn't be scattered by nn.DataParallel
        # so just remove them if they are present.
        blacklist_non_batched_params = ["head_mask"]
        for k in blacklist_non_batched_params:
            inputs_dict.pop(k, None)

        # move input tensors to cuda:O
        for k, v in inputs_dict.items():
            if torch.is_tensor(v):
                inputs_dict[k] = v.to(0)

        for model_class in self.all_model_classes:
            model = model_class(config=config)
            model.to(0)
            model.eval()

            # Wrap model in nn.DataParallel
            model = torch.nn.DataParallel(model)
            with torch.no_grad():
902
                _ = model(**self._prepare_for_class(inputs_dict, model_class))
903

904

905
global_rng = random.Random()
thomwolf's avatar
thomwolf committed
906
907


thomwolf's avatar
thomwolf committed
908
def ids_tensor(shape, vocab_size, rng=None, name=None):
909
    #  Creates a random int32 tensor of the shape within the vocab size
thomwolf's avatar
thomwolf committed
910
    if rng is None:
911
        rng = global_rng
thomwolf's avatar
thomwolf committed
912

thomwolf's avatar
thomwolf committed
913
914
915
    total_dims = 1
    for dim in shape:
        total_dims *= dim
thomwolf's avatar
thomwolf committed
916

thomwolf's avatar
thomwolf committed
917
918
919
    values = []
    for _ in range(total_dims):
        values.append(rng.randint(0, vocab_size - 1))
thomwolf's avatar
thomwolf committed
920

921
    return torch.tensor(data=values, dtype=torch.long, device=torch_device).view(shape).contiguous()
thomwolf's avatar
thomwolf committed
922
923


924
925
926
927
928
929
930
def random_attention_mask(shape, rng=None, name=None):
    attn_mask = ids_tensor(shape, vocab_size=2, rng=None, name=None)
    # make sure that at least one token is attended to for each batch
    attn_mask[:, -1] = 1
    return attn_mask


931
def floats_tensor(shape, scale=1.0, rng=None, name=None):
Patrick von Platen's avatar
Patrick von Platen committed
932
    """Creates a random float32 tensor"""
933
934
935
936
937
938
939
940
941
942
943
    if rng is None:
        rng = global_rng

    total_dims = 1
    for dim in shape:
        total_dims *= dim

    values = []
    for _ in range(total_dims):
        values.append(rng.random() * scale)

944
    return torch.tensor(data=values, dtype=torch.float, device=torch_device).view(shape).contiguous()
945
946


947
@require_torch
thomwolf's avatar
thomwolf committed
948
class ModelUtilsTest(unittest.TestCase):
949
    @slow
Patrick von Platen's avatar
Patrick von Platen committed
950
    def test_model_from_pretrained(self):
951
        for model_name in BERT_PRETRAINED_MODEL_ARCHIVE_LIST[:1]:
thomwolf's avatar
thomwolf committed
952
953
954
955
956
957
958
959
960
961
962
963
            config = BertConfig.from_pretrained(model_name)
            self.assertIsNotNone(config)
            self.assertIsInstance(config, PretrainedConfig)

            model = BertModel.from_pretrained(model_name)
            model, loading_info = BertModel.from_pretrained(model_name, output_loading_info=True)
            self.assertIsNotNone(model)
            self.assertIsInstance(model, PreTrainedModel)
            for value in loading_info.values():
                self.assertEqual(len(value), 0)

            config = BertConfig.from_pretrained(model_name, output_attentions=True, output_hidden_states=True)
Lysandre Debut's avatar
Lysandre Debut committed
964
965
966
967

            # Not sure this is the intended behavior. TODO fix Lysandre & Thom
            config.name_or_path = model_name

thomwolf's avatar
thomwolf committed
968
969
970
            model = BertModel.from_pretrained(model_name, output_attentions=True, output_hidden_states=True)
            self.assertEqual(model.config.output_hidden_states, True)
            self.assertEqual(model.config, config)