test_modeling_common.py 38.9 KB
Newer Older
thomwolf's avatar
thomwolf committed
1
2
3
4
5
6
7
8
9
10
11
12
13
14
# coding=utf-8
# Copyright 2019 HuggingFace Inc.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
#     http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
Aymeric Augustin's avatar
Aymeric Augustin committed
15

16
import copy
Aymeric Augustin's avatar
Aymeric Augustin committed
17
import logging
18
import os.path
Aymeric Augustin's avatar
Aymeric Augustin committed
19
import random
20
import tempfile
thomwolf's avatar
thomwolf committed
21
import unittest
22
from typing import List
thomwolf's avatar
thomwolf committed
23

24
from transformers import is_torch_available
25

26
from .utils import require_multigpu, require_torch, slow, torch_device
27

Aymeric Augustin's avatar
Aymeric Augustin committed
28

29
if is_torch_available():
thomwolf's avatar
thomwolf committed
30
    import torch
31
    import numpy as np
thomwolf's avatar
thomwolf committed
32

33
34
35
36
37
38
39
    from transformers import (
        AdaptiveEmbedding,
        PretrainedConfig,
        PreTrainedModel,
        BertModel,
        BertConfig,
        BERT_PRETRAINED_MODEL_ARCHIVE_MAP,
40
        top_k_top_p_filtering,
41
    )
thomwolf's avatar
thomwolf committed
42

43

44
45
46
def _config_zero_init(config):
    configs_no_init = copy.deepcopy(config)
    for key in configs_no_init.__dict__.keys():
47
        if "_range" in key or "_std" in key or "initializer_factor" in key:
Lysandre Debut's avatar
Lysandre Debut committed
48
            setattr(configs_no_init, key, 1e-10)
49
50
    return configs_no_init

thomwolf's avatar
thomwolf committed
51

52
53
54
55
56
@require_torch
class ModelTesterMixin:

    model_tester = None
    all_model_classes = ()
57
    all_generative_model_classes = ()
Patrick von Platen's avatar
Patrick von Platen committed
58
59
60
61
    test_torchscript = True
    test_pruning = True
    test_resize_embeddings = True
    test_head_masking = True
62
    test_missing_keys = True
63
64
    is_encoder_decoder = False

Patrick von Platen's avatar
Patrick von Platen committed
65
    def test_save_load(self):
66
67
68
69
70
71
72
73
        config, inputs_dict = self.model_tester.prepare_config_and_inputs_for_common()

        for model_class in self.all_model_classes:
            model = model_class(config)
            model.to(torch_device)
            model.eval()
            with torch.no_grad():
                outputs = model(**inputs_dict)
74
            out_2 = outputs[0].cpu().numpy()
75
            out_2[np.isnan(out_2)] = 0
76

77
            with tempfile.TemporaryDirectory() as tmpdirname:
78
79
                model.save_pretrained(tmpdirname)
                model = model_class.from_pretrained(tmpdirname)
80
                model.to(torch_device)
81
                with torch.no_grad():
82
                    after_outputs = model(**inputs_dict)
thomwolf's avatar
thomwolf committed
83

84
85
86
                # Make sure we don't have nans
                out_1 = after_outputs[0].cpu().numpy()
                out_1[np.isnan(out_1)] = 0
thomwolf's avatar
thomwolf committed
87
88
                max_diff = np.amax(np.abs(out_1 - out_2))
                self.assertLessEqual(max_diff, 1e-5)
89

Patrick von Platen's avatar
Patrick von Platen committed
90
    def test_initialization(self):
91
92
93
94
95
96
97
98
        config, inputs_dict = self.model_tester.prepare_config_and_inputs_for_common()

        configs_no_init = _config_zero_init(config)
        for model_class in self.all_model_classes:
            model = model_class(config=configs_no_init)
            for name, param in model.named_parameters():
                if param.requires_grad:
                    self.assertIn(
Lysandre Debut's avatar
Lysandre Debut committed
99
                        ((param.data.mean() * 1e9).round() / 1e9).item(),
100
101
102
                        [0.0, 1.0],
                        msg="Parameter {} of model {} seems not properly initialized".format(name, model_class),
                    )
thomwolf's avatar
thomwolf committed
103

Patrick von Platen's avatar
Patrick von Platen committed
104
    def test_determinism(self):
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
        config, inputs_dict = self.model_tester.prepare_config_and_inputs_for_common()

        for model_class in self.all_model_classes:
            model = model_class(config)
            model.to(torch_device)
            model.eval()
            with torch.no_grad():
                first = model(**inputs_dict)[0]
                second = model(**inputs_dict)[0]
            out_1 = first.cpu().numpy()
            out_2 = second.cpu().numpy()
            out_1 = out_1[~np.isnan(out_1)]
            out_2 = out_2[~np.isnan(out_2)]
            max_diff = np.amax(np.abs(out_1 - out_2))
            self.assertLessEqual(max_diff, 1e-5)

Patrick von Platen's avatar
Patrick von Platen committed
121
    def test_attention_outputs(self):
122
        config, inputs_dict = self.model_tester.prepare_config_and_inputs_for_common()
sshleifer's avatar
sshleifer committed
123
        seq_len = getattr(self.model_tester, "seq_length", None)
sshleifer's avatar
sshleifer committed
124
125
        decoder_seq_length = getattr(self.model_tester, "decoder_seq_length", seq_len)
        encoder_seq_length = getattr(self.model_tester, "encoder_seq_length", seq_len)
126
127
        decoder_key_length = getattr(self.model_tester, "key_length", decoder_seq_length)
        encoder_key_length = getattr(self.model_tester, "key_length", encoder_seq_length)
Patrick von Platen's avatar
Patrick von Platen committed
128
129
130
        chunk_length = getattr(self.model_tester, "chunk_length", None)
        if chunk_length is not None and hasattr(self.model_tester, "num_hashes"):
            encoder_seq_length = encoder_seq_length * self.model_tester.num_hashes
131
132
133
134
135
136
137
138
139
140
141
142
143

        for model_class in self.all_model_classes:
            config.output_attentions = True
            config.output_hidden_states = False
            model = model_class(config)
            model.to(torch_device)
            model.eval()
            with torch.no_grad():
                outputs = model(**inputs_dict)
            attentions = outputs[-1]
            self.assertEqual(model.config.output_attentions, True)
            self.assertEqual(model.config.output_hidden_states, False)
            self.assertEqual(len(attentions), self.model_tester.num_hidden_layers)
Patrick von Platen's avatar
Patrick von Platen committed
144
145
146
147
148
149
150
151
152
153
154

            if chunk_length is not None:
                self.assertListEqual(
                    list(attentions[0].shape[-4:]),
                    [self.model_tester.num_attention_heads, encoder_seq_length, chunk_length, encoder_key_length],
                )
            else:
                self.assertListEqual(
                    list(attentions[0].shape[-3:]),
                    [self.model_tester.num_attention_heads, encoder_seq_length, encoder_key_length],
                )
155
            out_len = len(outputs)
thomwolf's avatar
thomwolf committed
156

157
            if self.is_encoder_decoder:
158
                correct_outlen = 4
Sam Shleifer's avatar
Sam Shleifer committed
159
                decoder_attention_idx = 1
160

161
                if "lm_labels" in inputs_dict:  # loss will come first
Sam Shleifer's avatar
Sam Shleifer committed
162
163
164
165
166
167
                    correct_outlen += 1  # compute loss
                    decoder_attention_idx += 1
                self.assertEqual(out_len, correct_outlen)

                decoder_attentions = outputs[decoder_attention_idx]
                self.assertIsInstance(decoder_attentions, (list, tuple))
168
                self.assertEqual(len(decoder_attentions), self.model_tester.num_hidden_layers)
thomwolf's avatar
thomwolf committed
169
                self.assertListEqual(
170
171
                    list(decoder_attentions[0].shape[-3:]),
                    [self.model_tester.num_attention_heads, decoder_seq_length, decoder_key_length],
172
                )
thomwolf's avatar
thomwolf committed
173

174
            # Check attention is always last and order is fine
thomwolf's avatar
thomwolf committed
175
176
            config.output_attentions = True
            config.output_hidden_states = True
177
178
179
180
181
182
183
184
185
186
187
            model = model_class(config)
            model.to(torch_device)
            model.eval()
            with torch.no_grad():
                outputs = model(**inputs_dict)
            self.assertEqual(out_len + (2 if self.is_encoder_decoder else 1), len(outputs))
            self.assertEqual(model.config.output_attentions, True)
            self.assertEqual(model.config.output_hidden_states, True)

            self_attentions = outputs[-1]
            self.assertEqual(len(self_attentions), self.model_tester.num_hidden_layers)
Patrick von Platen's avatar
Patrick von Platen committed
188
189
190
191
192
193
194
195
196
197
            if chunk_length is not None:
                self.assertListEqual(
                    list(self_attentions[0].shape[-4:]),
                    [self.model_tester.num_attention_heads, encoder_seq_length, chunk_length, encoder_key_length],
                )
            else:
                self.assertListEqual(
                    list(self_attentions[0].shape[-3:]),
                    [self.model_tester.num_attention_heads, encoder_seq_length, encoder_key_length],
                )
thomwolf's avatar
thomwolf committed
198

Patrick von Platen's avatar
Patrick von Platen committed
199
    def test_torchscript(self):
200
        config, inputs_dict = self.model_tester.prepare_config_and_inputs_for_common()
thomwolf's avatar
thomwolf committed
201

202
        self._create_and_check_torchscript(config, inputs_dict)
thomwolf's avatar
thomwolf committed
203

Patrick von Platen's avatar
Patrick von Platen committed
204
    def test_torchscript_output_attentions(self):
205
        config, inputs_dict = self.model_tester.prepare_config_and_inputs_for_common()
thomwolf's avatar
thomwolf committed
206

207
208
        config.output_attentions = True
        self._create_and_check_torchscript(config, inputs_dict)
thomwolf's avatar
thomwolf committed
209

Patrick von Platen's avatar
Patrick von Platen committed
210
    def test_torchscript_output_hidden_state(self):
211
        config, inputs_dict = self.model_tester.prepare_config_and_inputs_for_common()
212

213
214
        config.output_hidden_states = True
        self._create_and_check_torchscript(config, inputs_dict)
thomwolf's avatar
thomwolf committed
215

216
    def _create_and_check_torchscript(self, config, inputs_dict):
Patrick von Platen's avatar
Patrick von Platen committed
217
        if not self.test_torchscript:
218
            return
219

220
221
222
223
224
225
226
        configs_no_init = _config_zero_init(config)  # To be sure we have no Nan
        configs_no_init.torchscript = True
        for model_class in self.all_model_classes:
            model = model_class(config=configs_no_init)
            model.to(torch_device)
            model.eval()
            inputs = inputs_dict["input_ids"]  # Let's keep only input_ids
thomwolf's avatar
thomwolf committed
227

228
229
230
231
            try:
                traced_gpt2 = torch.jit.trace(model, inputs)
            except RuntimeError:
                self.fail("Couldn't trace module.")
thomwolf's avatar
thomwolf committed
232

233
            with tempfile.TemporaryDirectory() as tmp_dir_name:
234
                pt_file_name = os.path.join(tmp_dir_name, "traced_model.pt")
thomwolf's avatar
thomwolf committed
235

236
237
238
239
                try:
                    torch.jit.save(traced_gpt2, pt_file_name)
                except Exception:
                    self.fail("Couldn't save module.")
thomwolf's avatar
thomwolf committed
240

241
242
243
244
                try:
                    loaded_model = torch.jit.load(pt_file_name)
                except Exception:
                    self.fail("Couldn't load module.")
LysandreJik's avatar
LysandreJik committed
245

246
247
            model.to(torch_device)
            model.eval()
thomwolf's avatar
thomwolf committed
248

249
250
            loaded_model.to(torch_device)
            loaded_model.eval()
thomwolf's avatar
thomwolf committed
251

252
253
254
255
            model_state_dict = model.state_dict()
            loaded_model_state_dict = loaded_model.state_dict()

            self.assertEqual(set(model_state_dict.keys()), set(loaded_model_state_dict.keys()))
thomwolf's avatar
thomwolf committed
256

257
            models_equal = True
258
259
            for layer_name, p1 in model_state_dict.items():
                p2 = loaded_model_state_dict[layer_name]
260
261
                if p1.data.ne(p2.data).sum() > 0:
                    models_equal = False
thomwolf's avatar
thomwolf committed
262

263
            self.assertTrue(models_equal)
thomwolf's avatar
thomwolf committed
264

Patrick von Platen's avatar
Patrick von Platen committed
265
266
    def test_headmasking(self):
        if not self.test_head_masking:
267
            return
268

269
270
271
        global_rng.seed(42)
        config, inputs_dict = self.model_tester.prepare_config_and_inputs_for_common()
        global_rng.seed()
LysandreJik's avatar
LysandreJik committed
272

273
274
275
276
277
278
279
        config.output_attentions = True
        config.output_hidden_states = True
        configs_no_init = _config_zero_init(config)  # To be sure we have no Nan
        for model_class in self.all_model_classes:
            model = model_class(config=configs_no_init)
            model.to(torch_device)
            model.eval()
LysandreJik's avatar
LysandreJik committed
280

281
282
283
            # Prepare head_mask
            # Set require_grad after having prepared the tensor to avoid error (leaf variable has been moved into the graph interior)
            head_mask = torch.ones(
284
                self.model_tester.num_hidden_layers, self.model_tester.num_attention_heads, device=torch_device,
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
            )
            head_mask[0, 0] = 0
            head_mask[-1, :-1] = 0
            head_mask.requires_grad_(requires_grad=True)
            inputs = inputs_dict.copy()
            inputs["head_mask"] = head_mask

            outputs = model(**inputs)

            # Test that we can get a gradient back for importance score computation
            output = sum(t.sum() for t in outputs[0])
            output = output.sum()
            output.backward()
            multihead_outputs = head_mask.grad

            attentions = outputs[-1]

            # Remove Nan
            for t in attentions:
                self.assertLess(
                    torch.sum(torch.isnan(t)), t.numel() / 4
                )  # Check we don't have more than 25% nans (arbitrary)
            attentions = [
                t.masked_fill(torch.isnan(t), 0.0) for t in attentions
            ]  # remove them (the test is less complete)

            self.assertIsNotNone(multihead_outputs)
            self.assertEqual(len(multihead_outputs), self.model_tester.num_hidden_layers)
            self.assertAlmostEqual(attentions[0][..., 0, :, :].flatten().sum().item(), 0.0)
            self.assertNotEqual(attentions[0][..., -1, :, :].flatten().sum().item(), 0.0)
            self.assertNotEqual(attentions[1][..., 0, :, :].flatten().sum().item(), 0.0)
            self.assertAlmostEqual(attentions[-1][..., -2, :, :].flatten().sum().item(), 0.0)
            self.assertNotEqual(attentions[-1][..., -1, :, :].flatten().sum().item(), 0.0)

Patrick von Platen's avatar
Patrick von Platen committed
319
320
    def test_head_pruning(self):
        if not self.test_pruning:
321
322
323
            return

        for model_class in self.all_model_classes:
324
            (config, inputs_dict,) = self.model_tester.prepare_config_and_inputs_for_common()
325

326
327
            if "head_mask" in inputs_dict:
                del inputs_dict["head_mask"]
328

329
330
331
332
333
            config.output_attentions = True
            config.output_hidden_states = False
            model = model_class(config=config)
            model.to(torch_device)
            model.eval()
334
335
336
337
            heads_to_prune = {
                0: list(range(1, self.model_tester.num_attention_heads)),
                -1: [0],
            }
338
339
340
            model.prune_heads(heads_to_prune)
            with torch.no_grad():
                outputs = model(**inputs_dict)
341

342
            attentions = outputs[-1]
343

344
345
346
            self.assertEqual(attentions[0].shape[-3], 1)
            self.assertEqual(attentions[1].shape[-3], self.model_tester.num_attention_heads)
            self.assertEqual(attentions[-1].shape[-3], self.model_tester.num_attention_heads - 1)
LysandreJik's avatar
LysandreJik committed
347

Patrick von Platen's avatar
Patrick von Platen committed
348
349
    def test_head_pruning_save_load_from_pretrained(self):
        if not self.test_pruning:
350
            return
LysandreJik's avatar
LysandreJik committed
351

352
        for model_class in self.all_model_classes:
353
            (config, inputs_dict,) = self.model_tester.prepare_config_and_inputs_for_common()
354
355
356

            if "head_mask" in inputs_dict:
                del inputs_dict["head_mask"]
357

358
359
360
361
362
            config.output_attentions = True
            config.output_hidden_states = False
            model = model_class(config=config)
            model.to(torch_device)
            model.eval()
363
364
365
366
            heads_to_prune = {
                0: list(range(1, self.model_tester.num_attention_heads)),
                -1: [0],
            }
367
            model.prune_heads(heads_to_prune)
368

369
            with tempfile.TemporaryDirectory() as temp_dir_name:
370
371
                model.save_pretrained(temp_dir_name)
                model = model_class.from_pretrained(temp_dir_name)
372
                model.to(torch_device)
373

374
375
376
377
378
379
            with torch.no_grad():
                outputs = model(**inputs_dict)
            attentions = outputs[-1]
            self.assertEqual(attentions[0].shape[-3], 1)
            self.assertEqual(attentions[1].shape[-3], self.model_tester.num_attention_heads)
            self.assertEqual(attentions[-1].shape[-3], self.model_tester.num_attention_heads - 1)
380

Patrick von Platen's avatar
Patrick von Platen committed
381
382
    def test_head_pruning_save_load_from_config_init(self):
        if not self.test_pruning:
383
            return
384

385
        for model_class in self.all_model_classes:
386
            (config, inputs_dict,) = self.model_tester.prepare_config_and_inputs_for_common()
387

388
389
            if "head_mask" in inputs_dict:
                del inputs_dict["head_mask"]
390

391
392
            config.output_attentions = True
            config.output_hidden_states = False
393

394
395
396
397
            heads_to_prune = {
                0: list(range(1, self.model_tester.num_attention_heads)),
                -1: [0],
            }
398
            config.pruned_heads = heads_to_prune
399

400
401
402
            model = model_class(config=config)
            model.to(torch_device)
            model.eval()
403

404
405
406
            with torch.no_grad():
                outputs = model(**inputs_dict)
            attentions = outputs[-1]
407

408
409
410
            self.assertEqual(attentions[0].shape[-3], 1)
            self.assertEqual(attentions[1].shape[-3], self.model_tester.num_attention_heads)
            self.assertEqual(attentions[-1].shape[-3], self.model_tester.num_attention_heads - 1)
411

Patrick von Platen's avatar
Patrick von Platen committed
412
413
    def test_head_pruning_integration(self):
        if not self.test_pruning:
414
            return
415

416
        for model_class in self.all_model_classes:
417
            (config, inputs_dict,) = self.model_tester.prepare_config_and_inputs_for_common()
418

419
420
            if "head_mask" in inputs_dict:
                del inputs_dict["head_mask"]
421

422
423
            config.output_attentions = True
            config.output_hidden_states = False
424

425
426
            heads_to_prune = {0: [0], 1: [1, 2]}
            config.pruned_heads = heads_to_prune
427

428
429
430
            model = model_class(config=config)
            model.to(torch_device)
            model.eval()
431

432
433
434
            with torch.no_grad():
                outputs = model(**inputs_dict)
            attentions = outputs[-1]
435

436
437
438
439
            self.assertEqual(attentions[0].shape[-3], self.model_tester.num_attention_heads - 1)
            self.assertEqual(attentions[1].shape[-3], self.model_tester.num_attention_heads - 2)
            self.assertEqual(attentions[2].shape[-3], self.model_tester.num_attention_heads)
            self.assertEqual(attentions[3].shape[-3], self.model_tester.num_attention_heads)
thomwolf's avatar
thomwolf committed
440

441
            with tempfile.TemporaryDirectory() as temp_dir_name:
442
443
                model.save_pretrained(temp_dir_name)
                model = model_class.from_pretrained(temp_dir_name)
444
                model.to(torch_device)
thomwolf's avatar
thomwolf committed
445

446
447
448
            with torch.no_grad():
                outputs = model(**inputs_dict)
            attentions = outputs[-1]
LysandreJik's avatar
LysandreJik committed
449

450
451
452
453
            self.assertEqual(attentions[0].shape[-3], self.model_tester.num_attention_heads - 1)
            self.assertEqual(attentions[1].shape[-3], self.model_tester.num_attention_heads - 2)
            self.assertEqual(attentions[2].shape[-3], self.model_tester.num_attention_heads)
            self.assertEqual(attentions[3].shape[-3], self.model_tester.num_attention_heads)
thomwolf's avatar
thomwolf committed
454

455
456
            heads_to_prune = {0: [0], 2: [1, 2]}
            model.prune_heads(heads_to_prune)
457

458
459
460
            with torch.no_grad():
                outputs = model(**inputs_dict)
            attentions = outputs[-1]
461

462
463
464
465
            self.assertEqual(attentions[0].shape[-3], self.model_tester.num_attention_heads - 1)
            self.assertEqual(attentions[1].shape[-3], self.model_tester.num_attention_heads - 2)
            self.assertEqual(attentions[2].shape[-3], self.model_tester.num_attention_heads - 2)
            self.assertEqual(attentions[3].shape[-3], self.model_tester.num_attention_heads)
466

467
            self.assertDictEqual(model.config.pruned_heads, {0: [0], 1: [1, 2], 2: [1, 2]})
thomwolf's avatar
thomwolf committed
468

Patrick von Platen's avatar
Patrick von Platen committed
469
    def test_hidden_states_output(self):
470
        config, inputs_dict = self.model_tester.prepare_config_and_inputs_for_common()
thomwolf's avatar
thomwolf committed
471

472
473
474
475
        for model_class in self.all_model_classes:
            config.output_hidden_states = True
            config.output_attentions = False
            model = model_class(config)
476
            model.to(torch_device)
thomwolf's avatar
thomwolf committed
477
            model.eval()
thomwolf's avatar
thomwolf committed
478
            with torch.no_grad():
479
480
481
482
483
                outputs = model(**inputs_dict)
            hidden_states = outputs[-1]
            self.assertEqual(model.config.output_attentions, False)
            self.assertEqual(model.config.output_hidden_states, True)
            self.assertEqual(len(hidden_states), self.model_tester.num_hidden_layers + 1)
Patrick von Platen's avatar
Patrick von Platen committed
484
485
486
487
488
489
490
491

            if hasattr(self.model_tester, "encoder_seq_length"):
                seq_length = self.model_tester.encoder_seq_length
                if hasattr(self.model_tester, "chunk_length") and self.model_tester.chunk_length > 1:
                    seq_length = seq_length * self.model_tester.chunk_length
            else:
                seq_length = self.model_tester.seq_length

492
            self.assertListEqual(
Patrick von Platen's avatar
Patrick von Platen committed
493
                list(hidden_states[0].shape[-2:]), [seq_length, self.model_tester.hidden_size],
494
            )
thomwolf's avatar
thomwolf committed
495

Patrick von Platen's avatar
Patrick von Platen committed
496
    def test_resize_tokens_embeddings(self):
497
        (original_config, inputs_dict,) = self.model_tester.prepare_config_and_inputs_for_common()
Patrick von Platen's avatar
Patrick von Platen committed
498
        if not self.test_resize_embeddings:
499
500
501
502
503
            return

        for model_class in self.all_model_classes:
            config = copy.deepcopy(original_config)
            model = model_class(config)
504
            model.to(torch_device)
505

Patrick von Platen's avatar
Patrick von Platen committed
506
507
508
            if self.model_tester.is_training is False:
                model.eval()

509
510
511
512
513
514
515
516
517
518
            model_vocab_size = config.vocab_size
            # Retrieve the embeddings and clone theme
            model_embed = model.resize_token_embeddings(model_vocab_size)
            cloned_embeddings = model_embed.weight.clone()

            # Check that resizing the token embeddings with a larger vocab size increases the model's vocab size
            model_embed = model.resize_token_embeddings(model_vocab_size + 10)
            self.assertEqual(model.config.vocab_size, model_vocab_size + 10)
            # Check that it actually resizes the embeddings matrix
            self.assertEqual(model_embed.weight.shape[0], cloned_embeddings.shape[0] + 10)
519
520
            # Check that the model can still do a forward pass successfully (every parameter should be resized)
            model(**inputs_dict)
521
522
523
524
525
526
527

            # Check that resizing the token embeddings with a smaller vocab size decreases the model's vocab size
            model_embed = model.resize_token_embeddings(model_vocab_size - 15)
            self.assertEqual(model.config.vocab_size, model_vocab_size - 15)
            # Check that it actually resizes the embeddings matrix
            self.assertEqual(model_embed.weight.shape[0], cloned_embeddings.shape[0] - 15)

528
529
530
531
532
            # Check that the model can still do a forward pass successfully (every parameter should be resized)
            # Input ids should be clamped to the maximum size of the vocabulary
            inputs_dict["input_ids"].clamp_(max=model_vocab_size - 15 - 1)
            model(**inputs_dict)

533
534
535
536
537
538
539
540
            # Check that adding and removing tokens has not modified the first part of the embedding matrix.
            models_equal = True
            for p1, p2 in zip(cloned_embeddings, model_embed.weight):
                if p1.data.ne(p2.data).sum() > 0:
                    models_equal = False

            self.assertTrue(models_equal)

Patrick von Platen's avatar
Patrick von Platen committed
541
    def test_model_common_attributes(self):
542
543
544
545
546
547
548
549
550
        config, inputs_dict = self.model_tester.prepare_config_and_inputs_for_common()

        for model_class in self.all_model_classes:
            model = model_class(config)
            self.assertIsInstance(model.get_input_embeddings(), (torch.nn.Embedding, AdaptiveEmbedding))
            model.set_input_embeddings(torch.nn.Embedding(10, 10))
            x = model.get_output_embeddings()
            self.assertTrue(x is None or isinstance(x, torch.nn.Linear))

551
    def test_correct_missing_keys(self):
552
553
        if not self.test_missing_keys:
            return
554
555
556
557
558
559
560
561
562
563
564
565
566
567
        config, _ = self.model_tester.prepare_config_and_inputs_for_common()

        for model_class in self.all_model_classes:
            model = model_class(config)
            base_model_prefix = model.base_model_prefix

            if hasattr(model, base_model_prefix):
                with tempfile.TemporaryDirectory() as temp_dir_name:
                    model.base_model.save_pretrained(temp_dir_name)
                    model, loading_info = model_class.from_pretrained(temp_dir_name, output_loading_info=True)

                    with self.subTest(msg="Missing keys for {}".format(model.__class__.__name__)):
                        self.assertGreater(len(loading_info["missing_keys"]), 0)

568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
    def test_tie_model_weights(self):
        if not self.test_torchscript:
            return

        config, inputs_dict = self.model_tester.prepare_config_and_inputs_for_common()

        def check_same_values(layer_1, layer_2):
            equal = True
            for p1, p2 in zip(layer_1.weight, layer_2.weight):
                if p1.data.ne(p2.data).sum() > 0:
                    equal = False
            return equal

        for model_class in self.all_model_classes:
            config.torchscript = True
            model_not_tied = model_class(config)
            if model_not_tied.get_output_embeddings() is None:
                continue

            params_not_tied = list(model_not_tied.parameters())

            config_tied = copy.deepcopy(config)
            config_tied.torchscript = False
            model_tied = model_class(config_tied)
            params_tied = list(model_tied.parameters())

            # Check that the embedding layer and decoding layer are the same in size and in value
            self.assertGreater(len(params_not_tied), len(params_tied))
            # self.assertTrue(check_same_values(embeddings, decoding))

            # # Check that after modification, they remain the same.
            # embeddings.weight.data.div_(2)
            # # Check that the embedding layer and decoding layer are the same in size and in value
            # self.assertTrue(embeddings.weight.shape, decoding.weight.shape)
            # self.assertTrue(check_same_values(embeddings, decoding))

            # # Check that after modification, they remain the same.
            # decoding.weight.data.div_(4)
            # # Check that the embedding layer and decoding layer are the same in size and in value
            # self.assertTrue(embeddings.weight.shape, decoding.weight.shape)
            # self.assertTrue(check_same_values(embeddings, decoding))

            # Check that after resize they remain tied.
            model_tied.resize_token_embeddings(config.vocab_size + 10)
            params_tied_2 = list(model_tied.parameters())
            self.assertGreater(len(params_not_tied), len(params_tied))
            self.assertEqual(len(params_tied_2), len(params_tied))

            # decoding.weight.data.mul_(20)
            # # Check that the embedding layer and decoding layer are the same in size and in value
            # self.assertTrue(model.transformer.wte.weight.shape, model.lm_head.weight.shape)
            # self.assertTrue(check_same_values(model.transformer.wte, model.lm_head))

Patrick von Platen's avatar
Patrick von Platen committed
621
    def test_inputs_embeds(self):
Sam Shleifer's avatar
Sam Shleifer committed
622

623
624
625
626
627
        config, inputs_dict = self.model_tester.prepare_config_and_inputs_for_common()
        if not self.is_encoder_decoder:
            input_ids = inputs_dict["input_ids"]
            del inputs_dict["input_ids"]
        else:
628
            encoder_input_ids = inputs_dict["input_ids"]
Sam Shleifer's avatar
Sam Shleifer committed
629
            decoder_input_ids = inputs_dict.get("decoder_input_ids", encoder_input_ids)
630
            del inputs_dict["input_ids"]
Sam Shleifer's avatar
Sam Shleifer committed
631
            inputs_dict.pop("decoder_input_ids", None)
632
633
634

        for model_class in self.all_model_classes:
            model = model_class(config)
635
            model.to(torch_device)
thomwolf's avatar
thomwolf committed
636
            model.eval()
637
638
639
640
641

            wte = model.get_input_embeddings()
            if not self.is_encoder_decoder:
                inputs_dict["inputs_embeds"] = wte(input_ids)
            else:
642
                inputs_dict["inputs_embeds"] = wte(encoder_input_ids)
643
644
                inputs_dict["decoder_inputs_embeds"] = wte(decoder_input_ids)

thomwolf's avatar
thomwolf committed
645
            with torch.no_grad():
646
                model(**inputs_dict)
647

648
    def test_lm_head_model_random_no_beam_search_generate(self):
649
        config, inputs_dict = self.model_tester.prepare_config_and_inputs_for_common()
650
        input_ids = inputs_dict["input_ids"] if "input_ids" in inputs_dict else inputs_dict["inputs"]
651

Patrick von Platen's avatar
Patrick von Platen committed
652
653
654
        # make sure that input_ids is at most of size 15
        input_ids = input_ids[..., :15]

655
        # iterate over all generative models
656
        for model_class in self.all_generative_model_classes:
657
            model = model_class(config).to(torch_device)
Patrick von Platen's avatar
Patrick von Platen committed
658
            model.eval()
659
660

            if config.bos_token_id is None:
661
                # if bos token id is not defined, model needs input_ids
662
                with self.assertRaises(AssertionError):
663
                    model.generate(do_sample=True, max_length=5)
664
                # num_return_sequences = 1
665
                self._check_generated_ids(model.generate(input_ids, do_sample=True))
666
            else:
667
                # num_return_sequences = 1
668
                self._check_generated_ids(model.generate(do_sample=True, max_length=5))
669

670
            with self.assertRaises(AssertionError):
671
                # generating multiple sequences when no beam search generation
672
673
674
                # is not allowed as it would always generate the same sequences
                model.generate(input_ids, do_sample=False, num_return_sequences=2)

675
676
            # num_return_sequences > 1, sample
            self._check_generated_ids(model.generate(input_ids, do_sample=True, num_return_sequences=2))
677
678

            # check bad words tokens language generation
679
            # create list of 1-seq bad token and list of 2-seq of bad tokens
680
681
682
683
            bad_words_ids = [
                self._generate_random_bad_tokens(1, model.config),
                self._generate_random_bad_tokens(2, model.config),
            ]
684
            output_tokens = model.generate(
685
                input_ids, do_sample=True, bad_words_ids=bad_words_ids, num_return_sequences=2
686
            )
687
            # only count generated tokens
688
689
            generated_ids = output_tokens[:, input_ids.shape[-1] :]
            self.assertFalse(self._check_match_tokens(generated_ids.tolist(), bad_words_ids))
690

691
692
    def test_lm_head_model_random_beam_search_generate(self):
        config, inputs_dict = self.model_tester.prepare_config_and_inputs_for_common()
693
694
695
        input_ids = (inputs_dict["input_ids"] if "input_ids" in inputs_dict else inputs_dict["inputs"]).to(
            torch_device
        )
696

Patrick von Platen's avatar
Patrick von Platen committed
697
698
699
        # make sure that input_ids is at most of size 15
        input_ids = input_ids[..., :15]

700
        for model_class in self.all_generative_model_classes:
701
            model = model_class(config).to(torch_device)
Patrick von Platen's avatar
Patrick von Platen committed
702
            model.eval()
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721

            if config.bos_token_id is None:
                # if bos token id is not defined mobel needs input_ids, num_return_sequences = 1
                self._check_generated_ids(model.generate(input_ids, do_sample=True, num_beams=2))
            else:
                # num_return_sequences = 1
                self._check_generated_ids(model.generate(do_sample=True, max_length=5, num_beams=2))

            with self.assertRaises(AssertionError):
                # generating more sequences than having beams leads is not possible
                model.generate(input_ids, do_sample=False, num_return_sequences=3, num_beams=2)

            # num_return_sequences > 1, sample
            self._check_generated_ids(model.generate(input_ids, do_sample=True, num_beams=2, num_return_sequences=2,))
            # num_return_sequences > 1, greedy
            self._check_generated_ids(model.generate(input_ids, do_sample=False, num_beams=2, num_return_sequences=2))

            # check bad words tokens language generation
            # create list of 1-seq bad token and list of 2-seq of bad tokens
722
723
724
725
            bad_words_ids = [
                self._generate_random_bad_tokens(1, model.config),
                self._generate_random_bad_tokens(2, model.config),
            ]
726
            output_tokens = model.generate(
727
                input_ids, do_sample=False, bad_words_ids=bad_words_ids, num_beams=2, num_return_sequences=2
728
            )
729
            # only count generated tokens
730
731
732
            generated_ids = output_tokens[:, input_ids.shape[-1] :]
            self.assertFalse(self._check_match_tokens(generated_ids.tolist(), bad_words_ids))

733
    def _generate_random_bad_tokens(self, num_bad_tokens: int, config) -> List[int]:
734
        # special tokens cannot be bad tokens
735
        special_tokens = [x for x in [config.bos_token_id, config.eos_token_id, config.pad_token_id] if x is not None]
736
737
738
        # create random bad tokens that are not special tokens
        bad_tokens = []
        while len(bad_tokens) < num_bad_tokens:
739
            token = ids_tensor((1, 1), self.model_tester.vocab_size).squeeze(0).cpu().numpy()[0]
740
741
742
743
            if token not in special_tokens:
                bad_tokens.append(token)
        return bad_tokens

744
    def _check_generated_ids(self, output_ids):
745
746
747
748
        for token_id in output_ids[0].tolist():
            self.assertGreaterEqual(token_id, 0)
            self.assertLess(token_id, self.model_tester.vocab_size)

749
750
751
752
753
754
755
756
757
758
759
760
    def _check_match_tokens(self, generated_ids, bad_words_ids):
        # for all bad word tokens
        for bad_word_ids in bad_words_ids:
            # for all slices in batch
            for generated_ids_slice in generated_ids:
                # for all word idx
                for i in range(len(bad_word_ids), len(generated_ids_slice)):
                    # if tokens match
                    if generated_ids_slice[i - len(bad_word_ids) : i] == bad_word_ids:
                        return True
        return False

761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
    @require_multigpu
    def test_multigpu_data_parallel_forward(self):
        config, inputs_dict = self.model_tester.prepare_config_and_inputs_for_common()

        # some params shouldn't be scattered by nn.DataParallel
        # so just remove them if they are present.
        blacklist_non_batched_params = ["head_mask"]
        for k in blacklist_non_batched_params:
            inputs_dict.pop(k, None)

        # move input tensors to cuda:O
        for k, v in inputs_dict.items():
            if torch.is_tensor(v):
                inputs_dict[k] = v.to(0)

        for model_class in self.all_model_classes:
            model = model_class(config=config)
            model.to(0)
            model.eval()

            # Wrap model in nn.DataParallel
            model = torch.nn.DataParallel(model)
            with torch.no_grad():
                _ = model(**inputs_dict)

786

787
global_rng = random.Random()
thomwolf's avatar
thomwolf committed
788
789


thomwolf's avatar
thomwolf committed
790
def ids_tensor(shape, vocab_size, rng=None, name=None):
791
    #  Creates a random int32 tensor of the shape within the vocab size
thomwolf's avatar
thomwolf committed
792
    if rng is None:
793
        rng = global_rng
thomwolf's avatar
thomwolf committed
794

thomwolf's avatar
thomwolf committed
795
796
797
    total_dims = 1
    for dim in shape:
        total_dims *= dim
thomwolf's avatar
thomwolf committed
798

thomwolf's avatar
thomwolf committed
799
800
801
    values = []
    for _ in range(total_dims):
        values.append(rng.randint(0, vocab_size - 1))
thomwolf's avatar
thomwolf committed
802

803
    return torch.tensor(data=values, dtype=torch.long, device=torch_device).view(shape).contiguous()
thomwolf's avatar
thomwolf committed
804
805


806
def floats_tensor(shape, scale=1.0, rng=None, name=None):
Patrick von Platen's avatar
Patrick von Platen committed
807
    """Creates a random float32 tensor"""
808
809
810
811
812
813
814
815
816
817
818
    if rng is None:
        rng = global_rng

    total_dims = 1
    for dim in shape:
        total_dims *= dim

    values = []
    for _ in range(total_dims):
        values.append(rng.random() * scale)

819
    return torch.tensor(data=values, dtype=torch.float, device=torch_device).view(shape).contiguous()
820
821


822
@require_torch
thomwolf's avatar
thomwolf committed
823
class ModelUtilsTest(unittest.TestCase):
824
    @slow
Patrick von Platen's avatar
Patrick von Platen committed
825
    def test_model_from_pretrained(self):
thomwolf's avatar
thomwolf committed
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
        logging.basicConfig(level=logging.INFO)
        for model_name in list(BERT_PRETRAINED_MODEL_ARCHIVE_MAP.keys())[:1]:
            config = BertConfig.from_pretrained(model_name)
            self.assertIsNotNone(config)
            self.assertIsInstance(config, PretrainedConfig)

            model = BertModel.from_pretrained(model_name)
            model, loading_info = BertModel.from_pretrained(model_name, output_loading_info=True)
            self.assertIsNotNone(model)
            self.assertIsInstance(model, PreTrainedModel)
            for value in loading_info.values():
                self.assertEqual(len(value), 0)

            config = BertConfig.from_pretrained(model_name, output_attentions=True, output_hidden_states=True)
            model = BertModel.from_pretrained(model_name, output_attentions=True, output_hidden_states=True)
            self.assertEqual(model.config.output_attentions, True)
            self.assertEqual(model.config.output_hidden_states, True)
            self.assertEqual(model.config, config)
844
845
846
847
848
849


@require_torch
class UtilsFunctionsTest(unittest.TestCase):

    # tests whether the top_k_top_p function behaves as expected
Patrick von Platen's avatar
Patrick von Platen committed
850
    def test_top_k_top_p_filtering(self):
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
        logits = torch.tensor(
            [
                [
                    8.2220991,  # 3rd highest value; idx. 0
                    -0.5620044,
                    5.23229752,
                    4.0386393,
                    -6.8798378,
                    -0.54785802,
                    -3.2012153,
                    2.92777176,
                    1.88171953,
                    7.35341276,  # 5th highest value; idx. 9
                    8.43207833,  # 2nd highest value; idx. 10
                    -9.85711836,
                    -5.96209236,
                    -1.13039161,
                    -7.1115294,
                    -0.8369633,
                    -5.3186408,
                    7.06427407,
                    0.81369344,
                    -0.82023817,
                    -5.9179796,
                    0.58813443,
                    -6.99778438,
                    4.71551189,
                    -0.18771637,
                    7.44020759,  # 4th highest value; idx. 25
                    9.38450987,  # 1st highest value; idx. 26
                    2.12662941,
                    -9.32562038,
                    2.35652522,
                ],  # cummulative prob of 5 highest values <= 0.6
                [
                    0.58425518,
                    4.53139238,
                    -5.57510464,
                    -6.28030699,
                    -7.19529503,
                    -4.02122551,
                    1.39337037,
                    -6.06707057,
                    1.59480517,
                    -9.643119,
                    0.03907799,
                    0.67231762,
                    -8.88206726,
                    6.27115922,  # 4th highest value; idx. 13
                    2.28520723,
                    4.82767506,
                    4.30421368,
                    8.8275313,  # 2nd highest value; idx. 17
                    5.44029958,  # 5th highest value; idx. 18
                    -4.4735794,
                    7.38579536,  # 3rd highest value; idx. 20
                    -2.91051663,
                    2.61946077,
                    -2.5674762,
                    -9.48959302,
                    -4.02922645,
                    -1.35416918,
                    9.67702323,  # 1st highest value; idx. 27
                    -5.89478553,
                    1.85370467,
                ],  # cummulative prob of 5 highest values <= 0.6
            ],
            dtype=torch.float,
            device=torch_device,
        )

        non_inf_expected_idx = torch.tensor(
            [[0, 0], [0, 9], [0, 10], [0, 25], [0, 26], [1, 13], [1, 17], [1, 18], [1, 20], [1, 27]],
            dtype=torch.long,
            device=torch_device,
        )  # expected non filtered idx as noted above

        non_inf_expected_output = torch.tensor(
            [
                8.2221,
                7.3534,
                8.4321,
                7.4402,
                9.3845,
                6.2712,
                8.8275,
                5.4403,
                7.3858,
                9.6770,
            ],  # expected non filtered values as noted above
            dtype=torch.float,
            device=torch_device,
        )

        output = top_k_top_p_filtering(logits, top_k=10, top_p=0.6, min_tokens_to_keep=4)
        non_inf_output = output[output != -float("inf")].to(device=torch_device)
        non_inf_idx = (output != -float("inf")).nonzero().to(device=torch_device)

        self.assertTrue(torch.allclose(non_inf_expected_output, non_inf_output, atol=1e-12))
        self.assertTrue(torch.all(torch.eq(non_inf_expected_idx, non_inf_idx)))