test_modeling_common.py 47.2 KB
Newer Older
thomwolf's avatar
thomwolf committed
1
2
3
4
5
6
7
8
9
10
11
12
13
14
# coding=utf-8
# Copyright 2019 HuggingFace Inc.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
#     http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
Aymeric Augustin's avatar
Aymeric Augustin committed
15

16
import copy
17
import os.path
Aymeric Augustin's avatar
Aymeric Augustin committed
18
import random
19
import tempfile
thomwolf's avatar
thomwolf committed
20
import unittest
21
from typing import List, Tuple
thomwolf's avatar
thomwolf committed
22

23
from transformers import is_torch_available
24
from transformers.testing_utils import require_multigpu, require_torch, slow, torch_device
25

Aymeric Augustin's avatar
Aymeric Augustin committed
26

27
if is_torch_available():
28
    import numpy as np
29
    import torch
thomwolf's avatar
thomwolf committed
30

31
    from transformers import (
32
        BERT_PRETRAINED_MODEL_ARCHIVE_LIST,
33
34
        MODEL_FOR_CAUSAL_LM_MAPPING,
        MODEL_FOR_MASKED_LM_MAPPING,
35
36
        MODEL_FOR_MULTIPLE_CHOICE_MAPPING,
        MODEL_FOR_QUESTION_ANSWERING_MAPPING,
37
38
39
        MODEL_FOR_SEQ_TO_SEQ_CAUSAL_LM_MAPPING,
        MODEL_FOR_SEQUENCE_CLASSIFICATION_MAPPING,
        MODEL_FOR_TOKEN_CLASSIFICATION_MAPPING,
40
41
42
43
44
        AdaptiveEmbedding,
        BertConfig,
        BertModel,
        PretrainedConfig,
        PreTrainedModel,
45
        top_k_top_p_filtering,
46
    )
thomwolf's avatar
thomwolf committed
47

48

49
50
51
def _config_zero_init(config):
    configs_no_init = copy.deepcopy(config)
    for key in configs_no_init.__dict__.keys():
52
        if "_range" in key or "_std" in key or "initializer_factor" in key:
Lysandre Debut's avatar
Lysandre Debut committed
53
            setattr(configs_no_init, key, 1e-10)
54
55
    return configs_no_init

thomwolf's avatar
thomwolf committed
56

57
58
59
60
61
@require_torch
class ModelTesterMixin:

    model_tester = None
    all_model_classes = ()
62
    all_generative_model_classes = ()
Patrick von Platen's avatar
Patrick von Platen committed
63
64
65
66
    test_torchscript = True
    test_pruning = True
    test_resize_embeddings = True
    test_head_masking = True
67
    test_missing_keys = True
68
69
    is_encoder_decoder = False

70
71
    def _prepare_for_class(self, inputs_dict, model_class, return_labels=False):
        inputs_dict = copy.deepcopy(inputs_dict)
72
        if model_class in MODEL_FOR_MULTIPLE_CHOICE_MAPPING.values():
73
            inputs_dict = {
74
                k: v.unsqueeze(1).expand(-1, self.model_tester.num_choices, -1).contiguous()
75
                if isinstance(v, torch.Tensor) and v.ndim > 1
Sylvain Gugger's avatar
Sylvain Gugger committed
76
                else v
77
78
                for k, v in inputs_dict.items()
            }
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102

        if return_labels:
            if model_class in MODEL_FOR_MULTIPLE_CHOICE_MAPPING.values():
                inputs_dict["labels"] = torch.ones(self.model_tester.batch_size, dtype=torch.long, device=torch_device)
            elif model_class in MODEL_FOR_QUESTION_ANSWERING_MAPPING.values():
                inputs_dict["start_positions"] = torch.zeros(
                    self.model_tester.batch_size, dtype=torch.long, device=torch_device
                )
                inputs_dict["end_positions"] = torch.zeros(
                    self.model_tester.batch_size, dtype=torch.long, device=torch_device
                )
            elif model_class in MODEL_FOR_SEQUENCE_CLASSIFICATION_MAPPING.values():
                inputs_dict["labels"] = torch.zeros(
                    self.model_tester.batch_size, dtype=torch.long, device=torch_device
                )
            elif model_class in [
                *MODEL_FOR_TOKEN_CLASSIFICATION_MAPPING.values(),
                *MODEL_FOR_CAUSAL_LM_MAPPING.values(),
                *MODEL_FOR_MASKED_LM_MAPPING.values(),
                *MODEL_FOR_SEQ_TO_SEQ_CAUSAL_LM_MAPPING.values(),
            ]:
                inputs_dict["labels"] = torch.zeros(
                    (self.model_tester.batch_size, self.model_tester.seq_length), dtype=torch.long, device=torch_device
                )
103
104
        return inputs_dict

Patrick von Platen's avatar
Patrick von Platen committed
105
    def test_save_load(self):
106
107
108
109
110
111
112
        config, inputs_dict = self.model_tester.prepare_config_and_inputs_for_common()

        for model_class in self.all_model_classes:
            model = model_class(config)
            model.to(torch_device)
            model.eval()
            with torch.no_grad():
113
                outputs = model(**self._prepare_for_class(inputs_dict, model_class))
114
            out_2 = outputs[0].cpu().numpy()
115
            out_2[np.isnan(out_2)] = 0
116

117
            with tempfile.TemporaryDirectory() as tmpdirname:
118
119
                model.save_pretrained(tmpdirname)
                model = model_class.from_pretrained(tmpdirname)
120
                model.to(torch_device)
121
                with torch.no_grad():
122
                    after_outputs = model(**self._prepare_for_class(inputs_dict, model_class))
thomwolf's avatar
thomwolf committed
123

124
125
126
                # Make sure we don't have nans
                out_1 = after_outputs[0].cpu().numpy()
                out_1[np.isnan(out_1)] = 0
thomwolf's avatar
thomwolf committed
127
128
                max_diff = np.amax(np.abs(out_1 - out_2))
                self.assertLessEqual(max_diff, 1e-5)
129

Patrick von Platen's avatar
Patrick von Platen committed
130
    def test_initialization(self):
131
132
133
134
135
136
137
138
        config, inputs_dict = self.model_tester.prepare_config_and_inputs_for_common()

        configs_no_init = _config_zero_init(config)
        for model_class in self.all_model_classes:
            model = model_class(config=configs_no_init)
            for name, param in model.named_parameters():
                if param.requires_grad:
                    self.assertIn(
Lysandre Debut's avatar
Lysandre Debut committed
139
                        ((param.data.mean() * 1e9).round() / 1e9).item(),
140
141
142
                        [0.0, 1.0],
                        msg="Parameter {} of model {} seems not properly initialized".format(name, model_class),
                    )
thomwolf's avatar
thomwolf committed
143

Patrick von Platen's avatar
Patrick von Platen committed
144
    def test_determinism(self):
145
146
147
148
149
150
151
        config, inputs_dict = self.model_tester.prepare_config_and_inputs_for_common()

        for model_class in self.all_model_classes:
            model = model_class(config)
            model.to(torch_device)
            model.eval()
            with torch.no_grad():
152
153
                first = model(**self._prepare_for_class(inputs_dict, model_class))[0]
                second = model(**self._prepare_for_class(inputs_dict, model_class))[0]
154
155
156
157
158
159
160
            out_1 = first.cpu().numpy()
            out_2 = second.cpu().numpy()
            out_1 = out_1[~np.isnan(out_1)]
            out_2 = out_2[~np.isnan(out_2)]
            max_diff = np.amax(np.abs(out_1 - out_2))
            self.assertLessEqual(max_diff, 1e-5)

Patrick von Platen's avatar
Patrick von Platen committed
161
    def test_attention_outputs(self):
162
        config, inputs_dict = self.model_tester.prepare_config_and_inputs_for_common()
sshleifer's avatar
sshleifer committed
163
        seq_len = getattr(self.model_tester, "seq_length", None)
sshleifer's avatar
sshleifer committed
164
165
        decoder_seq_length = getattr(self.model_tester, "decoder_seq_length", seq_len)
        encoder_seq_length = getattr(self.model_tester, "encoder_seq_length", seq_len)
166
167
        decoder_key_length = getattr(self.model_tester, "key_length", decoder_seq_length)
        encoder_key_length = getattr(self.model_tester, "key_length", encoder_seq_length)
Patrick von Platen's avatar
Patrick von Platen committed
168
169
170
        chunk_length = getattr(self.model_tester, "chunk_length", None)
        if chunk_length is not None and hasattr(self.model_tester, "num_hashes"):
            encoder_seq_length = encoder_seq_length * self.model_tester.num_hashes
171
172

        for model_class in self.all_model_classes:
173
            inputs_dict["output_attentions"] = True
Joseph Liu's avatar
Joseph Liu committed
174
            inputs_dict["output_hidden_states"] = False
175
176
177
178
            model = model_class(config)
            model.to(torch_device)
            model.eval()
            with torch.no_grad():
179
                outputs = model(**self._prepare_for_class(inputs_dict, model_class))
180
            attentions = outputs[-1]
181
182
183
184
185
186
187
188
189
            self.assertEqual(len(attentions), self.model_tester.num_hidden_layers)

            # check that output_attentions also work using config
            del inputs_dict["output_attentions"]
            config.output_attentions = True
            model = model_class(config)
            model.to(torch_device)
            model.eval()
            with torch.no_grad():
Sylvain Gugger's avatar
Sylvain Gugger committed
190
                outputs = model(**self._prepare_for_class(inputs_dict, model_class))
191
            attentions = outputs[-1]
192
            self.assertEqual(len(attentions), self.model_tester.num_hidden_layers)
Patrick von Platen's avatar
Patrick von Platen committed
193
194
195
196
197
198
199
200
201
202
203

            if chunk_length is not None:
                self.assertListEqual(
                    list(attentions[0].shape[-4:]),
                    [self.model_tester.num_attention_heads, encoder_seq_length, chunk_length, encoder_key_length],
                )
            else:
                self.assertListEqual(
                    list(attentions[0].shape[-3:]),
                    [self.model_tester.num_attention_heads, encoder_seq_length, encoder_key_length],
                )
204
            out_len = len(outputs)
thomwolf's avatar
thomwolf committed
205

206
            if self.is_encoder_decoder:
207
                correct_outlen = 4
Sam Shleifer's avatar
Sam Shleifer committed
208
                decoder_attention_idx = 1
209

210
211
212
213
214
215
216
                # loss is at first position
                if "labels" in inputs_dict:
                    correct_outlen += 1  # loss is added to beginning
                    decoder_attention_idx += 1
                # Question Answering model returns start_logits and end_logits
                if model_class in MODEL_FOR_QUESTION_ANSWERING_MAPPING.values():
                    correct_outlen += 1  # start_logits and end_logits instead of only 1 output
Sam Shleifer's avatar
Sam Shleifer committed
217
218
219
220
221
                    decoder_attention_idx += 1
                self.assertEqual(out_len, correct_outlen)

                decoder_attentions = outputs[decoder_attention_idx]
                self.assertIsInstance(decoder_attentions, (list, tuple))
222
                self.assertEqual(len(decoder_attentions), self.model_tester.num_hidden_layers)
thomwolf's avatar
thomwolf committed
223
                self.assertListEqual(
224
225
                    list(decoder_attentions[0].shape[-3:]),
                    [self.model_tester.num_attention_heads, decoder_seq_length, decoder_key_length],
226
                )
thomwolf's avatar
thomwolf committed
227

228
            # Check attention is always last and order is fine
229
            inputs_dict["output_attentions"] = True
Joseph Liu's avatar
Joseph Liu committed
230
            inputs_dict["output_hidden_states"] = True
231
232
233
234
            model = model_class(config)
            model.to(torch_device)
            model.eval()
            with torch.no_grad():
235
                outputs = model(**self._prepare_for_class(inputs_dict, model_class))
236
237
238
239
            self.assertEqual(out_len + (2 if self.is_encoder_decoder else 1), len(outputs))

            self_attentions = outputs[-1]
            self.assertEqual(len(self_attentions), self.model_tester.num_hidden_layers)
Patrick von Platen's avatar
Patrick von Platen committed
240
241
242
243
244
245
246
247
248
249
            if chunk_length is not None:
                self.assertListEqual(
                    list(self_attentions[0].shape[-4:]),
                    [self.model_tester.num_attention_heads, encoder_seq_length, chunk_length, encoder_key_length],
                )
            else:
                self.assertListEqual(
                    list(self_attentions[0].shape[-3:]),
                    [self.model_tester.num_attention_heads, encoder_seq_length, encoder_key_length],
                )
thomwolf's avatar
thomwolf committed
250

Patrick von Platen's avatar
Patrick von Platen committed
251
    def test_torchscript(self):
252
253
        config, inputs_dict = self.model_tester.prepare_config_and_inputs_for_common()
        self._create_and_check_torchscript(config, inputs_dict)
thomwolf's avatar
thomwolf committed
254

Patrick von Platen's avatar
Patrick von Platen committed
255
    def test_torchscript_output_attentions(self):
256
257
258
        config, inputs_dict = self.model_tester.prepare_config_and_inputs_for_common()
        config.output_attentions = True
        self._create_and_check_torchscript(config, inputs_dict)
thomwolf's avatar
thomwolf committed
259

Patrick von Platen's avatar
Patrick von Platen committed
260
    def test_torchscript_output_hidden_state(self):
261
262
263
        config, inputs_dict = self.model_tester.prepare_config_and_inputs_for_common()
        config.output_hidden_states = True
        self._create_and_check_torchscript(config, inputs_dict)
thomwolf's avatar
thomwolf committed
264

265
    def _create_and_check_torchscript(self, config, inputs_dict):
Patrick von Platen's avatar
Patrick von Platen committed
266
        if not self.test_torchscript:
267
            return
268

269
270
271
272
273
274
        configs_no_init = _config_zero_init(config)  # To be sure we have no Nan
        configs_no_init.torchscript = True
        for model_class in self.all_model_classes:
            model = model_class(config=configs_no_init)
            model.to(torch_device)
            model.eval()
275
            inputs = self._prepare_for_class(inputs_dict, model_class)["input_ids"]  # Let's keep only input_ids
thomwolf's avatar
thomwolf committed
276

277
278
279
280
            try:
                traced_gpt2 = torch.jit.trace(model, inputs)
            except RuntimeError:
                self.fail("Couldn't trace module.")
thomwolf's avatar
thomwolf committed
281

282
            with tempfile.TemporaryDirectory() as tmp_dir_name:
283
                pt_file_name = os.path.join(tmp_dir_name, "traced_model.pt")
thomwolf's avatar
thomwolf committed
284

285
286
287
288
                try:
                    torch.jit.save(traced_gpt2, pt_file_name)
                except Exception:
                    self.fail("Couldn't save module.")
thomwolf's avatar
thomwolf committed
289

290
291
292
293
                try:
                    loaded_model = torch.jit.load(pt_file_name)
                except Exception:
                    self.fail("Couldn't load module.")
LysandreJik's avatar
LysandreJik committed
294

295
296
            model.to(torch_device)
            model.eval()
thomwolf's avatar
thomwolf committed
297

298
299
            loaded_model.to(torch_device)
            loaded_model.eval()
thomwolf's avatar
thomwolf committed
300

301
302
303
304
            model_state_dict = model.state_dict()
            loaded_model_state_dict = loaded_model.state_dict()

            self.assertEqual(set(model_state_dict.keys()), set(loaded_model_state_dict.keys()))
thomwolf's avatar
thomwolf committed
305

306
            models_equal = True
307
308
            for layer_name, p1 in model_state_dict.items():
                p2 = loaded_model_state_dict[layer_name]
309
310
                if p1.data.ne(p2.data).sum() > 0:
                    models_equal = False
thomwolf's avatar
thomwolf committed
311

312
            self.assertTrue(models_equal)
thomwolf's avatar
thomwolf committed
313

Patrick von Platen's avatar
Patrick von Platen committed
314
315
    def test_headmasking(self):
        if not self.test_head_masking:
316
            return
317

318
319
320
        global_rng.seed(42)
        config, inputs_dict = self.model_tester.prepare_config_and_inputs_for_common()
        global_rng.seed()
LysandreJik's avatar
LysandreJik committed
321

322
        inputs_dict["output_attentions"] = True
323
324
325
326
327
328
        config.output_hidden_states = True
        configs_no_init = _config_zero_init(config)  # To be sure we have no Nan
        for model_class in self.all_model_classes:
            model = model_class(config=configs_no_init)
            model.to(torch_device)
            model.eval()
LysandreJik's avatar
LysandreJik committed
329

330
331
332
            # Prepare head_mask
            # Set require_grad after having prepared the tensor to avoid error (leaf variable has been moved into the graph interior)
            head_mask = torch.ones(
Lysandre's avatar
Lysandre committed
333
334
335
                self.model_tester.num_hidden_layers,
                self.model_tester.num_attention_heads,
                device=torch_device,
336
337
338
339
            )
            head_mask[0, 0] = 0
            head_mask[-1, :-1] = 0
            head_mask.requires_grad_(requires_grad=True)
340
            inputs = self._prepare_for_class(inputs_dict, model_class).copy()
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
            inputs["head_mask"] = head_mask

            outputs = model(**inputs)

            # Test that we can get a gradient back for importance score computation
            output = sum(t.sum() for t in outputs[0])
            output = output.sum()
            output.backward()
            multihead_outputs = head_mask.grad

            attentions = outputs[-1]

            # Remove Nan
            for t in attentions:
                self.assertLess(
                    torch.sum(torch.isnan(t)), t.numel() / 4
                )  # Check we don't have more than 25% nans (arbitrary)
            attentions = [
                t.masked_fill(torch.isnan(t), 0.0) for t in attentions
            ]  # remove them (the test is less complete)

            self.assertIsNotNone(multihead_outputs)
            self.assertEqual(len(multihead_outputs), self.model_tester.num_hidden_layers)
            self.assertAlmostEqual(attentions[0][..., 0, :, :].flatten().sum().item(), 0.0)
            self.assertNotEqual(attentions[0][..., -1, :, :].flatten().sum().item(), 0.0)
            self.assertNotEqual(attentions[1][..., 0, :, :].flatten().sum().item(), 0.0)
            self.assertAlmostEqual(attentions[-1][..., -2, :, :].flatten().sum().item(), 0.0)
            self.assertNotEqual(attentions[-1][..., -1, :, :].flatten().sum().item(), 0.0)

Patrick von Platen's avatar
Patrick von Platen committed
370
371
    def test_head_pruning(self):
        if not self.test_pruning:
372
373
374
            return

        for model_class in self.all_model_classes:
Lysandre's avatar
Lysandre committed
375
376
377
378
            (
                config,
                inputs_dict,
            ) = self.model_tester.prepare_config_and_inputs_for_common()
379

380
381
            if "head_mask" in inputs_dict:
                del inputs_dict["head_mask"]
382

383
            inputs_dict["output_attentions"] = True
384
385
386
387
            config.output_hidden_states = False
            model = model_class(config=config)
            model.to(torch_device)
            model.eval()
388
389
390
391
            heads_to_prune = {
                0: list(range(1, self.model_tester.num_attention_heads)),
                -1: [0],
            }
392
393
            model.prune_heads(heads_to_prune)
            with torch.no_grad():
394
                outputs = model(**self._prepare_for_class(inputs_dict, model_class))
395

396
            attentions = outputs[-1]
397

398
399
400
            self.assertEqual(attentions[0].shape[-3], 1)
            self.assertEqual(attentions[1].shape[-3], self.model_tester.num_attention_heads)
            self.assertEqual(attentions[-1].shape[-3], self.model_tester.num_attention_heads - 1)
LysandreJik's avatar
LysandreJik committed
401

Patrick von Platen's avatar
Patrick von Platen committed
402
403
    def test_head_pruning_save_load_from_pretrained(self):
        if not self.test_pruning:
404
            return
LysandreJik's avatar
LysandreJik committed
405

406
        for model_class in self.all_model_classes:
Lysandre's avatar
Lysandre committed
407
408
409
410
            (
                config,
                inputs_dict,
            ) = self.model_tester.prepare_config_and_inputs_for_common()
411
412
413

            if "head_mask" in inputs_dict:
                del inputs_dict["head_mask"]
414

415
            inputs_dict["output_attentions"] = True
416
417
418
419
            config.output_hidden_states = False
            model = model_class(config=config)
            model.to(torch_device)
            model.eval()
420
421
422
423
            heads_to_prune = {
                0: list(range(1, self.model_tester.num_attention_heads)),
                -1: [0],
            }
424
            model.prune_heads(heads_to_prune)
425

426
            with tempfile.TemporaryDirectory() as temp_dir_name:
427
428
                model.save_pretrained(temp_dir_name)
                model = model_class.from_pretrained(temp_dir_name)
429
                model.to(torch_device)
430

431
            with torch.no_grad():
432
                outputs = model(**self._prepare_for_class(inputs_dict, model_class))
433
434
435
436
            attentions = outputs[-1]
            self.assertEqual(attentions[0].shape[-3], 1)
            self.assertEqual(attentions[1].shape[-3], self.model_tester.num_attention_heads)
            self.assertEqual(attentions[-1].shape[-3], self.model_tester.num_attention_heads - 1)
437

Patrick von Platen's avatar
Patrick von Platen committed
438
439
    def test_head_pruning_save_load_from_config_init(self):
        if not self.test_pruning:
440
            return
441

442
        for model_class in self.all_model_classes:
Lysandre's avatar
Lysandre committed
443
444
445
446
            (
                config,
                inputs_dict,
            ) = self.model_tester.prepare_config_and_inputs_for_common()
447

448
449
            if "head_mask" in inputs_dict:
                del inputs_dict["head_mask"]
450

451
            inputs_dict["output_attentions"] = True
452
            config.output_hidden_states = False
453

454
455
456
457
            heads_to_prune = {
                0: list(range(1, self.model_tester.num_attention_heads)),
                -1: [0],
            }
458
            config.pruned_heads = heads_to_prune
459

460
461
462
            model = model_class(config=config)
            model.to(torch_device)
            model.eval()
463

464
            with torch.no_grad():
465
                outputs = model(**self._prepare_for_class(inputs_dict, model_class))
466
            attentions = outputs[-1]
467

468
469
470
            self.assertEqual(attentions[0].shape[-3], 1)
            self.assertEqual(attentions[1].shape[-3], self.model_tester.num_attention_heads)
            self.assertEqual(attentions[-1].shape[-3], self.model_tester.num_attention_heads - 1)
471

Patrick von Platen's avatar
Patrick von Platen committed
472
473
    def test_head_pruning_integration(self):
        if not self.test_pruning:
474
            return
475

476
        for model_class in self.all_model_classes:
Lysandre's avatar
Lysandre committed
477
478
479
480
            (
                config,
                inputs_dict,
            ) = self.model_tester.prepare_config_and_inputs_for_common()
481

482
483
            if "head_mask" in inputs_dict:
                del inputs_dict["head_mask"]
484

485
            inputs_dict["output_attentions"] = True
486
            config.output_hidden_states = False
487

488
489
            heads_to_prune = {0: [0], 1: [1, 2]}
            config.pruned_heads = heads_to_prune
490

491
492
493
            model = model_class(config=config)
            model.to(torch_device)
            model.eval()
494

495
            with torch.no_grad():
496
                outputs = model(**self._prepare_for_class(inputs_dict, model_class))
497
            attentions = outputs[-1]
498

499
500
501
502
            self.assertEqual(attentions[0].shape[-3], self.model_tester.num_attention_heads - 1)
            self.assertEqual(attentions[1].shape[-3], self.model_tester.num_attention_heads - 2)
            self.assertEqual(attentions[2].shape[-3], self.model_tester.num_attention_heads)
            self.assertEqual(attentions[3].shape[-3], self.model_tester.num_attention_heads)
thomwolf's avatar
thomwolf committed
503

504
            with tempfile.TemporaryDirectory() as temp_dir_name:
505
506
                model.save_pretrained(temp_dir_name)
                model = model_class.from_pretrained(temp_dir_name)
507
                model.to(torch_device)
thomwolf's avatar
thomwolf committed
508

509
            with torch.no_grad():
510
                outputs = model(**self._prepare_for_class(inputs_dict, model_class))
511
            attentions = outputs[-1]
LysandreJik's avatar
LysandreJik committed
512

513
514
515
516
            self.assertEqual(attentions[0].shape[-3], self.model_tester.num_attention_heads - 1)
            self.assertEqual(attentions[1].shape[-3], self.model_tester.num_attention_heads - 2)
            self.assertEqual(attentions[2].shape[-3], self.model_tester.num_attention_heads)
            self.assertEqual(attentions[3].shape[-3], self.model_tester.num_attention_heads)
thomwolf's avatar
thomwolf committed
517

518
519
            heads_to_prune = {0: [0], 2: [1, 2]}
            model.prune_heads(heads_to_prune)
520

521
            with torch.no_grad():
522
                outputs = model(**self._prepare_for_class(inputs_dict, model_class))
523
            attentions = outputs[-1]
524

525
526
527
528
            self.assertEqual(attentions[0].shape[-3], self.model_tester.num_attention_heads - 1)
            self.assertEqual(attentions[1].shape[-3], self.model_tester.num_attention_heads - 2)
            self.assertEqual(attentions[2].shape[-3], self.model_tester.num_attention_heads - 2)
            self.assertEqual(attentions[3].shape[-3], self.model_tester.num_attention_heads)
529

530
            self.assertDictEqual(model.config.pruned_heads, {0: [0], 1: [1, 2], 2: [1, 2]})
thomwolf's avatar
thomwolf committed
531

Patrick von Platen's avatar
Patrick von Platen committed
532
    def test_hidden_states_output(self):
Joseph Liu's avatar
Joseph Liu committed
533
        def check_hidden_states_output(inputs_dict, config, model_class):
534
            model = model_class(config)
535
            model.to(torch_device)
thomwolf's avatar
thomwolf committed
536
            model.eval()
Joseph Liu's avatar
Joseph Liu committed
537

thomwolf's avatar
thomwolf committed
538
            with torch.no_grad():
539
                outputs = model(**self._prepare_for_class(inputs_dict, model_class))
540
            hidden_states = outputs[-1]
Patrick von Platen's avatar
Patrick von Platen committed
541

Joseph Liu's avatar
Joseph Liu committed
542
            self.assertEqual(len(hidden_states), self.model_tester.num_hidden_layers + 1)
Patrick von Platen's avatar
Patrick von Platen committed
543
544
545
546
547
548
549
            if hasattr(self.model_tester, "encoder_seq_length"):
                seq_length = self.model_tester.encoder_seq_length
                if hasattr(self.model_tester, "chunk_length") and self.model_tester.chunk_length > 1:
                    seq_length = seq_length * self.model_tester.chunk_length
            else:
                seq_length = self.model_tester.seq_length

550
            self.assertListEqual(
Lysandre's avatar
Lysandre committed
551
552
                list(hidden_states[0].shape[-2:]),
                [seq_length, self.model_tester.hidden_size],
553
            )
thomwolf's avatar
thomwolf committed
554

Joseph Liu's avatar
Joseph Liu committed
555
556
557
558
559
560
561
562
563
564
565
566
        config, inputs_dict = self.model_tester.prepare_config_and_inputs_for_common()

        for model_class in self.all_model_classes:
            inputs_dict["output_hidden_states"] = True
            check_hidden_states_output(inputs_dict, config, model_class)

            # check that output_hidden_states also work using config
            del inputs_dict["output_hidden_states"]
            config.output_hidden_states = True

            check_hidden_states_output(inputs_dict, config, model_class)

Pradhy729's avatar
Pradhy729 committed
567
    def test_feed_forward_chunking(self):
Lysandre's avatar
Lysandre committed
568
569
570
571
        (
            original_config,
            inputs_dict,
        ) = self.model_tester.prepare_config_and_inputs_for_common()
Pradhy729's avatar
Pradhy729 committed
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
        for model_class in self.all_model_classes:
            torch.manual_seed(0)
            config = copy.deepcopy(original_config)
            model = model_class(config)
            model.to(torch_device)
            model.eval()

            hidden_states_no_chunk = model(**self._prepare_for_class(inputs_dict, model_class))[0]

            torch.manual_seed(0)
            config.chunk_size_feed_forward = 1
            model = model_class(config)
            model.to(torch_device)
            model.eval()

            hidden_states_with_chunk = model(**self._prepare_for_class(inputs_dict, model_class))[0]
            self.assertTrue(torch.allclose(hidden_states_no_chunk, hidden_states_with_chunk, atol=1e-3))

Patrick von Platen's avatar
Patrick von Platen committed
590
    def test_resize_tokens_embeddings(self):
Lysandre's avatar
Lysandre committed
591
592
593
594
        (
            original_config,
            inputs_dict,
        ) = self.model_tester.prepare_config_and_inputs_for_common()
Patrick von Platen's avatar
Patrick von Platen committed
595
        if not self.test_resize_embeddings:
596
597
598
599
600
            return

        for model_class in self.all_model_classes:
            config = copy.deepcopy(original_config)
            model = model_class(config)
601
            model.to(torch_device)
602

Patrick von Platen's avatar
Patrick von Platen committed
603
604
605
            if self.model_tester.is_training is False:
                model.eval()

606
607
608
609
610
611
612
613
614
615
            model_vocab_size = config.vocab_size
            # Retrieve the embeddings and clone theme
            model_embed = model.resize_token_embeddings(model_vocab_size)
            cloned_embeddings = model_embed.weight.clone()

            # Check that resizing the token embeddings with a larger vocab size increases the model's vocab size
            model_embed = model.resize_token_embeddings(model_vocab_size + 10)
            self.assertEqual(model.config.vocab_size, model_vocab_size + 10)
            # Check that it actually resizes the embeddings matrix
            self.assertEqual(model_embed.weight.shape[0], cloned_embeddings.shape[0] + 10)
616
            # Check that the model can still do a forward pass successfully (every parameter should be resized)
617
            model(**self._prepare_for_class(inputs_dict, model_class))
618
619
620
621
622
623
624

            # Check that resizing the token embeddings with a smaller vocab size decreases the model's vocab size
            model_embed = model.resize_token_embeddings(model_vocab_size - 15)
            self.assertEqual(model.config.vocab_size, model_vocab_size - 15)
            # Check that it actually resizes the embeddings matrix
            self.assertEqual(model_embed.weight.shape[0], cloned_embeddings.shape[0] - 15)

625
626
627
            # Check that the model can still do a forward pass successfully (every parameter should be resized)
            # Input ids should be clamped to the maximum size of the vocabulary
            inputs_dict["input_ids"].clamp_(max=model_vocab_size - 15 - 1)
628
            model(**self._prepare_for_class(inputs_dict, model_class))
629

630
631
632
633
634
635
636
637
            # Check that adding and removing tokens has not modified the first part of the embedding matrix.
            models_equal = True
            for p1, p2 in zip(cloned_embeddings, model_embed.weight):
                if p1.data.ne(p2.data).sum() > 0:
                    models_equal = False

            self.assertTrue(models_equal)

Patrick von Platen's avatar
Patrick von Platen committed
638
    def test_model_common_attributes(self):
639
640
641
642
643
644
645
646
647
        config, inputs_dict = self.model_tester.prepare_config_and_inputs_for_common()

        for model_class in self.all_model_classes:
            model = model_class(config)
            self.assertIsInstance(model.get_input_embeddings(), (torch.nn.Embedding, AdaptiveEmbedding))
            model.set_input_embeddings(torch.nn.Embedding(10, 10))
            x = model.get_output_embeddings()
            self.assertTrue(x is None or isinstance(x, torch.nn.Linear))

648
    def test_correct_missing_keys(self):
649
650
        if not self.test_missing_keys:
            return
651
652
653
654
655
656
657
658
659
660
661
662
663
664
        config, _ = self.model_tester.prepare_config_and_inputs_for_common()

        for model_class in self.all_model_classes:
            model = model_class(config)
            base_model_prefix = model.base_model_prefix

            if hasattr(model, base_model_prefix):
                with tempfile.TemporaryDirectory() as temp_dir_name:
                    model.base_model.save_pretrained(temp_dir_name)
                    model, loading_info = model_class.from_pretrained(temp_dir_name, output_loading_info=True)

                    with self.subTest(msg="Missing keys for {}".format(model.__class__.__name__)):
                        self.assertGreater(len(loading_info["missing_keys"]), 0)

665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
    def test_tie_model_weights(self):
        if not self.test_torchscript:
            return

        config, inputs_dict = self.model_tester.prepare_config_and_inputs_for_common()

        def check_same_values(layer_1, layer_2):
            equal = True
            for p1, p2 in zip(layer_1.weight, layer_2.weight):
                if p1.data.ne(p2.data).sum() > 0:
                    equal = False
            return equal

        for model_class in self.all_model_classes:
            config.torchscript = True
            model_not_tied = model_class(config)
            if model_not_tied.get_output_embeddings() is None:
                continue

            config_tied = copy.deepcopy(config)
            config_tied.torchscript = False
            model_tied = model_class(config_tied)
            params_tied = list(model_tied.parameters())
            # Check that the embedding layer and decoding layer are the same in size and in value
            # self.assertTrue(check_same_values(embeddings, decoding))

            # # Check that after modification, they remain the same.
            # embeddings.weight.data.div_(2)
            # # Check that the embedding layer and decoding layer are the same in size and in value
            # self.assertTrue(embeddings.weight.shape, decoding.weight.shape)
            # self.assertTrue(check_same_values(embeddings, decoding))

            # # Check that after modification, they remain the same.
            # decoding.weight.data.div_(4)
            # # Check that the embedding layer and decoding layer are the same in size and in value
            # self.assertTrue(embeddings.weight.shape, decoding.weight.shape)
            # self.assertTrue(check_same_values(embeddings, decoding))

            # Check that after resize they remain tied.
            model_tied.resize_token_embeddings(config.vocab_size + 10)
            params_tied_2 = list(model_tied.parameters())
            self.assertEqual(len(params_tied_2), len(params_tied))

            # decoding.weight.data.mul_(20)
            # # Check that the embedding layer and decoding layer are the same in size and in value
            # self.assertTrue(model.transformer.wte.weight.shape, model.lm_head.weight.shape)
            # self.assertTrue(check_same_values(model.transformer.wte, model.lm_head))

713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
    def test_model_outputs_equivalence(self):

        config, inputs_dict = self.model_tester.prepare_config_and_inputs_for_common()

        def check_equivalence(model, tuple_inputs, dict_inputs, additional_kwargs={}):
            with torch.no_grad():
                tuple_output = model(**tuple_inputs, return_dict=False, **additional_kwargs)
                dict_output = model(**dict_inputs, return_dict=True, **additional_kwargs).to_tuple()

                def recursive_check(tuple_object, dict_object):
                    if isinstance(tuple_object, (List, Tuple)):
                        for tuple_iterable_value, dict_iterable_value in zip(tuple_object, dict_object):
                            recursive_check(tuple_iterable_value, dict_iterable_value)
                    elif tuple_object is None:
                        return
                    else:
                        self.assertTrue(
                            torch.allclose(tuple_object, dict_object, atol=1e-5),
731
                            msg=f"Tuple and dict output are not equal. Difference: {torch.max(torch.abs(tuple_object - dict_object))}. Tuple has `nan`: {torch.isnan(tuple_object).any()} and `inf`: {torch.isinf(tuple_object)}. Dict has `nan`: {torch.isnan(dict_object).any()} and `inf`: {torch.isinf(dict_object)}.",
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
                        )

                recursive_check(tuple_output, dict_output)

        for model_class in self.all_model_classes:
            model = model_class(config)
            model.to(torch_device)
            model.eval()

            tuple_inputs = self._prepare_for_class(inputs_dict, model_class)
            dict_inputs = self._prepare_for_class(inputs_dict, model_class)
            check_equivalence(model, tuple_inputs, dict_inputs)

            tuple_inputs = self._prepare_for_class(inputs_dict, model_class, return_labels=True)
            dict_inputs = self._prepare_for_class(inputs_dict, model_class, return_labels=True)
            check_equivalence(model, tuple_inputs, dict_inputs)

            tuple_inputs = self._prepare_for_class(inputs_dict, model_class)
            dict_inputs = self._prepare_for_class(inputs_dict, model_class)
            check_equivalence(model, tuple_inputs, dict_inputs, {"output_hidden_states": True})

            tuple_inputs = self._prepare_for_class(inputs_dict, model_class)
            dict_inputs = self._prepare_for_class(inputs_dict, model_class)
            check_equivalence(model, tuple_inputs, dict_inputs, {"output_attentions": True})

            tuple_inputs = self._prepare_for_class(inputs_dict, model_class, return_labels=True)
            dict_inputs = self._prepare_for_class(inputs_dict, model_class, return_labels=True)
            check_equivalence(model, tuple_inputs, dict_inputs, {"output_hidden_states": True})

            tuple_inputs = self._prepare_for_class(inputs_dict, model_class, return_labels=True)
            dict_inputs = self._prepare_for_class(inputs_dict, model_class, return_labels=True)
            check_equivalence(model, tuple_inputs, dict_inputs, {"output_attentions": True})

            tuple_inputs = self._prepare_for_class(inputs_dict, model_class, return_labels=True)
            dict_inputs = self._prepare_for_class(inputs_dict, model_class, return_labels=True)
            check_equivalence(
                model, tuple_inputs, dict_inputs, {"output_hidden_states": True, "output_attentions": True}
            )

Patrick von Platen's avatar
Patrick von Platen committed
771
    def test_inputs_embeds(self):
Sam Shleifer's avatar
Sam Shleifer committed
772

773
774
775
776
        config, inputs_dict = self.model_tester.prepare_config_and_inputs_for_common()

        for model_class in self.all_model_classes:
            model = model_class(config)
777
            model.to(torch_device)
thomwolf's avatar
thomwolf committed
778
            model.eval()
779

780
781
782
783
784
785
786
787
788
789
            inputs = copy.deepcopy(self._prepare_for_class(inputs_dict, model_class))
            if not self.is_encoder_decoder:
                input_ids = inputs["input_ids"]
                del inputs["input_ids"]
            else:
                encoder_input_ids = inputs["input_ids"]
                decoder_input_ids = inputs.get("decoder_input_ids", encoder_input_ids)
                del inputs["input_ids"]
                inputs.pop("decoder_input_ids", None)

790
791
            wte = model.get_input_embeddings()
            if not self.is_encoder_decoder:
792
                inputs["inputs_embeds"] = wte(input_ids)
793
            else:
794
795
                inputs["inputs_embeds"] = wte(encoder_input_ids)
                inputs["decoder_inputs_embeds"] = wte(decoder_input_ids)
796

thomwolf's avatar
thomwolf committed
797
            with torch.no_grad():
798
                model(**inputs)
799

800
    def test_lm_head_model_random_no_beam_search_generate(self):
801
        config, inputs_dict = self.model_tester.prepare_config_and_inputs_for_common()
802
        input_ids = inputs_dict["input_ids"] if "input_ids" in inputs_dict else inputs_dict["inputs"]
803

Patrick von Platen's avatar
Patrick von Platen committed
804
805
806
        # make sure that input_ids is at most of size 15
        input_ids = input_ids[..., :15]

807
        # iterate over all generative models
808
        for model_class in self.all_generative_model_classes:
809
            model = model_class(config).to(torch_device)
Patrick von Platen's avatar
Patrick von Platen committed
810
            model.eval()
811
812

            if config.bos_token_id is None:
813
                # if bos token id is not defined, model needs input_ids
814
                with self.assertRaises(AssertionError):
815
                    model.generate(do_sample=True, max_length=5)
816
                # num_return_sequences = 1
817
                self._check_generated_ids(model.generate(input_ids, do_sample=True))
818
            else:
819
                # num_return_sequences = 1
820
                self._check_generated_ids(model.generate(do_sample=True, max_length=5))
821

822
            with self.assertRaises(AssertionError):
823
                # generating multiple sequences when no beam search generation
824
                # is not allowed as it would always generate the same sequences
825
                model.generate(input_ids, do_sample=False, num_beams=1, num_return_sequences=2)
826

827
828
            # num_return_sequences > 1, sample
            self._check_generated_ids(model.generate(input_ids, do_sample=True, num_return_sequences=2))
829
830

            # check bad words tokens language generation
831
            # create list of 1-seq bad token and list of 2-seq of bad tokens
832
833
834
835
            bad_words_ids = [
                self._generate_random_bad_tokens(1, model.config),
                self._generate_random_bad_tokens(2, model.config),
            ]
836
            output_tokens = model.generate(
837
                input_ids, do_sample=True, bad_words_ids=bad_words_ids, num_return_sequences=2
838
            )
839
            # only count generated tokens
840
841
            generated_ids = output_tokens[:, input_ids.shape[-1] :]
            self.assertFalse(self._check_match_tokens(generated_ids.tolist(), bad_words_ids))
842

843
844
    def test_lm_head_model_random_beam_search_generate(self):
        config, inputs_dict = self.model_tester.prepare_config_and_inputs_for_common()
845
846
847
        input_ids = (inputs_dict["input_ids"] if "input_ids" in inputs_dict else inputs_dict["inputs"]).to(
            torch_device
        )
848

Patrick von Platen's avatar
Patrick von Platen committed
849
850
851
        # make sure that input_ids is at most of size 15
        input_ids = input_ids[..., :15]

852
        for model_class in self.all_generative_model_classes:
853
            model = model_class(config).to(torch_device)
Patrick von Platen's avatar
Patrick von Platen committed
854
            model.eval()
855
856
857
858
859
860
861
862
863
864
865
866
867

            if config.bos_token_id is None:
                # if bos token id is not defined mobel needs input_ids, num_return_sequences = 1
                self._check_generated_ids(model.generate(input_ids, do_sample=True, num_beams=2))
            else:
                # num_return_sequences = 1
                self._check_generated_ids(model.generate(do_sample=True, max_length=5, num_beams=2))

            with self.assertRaises(AssertionError):
                # generating more sequences than having beams leads is not possible
                model.generate(input_ids, do_sample=False, num_return_sequences=3, num_beams=2)

            # num_return_sequences > 1, sample
Lysandre's avatar
Lysandre committed
868
869
870
871
872
873
874
875
            self._check_generated_ids(
                model.generate(
                    input_ids,
                    do_sample=True,
                    num_beams=2,
                    num_return_sequences=2,
                )
            )
876
877
878
879
880
            # num_return_sequences > 1, greedy
            self._check_generated_ids(model.generate(input_ids, do_sample=False, num_beams=2, num_return_sequences=2))

            # check bad words tokens language generation
            # create list of 1-seq bad token and list of 2-seq of bad tokens
881
882
883
884
            bad_words_ids = [
                self._generate_random_bad_tokens(1, model.config),
                self._generate_random_bad_tokens(2, model.config),
            ]
885
            output_tokens = model.generate(
886
                input_ids, do_sample=False, bad_words_ids=bad_words_ids, num_beams=2, num_return_sequences=2
887
            )
888
            # only count generated tokens
889
890
891
            generated_ids = output_tokens[:, input_ids.shape[-1] :]
            self.assertFalse(self._check_match_tokens(generated_ids.tolist(), bad_words_ids))

892
    def _generate_random_bad_tokens(self, num_bad_tokens: int, config) -> List[int]:
893
        # special tokens cannot be bad tokens
894
        special_tokens = [x for x in [config.bos_token_id, config.eos_token_id, config.pad_token_id] if x is not None]
895
896
897
        # create random bad tokens that are not special tokens
        bad_tokens = []
        while len(bad_tokens) < num_bad_tokens:
898
            token = ids_tensor((1, 1), self.model_tester.vocab_size).squeeze(0).cpu().numpy()[0]
899
900
901
902
            if token not in special_tokens:
                bad_tokens.append(token)
        return bad_tokens

903
    def _check_generated_ids(self, output_ids):
904
905
906
907
        for token_id in output_ids[0].tolist():
            self.assertGreaterEqual(token_id, 0)
            self.assertLess(token_id, self.model_tester.vocab_size)

908
909
910
911
912
913
914
915
916
917
918
919
    def _check_match_tokens(self, generated_ids, bad_words_ids):
        # for all bad word tokens
        for bad_word_ids in bad_words_ids:
            # for all slices in batch
            for generated_ids_slice in generated_ids:
                # for all word idx
                for i in range(len(bad_word_ids), len(generated_ids_slice)):
                    # if tokens match
                    if generated_ids_slice[i - len(bad_word_ids) : i] == bad_word_ids:
                        return True
        return False

920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
    @require_multigpu
    def test_multigpu_data_parallel_forward(self):
        config, inputs_dict = self.model_tester.prepare_config_and_inputs_for_common()

        # some params shouldn't be scattered by nn.DataParallel
        # so just remove them if they are present.
        blacklist_non_batched_params = ["head_mask"]
        for k in blacklist_non_batched_params:
            inputs_dict.pop(k, None)

        # move input tensors to cuda:O
        for k, v in inputs_dict.items():
            if torch.is_tensor(v):
                inputs_dict[k] = v.to(0)

        for model_class in self.all_model_classes:
            model = model_class(config=config)
            model.to(0)
            model.eval()

            # Wrap model in nn.DataParallel
            model = torch.nn.DataParallel(model)
            with torch.no_grad():
943
                _ = model(**self._prepare_for_class(inputs_dict, model_class))
944

945

946
global_rng = random.Random()
thomwolf's avatar
thomwolf committed
947
948


thomwolf's avatar
thomwolf committed
949
def ids_tensor(shape, vocab_size, rng=None, name=None):
950
    #  Creates a random int32 tensor of the shape within the vocab size
thomwolf's avatar
thomwolf committed
951
    if rng is None:
952
        rng = global_rng
thomwolf's avatar
thomwolf committed
953

thomwolf's avatar
thomwolf committed
954
955
956
    total_dims = 1
    for dim in shape:
        total_dims *= dim
thomwolf's avatar
thomwolf committed
957

thomwolf's avatar
thomwolf committed
958
959
960
    values = []
    for _ in range(total_dims):
        values.append(rng.randint(0, vocab_size - 1))
thomwolf's avatar
thomwolf committed
961

962
    return torch.tensor(data=values, dtype=torch.long, device=torch_device).view(shape).contiguous()
thomwolf's avatar
thomwolf committed
963
964


965
966
967
968
969
970
971
def random_attention_mask(shape, rng=None, name=None):
    attn_mask = ids_tensor(shape, vocab_size=2, rng=None, name=None)
    # make sure that at least one token is attended to for each batch
    attn_mask[:, -1] = 1
    return attn_mask


972
def floats_tensor(shape, scale=1.0, rng=None, name=None):
Patrick von Platen's avatar
Patrick von Platen committed
973
    """Creates a random float32 tensor"""
974
975
976
977
978
979
980
981
982
983
984
    if rng is None:
        rng = global_rng

    total_dims = 1
    for dim in shape:
        total_dims *= dim

    values = []
    for _ in range(total_dims):
        values.append(rng.random() * scale)

985
    return torch.tensor(data=values, dtype=torch.float, device=torch_device).view(shape).contiguous()
986
987


988
@require_torch
thomwolf's avatar
thomwolf committed
989
class ModelUtilsTest(unittest.TestCase):
990
    @slow
Patrick von Platen's avatar
Patrick von Platen committed
991
    def test_model_from_pretrained(self):
992
        for model_name in BERT_PRETRAINED_MODEL_ARCHIVE_LIST[:1]:
thomwolf's avatar
thomwolf committed
993
994
995
996
997
998
999
1000
1001
1002
1003
1004
1005
1006
1007
            config = BertConfig.from_pretrained(model_name)
            self.assertIsNotNone(config)
            self.assertIsInstance(config, PretrainedConfig)

            model = BertModel.from_pretrained(model_name)
            model, loading_info = BertModel.from_pretrained(model_name, output_loading_info=True)
            self.assertIsNotNone(model)
            self.assertIsInstance(model, PreTrainedModel)
            for value in loading_info.values():
                self.assertEqual(len(value), 0)

            config = BertConfig.from_pretrained(model_name, output_attentions=True, output_hidden_states=True)
            model = BertModel.from_pretrained(model_name, output_attentions=True, output_hidden_states=True)
            self.assertEqual(model.config.output_hidden_states, True)
            self.assertEqual(model.config, config)
1008
1009
1010
1011
1012
1013


@require_torch
class UtilsFunctionsTest(unittest.TestCase):

    # tests whether the top_k_top_p function behaves as expected
Patrick von Platen's avatar
Patrick von Platen committed
1014
    def test_top_k_top_p_filtering(self):
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025
1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079
1080
1081
1082
1083
1084
1085
1086
1087
1088
1089
1090
1091
1092
1093
1094
1095
1096
1097
1098
1099
1100
1101
1102
1103
1104
1105
1106
1107
1108
1109
1110
1111
1112
1113
1114
        logits = torch.tensor(
            [
                [
                    8.2220991,  # 3rd highest value; idx. 0
                    -0.5620044,
                    5.23229752,
                    4.0386393,
                    -6.8798378,
                    -0.54785802,
                    -3.2012153,
                    2.92777176,
                    1.88171953,
                    7.35341276,  # 5th highest value; idx. 9
                    8.43207833,  # 2nd highest value; idx. 10
                    -9.85711836,
                    -5.96209236,
                    -1.13039161,
                    -7.1115294,
                    -0.8369633,
                    -5.3186408,
                    7.06427407,
                    0.81369344,
                    -0.82023817,
                    -5.9179796,
                    0.58813443,
                    -6.99778438,
                    4.71551189,
                    -0.18771637,
                    7.44020759,  # 4th highest value; idx. 25
                    9.38450987,  # 1st highest value; idx. 26
                    2.12662941,
                    -9.32562038,
                    2.35652522,
                ],  # cummulative prob of 5 highest values <= 0.6
                [
                    0.58425518,
                    4.53139238,
                    -5.57510464,
                    -6.28030699,
                    -7.19529503,
                    -4.02122551,
                    1.39337037,
                    -6.06707057,
                    1.59480517,
                    -9.643119,
                    0.03907799,
                    0.67231762,
                    -8.88206726,
                    6.27115922,  # 4th highest value; idx. 13
                    2.28520723,
                    4.82767506,
                    4.30421368,
                    8.8275313,  # 2nd highest value; idx. 17
                    5.44029958,  # 5th highest value; idx. 18
                    -4.4735794,
                    7.38579536,  # 3rd highest value; idx. 20
                    -2.91051663,
                    2.61946077,
                    -2.5674762,
                    -9.48959302,
                    -4.02922645,
                    -1.35416918,
                    9.67702323,  # 1st highest value; idx. 27
                    -5.89478553,
                    1.85370467,
                ],  # cummulative prob of 5 highest values <= 0.6
            ],
            dtype=torch.float,
            device=torch_device,
        )

        non_inf_expected_idx = torch.tensor(
            [[0, 0], [0, 9], [0, 10], [0, 25], [0, 26], [1, 13], [1, 17], [1, 18], [1, 20], [1, 27]],
            dtype=torch.long,
            device=torch_device,
        )  # expected non filtered idx as noted above

        non_inf_expected_output = torch.tensor(
            [
                8.2221,
                7.3534,
                8.4321,
                7.4402,
                9.3845,
                6.2712,
                8.8275,
                5.4403,
                7.3858,
                9.6770,
            ],  # expected non filtered values as noted above
            dtype=torch.float,
            device=torch_device,
        )

        output = top_k_top_p_filtering(logits, top_k=10, top_p=0.6, min_tokens_to_keep=4)
        non_inf_output = output[output != -float("inf")].to(device=torch_device)
        non_inf_idx = (output != -float("inf")).nonzero().to(device=torch_device)

        self.assertTrue(torch.allclose(non_inf_expected_output, non_inf_output, atol=1e-12))
        self.assertTrue(torch.all(torch.eq(non_inf_expected_idx, non_inf_idx)))