test_modeling_common.py 69.5 KB
Newer Older
thomwolf's avatar
thomwolf committed
1
2
3
4
5
6
7
8
9
10
11
12
13
14
# coding=utf-8
# Copyright 2019 HuggingFace Inc.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
#     http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
Aymeric Augustin's avatar
Aymeric Augustin committed
15

16
import copy
17
import gc
18
import inspect
19
import os.path
Aymeric Augustin's avatar
Aymeric Augustin committed
20
import random
21
import tempfile
thomwolf's avatar
thomwolf committed
22
import unittest
23
import warnings
24
from typing import List, Tuple
thomwolf's avatar
thomwolf committed
25

Sylvain Gugger's avatar
Sylvain Gugger committed
26
27
from huggingface_hub import HfApi
from requests.exceptions import HTTPError
28
from transformers import is_torch_available, logging
29
from transformers.file_utils import WEIGHTS_NAME, is_torch_fx_available
30
from transformers.models.auto import get_values
Sylvain Gugger's avatar
Sylvain Gugger committed
31
32
33
34
35
36
37
38
39
40
41
from transformers.testing_utils import (
    ENDPOINT_STAGING,
    PASS,
    USER,
    CaptureLogger,
    is_staging_test,
    require_torch,
    require_torch_multi_gpu,
    slow,
    torch_device,
)
42

Aymeric Augustin's avatar
Aymeric Augustin committed
43

44
if is_torch_available():
45
    import numpy as np
46
    import torch
thomwolf's avatar
thomwolf committed
47

48
    from transformers import (
49
        BERT_PRETRAINED_MODEL_ARCHIVE_LIST,
50
        MODEL_FOR_CAUSAL_LM_MAPPING,
51
        MODEL_FOR_IMAGE_CLASSIFICATION_MAPPING,
52
        MODEL_FOR_MASKED_LM_MAPPING,
53
        MODEL_FOR_MULTIPLE_CHOICE_MAPPING,
54
        MODEL_FOR_NEXT_SENTENCE_PREDICTION_MAPPING,
55
        MODEL_FOR_QUESTION_ANSWERING_MAPPING,
56
57
58
        MODEL_FOR_SEQ_TO_SEQ_CAUSAL_LM_MAPPING,
        MODEL_FOR_SEQUENCE_CLASSIFICATION_MAPPING,
        MODEL_FOR_TOKEN_CLASSIFICATION_MAPPING,
59
        MODEL_MAPPING,
60
61
62
63
64
        AdaptiveEmbedding,
        BertConfig,
        BertModel,
        PretrainedConfig,
        PreTrainedModel,
65
        T5ForConditionalGeneration,
66
    )
thomwolf's avatar
thomwolf committed
67

68
69
70
if is_torch_fx_available():
    from transformers.modeling_fx_utils import symbolic_trace

71

72
73
74
def _config_zero_init(config):
    configs_no_init = copy.deepcopy(config)
    for key in configs_no_init.__dict__.keys():
75
        if "_range" in key or "_std" in key or "initializer_factor" in key:
Lysandre Debut's avatar
Lysandre Debut committed
76
            setattr(configs_no_init, key, 1e-10)
77
78
    return configs_no_init

thomwolf's avatar
thomwolf committed
79

80
81
82
TINY_T5 = "patrickvonplaten/t5-tiny-random"


83
84
85
86
87
@require_torch
class ModelTesterMixin:

    model_tester = None
    all_model_classes = ()
88
    all_generative_model_classes = ()
89
    fx_ready_model_classes = ()
Patrick von Platen's avatar
Patrick von Platen committed
90
91
92
93
    test_torchscript = True
    test_pruning = True
    test_resize_embeddings = True
    test_head_masking = True
94
    test_missing_keys = True
95
    test_model_parallel = False
96
    is_encoder_decoder = False
97
    test_sequence_classification_problem_types = False
98

99
100
    def _prepare_for_class(self, inputs_dict, model_class, return_labels=False):
        inputs_dict = copy.deepcopy(inputs_dict)
101
        if model_class in get_values(MODEL_FOR_MULTIPLE_CHOICE_MAPPING):
102
            inputs_dict = {
103
                k: v.unsqueeze(1).expand(-1, self.model_tester.num_choices, -1).contiguous()
104
                if isinstance(v, torch.Tensor) and v.ndim > 1
Sylvain Gugger's avatar
Sylvain Gugger committed
105
                else v
106
107
                for k, v in inputs_dict.items()
            }
108
109

        if return_labels:
110
            if model_class in get_values(MODEL_FOR_MULTIPLE_CHOICE_MAPPING):
111
                inputs_dict["labels"] = torch.ones(self.model_tester.batch_size, dtype=torch.long, device=torch_device)
112
            elif model_class in get_values(MODEL_FOR_QUESTION_ANSWERING_MAPPING):
113
114
115
116
117
118
                inputs_dict["start_positions"] = torch.zeros(
                    self.model_tester.batch_size, dtype=torch.long, device=torch_device
                )
                inputs_dict["end_positions"] = torch.zeros(
                    self.model_tester.batch_size, dtype=torch.long, device=torch_device
                )
119
            elif model_class in [
120
121
122
                *get_values(MODEL_FOR_SEQUENCE_CLASSIFICATION_MAPPING),
                *get_values(MODEL_FOR_NEXT_SENTENCE_PREDICTION_MAPPING),
                *get_values(MODEL_FOR_IMAGE_CLASSIFICATION_MAPPING),
123
            ]:
124
125
126
127
                inputs_dict["labels"] = torch.zeros(
                    self.model_tester.batch_size, dtype=torch.long, device=torch_device
                )
            elif model_class in [
128
129
130
131
                *get_values(MODEL_FOR_TOKEN_CLASSIFICATION_MAPPING),
                *get_values(MODEL_FOR_CAUSAL_LM_MAPPING),
                *get_values(MODEL_FOR_MASKED_LM_MAPPING),
                *get_values(MODEL_FOR_SEQ_TO_SEQ_CAUSAL_LM_MAPPING),
132
133
134
135
            ]:
                inputs_dict["labels"] = torch.zeros(
                    (self.model_tester.batch_size, self.model_tester.seq_length), dtype=torch.long, device=torch_device
                )
136
137
        return inputs_dict

Patrick von Platen's avatar
Patrick von Platen committed
138
    def test_save_load(self):
139
140
141
142
143
144
145
        config, inputs_dict = self.model_tester.prepare_config_and_inputs_for_common()

        for model_class in self.all_model_classes:
            model = model_class(config)
            model.to(torch_device)
            model.eval()
            with torch.no_grad():
146
                outputs = model(**self._prepare_for_class(inputs_dict, model_class))
Weizhen's avatar
Weizhen committed
147

148
            out_2 = outputs[0].cpu().numpy()
149
            out_2[np.isnan(out_2)] = 0
150

151
            with tempfile.TemporaryDirectory() as tmpdirname:
152
153
                model.save_pretrained(tmpdirname)
                model = model_class.from_pretrained(tmpdirname)
154
                model.to(torch_device)
155
                with torch.no_grad():
156
                    after_outputs = model(**self._prepare_for_class(inputs_dict, model_class))
thomwolf's avatar
thomwolf committed
157

158
159
160
                # Make sure we don't have nans
                out_1 = after_outputs[0].cpu().numpy()
                out_1[np.isnan(out_1)] = 0
thomwolf's avatar
thomwolf committed
161
162
                max_diff = np.amax(np.abs(out_1 - out_2))
                self.assertLessEqual(max_diff, 1e-5)
163

164
    def test_save_load__keys_to_ignore_on_save(self):
165
166
167
168
        config, inputs_dict = self.model_tester.prepare_config_and_inputs_for_common()

        for model_class in self.all_model_classes:
            model = model_class(config)
169
170
            _keys_to_ignore_on_save = getattr(model, "_keys_to_ignore_on_save", None)
            if _keys_to_ignore_on_save is None:
171
172
173
                continue

            # check the keys are in the original state_dict
174
            for k in _keys_to_ignore_on_save:
175
176
177
178
179
180
181
                self.assertIn(k, model.state_dict())

            # check that certain keys didn't get saved with the model
            with tempfile.TemporaryDirectory() as tmpdirname:
                model.save_pretrained(tmpdirname)
                output_model_file = os.path.join(tmpdirname, WEIGHTS_NAME)
                state_dict_saved = torch.load(output_model_file)
182
                for k in _keys_to_ignore_on_save:
183
184
                    self.assertNotIn(k, state_dict_saved)

Sylvain Gugger's avatar
Sylvain Gugger committed
185
186
187
                # Test we can load the state dict in the model, necessary for the checkpointing API in Trainer.
                load_result = model.load_state_dict(state_dict_saved, strict=False)
                self.assertTrue(
188
189
                    len(load_result.missing_keys) == 0
                    or set(load_result.missing_keys) == set(model._keys_to_ignore_on_save)
Sylvain Gugger's avatar
Sylvain Gugger committed
190
191
192
                )
                self.assertTrue(len(load_result.unexpected_keys) == 0)

193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
    def _mock_init_weights(self, module):
        if hasattr(module, "weight") and module.weight is not None:
            module.weight.data.fill_(3)
        if hasattr(module, "bias") and module.bias is not None:
            module.bias.data.fill_(3)

    def test_save_load_fast_init_from_base(self):
        config, inputs_dict = self.model_tester.prepare_config_and_inputs_for_common()
        base_class = MODEL_MAPPING[config.__class__]

        if isinstance(base_class, tuple):
            base_class = base_class[0]

        for model_class in self.all_model_classes:
            if model_class == base_class:
                continue

            # make a copy of model class to not break future tests
            # from https://stackoverflow.com/questions/9541025/how-to-copy-a-python-class
            class CopyClass(model_class):
                pass

            model_class_copy = CopyClass

            # make sure that all keys are expected for test
            model_class_copy._keys_to_ignore_on_load_missing = []

            # make init deterministic, but make sure that
            # non-initialized weights throw errors nevertheless
            model_class_copy._init_weights = self._mock_init_weights

            model = base_class(config)
            state_dict = model.state_dict()

            # this will often delete a single weight of a multi-weight module
            # to test an edge case
            random_key_to_del = random.choice(list(state_dict.keys()))
            del state_dict[random_key_to_del]

            # check that certain keys didn't get saved with the model
            with tempfile.TemporaryDirectory() as tmpdirname:
                model.save_pretrained(tmpdirname)
                torch.save(state_dict, os.path.join(tmpdirname, "pytorch_model.bin"))

                model_fast_init = model_class_copy.from_pretrained(tmpdirname)
                model_slow_init = model_class_copy.from_pretrained(tmpdirname, _fast_init=False)

                for key in model_fast_init.state_dict().keys():
                    max_diff = (model_slow_init.state_dict()[key] - model_fast_init.state_dict()[key]).sum().item()
                    self.assertLessEqual(max_diff, 1e-3, msg=f"{key} not identical")

    def test_save_load_fast_init_to_base(self):
        config, inputs_dict = self.model_tester.prepare_config_and_inputs_for_common()
        base_class = MODEL_MAPPING[config.__class__]

        if isinstance(base_class, tuple):
            base_class = base_class[0]

        for model_class in self.all_model_classes:

            if model_class == base_class:
                continue

            # make a copy of model class to not break future tests
            # from https://stackoverflow.com/questions/9541025/how-to-copy-a-python-class
            class CopyClass(base_class):
                pass

            base_class_copy = CopyClass

            # make sure that all keys are expected for test
            base_class_copy._keys_to_ignore_on_load_missing = []

            # make init deterministic, but make sure that
            # non-initialized weights throw errors nevertheless
            base_class_copy._init_weights = self._mock_init_weights

            model = model_class(config)
            state_dict = model.state_dict()

            # this will often delete a single weight of a multi-weight module
            # to test an edge case
            random_key_to_del = random.choice(list(state_dict.keys()))
            del state_dict[random_key_to_del]

            # check that certain keys didn't get saved with the model
            with tempfile.TemporaryDirectory() as tmpdirname:
                model.config.save_pretrained(tmpdirname)
                torch.save(state_dict, os.path.join(tmpdirname, "pytorch_model.bin"))

                model_fast_init = base_class_copy.from_pretrained(tmpdirname)
                model_slow_init = base_class_copy.from_pretrained(tmpdirname, _fast_init=False)

                for key in model_fast_init.state_dict().keys():
                    max_diff = (model_slow_init.state_dict()[key] - model_fast_init.state_dict()[key]).sum().item()
                    self.assertLessEqual(max_diff, 1e-3, msg=f"{key} not identical")

Patrick von Platen's avatar
Patrick von Platen committed
290
    def test_initialization(self):
291
292
293
294
295
296
297
298
        config, inputs_dict = self.model_tester.prepare_config_and_inputs_for_common()

        configs_no_init = _config_zero_init(config)
        for model_class in self.all_model_classes:
            model = model_class(config=configs_no_init)
            for name, param in model.named_parameters():
                if param.requires_grad:
                    self.assertIn(
Lysandre Debut's avatar
Lysandre Debut committed
299
                        ((param.data.mean() * 1e9).round() / 1e9).item(),
300
                        [0.0, 1.0],
301
                        msg=f"Parameter {name} of model {model_class} seems not properly initialized",
302
                    )
thomwolf's avatar
thomwolf committed
303

Patrick von Platen's avatar
Patrick von Platen committed
304
    def test_determinism(self):
305
306
307
308
309
310
311
        config, inputs_dict = self.model_tester.prepare_config_and_inputs_for_common()

        for model_class in self.all_model_classes:
            model = model_class(config)
            model.to(torch_device)
            model.eval()
            with torch.no_grad():
312
313
                first = model(**self._prepare_for_class(inputs_dict, model_class))[0]
                second = model(**self._prepare_for_class(inputs_dict, model_class))[0]
Weizhen's avatar
Weizhen committed
314

315
316
317
318
319
320
321
            out_1 = first.cpu().numpy()
            out_2 = second.cpu().numpy()
            out_1 = out_1[~np.isnan(out_1)]
            out_2 = out_2[~np.isnan(out_2)]
            max_diff = np.amax(np.abs(out_1 - out_2))
            self.assertLessEqual(max_diff, 1e-5)

322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
    def test_forward_signature(self):
        config, _ = self.model_tester.prepare_config_and_inputs_for_common()

        for model_class in self.all_model_classes:
            model = model_class(config)
            signature = inspect.signature(model.forward)
            # signature.parameters is an OrderedDict => so arg_names order is deterministic
            arg_names = [*signature.parameters.keys()]

            if model.config.is_encoder_decoder:
                expected_arg_names = [
                    "input_ids",
                    "attention_mask",
                    "decoder_input_ids",
                    "decoder_attention_mask",
                ]
338
                expected_arg_names.extend(
339
340
                    ["head_mask", "decoder_head_mask", "cross_attn_head_mask", "encoder_outputs"]
                    if "head_mask" and "decoder_head_mask" and "cross_attn_head_mask" in arg_names
341
342
343
                    else ["encoder_outputs"]
                )
                self.assertListEqual(arg_names[: len(expected_arg_names)], expected_arg_names)
344
345
346
347
            else:
                expected_arg_names = ["input_ids"]
                self.assertListEqual(arg_names[:1], expected_arg_names)

348
349
350
351
352
353
354
355
    def test_training(self):
        if not self.model_tester.is_training:
            return

        config, inputs_dict = self.model_tester.prepare_config_and_inputs_for_common()
        config.return_dict = True

        for model_class in self.all_model_classes:
356
            if model_class in get_values(MODEL_MAPPING):
357
358
359
360
361
362
363
364
365
366
367
368
369
370
                continue
            model = model_class(config)
            model.to(torch_device)
            model.train()
            inputs = self._prepare_for_class(inputs_dict, model_class, return_labels=True)
            loss = model(**inputs).loss
            loss.backward()

    def test_training_gradient_checkpointing(self):
        config, inputs_dict = self.model_tester.prepare_config_and_inputs_for_common()
        if not self.model_tester.is_training or not hasattr(config, "gradient_checkpointing"):
            return

        config.gradient_checkpointing = True
371
        config.use_cache = False
372
373
374
        config.return_dict = True

        for model_class in self.all_model_classes:
375
            if model_class in get_values(MODEL_MAPPING):
376
377
378
379
380
381
382
383
                continue
            model = model_class(config)
            model.to(torch_device)
            model.train()
            inputs = self._prepare_for_class(inputs_dict, model_class, return_labels=True)
            loss = model(**inputs).loss
            loss.backward()

Patrick von Platen's avatar
Patrick von Platen committed
384
    def test_attention_outputs(self):
385
        config, inputs_dict = self.model_tester.prepare_config_and_inputs_for_common()
Weizhen's avatar
Weizhen committed
386
387
        config.return_dict = True

sshleifer's avatar
sshleifer committed
388
        seq_len = getattr(self.model_tester, "seq_length", None)
sshleifer's avatar
sshleifer committed
389
390
        decoder_seq_length = getattr(self.model_tester, "decoder_seq_length", seq_len)
        encoder_seq_length = getattr(self.model_tester, "encoder_seq_length", seq_len)
Weizhen's avatar
Weizhen committed
391
        decoder_key_length = getattr(self.model_tester, "decoder_key_length", decoder_seq_length)
392
        encoder_key_length = getattr(self.model_tester, "key_length", encoder_seq_length)
Patrick von Platen's avatar
Patrick von Platen committed
393
394
395
        chunk_length = getattr(self.model_tester, "chunk_length", None)
        if chunk_length is not None and hasattr(self.model_tester, "num_hashes"):
            encoder_seq_length = encoder_seq_length * self.model_tester.num_hashes
396
397

        for model_class in self.all_model_classes:
398
            inputs_dict["output_attentions"] = True
Joseph Liu's avatar
Joseph Liu committed
399
            inputs_dict["output_hidden_states"] = False
400
            config.return_dict = True
401
402
403
404
            model = model_class(config)
            model.to(torch_device)
            model.eval()
            with torch.no_grad():
405
                outputs = model(**self._prepare_for_class(inputs_dict, model_class))
406
            attentions = outputs.encoder_attentions if config.is_encoder_decoder else outputs.attentions
407
408
409
410
411
412
413
414
415
            self.assertEqual(len(attentions), self.model_tester.num_hidden_layers)

            # check that output_attentions also work using config
            del inputs_dict["output_attentions"]
            config.output_attentions = True
            model = model_class(config)
            model.to(torch_device)
            model.eval()
            with torch.no_grad():
416
417
                outputs = model(**self._prepare_for_class(inputs_dict, model_class))
            attentions = outputs.encoder_attentions if config.is_encoder_decoder else outputs.attentions
418
            self.assertEqual(len(attentions), self.model_tester.num_hidden_layers)
Patrick von Platen's avatar
Patrick von Platen committed
419
420
421
422
423
424
425
426
427
428
429

            if chunk_length is not None:
                self.assertListEqual(
                    list(attentions[0].shape[-4:]),
                    [self.model_tester.num_attention_heads, encoder_seq_length, chunk_length, encoder_key_length],
                )
            else:
                self.assertListEqual(
                    list(attentions[0].shape[-3:]),
                    [self.model_tester.num_attention_heads, encoder_seq_length, encoder_key_length],
                )
430
            out_len = len(outputs)
thomwolf's avatar
thomwolf committed
431

432
            if self.is_encoder_decoder:
433
                correct_outlen = 5
434

435
436
437
438
                # loss is at first position
                if "labels" in inputs_dict:
                    correct_outlen += 1  # loss is added to beginning
                # Question Answering model returns start_logits and end_logits
439
                if model_class in get_values(MODEL_FOR_QUESTION_ANSWERING_MAPPING):
440
                    correct_outlen += 1  # start_logits and end_logits instead of only 1 output
441
442
                if "past_key_values" in outputs:
                    correct_outlen += 1  # past_key_values have been returned
Weizhen's avatar
Weizhen committed
443

Sam Shleifer's avatar
Sam Shleifer committed
444
445
                self.assertEqual(out_len, correct_outlen)

446
                # decoder attentions
447
                decoder_attentions = outputs.decoder_attentions
Sam Shleifer's avatar
Sam Shleifer committed
448
                self.assertIsInstance(decoder_attentions, (list, tuple))
449
                self.assertEqual(len(decoder_attentions), self.model_tester.num_hidden_layers)
thomwolf's avatar
thomwolf committed
450
                self.assertListEqual(
451
452
                    list(decoder_attentions[0].shape[-3:]),
                    [self.model_tester.num_attention_heads, decoder_seq_length, decoder_key_length],
453
                )
thomwolf's avatar
thomwolf committed
454

455
456
457
458
459
460
461
462
463
464
465
466
467
                # cross attentions
                cross_attentions = outputs.cross_attentions
                self.assertIsInstance(cross_attentions, (list, tuple))
                self.assertEqual(len(cross_attentions), self.model_tester.num_hidden_layers)
                self.assertListEqual(
                    list(cross_attentions[0].shape[-3:]),
                    [
                        self.model_tester.num_attention_heads,
                        decoder_seq_length,
                        encoder_key_length,
                    ],
                )

468
            # Check attention is always last and order is fine
469
            inputs_dict["output_attentions"] = True
Joseph Liu's avatar
Joseph Liu committed
470
            inputs_dict["output_hidden_states"] = True
471
472
473
474
            model = model_class(config)
            model.to(torch_device)
            model.eval()
            with torch.no_grad():
475
                outputs = model(**self._prepare_for_class(inputs_dict, model_class))
476

Weizhen's avatar
Weizhen committed
477
478
479
480
481
482
483
484
            if hasattr(self.model_tester, "num_hidden_states_types"):
                added_hidden_states = self.model_tester.num_hidden_states_types
            elif self.is_encoder_decoder:
                added_hidden_states = 2
            else:
                added_hidden_states = 1
            self.assertEqual(out_len + added_hidden_states, len(outputs))

485
486
            self_attentions = outputs.encoder_attentions if config.is_encoder_decoder else outputs.attentions

487
            self.assertEqual(len(self_attentions), self.model_tester.num_hidden_layers)
Patrick von Platen's avatar
Patrick von Platen committed
488
489
490
491
492
493
494
495
496
497
            if chunk_length is not None:
                self.assertListEqual(
                    list(self_attentions[0].shape[-4:]),
                    [self.model_tester.num_attention_heads, encoder_seq_length, chunk_length, encoder_key_length],
                )
            else:
                self.assertListEqual(
                    list(self_attentions[0].shape[-3:]),
                    [self.model_tester.num_attention_heads, encoder_seq_length, encoder_key_length],
                )
thomwolf's avatar
thomwolf committed
498

Patrick von Platen's avatar
Patrick von Platen committed
499
    def test_torchscript(self):
500
501
        config, inputs_dict = self.model_tester.prepare_config_and_inputs_for_common()
        self._create_and_check_torchscript(config, inputs_dict)
thomwolf's avatar
thomwolf committed
502

Patrick von Platen's avatar
Patrick von Platen committed
503
    def test_torchscript_output_attentions(self):
504
505
506
        config, inputs_dict = self.model_tester.prepare_config_and_inputs_for_common()
        config.output_attentions = True
        self._create_and_check_torchscript(config, inputs_dict)
thomwolf's avatar
thomwolf committed
507

Patrick von Platen's avatar
Patrick von Platen committed
508
    def test_torchscript_output_hidden_state(self):
509
510
511
        config, inputs_dict = self.model_tester.prepare_config_and_inputs_for_common()
        config.output_hidden_states = True
        self._create_and_check_torchscript(config, inputs_dict)
thomwolf's avatar
thomwolf committed
512

513
    def _create_and_check_torchscript(self, config, inputs_dict):
Patrick von Platen's avatar
Patrick von Platen committed
514
        if not self.test_torchscript:
515
            return
516

517
518
519
520
521
522
        configs_no_init = _config_zero_init(config)  # To be sure we have no Nan
        configs_no_init.torchscript = True
        for model_class in self.all_model_classes:
            model = model_class(config=configs_no_init)
            model.to(torch_device)
            model.eval()
523
            inputs = self._prepare_for_class(inputs_dict, model_class)
thomwolf's avatar
thomwolf committed
524

525
            try:
526
                if model.config.is_encoder_decoder:
527
                    model.config.use_cache = False  # FSTM still requires this hack -> FSTM should probably be refactored similar to BART afterward
528
529
530
531
532
533
534
535
536
537
                    input_ids = inputs["input_ids"]
                    attention_mask = inputs["attention_mask"]
                    decoder_input_ids = inputs["decoder_input_ids"]
                    decoder_attention_mask = inputs["decoder_attention_mask"]
                    traced_model = torch.jit.trace(
                        model, (input_ids, attention_mask, decoder_input_ids, decoder_attention_mask)
                    )
                else:
                    input_ids = inputs["input_ids"]
                    traced_model = torch.jit.trace(model, input_ids)
538
539
            except RuntimeError:
                self.fail("Couldn't trace module.")
thomwolf's avatar
thomwolf committed
540

541
            with tempfile.TemporaryDirectory() as tmp_dir_name:
542
                pt_file_name = os.path.join(tmp_dir_name, "traced_model.pt")
thomwolf's avatar
thomwolf committed
543

544
                try:
545
                    torch.jit.save(traced_model, pt_file_name)
546
547
                except Exception:
                    self.fail("Couldn't save module.")
thomwolf's avatar
thomwolf committed
548

549
550
551
552
                try:
                    loaded_model = torch.jit.load(pt_file_name)
                except Exception:
                    self.fail("Couldn't load module.")
LysandreJik's avatar
LysandreJik committed
553

554
555
            model.to(torch_device)
            model.eval()
thomwolf's avatar
thomwolf committed
556

557
558
            loaded_model.to(torch_device)
            loaded_model.eval()
thomwolf's avatar
thomwolf committed
559

560
561
562
563
            model_state_dict = model.state_dict()
            loaded_model_state_dict = loaded_model.state_dict()

            self.assertEqual(set(model_state_dict.keys()), set(loaded_model_state_dict.keys()))
thomwolf's avatar
thomwolf committed
564

565
            models_equal = True
566
567
            for layer_name, p1 in model_state_dict.items():
                p2 = loaded_model_state_dict[layer_name]
568
569
                if p1.data.ne(p2.data).sum() > 0:
                    models_equal = False
thomwolf's avatar
thomwolf committed
570

571
            self.assertTrue(models_equal)
thomwolf's avatar
thomwolf committed
572

573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
    def test_torch_fx(self):
        config, inputs_dict = self.model_tester.prepare_config_and_inputs_for_common()
        self._create_and_check_torch_fx_tracing(config, inputs_dict)

    def test_torch_fx_output_loss(self):
        config, inputs_dict = self.model_tester.prepare_config_and_inputs_for_common()
        self._create_and_check_torch_fx_tracing(config, inputs_dict, output_loss=True)

    def _create_and_check_torch_fx_tracing(self, config, inputs_dict, output_loss=False):
        if not is_torch_fx_available():
            return

        configs_no_init = _config_zero_init(config)  # To be sure we have no Nan
        configs_no_init.return_dict = False

        for model_class in self.fx_ready_model_classes:
            model = model_class(config=configs_no_init)
            model.to(torch_device)
            model.eval()
            inputs = self._prepare_for_class(inputs_dict, model_class, return_labels=output_loss)

            try:
                if model.config.is_encoder_decoder:
                    model.config.use_cache = False  # FSTM still requires this hack -> FSTM should probably be refactored similar to BART afterward
                    input_ids = inputs["input_ids"]
                    decoder_attention_mask = inputs["decoder_attention_mask"]
                    labels = inputs.get("labels", None)
                    input_names = ["input_ids", "attention_mask", "decoder_input_ids", "decoder_attention_mask"]
                    if labels is not None:
                        input_names.append("labels")
603
                    filtered_inputs = {k: v for (k, v) in inputs.items() if k in input_names}
604

605
                    model_output = model(**filtered_inputs)
606
607
608
609
610
611
612
613
614
615
616
617

                    batch_size = input_ids.shape[0]
                    encoder_sequence_length = input_ids.shape[1]
                    decoder_sequence_length = decoder_attention_mask.shape[1]

                    traced_model = symbolic_trace(
                        model,
                        input_names,
                        batch_size=batch_size,
                        sequence_length=[encoder_sequence_length, decoder_sequence_length],
                    )

618
                    traced_output = traced_model(**filtered_inputs)
619
620

                else:
621
                    input_names = ["input_ids", "attention_mask", "token_type_ids"]
622
                    input_ids = inputs["input_ids"]
623

624
                    labels = inputs.get("labels", None)
625
626
                    start_positions = inputs.get("start_positions", None)
                    end_positions = inputs.get("end_positions", None)
627
628
                    if labels is not None:
                        input_names.append("labels")
629
630
631
632
                    if start_positions is not None:
                        input_names.append("start_positions")
                    if end_positions is not None:
                        input_names.append("end_positions")
633

634
635
                    filtered_inputs = {k: v for (k, v) in inputs.items() if k in input_names}
                    input_names = filtered_inputs.keys()
636

637
                    model_output = model(**filtered_inputs)
638

639
640
641
                    rank = len(input_ids.shape)
                    if rank == 2:
                        batch_size, sequence_length = input_ids.shape
642
                        num_choices = -1
643
644
645
646
647
648
                    elif rank == 3:
                        batch_size, num_choices, sequence_length = input_ids.shape
                    else:
                        raise NotImplementedError(
                            f"symbolic_trace automatic parameters inference not implemented for input of rank {rank}."
                        )
649
650
651
652
653
654
655
656

                    traced_model = symbolic_trace(
                        model,
                        input_names,
                        batch_size=batch_size,
                        sequence_length=sequence_length,
                        num_choices=num_choices,
                    )
657
                    traced_output = traced_model(**filtered_inputs)
658
659
660
661

            except RuntimeError:
                self.fail("Couldn't trace module.")

662
663
664
665
666
667
668
669
670
671
672
673
674
            def flatten_output(output):
                flatten = []
                for x in output:
                    if isinstance(x, (tuple, list)):
                        flatten += flatten_output(x)
                    elif not isinstance(x, torch.Tensor):
                        continue
                    else:
                        flatten.append(x)
                return flatten

            model_output = flatten_output(model_output)
            traced_output = flatten_output(traced_output)
675
            num_outputs = len(model_output)
676
677
678
679
680
681

            for i in range(num_outputs):
                self.assertTrue(
                    torch.allclose(model_output[i], traced_output[i]),
                    f"traced {i}th output doesn't match model {i}th output for {model_class}",
                )
682

Patrick von Platen's avatar
Patrick von Platen committed
683
684
    def test_headmasking(self):
        if not self.test_head_masking:
685
            return
686

687
688
689
        global_rng.seed(42)
        config, inputs_dict = self.model_tester.prepare_config_and_inputs_for_common()
        global_rng.seed()
LysandreJik's avatar
LysandreJik committed
690

691
        inputs_dict["output_attentions"] = True
692
693
694
695
696
697
        config.output_hidden_states = True
        configs_no_init = _config_zero_init(config)  # To be sure we have no Nan
        for model_class in self.all_model_classes:
            model = model_class(config=configs_no_init)
            model.to(torch_device)
            model.eval()
LysandreJik's avatar
LysandreJik committed
698

699
700
701
            # Prepare head_mask
            # Set require_grad after having prepared the tensor to avoid error (leaf variable has been moved into the graph interior)
            head_mask = torch.ones(
Lysandre's avatar
Lysandre committed
702
703
704
                self.model_tester.num_hidden_layers,
                self.model_tester.num_attention_heads,
                device=torch_device,
705
706
707
708
            )
            head_mask[0, 0] = 0
            head_mask[-1, :-1] = 0
            head_mask.requires_grad_(requires_grad=True)
709
            inputs = self._prepare_for_class(inputs_dict, model_class).copy()
710
            inputs["head_mask"] = head_mask
711
712
713
714
715
            if model.config.is_encoder_decoder:
                signature = inspect.signature(model.forward)
                arg_names = [*signature.parameters.keys()]
                if "decoder_head_mask" in arg_names:  # necessary diferentiation because of T5 model
                    inputs["decoder_head_mask"] = head_mask
716
717
                if "cross_attn_head_mask" in arg_names:
                    inputs["cross_attn_head_mask"] = head_mask
718
            outputs = model(**inputs, return_dict=True)
719
720
721
722
723
724
725
726
727

            # Test that we can get a gradient back for importance score computation
            output = sum(t.sum() for t in outputs[0])
            output = output.sum()
            output.backward()
            multihead_outputs = head_mask.grad

            self.assertIsNotNone(multihead_outputs)
            self.assertEqual(len(multihead_outputs), self.model_tester.num_hidden_layers)
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748

            def check_attentions_validity(attentions):
                # Remove Nan
                for t in attentions:
                    self.assertLess(
                        torch.sum(torch.isnan(t)), t.numel() / 4
                    )  # Check we don't have more than 25% nans (arbitrary)
                attentions = [
                    t.masked_fill(torch.isnan(t), 0.0) for t in attentions
                ]  # remove them (the test is less complete)

                self.assertAlmostEqual(attentions[0][..., 0, :, :].flatten().sum().item(), 0.0)
                self.assertNotEqual(attentions[0][..., -1, :, :].flatten().sum().item(), 0.0)
                if len(attentions) > 2:  # encoder-decoder models have only 2 layers in each module
                    self.assertNotEqual(attentions[1][..., 0, :, :].flatten().sum().item(), 0.0)
                self.assertAlmostEqual(attentions[-1][..., -2, :, :].flatten().sum().item(), 0.0)
                self.assertNotEqual(attentions[-1][..., -1, :, :].flatten().sum().item(), 0.0)

            if model.config.is_encoder_decoder:
                check_attentions_validity(outputs.encoder_attentions)
                check_attentions_validity(outputs.decoder_attentions)
749
                check_attentions_validity(outputs.cross_attentions)
750
751
            else:
                check_attentions_validity(outputs.attentions)
752

Patrick von Platen's avatar
Patrick von Platen committed
753
754
    def test_head_pruning(self):
        if not self.test_pruning:
755
756
757
            return

        for model_class in self.all_model_classes:
Lysandre's avatar
Lysandre committed
758
759
760
761
            (
                config,
                inputs_dict,
            ) = self.model_tester.prepare_config_and_inputs_for_common()
762

763
764
            if "head_mask" in inputs_dict:
                del inputs_dict["head_mask"]
765

766
            inputs_dict["output_attentions"] = True
767
768
769
770
            config.output_hidden_states = False
            model = model_class(config=config)
            model.to(torch_device)
            model.eval()
771
772
773
774
            heads_to_prune = {
                0: list(range(1, self.model_tester.num_attention_heads)),
                -1: [0],
            }
775
776
            model.prune_heads(heads_to_prune)
            with torch.no_grad():
777
                outputs = model(**self._prepare_for_class(inputs_dict, model_class))
778

779
            attentions = outputs[-1]
780

781
782
783
            self.assertEqual(attentions[0].shape[-3], 1)
            self.assertEqual(attentions[1].shape[-3], self.model_tester.num_attention_heads)
            self.assertEqual(attentions[-1].shape[-3], self.model_tester.num_attention_heads - 1)
LysandreJik's avatar
LysandreJik committed
784

Patrick von Platen's avatar
Patrick von Platen committed
785
786
    def test_head_pruning_save_load_from_pretrained(self):
        if not self.test_pruning:
787
            return
LysandreJik's avatar
LysandreJik committed
788

789
        for model_class in self.all_model_classes:
Lysandre's avatar
Lysandre committed
790
791
792
793
            (
                config,
                inputs_dict,
            ) = self.model_tester.prepare_config_and_inputs_for_common()
794
795
796

            if "head_mask" in inputs_dict:
                del inputs_dict["head_mask"]
797

798
            inputs_dict["output_attentions"] = True
799
800
801
802
            config.output_hidden_states = False
            model = model_class(config=config)
            model.to(torch_device)
            model.eval()
803
804
805
806
            heads_to_prune = {
                0: list(range(1, self.model_tester.num_attention_heads)),
                -1: [0],
            }
807
            model.prune_heads(heads_to_prune)
808

809
            with tempfile.TemporaryDirectory() as temp_dir_name:
810
811
                model.save_pretrained(temp_dir_name)
                model = model_class.from_pretrained(temp_dir_name)
812
                model.to(torch_device)
813

814
            with torch.no_grad():
815
                outputs = model(**self._prepare_for_class(inputs_dict, model_class))
816
817
818
819
            attentions = outputs[-1]
            self.assertEqual(attentions[0].shape[-3], 1)
            self.assertEqual(attentions[1].shape[-3], self.model_tester.num_attention_heads)
            self.assertEqual(attentions[-1].shape[-3], self.model_tester.num_attention_heads - 1)
820

Patrick von Platen's avatar
Patrick von Platen committed
821
822
    def test_head_pruning_save_load_from_config_init(self):
        if not self.test_pruning:
823
            return
824

825
        for model_class in self.all_model_classes:
Lysandre's avatar
Lysandre committed
826
827
828
829
            (
                config,
                inputs_dict,
            ) = self.model_tester.prepare_config_and_inputs_for_common()
830

831
832
            if "head_mask" in inputs_dict:
                del inputs_dict["head_mask"]
833

834
            inputs_dict["output_attentions"] = True
835
            config.output_hidden_states = False
836

837
838
839
840
            heads_to_prune = {
                0: list(range(1, self.model_tester.num_attention_heads)),
                -1: [0],
            }
841
            config.pruned_heads = heads_to_prune
842

843
844
845
            model = model_class(config=config)
            model.to(torch_device)
            model.eval()
846

847
            with torch.no_grad():
848
                outputs = model(**self._prepare_for_class(inputs_dict, model_class))
849
            attentions = outputs[-1]
850

851
852
853
            self.assertEqual(attentions[0].shape[-3], 1)
            self.assertEqual(attentions[1].shape[-3], self.model_tester.num_attention_heads)
            self.assertEqual(attentions[-1].shape[-3], self.model_tester.num_attention_heads - 1)
854

Patrick von Platen's avatar
Patrick von Platen committed
855
856
    def test_head_pruning_integration(self):
        if not self.test_pruning:
857
            return
858

859
        for model_class in self.all_model_classes:
Lysandre's avatar
Lysandre committed
860
861
862
863
            (
                config,
                inputs_dict,
            ) = self.model_tester.prepare_config_and_inputs_for_common()
864

865
866
            if "head_mask" in inputs_dict:
                del inputs_dict["head_mask"]
867

868
            inputs_dict["output_attentions"] = True
869
            config.output_hidden_states = False
870

871
872
            heads_to_prune = {0: [0], 1: [1, 2]}
            config.pruned_heads = heads_to_prune
873

874
875
876
            model = model_class(config=config)
            model.to(torch_device)
            model.eval()
877

878
            with torch.no_grad():
879
                outputs = model(**self._prepare_for_class(inputs_dict, model_class))
880
            attentions = outputs[-1]
881

882
883
884
885
            self.assertEqual(attentions[0].shape[-3], self.model_tester.num_attention_heads - 1)
            self.assertEqual(attentions[1].shape[-3], self.model_tester.num_attention_heads - 2)
            self.assertEqual(attentions[2].shape[-3], self.model_tester.num_attention_heads)
            self.assertEqual(attentions[3].shape[-3], self.model_tester.num_attention_heads)
thomwolf's avatar
thomwolf committed
886

887
            with tempfile.TemporaryDirectory() as temp_dir_name:
888
889
                model.save_pretrained(temp_dir_name)
                model = model_class.from_pretrained(temp_dir_name)
890
                model.to(torch_device)
thomwolf's avatar
thomwolf committed
891

892
            with torch.no_grad():
893
                outputs = model(**self._prepare_for_class(inputs_dict, model_class))
894
            attentions = outputs[-1]
LysandreJik's avatar
LysandreJik committed
895

896
897
898
899
            self.assertEqual(attentions[0].shape[-3], self.model_tester.num_attention_heads - 1)
            self.assertEqual(attentions[1].shape[-3], self.model_tester.num_attention_heads - 2)
            self.assertEqual(attentions[2].shape[-3], self.model_tester.num_attention_heads)
            self.assertEqual(attentions[3].shape[-3], self.model_tester.num_attention_heads)
thomwolf's avatar
thomwolf committed
900

901
902
            heads_to_prune = {0: [0], 2: [1, 2]}
            model.prune_heads(heads_to_prune)
903

904
            with torch.no_grad():
905
                outputs = model(**self._prepare_for_class(inputs_dict, model_class))
906
            attentions = outputs[-1]
907

908
909
910
911
            self.assertEqual(attentions[0].shape[-3], self.model_tester.num_attention_heads - 1)
            self.assertEqual(attentions[1].shape[-3], self.model_tester.num_attention_heads - 2)
            self.assertEqual(attentions[2].shape[-3], self.model_tester.num_attention_heads - 2)
            self.assertEqual(attentions[3].shape[-3], self.model_tester.num_attention_heads)
912

913
            self.assertDictEqual(model.config.pruned_heads, {0: [0], 1: [1, 2], 2: [1, 2]})
thomwolf's avatar
thomwolf committed
914

Patrick von Platen's avatar
Patrick von Platen committed
915
    def test_hidden_states_output(self):
Joseph Liu's avatar
Joseph Liu committed
916
        def check_hidden_states_output(inputs_dict, config, model_class):
917
            model = model_class(config)
918
            model.to(torch_device)
thomwolf's avatar
thomwolf committed
919
            model.eval()
Joseph Liu's avatar
Joseph Liu committed
920

thomwolf's avatar
thomwolf committed
921
            with torch.no_grad():
922
                outputs = model(**self._prepare_for_class(inputs_dict, model_class))
923
924

            hidden_states = outputs.encoder_hidden_states if config.is_encoder_decoder else outputs.hidden_states
Patrick von Platen's avatar
Patrick von Platen committed
925

Sylvain Gugger's avatar
Sylvain Gugger committed
926
927
928
929
            expected_num_layers = getattr(
                self.model_tester, "expected_num_hidden_layers", self.model_tester.num_hidden_layers + 1
            )
            self.assertEqual(len(hidden_states), expected_num_layers)
930

Patrick von Platen's avatar
Patrick von Platen committed
931
932
933
934
935
936
937
            if hasattr(self.model_tester, "encoder_seq_length"):
                seq_length = self.model_tester.encoder_seq_length
                if hasattr(self.model_tester, "chunk_length") and self.model_tester.chunk_length > 1:
                    seq_length = seq_length * self.model_tester.chunk_length
            else:
                seq_length = self.model_tester.seq_length

938
            self.assertListEqual(
Lysandre's avatar
Lysandre committed
939
940
                list(hidden_states[0].shape[-2:]),
                [seq_length, self.model_tester.hidden_size],
941
            )
thomwolf's avatar
thomwolf committed
942

943
944
945
946
947
948
949
950
951
952
953
954
955
            if config.is_encoder_decoder:
                hidden_states = outputs.decoder_hidden_states

                self.assertIsInstance(hidden_states, (list, tuple))
                self.assertEqual(len(hidden_states), expected_num_layers)
                seq_len = getattr(self.model_tester, "seq_length", None)
                decoder_seq_length = getattr(self.model_tester, "decoder_seq_length", seq_len)

                self.assertListEqual(
                    list(hidden_states[0].shape[-2:]),
                    [decoder_seq_length, self.model_tester.hidden_size],
                )

Joseph Liu's avatar
Joseph Liu committed
956
957
958
959
960
961
962
963
964
965
966
967
        config, inputs_dict = self.model_tester.prepare_config_and_inputs_for_common()

        for model_class in self.all_model_classes:
            inputs_dict["output_hidden_states"] = True
            check_hidden_states_output(inputs_dict, config, model_class)

            # check that output_hidden_states also work using config
            del inputs_dict["output_hidden_states"]
            config.output_hidden_states = True

            check_hidden_states_output(inputs_dict, config, model_class)

968
969
970
971
972
973
974
975
976
977
978
979
980
    def test_retain_grad_hidden_states_attentions(self):
        config, inputs_dict = self.model_tester.prepare_config_and_inputs_for_common()
        config.output_hidden_states = True
        config.output_attentions = True

        # no need to test all models as different heads yield the same functionality
        model_class = self.all_model_classes[0]
        model = model_class(config)
        model.to(torch_device)

        inputs = self._prepare_for_class(inputs_dict, model_class)

        outputs = model(**inputs)
981
982

        print(outputs)
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
        output = outputs[0]

        if config.is_encoder_decoder:
            # Seq2Seq models
            encoder_hidden_states = outputs.encoder_hidden_states[0]
            encoder_attentions = outputs.encoder_attentions[0]
            encoder_hidden_states.retain_grad()
            encoder_attentions.retain_grad()

            decoder_hidden_states = outputs.decoder_hidden_states[0]
            decoder_attentions = outputs.decoder_attentions[0]
            decoder_hidden_states.retain_grad()
            decoder_attentions.retain_grad()

            cross_attentions = outputs.cross_attentions[0]
            cross_attentions.retain_grad()

            output.flatten()[0].backward(retain_graph=True)

            self.assertIsNotNone(encoder_hidden_states.grad)
            self.assertIsNotNone(encoder_attentions.grad)
            self.assertIsNotNone(decoder_hidden_states.grad)
            self.assertIsNotNone(decoder_attentions.grad)
            self.assertIsNotNone(cross_attentions.grad)
        else:
            # Encoder-/Decoder-only models
            hidden_states = outputs.hidden_states[0]
            attentions = outputs.attentions[0]

            hidden_states.retain_grad()
            attentions.retain_grad()

            output.flatten()[0].backward(retain_graph=True)

            self.assertIsNotNone(hidden_states.grad)
            self.assertIsNotNone(attentions.grad)

Pradhy729's avatar
Pradhy729 committed
1020
    def test_feed_forward_chunking(self):
Lysandre's avatar
Lysandre committed
1021
1022
1023
1024
        (
            original_config,
            inputs_dict,
        ) = self.model_tester.prepare_config_and_inputs_for_common()
Pradhy729's avatar
Pradhy729 committed
1025
1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
        for model_class in self.all_model_classes:
            torch.manual_seed(0)
            config = copy.deepcopy(original_config)
            model = model_class(config)
            model.to(torch_device)
            model.eval()

            hidden_states_no_chunk = model(**self._prepare_for_class(inputs_dict, model_class))[0]

            torch.manual_seed(0)
            config.chunk_size_feed_forward = 1
            model = model_class(config)
            model.to(torch_device)
            model.eval()

            hidden_states_with_chunk = model(**self._prepare_for_class(inputs_dict, model_class))[0]
            self.assertTrue(torch.allclose(hidden_states_no_chunk, hidden_states_with_chunk, atol=1e-3))

Patrick von Platen's avatar
Patrick von Platen committed
1043
    def test_resize_tokens_embeddings(self):
Lysandre's avatar
Lysandre committed
1044
1045
1046
1047
        (
            original_config,
            inputs_dict,
        ) = self.model_tester.prepare_config_and_inputs_for_common()
Patrick von Platen's avatar
Patrick von Platen committed
1048
        if not self.test_resize_embeddings:
1049
1050
1051
1052
1053
            return

        for model_class in self.all_model_classes:
            config = copy.deepcopy(original_config)
            model = model_class(config)
1054
            model.to(torch_device)
1055

Patrick von Platen's avatar
Patrick von Platen committed
1056
1057
1058
            if self.model_tester.is_training is False:
                model.eval()

1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
            model_vocab_size = config.vocab_size
            # Retrieve the embeddings and clone theme
            model_embed = model.resize_token_embeddings(model_vocab_size)
            cloned_embeddings = model_embed.weight.clone()

            # Check that resizing the token embeddings with a larger vocab size increases the model's vocab size
            model_embed = model.resize_token_embeddings(model_vocab_size + 10)
            self.assertEqual(model.config.vocab_size, model_vocab_size + 10)
            # Check that it actually resizes the embeddings matrix
            self.assertEqual(model_embed.weight.shape[0], cloned_embeddings.shape[0] + 10)
1069
            # Check that the model can still do a forward pass successfully (every parameter should be resized)
1070
            model(**self._prepare_for_class(inputs_dict, model_class))
1071
1072
1073
1074
1075
1076
1077

            # Check that resizing the token embeddings with a smaller vocab size decreases the model's vocab size
            model_embed = model.resize_token_embeddings(model_vocab_size - 15)
            self.assertEqual(model.config.vocab_size, model_vocab_size - 15)
            # Check that it actually resizes the embeddings matrix
            self.assertEqual(model_embed.weight.shape[0], cloned_embeddings.shape[0] - 15)

1078
1079
1080
            # Check that the model can still do a forward pass successfully (every parameter should be resized)
            # Input ids should be clamped to the maximum size of the vocabulary
            inputs_dict["input_ids"].clamp_(max=model_vocab_size - 15 - 1)
1081
1082
1083
1084

            # make sure that decoder_input_ids are resized as well
            if "decoder_input_ids" in inputs_dict:
                inputs_dict["decoder_input_ids"].clamp_(max=model_vocab_size - 15 - 1)
1085
            model(**self._prepare_for_class(inputs_dict, model_class))
1086

1087
1088
1089
1090
1091
1092
1093
1094
            # Check that adding and removing tokens has not modified the first part of the embedding matrix.
            models_equal = True
            for p1, p2 in zip(cloned_embeddings, model_embed.weight):
                if p1.data.ne(p2.data).sum() > 0:
                    models_equal = False

            self.assertTrue(models_equal)

1095
1096
1097
1098
1099
1100
1101
1102
1103
1104
1105
1106
1107
1108
1109
1110
1111
1112
1113
1114
1115
1116
1117
1118
1119
1120
1121
1122
1123
1124
1125
1126
1127
1128
1129
1130
1131
1132
1133
1134
1135
1136
1137
1138
1139
1140
1141
1142
1143
1144
1145
    def test_resize_embeddings_untied(self):
        (
            original_config,
            inputs_dict,
        ) = self.model_tester.prepare_config_and_inputs_for_common()
        if not self.test_resize_embeddings:
            return

        original_config.tie_word_embeddings = False

        # if model cannot untied embeddings -> leave test
        if original_config.tie_word_embeddings:
            return

        for model_class in self.all_model_classes:
            config = copy.deepcopy(original_config)
            model = model_class(config).to(torch_device)

            # if no output embeddings -> leave test
            if model.get_output_embeddings() is None:
                continue

            # Check that resizing the token embeddings with a larger vocab size increases the model's vocab size
            model_vocab_size = config.vocab_size
            model.resize_token_embeddings(model_vocab_size + 10)
            self.assertEqual(model.config.vocab_size, model_vocab_size + 10)
            output_embeds = model.get_output_embeddings()
            self.assertEqual(output_embeds.weight.shape[0], model_vocab_size + 10)
            # Check bias if present
            if output_embeds.bias is not None:
                self.assertEqual(output_embeds.bias.shape[0], model_vocab_size + 10)
            # Check that the model can still do a forward pass successfully (every parameter should be resized)
            model(**self._prepare_for_class(inputs_dict, model_class))

            # Check that resizing the token embeddings with a smaller vocab size decreases the model's vocab size
            model.resize_token_embeddings(model_vocab_size - 15)
            self.assertEqual(model.config.vocab_size, model_vocab_size - 15)
            # Check that it actually resizes the embeddings matrix
            output_embeds = model.get_output_embeddings()
            self.assertEqual(output_embeds.weight.shape[0], model_vocab_size - 15)
            # Check bias if present
            if output_embeds.bias is not None:
                self.assertEqual(output_embeds.bias.shape[0], model_vocab_size - 15)
            # Check that the model can still do a forward pass successfully (every parameter should be resized)
            # Input ids should be clamped to the maximum size of the vocabulary
            inputs_dict["input_ids"].clamp_(max=model_vocab_size - 15 - 1)
            if "decoder_input_ids" in inputs_dict:
                inputs_dict["decoder_input_ids"].clamp_(max=model_vocab_size - 15 - 1)
            # Check that the model can still do a forward pass successfully (every parameter should be resized)
            model(**self._prepare_for_class(inputs_dict, model_class))

Patrick von Platen's avatar
Patrick von Platen committed
1146
    def test_model_common_attributes(self):
1147
1148
1149
1150
1151
1152
1153
1154
1155
        config, inputs_dict = self.model_tester.prepare_config_and_inputs_for_common()

        for model_class in self.all_model_classes:
            model = model_class(config)
            self.assertIsInstance(model.get_input_embeddings(), (torch.nn.Embedding, AdaptiveEmbedding))
            model.set_input_embeddings(torch.nn.Embedding(10, 10))
            x = model.get_output_embeddings()
            self.assertTrue(x is None or isinstance(x, torch.nn.Linear))

1156
    def test_correct_missing_keys(self):
1157
1158
        if not self.test_missing_keys:
            return
1159
1160
1161
1162
1163
1164
1165
1166
1167
1168
        config, _ = self.model_tester.prepare_config_and_inputs_for_common()

        for model_class in self.all_model_classes:
            model = model_class(config)
            base_model_prefix = model.base_model_prefix

            if hasattr(model, base_model_prefix):
                with tempfile.TemporaryDirectory() as temp_dir_name:
                    model.base_model.save_pretrained(temp_dir_name)
                    model, loading_info = model_class.from_pretrained(temp_dir_name, output_loading_info=True)
1169
                    with self.subTest(msg=f"Missing keys for {model.__class__.__name__}"):
1170
1171
                        self.assertGreater(len(loading_info["missing_keys"]), 0)

1172
1173
1174
1175
1176
1177
1178
1179
1180
1181
1182
1183
1184
1185
1186
1187
1188
1189
1190
1191
1192
1193
1194
1195
1196
1197
1198
1199
1200
1201
1202
1203
1204
1205
1206
1207
1208
1209
1210
1211
1212
1213
1214
1215
1216
1217
1218
1219
    def test_tie_model_weights(self):
        if not self.test_torchscript:
            return

        config, inputs_dict = self.model_tester.prepare_config_and_inputs_for_common()

        def check_same_values(layer_1, layer_2):
            equal = True
            for p1, p2 in zip(layer_1.weight, layer_2.weight):
                if p1.data.ne(p2.data).sum() > 0:
                    equal = False
            return equal

        for model_class in self.all_model_classes:
            config.torchscript = True
            model_not_tied = model_class(config)
            if model_not_tied.get_output_embeddings() is None:
                continue

            config_tied = copy.deepcopy(config)
            config_tied.torchscript = False
            model_tied = model_class(config_tied)
            params_tied = list(model_tied.parameters())
            # Check that the embedding layer and decoding layer are the same in size and in value
            # self.assertTrue(check_same_values(embeddings, decoding))

            # # Check that after modification, they remain the same.
            # embeddings.weight.data.div_(2)
            # # Check that the embedding layer and decoding layer are the same in size and in value
            # self.assertTrue(embeddings.weight.shape, decoding.weight.shape)
            # self.assertTrue(check_same_values(embeddings, decoding))

            # # Check that after modification, they remain the same.
            # decoding.weight.data.div_(4)
            # # Check that the embedding layer and decoding layer are the same in size and in value
            # self.assertTrue(embeddings.weight.shape, decoding.weight.shape)
            # self.assertTrue(check_same_values(embeddings, decoding))

            # Check that after resize they remain tied.
            model_tied.resize_token_embeddings(config.vocab_size + 10)
            params_tied_2 = list(model_tied.parameters())
            self.assertEqual(len(params_tied_2), len(params_tied))

            # decoding.weight.data.mul_(20)
            # # Check that the embedding layer and decoding layer are the same in size and in value
            # self.assertTrue(model.transformer.wte.weight.shape, model.lm_head.weight.shape)
            # self.assertTrue(check_same_values(model.transformer.wte, model.lm_head))

1220
1221
1222
    def test_model_outputs_equivalence(self):
        config, inputs_dict = self.model_tester.prepare_config_and_inputs_for_common()

Sam Shleifer's avatar
Sam Shleifer committed
1223
1224
1225
1226
        def set_nan_tensor_to_zero(t):
            t[t != t] = 0
            return t

1227
1228
1229
1230
1231
1232
1233
1234
1235
1236
1237
1238
1239
        def check_equivalence(model, tuple_inputs, dict_inputs, additional_kwargs={}):
            with torch.no_grad():
                tuple_output = model(**tuple_inputs, return_dict=False, **additional_kwargs)
                dict_output = model(**dict_inputs, return_dict=True, **additional_kwargs).to_tuple()

                def recursive_check(tuple_object, dict_object):
                    if isinstance(tuple_object, (List, Tuple)):
                        for tuple_iterable_value, dict_iterable_value in zip(tuple_object, dict_object):
                            recursive_check(tuple_iterable_value, dict_iterable_value)
                    elif tuple_object is None:
                        return
                    else:
                        self.assertTrue(
Sam Shleifer's avatar
Sam Shleifer committed
1240
1241
1242
                            torch.allclose(
                                set_nan_tensor_to_zero(tuple_object), set_nan_tensor_to_zero(dict_object), atol=1e-5
                            ),
1243
                            msg=f"Tuple and dict output are not equal. Difference: {torch.max(torch.abs(tuple_object - dict_object))}. Tuple has `nan`: {torch.isnan(tuple_object).any()} and `inf`: {torch.isinf(tuple_object)}. Dict has `nan`: {torch.isnan(dict_object).any()} and `inf`: {torch.isinf(dict_object)}.",
1244
1245
1246
1247
1248
1249
1250
1251
1252
1253
1254
1255
1256
1257
1258
1259
1260
1261
1262
1263
1264
1265
1266
1267
1268
1269
1270
1271
1272
1273
1274
1275
1276
1277
1278
1279
1280
1281
1282
                        )

                recursive_check(tuple_output, dict_output)

        for model_class in self.all_model_classes:
            model = model_class(config)
            model.to(torch_device)
            model.eval()

            tuple_inputs = self._prepare_for_class(inputs_dict, model_class)
            dict_inputs = self._prepare_for_class(inputs_dict, model_class)
            check_equivalence(model, tuple_inputs, dict_inputs)

            tuple_inputs = self._prepare_for_class(inputs_dict, model_class, return_labels=True)
            dict_inputs = self._prepare_for_class(inputs_dict, model_class, return_labels=True)
            check_equivalence(model, tuple_inputs, dict_inputs)

            tuple_inputs = self._prepare_for_class(inputs_dict, model_class)
            dict_inputs = self._prepare_for_class(inputs_dict, model_class)
            check_equivalence(model, tuple_inputs, dict_inputs, {"output_hidden_states": True})

            tuple_inputs = self._prepare_for_class(inputs_dict, model_class)
            dict_inputs = self._prepare_for_class(inputs_dict, model_class)
            check_equivalence(model, tuple_inputs, dict_inputs, {"output_attentions": True})

            tuple_inputs = self._prepare_for_class(inputs_dict, model_class, return_labels=True)
            dict_inputs = self._prepare_for_class(inputs_dict, model_class, return_labels=True)
            check_equivalence(model, tuple_inputs, dict_inputs, {"output_hidden_states": True})

            tuple_inputs = self._prepare_for_class(inputs_dict, model_class, return_labels=True)
            dict_inputs = self._prepare_for_class(inputs_dict, model_class, return_labels=True)
            check_equivalence(model, tuple_inputs, dict_inputs, {"output_attentions": True})

            tuple_inputs = self._prepare_for_class(inputs_dict, model_class, return_labels=True)
            dict_inputs = self._prepare_for_class(inputs_dict, model_class, return_labels=True)
            check_equivalence(
                model, tuple_inputs, dict_inputs, {"output_hidden_states": True, "output_attentions": True}
            )

Patrick von Platen's avatar
Patrick von Platen committed
1283
    def test_inputs_embeds(self):
1284
1285
1286
1287
        config, inputs_dict = self.model_tester.prepare_config_and_inputs_for_common()

        for model_class in self.all_model_classes:
            model = model_class(config)
1288
            model.to(torch_device)
thomwolf's avatar
thomwolf committed
1289
            model.eval()
1290

1291
            inputs = copy.deepcopy(self._prepare_for_class(inputs_dict, model_class))
Weizhen's avatar
Weizhen committed
1292

1293
1294
1295
1296
1297
1298
1299
1300
1301
            if not self.is_encoder_decoder:
                input_ids = inputs["input_ids"]
                del inputs["input_ids"]
            else:
                encoder_input_ids = inputs["input_ids"]
                decoder_input_ids = inputs.get("decoder_input_ids", encoder_input_ids)
                del inputs["input_ids"]
                inputs.pop("decoder_input_ids", None)

1302
1303
            wte = model.get_input_embeddings()
            if not self.is_encoder_decoder:
1304
                inputs["inputs_embeds"] = wte(input_ids)
1305
            else:
1306
1307
                inputs["inputs_embeds"] = wte(encoder_input_ids)
                inputs["decoder_inputs_embeds"] = wte(decoder_input_ids)
1308

thomwolf's avatar
thomwolf committed
1309
            with torch.no_grad():
Weizhen's avatar
Weizhen committed
1310
                model(**inputs)[0]
1311

1312
1313
    @require_torch_multi_gpu
    def test_multi_gpu_data_parallel_forward(self):
1314
1315
1316
1317
        config, inputs_dict = self.model_tester.prepare_config_and_inputs_for_common()

        # some params shouldn't be scattered by nn.DataParallel
        # so just remove them if they are present.
1318
        blacklist_non_batched_params = ["head_mask", "decoder_head_mask", "cross_attn_head_mask"]
1319
1320
1321
1322
1323
1324
1325
1326
1327
1328
1329
1330
1331
1332
1333
1334
        for k in blacklist_non_batched_params:
            inputs_dict.pop(k, None)

        # move input tensors to cuda:O
        for k, v in inputs_dict.items():
            if torch.is_tensor(v):
                inputs_dict[k] = v.to(0)

        for model_class in self.all_model_classes:
            model = model_class(config=config)
            model.to(0)
            model.eval()

            # Wrap model in nn.DataParallel
            model = torch.nn.DataParallel(model)
            with torch.no_grad():
1335
                _ = model(**self._prepare_for_class(inputs_dict, model_class))
1336

1337
1338
1339
    @require_torch_multi_gpu
    def test_model_parallelization(self):
        if not self.test_model_parallel:
1340
            return
1341

1342
        # a candidate for testing_utils
1343
        def get_current_gpu_memory_use():
Patrick von Platen's avatar
Patrick von Platen committed
1344
            """returns a list of cuda memory allocations per GPU in MBs"""
1345
1346
1347
1348
1349

            per_device_memory = []
            for id in range(torch.cuda.device_count()):
                with torch.cuda.device(id):
                    per_device_memory.append(torch.cuda.memory_allocated() >> 20)
1350
1351
1352
1353
1354
1355
1356
1357
1358

            return per_device_memory

        # Needs a large model to see the difference.
        config = self.model_tester.get_large_model_config()

        for model_class in self.all_parallelizable_model_classes:
            torch.cuda.empty_cache()

1359
1360
1361
            # 1. single gpu memory load + unload + memory measurements
            # Retrieve initial memory usage (can easily be ~0.6-1.5GB if cuda-kernels have been preloaded by previous tests)
            memory_at_start = get_current_gpu_memory_use()
1362

1363
1364
            # Put model on device 0 and take a memory snapshot
            model = model_class(config)
1365
1366
1367
            model.to("cuda:0")
            memory_after_model_load = get_current_gpu_memory_use()

1368
1369
1370
            # The memory use on device 0 should be higher than it was initially.
            self.assertGreater(memory_after_model_load[0], memory_at_start[0])

1371
            del model
1372
            gc.collect()
1373
1374
            torch.cuda.empty_cache()

1375
1376
1377
            # 2. MP test
            # it's essential to re-calibrate the usage before the next stage
            memory_at_start = get_current_gpu_memory_use()
1378
1379

            # Spread model layers over multiple devices
1380
            model = model_class(config)
1381
1382
1383
1384
1385
            model.parallelize()
            memory_after_parallelization = get_current_gpu_memory_use()

            # Assert that the memory use on all devices is higher than it was when loaded only on CPU
            for n in range(torch.cuda.device_count()):
1386
                self.assertGreater(memory_after_parallelization[n], memory_at_start[n])
1387

1388
            # Assert that the memory use of device 0 is lower than it was when the entire model was loaded on it
1389
1390
            self.assertLess(memory_after_parallelization[0], memory_after_model_load[0])

1391
1392
            # Assert that the memory use of device 1 is higher than it was when the entire model was loaded
            # on device 0 and device 1 wasn't used at all
1393
1394
1395
            self.assertGreater(memory_after_parallelization[1], memory_after_model_load[1])

            del model
1396
            gc.collect()
1397
1398
1399
1400
1401
            torch.cuda.empty_cache()

    @require_torch_multi_gpu
    def test_model_parallel_equal_results(self):
        if not self.test_model_parallel:
1402
            return
1403
1404
1405
1406
1407
1408

        config, inputs_dict = self.model_tester.prepare_config_and_inputs_for_common()

        for model_class in self.all_parallelizable_model_classes:
            inputs_dict = self._prepare_for_class(inputs_dict, model_class)

1409
            def cast_to_device(dictionary, device):
1410
1411
1412
                output = {}
                for k, v in dictionary.items():
                    if isinstance(v, torch.Tensor):
1413
                        output[k] = v.to(device)
1414
1415
1416
1417
1418
                    else:
                        output[k] = v

                return output

1419
1420
1421
1422
1423
1424
            model = model_class(config)
            output = model(**cast_to_device(inputs_dict, "cpu"))

            model.parallelize()

            parallel_output = model(**cast_to_device(inputs_dict, "cuda:0"))
1425
1426
1427
1428
1429
1430
1431
1432

            for value, parallel_value in zip(output, parallel_output):
                if isinstance(value, torch.Tensor):
                    self.assertTrue(torch.allclose(value, parallel_value.to("cpu"), atol=1e-7))
                elif isinstance(value, (Tuple, List)):
                    for value_, parallel_value_ in zip(value, parallel_value):
                        self.assertTrue(torch.allclose(value_, parallel_value_.to("cpu"), atol=1e-7))

1433
1434
1435
1436
1437
1438
1439
1440
1441
1442
1443
1444
1445
1446
1447
1448
1449
1450
1451
1452
1453
1454
1455
1456
1457
1458
1459
1460
    @require_torch_multi_gpu
    def test_model_parallel_beam_search(self):
        if not self.test_model_parallel:
            return

        all_generative_and_parallelizable_model_classes = tuple(
            set(self.all_generative_model_classes).intersection(self.all_parallelizable_model_classes)
        )

        config, inputs_dict = self.model_tester.prepare_config_and_inputs_for_common()

        for model_class in all_generative_and_parallelizable_model_classes:
            inputs_dict = self._prepare_for_class(inputs_dict, model_class)
            model = model_class(config)

            def cast_to_device(dictionary, device):
                output = {}
                for k, v in dictionary.items():
                    if isinstance(v, torch.Tensor):
                        output[k] = v.to(device)
                    else:
                        output[k] = v

                return output

            model.parallelize()
            model.generate(**cast_to_device(inputs_dict, "cuda:0"), num_beams=2)

1461
1462
1463
1464
1465
1466
1467
1468
1469
1470
1471
1472
1473
1474
1475
1476
1477
1478
1479
1480
1481
1482
1483
1484
1485
1486
1487
1488
1489
1490
1491
1492
1493
    def test_problem_types(self):
        if not self.test_sequence_classification_problem_types:
            return

        config, inputs_dict = self.model_tester.prepare_config_and_inputs_for_common()

        problem_types = [
            {"title": "multi_label_classification", "num_labels": 2, "dtype": torch.float},
            {"title": "single_label_classification", "num_labels": 1, "dtype": torch.long},
            {"title": "regression", "num_labels": 1, "dtype": torch.float},
        ]

        for model_class in self.all_model_classes:
            if model_class not in get_values(MODEL_FOR_SEQUENCE_CLASSIFICATION_MAPPING):
                continue

            for problem_type in problem_types:
                with self.subTest(msg=f"Testing {model_class} with {problem_type['title']}"):

                    config.problem_type = problem_type["title"]
                    config.num_labels = problem_type["num_labels"]

                    model = model_class(config)
                    model.to(torch_device)
                    model.train()

                    inputs = self._prepare_for_class(inputs_dict, model_class, return_labels=True)

                    if problem_type["num_labels"] > 1:
                        inputs["labels"] = inputs["labels"].unsqueeze(1).repeat(1, problem_type["num_labels"])

                    inputs["labels"] = inputs["labels"].to(problem_type["dtype"])

1494
1495
1496
1497
1498
1499
1500
1501
                    # This tests that we do not trigger the warning form PyTorch "Using a target size that is different
                    # to the input size. This will likely lead to incorrect results due to broadcasting. Please ensure
                    # they have the same size." which is a symptom something in wrong for the regression problem.
                    # See https://github.com/huggingface/transformers/issues/11780
                    with warnings.catch_warnings(record=True) as warning_list:
                        loss = model(**inputs).loss
                    self.assertListEqual(warning_list, [])

1502
1503
                    loss.backward()

1504

1505
global_rng = random.Random()
thomwolf's avatar
thomwolf committed
1506
1507


thomwolf's avatar
thomwolf committed
1508
def ids_tensor(shape, vocab_size, rng=None, name=None):
1509
    #  Creates a random int32 tensor of the shape within the vocab size
thomwolf's avatar
thomwolf committed
1510
    if rng is None:
1511
        rng = global_rng
thomwolf's avatar
thomwolf committed
1512

thomwolf's avatar
thomwolf committed
1513
1514
1515
    total_dims = 1
    for dim in shape:
        total_dims *= dim
thomwolf's avatar
thomwolf committed
1516

thomwolf's avatar
thomwolf committed
1517
1518
1519
    values = []
    for _ in range(total_dims):
        values.append(rng.randint(0, vocab_size - 1))
thomwolf's avatar
thomwolf committed
1520

1521
    return torch.tensor(data=values, dtype=torch.long, device=torch_device).view(shape).contiguous()
thomwolf's avatar
thomwolf committed
1522
1523


1524
1525
1526
1527
1528
1529
1530
def random_attention_mask(shape, rng=None, name=None):
    attn_mask = ids_tensor(shape, vocab_size=2, rng=None, name=None)
    # make sure that at least one token is attended to for each batch
    attn_mask[:, -1] = 1
    return attn_mask


1531
def floats_tensor(shape, scale=1.0, rng=None, name=None):
Patrick von Platen's avatar
Patrick von Platen committed
1532
    """Creates a random float32 tensor"""
1533
1534
1535
1536
1537
1538
1539
1540
1541
1542
1543
    if rng is None:
        rng = global_rng

    total_dims = 1
    for dim in shape:
        total_dims *= dim

    values = []
    for _ in range(total_dims):
        values.append(rng.random() * scale)

1544
    return torch.tensor(data=values, dtype=torch.float, device=torch_device).view(shape).contiguous()
1545
1546


1547
@require_torch
thomwolf's avatar
thomwolf committed
1548
class ModelUtilsTest(unittest.TestCase):
1549
    @slow
Patrick von Platen's avatar
Patrick von Platen committed
1550
    def test_model_from_pretrained(self):
1551
        for model_name in BERT_PRETRAINED_MODEL_ARCHIVE_LIST[:1]:
thomwolf's avatar
thomwolf committed
1552
1553
1554
1555
1556
1557
1558
1559
1560
1561
1562
1563
            config = BertConfig.from_pretrained(model_name)
            self.assertIsNotNone(config)
            self.assertIsInstance(config, PretrainedConfig)

            model = BertModel.from_pretrained(model_name)
            model, loading_info = BertModel.from_pretrained(model_name, output_loading_info=True)
            self.assertIsNotNone(model)
            self.assertIsInstance(model, PreTrainedModel)
            for value in loading_info.values():
                self.assertEqual(len(value), 0)

            config = BertConfig.from_pretrained(model_name, output_attentions=True, output_hidden_states=True)
Lysandre Debut's avatar
Lysandre Debut committed
1564
1565
1566
1567

            # Not sure this is the intended behavior. TODO fix Lysandre & Thom
            config.name_or_path = model_name

thomwolf's avatar
thomwolf committed
1568
1569
1570
            model = BertModel.from_pretrained(model_name, output_attentions=True, output_hidden_states=True)
            self.assertEqual(model.config.output_hidden_states, True)
            self.assertEqual(model.config, config)
1571
1572
1573
1574
1575

    def test_model_from_pretrained_with_different_pretrained_model_name(self):
        model = T5ForConditionalGeneration.from_pretrained(TINY_T5)
        self.assertIsNotNone(model)

1576
1577
        logger = logging.get_logger("transformers.configuration_utils")
        with CaptureLogger(logger) as cl:
1578
            BertModel.from_pretrained(TINY_T5)
1579
        self.assertTrue("You are using a model of type t5 to instantiate a model of type bert" in cl.out)
Sylvain Gugger's avatar
Sylvain Gugger committed
1580
1581
1582
1583
1584
1585
1586
1587
1588
1589
1590
1591
1592
1593
1594
1595
1596
1597
1598
1599
1600
1601
1602
1603
1604
1605
1606
1607
1608
1609
1610
1611
1612
1613
1614
1615
1616
1617
1618
1619
1620
1621
1622
1623
1624
1625
1626
1627
1628
1629
1630


@require_torch
@is_staging_test
class ModelPushToHubTester(unittest.TestCase):
    @classmethod
    def setUpClass(cls):
        cls._api = HfApi(endpoint=ENDPOINT_STAGING)
        cls._token = cls._api.login(username=USER, password=PASS)

    @classmethod
    def tearDownClass(cls):
        try:
            cls._api.delete_repo(token=cls._token, name="test-model")
        except HTTPError:
            pass

        try:
            cls._api.delete_repo(token=cls._token, name="test-model-org", organization="valid_org")
        except HTTPError:
            pass

    def test_push_to_hub(self):
        config = BertConfig(
            vocab_size=99, hidden_size=32, num_hidden_layers=5, num_attention_heads=4, intermediate_size=37
        )
        model = BertModel(config)
        with tempfile.TemporaryDirectory() as tmp_dir:
            model.save_pretrained(tmp_dir, push_to_hub=True, repo_name="test-model", use_auth_token=self._token)

            new_model = BertModel.from_pretrained(f"{USER}/test-model")
            for p1, p2 in zip(model.parameters(), new_model.parameters()):
                self.assertTrue(torch.equal(p1, p2))

    def test_push_to_hub_in_organization(self):
        config = BertConfig(
            vocab_size=99, hidden_size=32, num_hidden_layers=5, num_attention_heads=4, intermediate_size=37
        )
        model = BertModel(config)
        with tempfile.TemporaryDirectory() as tmp_dir:
            model.save_pretrained(
                tmp_dir,
                push_to_hub=True,
                repo_name="test-model-org",
                use_auth_token=self._token,
                organization="valid_org",
            )

            new_model = BertModel.from_pretrained("valid_org/test-model-org")
            for p1, p2 in zip(model.parameters(), new_model.parameters()):
                self.assertTrue(torch.equal(p1, p2))