test_modeling_common.py 116 KB
Newer Older
thomwolf's avatar
thomwolf committed
1
2
3
4
5
6
7
8
9
10
11
12
13
14
# coding=utf-8
# Copyright 2019 HuggingFace Inc.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
#     http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
Aymeric Augustin's avatar
Aymeric Augustin committed
15

16
import copy
17
import gc
18
import inspect
19
import json
20
import os
21
import os.path
Aymeric Augustin's avatar
Aymeric Augustin committed
22
import random
23
import sys
24
import tempfile
thomwolf's avatar
thomwolf committed
25
import unittest
26
import unittest.mock as mock
27
import warnings
28
from pathlib import Path
NielsRogge's avatar
NielsRogge committed
29
from typing import Dict, List, Tuple
thomwolf's avatar
thomwolf committed
30

31
32
33
import numpy as np

import transformers
34
from huggingface_hub import Repository, delete_repo, login
Sylvain Gugger's avatar
Sylvain Gugger committed
35
from requests.exceptions import HTTPError
36
37
38
39
40
41
42
43
from transformers import (
    AutoConfig,
    AutoModel,
    AutoModelForSequenceClassification,
    PretrainedConfig,
    is_torch_available,
    logging,
)
44
from transformers.models.auto import get_values
Sylvain Gugger's avatar
Sylvain Gugger committed
45
46
47
48
from transformers.testing_utils import (
    PASS,
    USER,
    CaptureLogger,
49
    TestCasePlus,
50
51
    is_pt_flax_cross_test,
    is_pt_tf_cross_test,
Sylvain Gugger's avatar
Sylvain Gugger committed
52
53
54
55
56
57
    is_staging_test,
    require_torch,
    require_torch_multi_gpu,
    slow,
    torch_device,
)
Sylvain Gugger's avatar
Sylvain Gugger committed
58
from transformers.utils import WEIGHTS_INDEX_NAME, WEIGHTS_NAME, is_flax_available, is_torch_fx_available
59

Aymeric Augustin's avatar
Aymeric Augustin committed
60

61
62
sys.path.append(str(Path(__file__).parent.parent / "utils"))

63
from test_module.custom_configuration import CustomConfig, NoSuperInitConfig  # noqa E402
64
65


66
if is_torch_available():
67
    import torch
68
    from torch import nn
thomwolf's avatar
thomwolf committed
69

70
    from test_module.custom_modeling import CustomModel, NoSuperInitModel
71
    from transformers import (
72
        BERT_PRETRAINED_MODEL_ARCHIVE_LIST,
73
        MODEL_FOR_AUDIO_XVECTOR_MAPPING,
NielsRogge's avatar
NielsRogge committed
74
        MODEL_FOR_CAUSAL_IMAGE_MODELING_MAPPING,
75
        MODEL_FOR_CAUSAL_LM_MAPPING,
76
        MODEL_FOR_IMAGE_CLASSIFICATION_MAPPING,
NielsRogge's avatar
NielsRogge committed
77
        MODEL_FOR_MASKED_IMAGE_MODELING_MAPPING,
78
        MODEL_FOR_MASKED_LM_MAPPING,
79
        MODEL_FOR_MULTIPLE_CHOICE_MAPPING,
80
        MODEL_FOR_NEXT_SENTENCE_PREDICTION_MAPPING,
81
        MODEL_FOR_QUESTION_ANSWERING_MAPPING,
NielsRogge's avatar
NielsRogge committed
82
        MODEL_FOR_SEMANTIC_SEGMENTATION_MAPPING,
83
84
85
        MODEL_FOR_SEQ_TO_SEQ_CAUSAL_LM_MAPPING,
        MODEL_FOR_SEQUENCE_CLASSIFICATION_MAPPING,
        MODEL_FOR_TOKEN_CLASSIFICATION_MAPPING,
86
        MODEL_MAPPING,
87
88
89
90
        AdaptiveEmbedding,
        BertConfig,
        BertModel,
        PreTrainedModel,
91
        T5Config,
92
        T5ForConditionalGeneration,
93
    )
Sylvain Gugger's avatar
Sylvain Gugger committed
94
    from transformers.modeling_utils import shard_checkpoint
thomwolf's avatar
thomwolf committed
95

96
97
98
99
100
101
102
if is_flax_available():
    import jax.numpy as jnp
    from transformers.modeling_flax_pytorch_utils import (
        convert_pytorch_state_dict_to_flax,
        load_flax_weights_in_pytorch_model,
    )

103
if is_torch_fx_available():
104
    from transformers.utils.fx import symbolic_trace
105

106

107
108
109
def _config_zero_init(config):
    configs_no_init = copy.deepcopy(config)
    for key in configs_no_init.__dict__.keys():
110
        if "_range" in key or "_std" in key or "initializer_factor" in key or "layer_scale" in key:
Lysandre Debut's avatar
Lysandre Debut committed
111
            setattr(configs_no_init, key, 1e-10)
112
113
    return configs_no_init

thomwolf's avatar
thomwolf committed
114

115
116
117
TINY_T5 = "patrickvonplaten/t5-tiny-random"


118
119
120
121
122
@require_torch
class ModelTesterMixin:

    model_tester = None
    all_model_classes = ()
123
    all_generative_model_classes = ()
124
    fx_compatible = False
Patrick von Platen's avatar
Patrick von Platen committed
125
126
127
    test_torchscript = True
    test_pruning = True
    test_resize_embeddings = True
128
    test_resize_position_embeddings = False
Patrick von Platen's avatar
Patrick von Platen committed
129
    test_head_masking = True
130
    test_mismatched_shapes = True
131
    test_missing_keys = True
132
    test_model_parallel = False
133
    is_encoder_decoder = False
134
    has_attentions = True
135

136
137
    def _prepare_for_class(self, inputs_dict, model_class, return_labels=False):
        inputs_dict = copy.deepcopy(inputs_dict)
138
        if model_class in get_values(MODEL_FOR_MULTIPLE_CHOICE_MAPPING):
139
            inputs_dict = {
140
                k: v.unsqueeze(1).expand(-1, self.model_tester.num_choices, -1).contiguous()
141
                if isinstance(v, torch.Tensor) and v.ndim > 1
Sylvain Gugger's avatar
Sylvain Gugger committed
142
                else v
143
144
                for k, v in inputs_dict.items()
            }
145
146
        elif model_class in get_values(MODEL_FOR_AUDIO_XVECTOR_MAPPING):
            inputs_dict.pop("attention_mask")
147
148

        if return_labels:
149
            if model_class in get_values(MODEL_FOR_MULTIPLE_CHOICE_MAPPING):
150
                inputs_dict["labels"] = torch.ones(self.model_tester.batch_size, dtype=torch.long, device=torch_device)
151
            elif model_class in get_values(MODEL_FOR_QUESTION_ANSWERING_MAPPING):
152
153
154
155
156
157
                inputs_dict["start_positions"] = torch.zeros(
                    self.model_tester.batch_size, dtype=torch.long, device=torch_device
                )
                inputs_dict["end_positions"] = torch.zeros(
                    self.model_tester.batch_size, dtype=torch.long, device=torch_device
                )
158
            elif model_class in [
159
160
161
                *get_values(MODEL_FOR_SEQUENCE_CLASSIFICATION_MAPPING),
                *get_values(MODEL_FOR_NEXT_SENTENCE_PREDICTION_MAPPING),
                *get_values(MODEL_FOR_IMAGE_CLASSIFICATION_MAPPING),
162
            ]:
163
164
165
166
                inputs_dict["labels"] = torch.zeros(
                    self.model_tester.batch_size, dtype=torch.long, device=torch_device
                )
            elif model_class in [
167
168
                *get_values(MODEL_FOR_TOKEN_CLASSIFICATION_MAPPING),
                *get_values(MODEL_FOR_CAUSAL_LM_MAPPING),
NielsRogge's avatar
NielsRogge committed
169
                *get_values(MODEL_FOR_CAUSAL_IMAGE_MODELING_MAPPING),
170
171
                *get_values(MODEL_FOR_MASKED_LM_MAPPING),
                *get_values(MODEL_FOR_SEQ_TO_SEQ_CAUSAL_LM_MAPPING),
172
173
174
175
            ]:
                inputs_dict["labels"] = torch.zeros(
                    (self.model_tester.batch_size, self.model_tester.seq_length), dtype=torch.long, device=torch_device
                )
NielsRogge's avatar
NielsRogge committed
176
177
178
179
180
            elif model_class in get_values(MODEL_FOR_MASKED_IMAGE_MODELING_MAPPING):
                num_patches = self.model_tester.image_size // self.model_tester.patch_size
                inputs_dict["bool_masked_pos"] = torch.zeros(
                    (self.model_tester.batch_size, num_patches**2), dtype=torch.long, device=torch_device
                )
NielsRogge's avatar
NielsRogge committed
181
182
183
184
185
            elif model_class in get_values(MODEL_FOR_SEMANTIC_SEGMENTATION_MAPPING):
                batch_size, num_channels, height, width = inputs_dict["pixel_values"].shape
                inputs_dict["labels"] = torch.zeros(
                    [self.model_tester.batch_size, height, width], device=torch_device
                ).long()
186

187
188
        return inputs_dict

Patrick von Platen's avatar
Patrick von Platen committed
189
    def test_save_load(self):
190
191
192
193
194
195
196
        config, inputs_dict = self.model_tester.prepare_config_and_inputs_for_common()

        for model_class in self.all_model_classes:
            model = model_class(config)
            model.to(torch_device)
            model.eval()
            with torch.no_grad():
197
                outputs = model(**self._prepare_for_class(inputs_dict, model_class))
Weizhen's avatar
Weizhen committed
198

199
            out_2 = outputs[0].cpu().numpy()
200
            out_2[np.isnan(out_2)] = 0
201

202
            with tempfile.TemporaryDirectory() as tmpdirname:
203
204
                model.save_pretrained(tmpdirname)
                model = model_class.from_pretrained(tmpdirname)
205
                model.to(torch_device)
206
                with torch.no_grad():
207
                    after_outputs = model(**self._prepare_for_class(inputs_dict, model_class))
thomwolf's avatar
thomwolf committed
208

209
210
211
                # Make sure we don't have nans
                out_1 = after_outputs[0].cpu().numpy()
                out_1[np.isnan(out_1)] = 0
thomwolf's avatar
thomwolf committed
212
213
                max_diff = np.amax(np.abs(out_1 - out_2))
                self.assertLessEqual(max_diff, 1e-5)
214

215
    def test_save_load_keys_to_ignore_on_save(self):
216
217
218
219
        config, inputs_dict = self.model_tester.prepare_config_and_inputs_for_common()

        for model_class in self.all_model_classes:
            model = model_class(config)
220
221
            _keys_to_ignore_on_save = getattr(model, "_keys_to_ignore_on_save", None)
            if _keys_to_ignore_on_save is None:
222
223
224
                continue

            # check the keys are in the original state_dict
225
            for k in _keys_to_ignore_on_save:
226
                self.assertIn(k, model.state_dict().keys(), "\n".join(model.state_dict().keys()))
227
228
229
230
231
232

            # check that certain keys didn't get saved with the model
            with tempfile.TemporaryDirectory() as tmpdirname:
                model.save_pretrained(tmpdirname)
                output_model_file = os.path.join(tmpdirname, WEIGHTS_NAME)
                state_dict_saved = torch.load(output_model_file)
233
                for k in _keys_to_ignore_on_save:
234
                    self.assertNotIn(k, state_dict_saved.keys(), "\n".join(state_dict_saved.keys()))
235

Sylvain Gugger's avatar
Sylvain Gugger committed
236
237
238
                # Test we can load the state dict in the model, necessary for the checkpointing API in Trainer.
                load_result = model.load_state_dict(state_dict_saved, strict=False)
                self.assertTrue(
239
240
                    len(load_result.missing_keys) == 0
                    or set(load_result.missing_keys) == set(model._keys_to_ignore_on_save)
Sylvain Gugger's avatar
Sylvain Gugger committed
241
242
243
                )
                self.assertTrue(len(load_result.unexpected_keys) == 0)

244
245
246
247
248
249
250
251
252
253
254
    def test_gradient_checkpointing_backward_compatibility(self):
        config, inputs_dict = self.model_tester.prepare_config_and_inputs_for_common()

        for model_class in self.all_model_classes:
            if not model_class.supports_gradient_checkpointing:
                continue

            config.gradient_checkpointing = True
            model = model_class(config)
            self.assertTrue(model.is_gradient_checkpointing)

255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
    def test_gradient_checkpointing_enable_disable(self):
        config, inputs_dict = self.model_tester.prepare_config_and_inputs_for_common()

        for model_class in self.all_model_classes:
            if not model_class.supports_gradient_checkpointing:
                continue

            # at init model should have gradient checkpointing disabled
            model = model_class(config)
            self.assertFalse(model.is_gradient_checkpointing)

            # check enable works
            model.gradient_checkpointing_enable()
            self.assertTrue(model.is_gradient_checkpointing)

            # check disable works
            model.gradient_checkpointing_disable()
            self.assertFalse(model.is_gradient_checkpointing)

274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
    def _mock_init_weights(self, module):
        if hasattr(module, "weight") and module.weight is not None:
            module.weight.data.fill_(3)
        if hasattr(module, "bias") and module.bias is not None:
            module.bias.data.fill_(3)

    def test_save_load_fast_init_from_base(self):
        config, inputs_dict = self.model_tester.prepare_config_and_inputs_for_common()
        base_class = MODEL_MAPPING[config.__class__]

        if isinstance(base_class, tuple):
            base_class = base_class[0]

        for model_class in self.all_model_classes:
            if model_class == base_class:
                continue

            # make a copy of model class to not break future tests
            # from https://stackoverflow.com/questions/9541025/how-to-copy-a-python-class
            class CopyClass(model_class):
                pass

            model_class_copy = CopyClass

            # make sure that all keys are expected for test
            model_class_copy._keys_to_ignore_on_load_missing = []

            # make init deterministic, but make sure that
            # non-initialized weights throw errors nevertheless
            model_class_copy._init_weights = self._mock_init_weights

            model = base_class(config)
            state_dict = model.state_dict()

            # this will often delete a single weight of a multi-weight module
            # to test an edge case
            random_key_to_del = random.choice(list(state_dict.keys()))
            del state_dict[random_key_to_del]

            # check that certain keys didn't get saved with the model
            with tempfile.TemporaryDirectory() as tmpdirname:
                model.save_pretrained(tmpdirname)
                torch.save(state_dict, os.path.join(tmpdirname, "pytorch_model.bin"))

                model_fast_init = model_class_copy.from_pretrained(tmpdirname)
                model_slow_init = model_class_copy.from_pretrained(tmpdirname, _fast_init=False)

                for key in model_fast_init.state_dict().keys():
                    max_diff = (model_slow_init.state_dict()[key] - model_fast_init.state_dict()[key]).sum().item()
                    self.assertLessEqual(max_diff, 1e-3, msg=f"{key} not identical")

    def test_save_load_fast_init_to_base(self):
        config, inputs_dict = self.model_tester.prepare_config_and_inputs_for_common()
        base_class = MODEL_MAPPING[config.__class__]

        if isinstance(base_class, tuple):
            base_class = base_class[0]

        for model_class in self.all_model_classes:

            if model_class == base_class:
                continue

            # make a copy of model class to not break future tests
            # from https://stackoverflow.com/questions/9541025/how-to-copy-a-python-class
            class CopyClass(base_class):
                pass

            base_class_copy = CopyClass

            # make sure that all keys are expected for test
            base_class_copy._keys_to_ignore_on_load_missing = []

            # make init deterministic, but make sure that
            # non-initialized weights throw errors nevertheless
            base_class_copy._init_weights = self._mock_init_weights

            model = model_class(config)
            state_dict = model.state_dict()

            # this will often delete a single weight of a multi-weight module
            # to test an edge case
            random_key_to_del = random.choice(list(state_dict.keys()))
            del state_dict[random_key_to_del]

            # check that certain keys didn't get saved with the model
            with tempfile.TemporaryDirectory() as tmpdirname:
                model.config.save_pretrained(tmpdirname)
                torch.save(state_dict, os.path.join(tmpdirname, "pytorch_model.bin"))

                model_fast_init = base_class_copy.from_pretrained(tmpdirname)
                model_slow_init = base_class_copy.from_pretrained(tmpdirname, _fast_init=False)

                for key in model_fast_init.state_dict().keys():
                    max_diff = (model_slow_init.state_dict()[key] - model_fast_init.state_dict()[key]).sum().item()
                    self.assertLessEqual(max_diff, 1e-3, msg=f"{key} not identical")

Patrick von Platen's avatar
Patrick von Platen committed
371
    def test_initialization(self):
372
373
374
375
376
377
378
379
        config, inputs_dict = self.model_tester.prepare_config_and_inputs_for_common()

        configs_no_init = _config_zero_init(config)
        for model_class in self.all_model_classes:
            model = model_class(config=configs_no_init)
            for name, param in model.named_parameters():
                if param.requires_grad:
                    self.assertIn(
Lysandre Debut's avatar
Lysandre Debut committed
380
                        ((param.data.mean() * 1e9).round() / 1e9).item(),
381
                        [0.0, 1.0],
382
                        msg=f"Parameter {name} of model {model_class} seems not properly initialized",
383
                    )
thomwolf's avatar
thomwolf committed
384

Patrick von Platen's avatar
Patrick von Platen committed
385
    def test_determinism(self):
386
387
388
389
390
391
        config, inputs_dict = self.model_tester.prepare_config_and_inputs_for_common()
        for model_class in self.all_model_classes:
            model = model_class(config)
            model.to(torch_device)
            model.eval()
            with torch.no_grad():
392
393
                first = model(**self._prepare_for_class(inputs_dict, model_class))[0]
                second = model(**self._prepare_for_class(inputs_dict, model_class))[0]
Weizhen's avatar
Weizhen committed
394

395
396
397
398
399
400
401
            out_1 = first.cpu().numpy()
            out_2 = second.cpu().numpy()
            out_1 = out_1[~np.isnan(out_1)]
            out_2 = out_2[~np.isnan(out_2)]
            max_diff = np.amax(np.abs(out_1 - out_2))
            self.assertLessEqual(max_diff, 1e-5)

402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
    def test_forward_signature(self):
        config, _ = self.model_tester.prepare_config_and_inputs_for_common()

        for model_class in self.all_model_classes:
            model = model_class(config)
            signature = inspect.signature(model.forward)
            # signature.parameters is an OrderedDict => so arg_names order is deterministic
            arg_names = [*signature.parameters.keys()]

            if model.config.is_encoder_decoder:
                expected_arg_names = [
                    "input_ids",
                    "attention_mask",
                    "decoder_input_ids",
                    "decoder_attention_mask",
                ]
418
                expected_arg_names.extend(
419
420
                    ["head_mask", "decoder_head_mask", "cross_attn_head_mask", "encoder_outputs"]
                    if "head_mask" and "decoder_head_mask" and "cross_attn_head_mask" in arg_names
421
422
423
                    else ["encoder_outputs"]
                )
                self.assertListEqual(arg_names[: len(expected_arg_names)], expected_arg_names)
424
425
426
427
            else:
                expected_arg_names = ["input_ids"]
                self.assertListEqual(arg_names[:1], expected_arg_names)

428
429
430
431
432
    def test_training(self):
        if not self.model_tester.is_training:
            return

        for model_class in self.all_model_classes:
433
434
435
            config, inputs_dict = self.model_tester.prepare_config_and_inputs_for_common()
            config.return_dict = True

436
            if model_class in get_values(MODEL_MAPPING):
437
                continue
438

439
440
441
442
443
444
445
446
            model = model_class(config)
            model.to(torch_device)
            model.train()
            inputs = self._prepare_for_class(inputs_dict, model_class, return_labels=True)
            loss = model(**inputs).loss
            loss.backward()

    def test_training_gradient_checkpointing(self):
447
        if not self.model_tester.is_training:
448
449
450
            return

        for model_class in self.all_model_classes:
451
452
453
454
            config, inputs_dict = self.model_tester.prepare_config_and_inputs_for_common()
            config.use_cache = False
            config.return_dict = True

455
            if model_class in get_values(MODEL_MAPPING) or not model_class.supports_gradient_checkpointing:
456
457
458
                continue
            model = model_class(config)
            model.to(torch_device)
459
            model.gradient_checkpointing_enable()
460
461
462
463
464
            model.train()
            inputs = self._prepare_for_class(inputs_dict, model_class, return_labels=True)
            loss = model(**inputs).loss
            loss.backward()

Patrick von Platen's avatar
Patrick von Platen committed
465
    def test_attention_outputs(self):
466
467
        if not self.has_attentions:
            pass
468

469
470
        else:
            config, inputs_dict = self.model_tester.prepare_config_and_inputs_for_common()
471
            config.return_dict = True
472

473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
            seq_len = getattr(self.model_tester, "seq_length", None)
            decoder_seq_length = getattr(self.model_tester, "decoder_seq_length", seq_len)
            encoder_seq_length = getattr(self.model_tester, "encoder_seq_length", seq_len)
            decoder_key_length = getattr(self.model_tester, "decoder_key_length", decoder_seq_length)
            encoder_key_length = getattr(self.model_tester, "key_length", encoder_seq_length)
            chunk_length = getattr(self.model_tester, "chunk_length", None)
            if chunk_length is not None and hasattr(self.model_tester, "num_hashes"):
                encoder_seq_length = encoder_seq_length * self.model_tester.num_hashes

            for model_class in self.all_model_classes:
                inputs_dict["output_attentions"] = True
                inputs_dict["output_hidden_states"] = False
                config.return_dict = True
                model = model_class(config)
                model.to(torch_device)
                model.eval()
                with torch.no_grad():
                    outputs = model(**self._prepare_for_class(inputs_dict, model_class))
                attentions = outputs.encoder_attentions if config.is_encoder_decoder else outputs.attentions
                self.assertEqual(len(attentions), self.model_tester.num_hidden_layers)

                # check that output_attentions also work using config
                del inputs_dict["output_attentions"]
                config.output_attentions = True
                model = model_class(config)
                model.to(torch_device)
                model.eval()
                with torch.no_grad():
                    outputs = model(**self._prepare_for_class(inputs_dict, model_class))
                attentions = outputs.encoder_attentions if config.is_encoder_decoder else outputs.attentions
                self.assertEqual(len(attentions), self.model_tester.num_hidden_layers)

                if chunk_length is not None:
                    self.assertListEqual(
                        list(attentions[0].shape[-4:]),
                        [self.model_tester.num_attention_heads, encoder_seq_length, chunk_length, encoder_key_length],
                    )
                else:
                    self.assertListEqual(
                        list(attentions[0].shape[-3:]),
                        [self.model_tester.num_attention_heads, encoder_seq_length, encoder_key_length],
                    )
                out_len = len(outputs)

                if self.is_encoder_decoder:
                    correct_outlen = 5

                    # loss is at first position
                    if "labels" in inputs_dict:
                        correct_outlen += 1  # loss is added to beginning
                    # Question Answering model returns start_logits and end_logits
                    if model_class in get_values(MODEL_FOR_QUESTION_ANSWERING_MAPPING):
                        correct_outlen += 1  # start_logits and end_logits instead of only 1 output
                    if "past_key_values" in outputs:
                        correct_outlen += 1  # past_key_values have been returned

                    self.assertEqual(out_len, correct_outlen)

                    # decoder attentions
                    decoder_attentions = outputs.decoder_attentions
                    self.assertIsInstance(decoder_attentions, (list, tuple))
                    self.assertEqual(len(decoder_attentions), self.model_tester.num_hidden_layers)
                    self.assertListEqual(
                        list(decoder_attentions[0].shape[-3:]),
                        [self.model_tester.num_attention_heads, decoder_seq_length, decoder_key_length],
                    )
thomwolf's avatar
thomwolf committed
539

540
541
542
543
544
545
546
547
548
549
550
551
                    # cross attentions
                    cross_attentions = outputs.cross_attentions
                    self.assertIsInstance(cross_attentions, (list, tuple))
                    self.assertEqual(len(cross_attentions), self.model_tester.num_hidden_layers)
                    self.assertListEqual(
                        list(cross_attentions[0].shape[-3:]),
                        [
                            self.model_tester.num_attention_heads,
                            decoder_seq_length,
                            encoder_key_length,
                        ],
                    )
552

553
554
555
556
557
558
559
560
                # Check attention is always last and order is fine
                inputs_dict["output_attentions"] = True
                inputs_dict["output_hidden_states"] = True
                model = model_class(config)
                model.to(torch_device)
                model.eval()
                with torch.no_grad():
                    outputs = model(**self._prepare_for_class(inputs_dict, model_class))
561

562
563
564
565
566
567
568
                if hasattr(self.model_tester, "num_hidden_states_types"):
                    added_hidden_states = self.model_tester.num_hidden_states_types
                elif self.is_encoder_decoder:
                    added_hidden_states = 2
                else:
                    added_hidden_states = 1
                self.assertEqual(out_len + added_hidden_states, len(outputs))
Weizhen's avatar
Weizhen committed
569

570
                self_attentions = outputs.encoder_attentions if config.is_encoder_decoder else outputs.attentions
571

572
573
574
575
576
577
578
579
580
581
582
                self.assertEqual(len(self_attentions), self.model_tester.num_hidden_layers)
                if chunk_length is not None:
                    self.assertListEqual(
                        list(self_attentions[0].shape[-4:]),
                        [self.model_tester.num_attention_heads, encoder_seq_length, chunk_length, encoder_key_length],
                    )
                else:
                    self.assertListEqual(
                        list(self_attentions[0].shape[-3:]),
                        [self.model_tester.num_attention_heads, encoder_seq_length, encoder_key_length],
                    )
thomwolf's avatar
thomwolf committed
583

584
    @slow
585
    def test_torchscript_simple(self):
586
587
        config, inputs_dict = self.model_tester.prepare_config_and_inputs_for_common()
        self._create_and_check_torchscript(config, inputs_dict)
thomwolf's avatar
thomwolf committed
588

589
    @slow
Patrick von Platen's avatar
Patrick von Platen committed
590
    def test_torchscript_output_attentions(self):
591
592
593
        config, inputs_dict = self.model_tester.prepare_config_and_inputs_for_common()
        config.output_attentions = True
        self._create_and_check_torchscript(config, inputs_dict)
thomwolf's avatar
thomwolf committed
594

595
    @slow
Patrick von Platen's avatar
Patrick von Platen committed
596
    def test_torchscript_output_hidden_state(self):
597
598
599
        config, inputs_dict = self.model_tester.prepare_config_and_inputs_for_common()
        config.output_hidden_states = True
        self._create_and_check_torchscript(config, inputs_dict)
thomwolf's avatar
thomwolf committed
600

601
602
603
604
605
606
607
    # This is copied from `torch/testing/_internal/jit_utils.py::clear_class_registry`
    def clear_torch_jit_class_registry(self):

        torch._C._jit_clear_class_registry()
        torch.jit._recursive.concrete_type_store = torch.jit._recursive.ConcreteTypeStore()
        torch.jit._state._clear_class_state()

608
    def _create_and_check_torchscript(self, config, inputs_dict):
Patrick von Platen's avatar
Patrick von Platen committed
609
        if not self.test_torchscript:
610
            return
611

612
613
614
615
616
617
        configs_no_init = _config_zero_init(config)  # To be sure we have no Nan
        configs_no_init.torchscript = True
        for model_class in self.all_model_classes:
            model = model_class(config=configs_no_init)
            model.to(torch_device)
            model.eval()
618
            inputs = self._prepare_for_class(inputs_dict, model_class)
thomwolf's avatar
thomwolf committed
619

620
621
            main_input_name = model_class.main_input_name

622
            try:
623
                if model.config.is_encoder_decoder:
624
                    model.config.use_cache = False  # FSTM still requires this hack -> FSTM should probably be refactored similar to BART afterward
625
                    main_input = inputs[main_input_name]
626
627
628
629
                    attention_mask = inputs["attention_mask"]
                    decoder_input_ids = inputs["decoder_input_ids"]
                    decoder_attention_mask = inputs["decoder_attention_mask"]
                    traced_model = torch.jit.trace(
630
                        model, (main_input, attention_mask, decoder_input_ids, decoder_attention_mask)
631
632
                    )
                else:
633
634
                    main_input = inputs[main_input_name]
                    traced_model = torch.jit.trace(model, main_input)
635
636
            except RuntimeError:
                self.fail("Couldn't trace module.")
thomwolf's avatar
thomwolf committed
637

638
            with tempfile.TemporaryDirectory() as tmp_dir_name:
639
                pt_file_name = os.path.join(tmp_dir_name, "traced_model.pt")
thomwolf's avatar
thomwolf committed
640

641
                try:
642
                    torch.jit.save(traced_model, pt_file_name)
643
644
                except Exception:
                    self.fail("Couldn't save module.")
thomwolf's avatar
thomwolf committed
645

646
647
648
649
                try:
                    loaded_model = torch.jit.load(pt_file_name)
                except Exception:
                    self.fail("Couldn't load module.")
LysandreJik's avatar
LysandreJik committed
650

651
652
            model.to(torch_device)
            model.eval()
thomwolf's avatar
thomwolf committed
653

654
655
            loaded_model.to(torch_device)
            loaded_model.eval()
thomwolf's avatar
thomwolf committed
656

657
658
659
            model_state_dict = model.state_dict()
            loaded_model_state_dict = loaded_model.state_dict()

660
661
662
663
664
665
666
667
668
            non_persistent_buffers = {}
            for key in loaded_model_state_dict.keys():
                if key not in model_state_dict.keys():
                    non_persistent_buffers[key] = loaded_model_state_dict[key]

            loaded_model_state_dict = {
                key: value for key, value in loaded_model_state_dict.items() if key not in non_persistent_buffers
            }

669
            self.assertEqual(set(model_state_dict.keys()), set(loaded_model_state_dict.keys()))
thomwolf's avatar
thomwolf committed
670

671
672
673
674
675
676
677
678
679
680
681
            model_buffers = list(model.buffers())
            for non_persistent_buffer in non_persistent_buffers.values():
                found_buffer = False
                for i, model_buffer in enumerate(model_buffers):
                    if torch.equal(non_persistent_buffer, model_buffer):
                        found_buffer = True
                        break

                self.assertTrue(found_buffer)
                model_buffers.pop(i)

682
            models_equal = True
683
            for layer_name, p1 in model_state_dict.items():
684
685
686
687
                if layer_name in loaded_model_state_dict:
                    p2 = loaded_model_state_dict[layer_name]
                    if p1.data.ne(p2.data).sum() > 0:
                        models_equal = False
thomwolf's avatar
thomwolf committed
688

689
            self.assertTrue(models_equal)
thomwolf's avatar
thomwolf committed
690

691
692
693
694
            # Avoid memory leak. Without this, each call increase RAM usage by ~20MB.
            # (Even with this call, there are still memory leak by ~0.04MB)
            self.clear_torch_jit_class_registry()

695
696
697
698
699
700
701
702
    def test_torch_fx(self):
        config, inputs_dict = self.model_tester.prepare_config_and_inputs_for_common()
        self._create_and_check_torch_fx_tracing(config, inputs_dict)

    def test_torch_fx_output_loss(self):
        config, inputs_dict = self.model_tester.prepare_config_and_inputs_for_common()
        self._create_and_check_torch_fx_tracing(config, inputs_dict, output_loss=True)

703
704
    def _create_and_check_torch_fx_tracing(self, config, inputs_dict, output_loss=False):
        if not is_torch_fx_available() or not self.fx_compatible:
705
706
707
708
709
            return

        configs_no_init = _config_zero_init(config)  # To be sure we have no Nan
        configs_no_init.return_dict = False

710
        for model_class in self.all_model_classes:
711
712
713
714
715
716
717
718
719
720
721
722
            model = model_class(config=configs_no_init)
            model.to(torch_device)
            model.eval()
            inputs = self._prepare_for_class(inputs_dict, model_class, return_labels=output_loss)

            try:
                if model.config.is_encoder_decoder:
                    model.config.use_cache = False  # FSTM still requires this hack -> FSTM should probably be refactored similar to BART afterward
                    labels = inputs.get("labels", None)
                    input_names = ["input_ids", "attention_mask", "decoder_input_ids", "decoder_attention_mask"]
                    if labels is not None:
                        input_names.append("labels")
723
                    filtered_inputs = {k: v for (k, v) in inputs.items() if k in input_names}
724

725
                    model_output = model(**filtered_inputs)
726

727
                    traced_model = symbolic_trace(model, input_names)
728
                    traced_output = traced_model(**filtered_inputs)
729
                else:
730
                    input_names = ["input_ids", "attention_mask", "token_type_ids"]
731
                    input_ids = inputs["input_ids"]
732

733
                    labels = inputs.get("labels", None)
734
735
                    start_positions = inputs.get("start_positions", None)
                    end_positions = inputs.get("end_positions", None)
736
737
                    if labels is not None:
                        input_names.append("labels")
738
739
740
741
                    if start_positions is not None:
                        input_names.append("start_positions")
                    if end_positions is not None:
                        input_names.append("end_positions")
742

743
744
                    filtered_inputs = {k: v for (k, v) in inputs.items() if k in input_names}
                    input_names = filtered_inputs.keys()
745

746
                    model_output = model(**filtered_inputs)
747

748
                    rank = len(input_ids.shape)
749
                    if rank not in [2, 3]:
750
751
752
                        raise NotImplementedError(
                            f"symbolic_trace automatic parameters inference not implemented for input of rank {rank}."
                        )
753

754
                    traced_model = symbolic_trace(model, input_names)
755
                    traced_output = traced_model(**filtered_inputs)
756
757
758
759

            except RuntimeError:
                self.fail("Couldn't trace module.")

760
761
762
763
764
765
766
767
768
769
770
771
772
            def flatten_output(output):
                flatten = []
                for x in output:
                    if isinstance(x, (tuple, list)):
                        flatten += flatten_output(x)
                    elif not isinstance(x, torch.Tensor):
                        continue
                    else:
                        flatten.append(x)
                return flatten

            model_output = flatten_output(model_output)
            traced_output = flatten_output(traced_output)
773
            num_outputs = len(model_output)
774
775
776
777
778
779

            for i in range(num_outputs):
                self.assertTrue(
                    torch.allclose(model_output[i], traced_output[i]),
                    f"traced {i}th output doesn't match model {i}th output for {model_class}",
                )
780

Patrick von Platen's avatar
Patrick von Platen committed
781
782
    def test_headmasking(self):
        if not self.test_head_masking:
783
            return
784

785
786
787
        global_rng.seed(42)
        config, inputs_dict = self.model_tester.prepare_config_and_inputs_for_common()
        global_rng.seed()
LysandreJik's avatar
LysandreJik committed
788

789
        inputs_dict["output_attentions"] = True
790
791
792
793
794
795
        config.output_hidden_states = True
        configs_no_init = _config_zero_init(config)  # To be sure we have no Nan
        for model_class in self.all_model_classes:
            model = model_class(config=configs_no_init)
            model.to(torch_device)
            model.eval()
LysandreJik's avatar
LysandreJik committed
796

797
798
799
            # Prepare head_mask
            # Set require_grad after having prepared the tensor to avoid error (leaf variable has been moved into the graph interior)
            head_mask = torch.ones(
Lysandre's avatar
Lysandre committed
800
801
802
                self.model_tester.num_hidden_layers,
                self.model_tester.num_attention_heads,
                device=torch_device,
803
804
805
806
            )
            head_mask[0, 0] = 0
            head_mask[-1, :-1] = 0
            head_mask.requires_grad_(requires_grad=True)
807
            inputs = self._prepare_for_class(inputs_dict, model_class).copy()
808
            inputs["head_mask"] = head_mask
809
810
811
812
813
            if model.config.is_encoder_decoder:
                signature = inspect.signature(model.forward)
                arg_names = [*signature.parameters.keys()]
                if "decoder_head_mask" in arg_names:  # necessary diferentiation because of T5 model
                    inputs["decoder_head_mask"] = head_mask
814
815
                if "cross_attn_head_mask" in arg_names:
                    inputs["cross_attn_head_mask"] = head_mask
816
            outputs = model(**inputs, return_dict=True)
817
818
819
820
821
822
823
824
825

            # Test that we can get a gradient back for importance score computation
            output = sum(t.sum() for t in outputs[0])
            output = output.sum()
            output.backward()
            multihead_outputs = head_mask.grad

            self.assertIsNotNone(multihead_outputs)
            self.assertEqual(len(multihead_outputs), self.model_tester.num_hidden_layers)
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846

            def check_attentions_validity(attentions):
                # Remove Nan
                for t in attentions:
                    self.assertLess(
                        torch.sum(torch.isnan(t)), t.numel() / 4
                    )  # Check we don't have more than 25% nans (arbitrary)
                attentions = [
                    t.masked_fill(torch.isnan(t), 0.0) for t in attentions
                ]  # remove them (the test is less complete)

                self.assertAlmostEqual(attentions[0][..., 0, :, :].flatten().sum().item(), 0.0)
                self.assertNotEqual(attentions[0][..., -1, :, :].flatten().sum().item(), 0.0)
                if len(attentions) > 2:  # encoder-decoder models have only 2 layers in each module
                    self.assertNotEqual(attentions[1][..., 0, :, :].flatten().sum().item(), 0.0)
                self.assertAlmostEqual(attentions[-1][..., -2, :, :].flatten().sum().item(), 0.0)
                self.assertNotEqual(attentions[-1][..., -1, :, :].flatten().sum().item(), 0.0)

            if model.config.is_encoder_decoder:
                check_attentions_validity(outputs.encoder_attentions)
                check_attentions_validity(outputs.decoder_attentions)
847
                check_attentions_validity(outputs.cross_attentions)
848
849
            else:
                check_attentions_validity(outputs.attentions)
850

Patrick von Platen's avatar
Patrick von Platen committed
851
852
    def test_head_pruning(self):
        if not self.test_pruning:
853
854
855
            return

        for model_class in self.all_model_classes:
Lysandre's avatar
Lysandre committed
856
857
858
859
            (
                config,
                inputs_dict,
            ) = self.model_tester.prepare_config_and_inputs_for_common()
860

861
862
            if "head_mask" in inputs_dict:
                del inputs_dict["head_mask"]
863

864
            inputs_dict["output_attentions"] = True
865
866
867
868
            config.output_hidden_states = False
            model = model_class(config=config)
            model.to(torch_device)
            model.eval()
869
870
871
872
            heads_to_prune = {
                0: list(range(1, self.model_tester.num_attention_heads)),
                -1: [0],
            }
873
874
            model.prune_heads(heads_to_prune)
            with torch.no_grad():
875
                outputs = model(**self._prepare_for_class(inputs_dict, model_class))
876

877
            attentions = outputs[-1]
878

879
880
881
            self.assertEqual(attentions[0].shape[-3], 1)
            self.assertEqual(attentions[1].shape[-3], self.model_tester.num_attention_heads)
            self.assertEqual(attentions[-1].shape[-3], self.model_tester.num_attention_heads - 1)
LysandreJik's avatar
LysandreJik committed
882

Patrick von Platen's avatar
Patrick von Platen committed
883
884
    def test_head_pruning_save_load_from_pretrained(self):
        if not self.test_pruning:
885
            return
LysandreJik's avatar
LysandreJik committed
886

887
        for model_class in self.all_model_classes:
Lysandre's avatar
Lysandre committed
888
889
890
891
            (
                config,
                inputs_dict,
            ) = self.model_tester.prepare_config_and_inputs_for_common()
892
893
894

            if "head_mask" in inputs_dict:
                del inputs_dict["head_mask"]
895

896
            inputs_dict["output_attentions"] = True
897
898
899
900
            config.output_hidden_states = False
            model = model_class(config=config)
            model.to(torch_device)
            model.eval()
901
902
903
904
            heads_to_prune = {
                0: list(range(1, self.model_tester.num_attention_heads)),
                -1: [0],
            }
905
            model.prune_heads(heads_to_prune)
906

907
            with tempfile.TemporaryDirectory() as temp_dir_name:
908
909
                model.save_pretrained(temp_dir_name)
                model = model_class.from_pretrained(temp_dir_name)
910
                model.to(torch_device)
911

912
            with torch.no_grad():
913
                outputs = model(**self._prepare_for_class(inputs_dict, model_class))
914
915
916
917
            attentions = outputs[-1]
            self.assertEqual(attentions[0].shape[-3], 1)
            self.assertEqual(attentions[1].shape[-3], self.model_tester.num_attention_heads)
            self.assertEqual(attentions[-1].shape[-3], self.model_tester.num_attention_heads - 1)
918

Patrick von Platen's avatar
Patrick von Platen committed
919
920
    def test_head_pruning_save_load_from_config_init(self):
        if not self.test_pruning:
921
            return
922

923
        for model_class in self.all_model_classes:
Lysandre's avatar
Lysandre committed
924
925
926
927
            (
                config,
                inputs_dict,
            ) = self.model_tester.prepare_config_and_inputs_for_common()
928

929
930
            if "head_mask" in inputs_dict:
                del inputs_dict["head_mask"]
931

932
            inputs_dict["output_attentions"] = True
933
            config.output_hidden_states = False
934

935
936
937
938
            heads_to_prune = {
                0: list(range(1, self.model_tester.num_attention_heads)),
                -1: [0],
            }
939
            config.pruned_heads = heads_to_prune
940

941
942
943
            model = model_class(config=config)
            model.to(torch_device)
            model.eval()
944

945
            with torch.no_grad():
946
                outputs = model(**self._prepare_for_class(inputs_dict, model_class))
947
            attentions = outputs[-1]
948

949
950
951
            self.assertEqual(attentions[0].shape[-3], 1)
            self.assertEqual(attentions[1].shape[-3], self.model_tester.num_attention_heads)
            self.assertEqual(attentions[-1].shape[-3], self.model_tester.num_attention_heads - 1)
952

Patrick von Platen's avatar
Patrick von Platen committed
953
954
    def test_head_pruning_integration(self):
        if not self.test_pruning:
955
            return
956

957
        for model_class in self.all_model_classes:
Lysandre's avatar
Lysandre committed
958
959
960
961
            (
                config,
                inputs_dict,
            ) = self.model_tester.prepare_config_and_inputs_for_common()
962

963
964
            if "head_mask" in inputs_dict:
                del inputs_dict["head_mask"]
965

966
            inputs_dict["output_attentions"] = True
967
            config.output_hidden_states = False
968

969
970
            heads_to_prune = {0: [0], 1: [1, 2]}
            config.pruned_heads = heads_to_prune
971

972
973
974
            model = model_class(config=config)
            model.to(torch_device)
            model.eval()
975

976
            with torch.no_grad():
977
                outputs = model(**self._prepare_for_class(inputs_dict, model_class))
978
            attentions = outputs[-1]
979

980
981
982
983
            self.assertEqual(attentions[0].shape[-3], self.model_tester.num_attention_heads - 1)
            self.assertEqual(attentions[1].shape[-3], self.model_tester.num_attention_heads - 2)
            self.assertEqual(attentions[2].shape[-3], self.model_tester.num_attention_heads)
            self.assertEqual(attentions[3].shape[-3], self.model_tester.num_attention_heads)
thomwolf's avatar
thomwolf committed
984

985
            with tempfile.TemporaryDirectory() as temp_dir_name:
986
987
                model.save_pretrained(temp_dir_name)
                model = model_class.from_pretrained(temp_dir_name)
988
                model.to(torch_device)
thomwolf's avatar
thomwolf committed
989

990
            with torch.no_grad():
991
                outputs = model(**self._prepare_for_class(inputs_dict, model_class))
992
            attentions = outputs[-1]
LysandreJik's avatar
LysandreJik committed
993

994
995
996
997
            self.assertEqual(attentions[0].shape[-3], self.model_tester.num_attention_heads - 1)
            self.assertEqual(attentions[1].shape[-3], self.model_tester.num_attention_heads - 2)
            self.assertEqual(attentions[2].shape[-3], self.model_tester.num_attention_heads)
            self.assertEqual(attentions[3].shape[-3], self.model_tester.num_attention_heads)
thomwolf's avatar
thomwolf committed
998

999
1000
            heads_to_prune = {0: [0], 2: [1, 2]}
            model.prune_heads(heads_to_prune)
1001

1002
            with torch.no_grad():
1003
                outputs = model(**self._prepare_for_class(inputs_dict, model_class))
1004
            attentions = outputs[-1]
1005

1006
1007
1008
1009
            self.assertEqual(attentions[0].shape[-3], self.model_tester.num_attention_heads - 1)
            self.assertEqual(attentions[1].shape[-3], self.model_tester.num_attention_heads - 2)
            self.assertEqual(attentions[2].shape[-3], self.model_tester.num_attention_heads - 2)
            self.assertEqual(attentions[3].shape[-3], self.model_tester.num_attention_heads)
1010

1011
            self.assertDictEqual(model.config.pruned_heads, {0: [0], 1: [1, 2], 2: [1, 2]})
thomwolf's avatar
thomwolf committed
1012

Patrick von Platen's avatar
Patrick von Platen committed
1013
    def test_hidden_states_output(self):
Joseph Liu's avatar
Joseph Liu committed
1014
        def check_hidden_states_output(inputs_dict, config, model_class):
1015
            model = model_class(config)
1016
            model.to(torch_device)
thomwolf's avatar
thomwolf committed
1017
            model.eval()
Joseph Liu's avatar
Joseph Liu committed
1018

thomwolf's avatar
thomwolf committed
1019
            with torch.no_grad():
1020
                outputs = model(**self._prepare_for_class(inputs_dict, model_class))
1021
1022

            hidden_states = outputs.encoder_hidden_states if config.is_encoder_decoder else outputs.hidden_states
Patrick von Platen's avatar
Patrick von Platen committed
1023

Sylvain Gugger's avatar
Sylvain Gugger committed
1024
1025
1026
1027
            expected_num_layers = getattr(
                self.model_tester, "expected_num_hidden_layers", self.model_tester.num_hidden_layers + 1
            )
            self.assertEqual(len(hidden_states), expected_num_layers)
1028

Patrick von Platen's avatar
Patrick von Platen committed
1029
1030
1031
1032
1033
1034
1035
            if hasattr(self.model_tester, "encoder_seq_length"):
                seq_length = self.model_tester.encoder_seq_length
                if hasattr(self.model_tester, "chunk_length") and self.model_tester.chunk_length > 1:
                    seq_length = seq_length * self.model_tester.chunk_length
            else:
                seq_length = self.model_tester.seq_length

1036
            self.assertListEqual(
Lysandre's avatar
Lysandre committed
1037
1038
                list(hidden_states[0].shape[-2:]),
                [seq_length, self.model_tester.hidden_size],
1039
            )
thomwolf's avatar
thomwolf committed
1040

1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
            if config.is_encoder_decoder:
                hidden_states = outputs.decoder_hidden_states

                self.assertIsInstance(hidden_states, (list, tuple))
                self.assertEqual(len(hidden_states), expected_num_layers)
                seq_len = getattr(self.model_tester, "seq_length", None)
                decoder_seq_length = getattr(self.model_tester, "decoder_seq_length", seq_len)

                self.assertListEqual(
                    list(hidden_states[0].shape[-2:]),
                    [decoder_seq_length, self.model_tester.hidden_size],
                )

Joseph Liu's avatar
Joseph Liu committed
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
        config, inputs_dict = self.model_tester.prepare_config_and_inputs_for_common()

        for model_class in self.all_model_classes:
            inputs_dict["output_hidden_states"] = True
            check_hidden_states_output(inputs_dict, config, model_class)

            # check that output_hidden_states also work using config
            del inputs_dict["output_hidden_states"]
            config.output_hidden_states = True

            check_hidden_states_output(inputs_dict, config, model_class)

1066
1067
1068
    def test_retain_grad_hidden_states_attentions(self):
        config, inputs_dict = self.model_tester.prepare_config_and_inputs_for_common()
        config.output_hidden_states = True
1069
        config.output_attentions = self.has_attentions
1070
1071
1072
1073
1074
1075
1076
1077
1078

        # no need to test all models as different heads yield the same functionality
        model_class = self.all_model_classes[0]
        model = model_class(config)
        model.to(torch_device)

        inputs = self._prepare_for_class(inputs_dict, model_class)

        outputs = model(**inputs)
1079

1080
1081
1082
1083
1084
1085
1086
1087
1088
1089
        output = outputs[0]

        if config.is_encoder_decoder:
            # Seq2Seq models
            encoder_hidden_states = outputs.encoder_hidden_states[0]
            encoder_hidden_states.retain_grad()

            decoder_hidden_states = outputs.decoder_hidden_states[0]
            decoder_hidden_states.retain_grad()

1090
1091
1092
1093
1094
1095
1096
1097
1098
            if self.has_attentions:
                encoder_attentions = outputs.encoder_attentions[0]
                encoder_attentions.retain_grad()

                decoder_attentions = outputs.decoder_attentions[0]
                decoder_attentions.retain_grad()

                cross_attentions = outputs.cross_attentions[0]
                cross_attentions.retain_grad()
1099
1100
1101
1102
1103

            output.flatten()[0].backward(retain_graph=True)

            self.assertIsNotNone(encoder_hidden_states.grad)
            self.assertIsNotNone(decoder_hidden_states.grad)
1104
1105
1106
1107
1108

            if self.has_attentions:
                self.assertIsNotNone(encoder_attentions.grad)
                self.assertIsNotNone(decoder_attentions.grad)
                self.assertIsNotNone(cross_attentions.grad)
1109
1110
1111
1112
        else:
            # Encoder-/Decoder-only models
            hidden_states = outputs.hidden_states[0]
            hidden_states.retain_grad()
1113
1114
1115
1116

            if self.has_attentions:
                attentions = outputs.attentions[0]
                attentions.retain_grad()
1117
1118
1119
1120

            output.flatten()[0].backward(retain_graph=True)

            self.assertIsNotNone(hidden_states.grad)
1121
1122
1123

            if self.has_attentions:
                self.assertIsNotNone(attentions.grad)
1124

Pradhy729's avatar
Pradhy729 committed
1125
    def test_feed_forward_chunking(self):
Lysandre's avatar
Lysandre committed
1126
1127
1128
1129
        (
            original_config,
            inputs_dict,
        ) = self.model_tester.prepare_config_and_inputs_for_common()
Pradhy729's avatar
Pradhy729 committed
1130
1131
1132
1133
1134
1135
1136
1137
1138
1139
1140
1141
1142
1143
1144
1145
1146
1147
        for model_class in self.all_model_classes:
            torch.manual_seed(0)
            config = copy.deepcopy(original_config)
            model = model_class(config)
            model.to(torch_device)
            model.eval()

            hidden_states_no_chunk = model(**self._prepare_for_class(inputs_dict, model_class))[0]

            torch.manual_seed(0)
            config.chunk_size_feed_forward = 1
            model = model_class(config)
            model.to(torch_device)
            model.eval()

            hidden_states_with_chunk = model(**self._prepare_for_class(inputs_dict, model_class))[0]
            self.assertTrue(torch.allclose(hidden_states_no_chunk, hidden_states_with_chunk, atol=1e-3))

1148
1149
1150
1151
1152
1153
1154
1155
1156
1157
1158
1159
1160
1161
1162
1163
1164
1165
1166
1167
1168
1169
1170
1171
1172
1173
1174
1175
1176
1177
1178
1179
1180
1181
1182
1183
1184
1185
1186
1187
1188
1189
1190
1191
1192
1193
1194
1195
1196
1197
1198
1199
1200
1201
1202
1203
1204
1205
1206
1207
1208
1209
1210
1211
1212
1213
1214
1215
1216
1217
1218
1219
1220
1221
1222
1223
1224
1225
1226
    def test_resize_position_vector_embeddings(self):
        if not self.test_resize_position_embeddings:
            return

        (
            original_config,
            inputs_dict,
        ) = self.model_tester.prepare_config_and_inputs_for_common()

        for model_class in self.all_model_classes:
            config = copy.deepcopy(original_config)
            model = model_class(config)
            model.to(torch_device)

            if self.model_tester.is_training is False:
                model.eval()

            max_position_embeddings = config.max_position_embeddings

            # Retrieve the embeddings and clone theme
            if model.config.is_encoder_decoder:
                encoder_model_embed, decoder_model_embed = model.get_position_embeddings()
                encoder_cloned_embeddings = encoder_model_embed.weight.clone()
                decoder_cloned_embeddings = decoder_model_embed.weight.clone()
            else:
                model_embed = model.get_position_embeddings()
                cloned_embeddings = model_embed.weight.clone()

            # Check that resizing the position embeddings with a larger max_position_embeddings increases
            # the model's postion embeddings size
            model.resize_position_embeddings(max_position_embeddings + 10)
            self.assertEqual(model.config.max_position_embeddings, max_position_embeddings + 10)

            # Check that it actually resizes the embeddings matrix
            if model.config.is_encoder_decoder:
                encoder_model_embed, decoder_model_embed = model.get_position_embeddings()
                self.assertEqual(encoder_model_embed.weight.shape[0], encoder_cloned_embeddings.shape[0] + 10)
                self.assertEqual(decoder_model_embed.weight.shape[0], decoder_cloned_embeddings.shape[0] + 10)
            else:
                model_embed = model.get_position_embeddings()
                self.assertEqual(model_embed.weight.shape[0], cloned_embeddings.shape[0] + 10)

            # Check that the model can still do a forward pass successfully (every parameter should be resized)
            model(**self._prepare_for_class(inputs_dict, model_class))

            # Check that resizing the position embeddings with a smaller max_position_embeddings decreases
            # the model's max_position_embeddings
            model.resize_position_embeddings(max_position_embeddings - 5)
            self.assertEqual(model.config.max_position_embeddings, max_position_embeddings - 5)

            # Check that it actually resizes the embeddings matrix
            if model.config.is_encoder_decoder:
                encoder_model_embed, decoder_model_embed = model.get_position_embeddings()
                self.assertEqual(encoder_model_embed.weight.shape[0], encoder_cloned_embeddings.shape[0] - 5)
                self.assertEqual(decoder_model_embed.weight.shape[0], decoder_cloned_embeddings.shape[0] - 5)
            else:
                model_embed = model.get_position_embeddings()
                self.assertEqual(model_embed.weight.shape[0], cloned_embeddings.shape[0] - 5)

            # Check that the model can still do a forward pass successfully (every parameter should be resized)
            model(**self._prepare_for_class(inputs_dict, model_class))

            # Check that adding and removing tokens has not modified the first part of the embedding matrix.
            models_equal = True

            if model.config.is_encoder_decoder:
                for p1, p2 in zip(encoder_cloned_embeddings, encoder_model_embed.weight):
                    if p1.data.ne(p2.data).sum() > 0:
                        models_equal = False
                for p1, p2 in zip(decoder_cloned_embeddings, decoder_model_embed.weight):
                    if p1.data.ne(p2.data).sum() > 0:
                        models_equal = False
            else:
                for p1, p2 in zip(cloned_embeddings, model_embed.weight):
                    if p1.data.ne(p2.data).sum() > 0:
                        models_equal = False

            self.assertTrue(models_equal)

Patrick von Platen's avatar
Patrick von Platen committed
1227
    def test_resize_tokens_embeddings(self):
Lysandre's avatar
Lysandre committed
1228
1229
1230
1231
        (
            original_config,
            inputs_dict,
        ) = self.model_tester.prepare_config_and_inputs_for_common()
Patrick von Platen's avatar
Patrick von Platen committed
1232
        if not self.test_resize_embeddings:
1233
1234
1235
1236
1237
            return

        for model_class in self.all_model_classes:
            config = copy.deepcopy(original_config)
            model = model_class(config)
1238
            model.to(torch_device)
1239

Patrick von Platen's avatar
Patrick von Platen committed
1240
1241
1242
            if self.model_tester.is_training is False:
                model.eval()

1243
1244
1245
1246
1247
1248
1249
1250
1251
1252
            model_vocab_size = config.vocab_size
            # Retrieve the embeddings and clone theme
            model_embed = model.resize_token_embeddings(model_vocab_size)
            cloned_embeddings = model_embed.weight.clone()

            # Check that resizing the token embeddings with a larger vocab size increases the model's vocab size
            model_embed = model.resize_token_embeddings(model_vocab_size + 10)
            self.assertEqual(model.config.vocab_size, model_vocab_size + 10)
            # Check that it actually resizes the embeddings matrix
            self.assertEqual(model_embed.weight.shape[0], cloned_embeddings.shape[0] + 10)
1253
            # Check that the model can still do a forward pass successfully (every parameter should be resized)
1254
            model(**self._prepare_for_class(inputs_dict, model_class))
1255
1256
1257
1258
1259
1260
1261

            # Check that resizing the token embeddings with a smaller vocab size decreases the model's vocab size
            model_embed = model.resize_token_embeddings(model_vocab_size - 15)
            self.assertEqual(model.config.vocab_size, model_vocab_size - 15)
            # Check that it actually resizes the embeddings matrix
            self.assertEqual(model_embed.weight.shape[0], cloned_embeddings.shape[0] - 15)

1262
1263
1264
            # Check that the model can still do a forward pass successfully (every parameter should be resized)
            # Input ids should be clamped to the maximum size of the vocabulary
            inputs_dict["input_ids"].clamp_(max=model_vocab_size - 15 - 1)
1265
1266
1267
1268

            # make sure that decoder_input_ids are resized as well
            if "decoder_input_ids" in inputs_dict:
                inputs_dict["decoder_input_ids"].clamp_(max=model_vocab_size - 15 - 1)
1269
            model(**self._prepare_for_class(inputs_dict, model_class))
1270

1271
1272
1273
1274
1275
1276
1277
1278
            # Check that adding and removing tokens has not modified the first part of the embedding matrix.
            models_equal = True
            for p1, p2 in zip(cloned_embeddings, model_embed.weight):
                if p1.data.ne(p2.data).sum() > 0:
                    models_equal = False

            self.assertTrue(models_equal)

1279
1280
1281
1282
1283
1284
1285
1286
1287
1288
1289
1290
1291
1292
1293
1294
1295
1296
1297
1298
1299
1300
1301
1302
1303
1304
1305
1306
1307
1308
1309
1310
1311
1312
1313
1314
1315
1316
1317
1318
1319
1320
1321
1322
1323
1324
1325
1326
1327
1328
1329
    def test_resize_embeddings_untied(self):
        (
            original_config,
            inputs_dict,
        ) = self.model_tester.prepare_config_and_inputs_for_common()
        if not self.test_resize_embeddings:
            return

        original_config.tie_word_embeddings = False

        # if model cannot untied embeddings -> leave test
        if original_config.tie_word_embeddings:
            return

        for model_class in self.all_model_classes:
            config = copy.deepcopy(original_config)
            model = model_class(config).to(torch_device)

            # if no output embeddings -> leave test
            if model.get_output_embeddings() is None:
                continue

            # Check that resizing the token embeddings with a larger vocab size increases the model's vocab size
            model_vocab_size = config.vocab_size
            model.resize_token_embeddings(model_vocab_size + 10)
            self.assertEqual(model.config.vocab_size, model_vocab_size + 10)
            output_embeds = model.get_output_embeddings()
            self.assertEqual(output_embeds.weight.shape[0], model_vocab_size + 10)
            # Check bias if present
            if output_embeds.bias is not None:
                self.assertEqual(output_embeds.bias.shape[0], model_vocab_size + 10)
            # Check that the model can still do a forward pass successfully (every parameter should be resized)
            model(**self._prepare_for_class(inputs_dict, model_class))

            # Check that resizing the token embeddings with a smaller vocab size decreases the model's vocab size
            model.resize_token_embeddings(model_vocab_size - 15)
            self.assertEqual(model.config.vocab_size, model_vocab_size - 15)
            # Check that it actually resizes the embeddings matrix
            output_embeds = model.get_output_embeddings()
            self.assertEqual(output_embeds.weight.shape[0], model_vocab_size - 15)
            # Check bias if present
            if output_embeds.bias is not None:
                self.assertEqual(output_embeds.bias.shape[0], model_vocab_size - 15)
            # Check that the model can still do a forward pass successfully (every parameter should be resized)
            # Input ids should be clamped to the maximum size of the vocabulary
            inputs_dict["input_ids"].clamp_(max=model_vocab_size - 15 - 1)
            if "decoder_input_ids" in inputs_dict:
                inputs_dict["decoder_input_ids"].clamp_(max=model_vocab_size - 15 - 1)
            # Check that the model can still do a forward pass successfully (every parameter should be resized)
            model(**self._prepare_for_class(inputs_dict, model_class))

Patrick von Platen's avatar
Patrick von Platen committed
1330
    def test_model_common_attributes(self):
1331
1332
1333
1334
        config, inputs_dict = self.model_tester.prepare_config_and_inputs_for_common()

        for model_class in self.all_model_classes:
            model = model_class(config)
1335
1336
            self.assertIsInstance(model.get_input_embeddings(), (nn.Embedding, AdaptiveEmbedding))
            model.set_input_embeddings(nn.Embedding(10, 10))
1337
            x = model.get_output_embeddings()
1338
            self.assertTrue(x is None or isinstance(x, nn.Linear))
1339

1340
1341
1342
1343
1344
1345
1346
    def test_model_main_input_name(self):
        for model_class in self.all_model_classes:
            model_signature = inspect.signature(getattr(model_class, "forward"))
            # The main input is the name of the argument after `self`
            observed_main_input_name = list(model_signature.parameters.keys())[1]
            self.assertEqual(model_class.main_input_name, observed_main_input_name)

1347
    def test_correct_missing_keys(self):
1348
1349
        if not self.test_missing_keys:
            return
1350
1351
1352
1353
1354
1355
1356
1357
1358
1359
        config, _ = self.model_tester.prepare_config_and_inputs_for_common()

        for model_class in self.all_model_classes:
            model = model_class(config)
            base_model_prefix = model.base_model_prefix

            if hasattr(model, base_model_prefix):
                with tempfile.TemporaryDirectory() as temp_dir_name:
                    model.base_model.save_pretrained(temp_dir_name)
                    model, loading_info = model_class.from_pretrained(temp_dir_name, output_loading_info=True)
1360
                    with self.subTest(msg=f"Missing keys for {model.__class__.__name__}"):
1361
1362
                        self.assertGreater(len(loading_info["missing_keys"]), 0)

1363
1364
1365
1366
1367
1368
1369
1370
1371
1372
1373
1374
1375
1376
1377
1378
1379
1380
1381
1382
1383
1384
1385
1386
1387
1388
1389
1390
1391
1392
1393
1394
1395
1396
1397
1398
1399
1400
1401
1402
1403
1404
1405
1406
1407
1408
1409
1410
    def test_tie_model_weights(self):
        if not self.test_torchscript:
            return

        config, inputs_dict = self.model_tester.prepare_config_and_inputs_for_common()

        def check_same_values(layer_1, layer_2):
            equal = True
            for p1, p2 in zip(layer_1.weight, layer_2.weight):
                if p1.data.ne(p2.data).sum() > 0:
                    equal = False
            return equal

        for model_class in self.all_model_classes:
            config.torchscript = True
            model_not_tied = model_class(config)
            if model_not_tied.get_output_embeddings() is None:
                continue

            config_tied = copy.deepcopy(config)
            config_tied.torchscript = False
            model_tied = model_class(config_tied)
            params_tied = list(model_tied.parameters())
            # Check that the embedding layer and decoding layer are the same in size and in value
            # self.assertTrue(check_same_values(embeddings, decoding))

            # # Check that after modification, they remain the same.
            # embeddings.weight.data.div_(2)
            # # Check that the embedding layer and decoding layer are the same in size and in value
            # self.assertTrue(embeddings.weight.shape, decoding.weight.shape)
            # self.assertTrue(check_same_values(embeddings, decoding))

            # # Check that after modification, they remain the same.
            # decoding.weight.data.div_(4)
            # # Check that the embedding layer and decoding layer are the same in size and in value
            # self.assertTrue(embeddings.weight.shape, decoding.weight.shape)
            # self.assertTrue(check_same_values(embeddings, decoding))

            # Check that after resize they remain tied.
            model_tied.resize_token_embeddings(config.vocab_size + 10)
            params_tied_2 = list(model_tied.parameters())
            self.assertEqual(len(params_tied_2), len(params_tied))

            # decoding.weight.data.mul_(20)
            # # Check that the embedding layer and decoding layer are the same in size and in value
            # self.assertTrue(model.transformer.wte.weight.shape, model.lm_head.weight.shape)
            # self.assertTrue(check_same_values(model.transformer.wte, model.lm_head))

1411
1412
1413
    def test_model_outputs_equivalence(self):
        config, inputs_dict = self.model_tester.prepare_config_and_inputs_for_common()

Sam Shleifer's avatar
Sam Shleifer committed
1414
1415
1416
1417
        def set_nan_tensor_to_zero(t):
            t[t != t] = 0
            return t

1418
1419
1420
1421
1422
1423
1424
1425
1426
        def check_equivalence(model, tuple_inputs, dict_inputs, additional_kwargs={}):
            with torch.no_grad():
                tuple_output = model(**tuple_inputs, return_dict=False, **additional_kwargs)
                dict_output = model(**dict_inputs, return_dict=True, **additional_kwargs).to_tuple()

                def recursive_check(tuple_object, dict_object):
                    if isinstance(tuple_object, (List, Tuple)):
                        for tuple_iterable_value, dict_iterable_value in zip(tuple_object, dict_object):
                            recursive_check(tuple_iterable_value, dict_iterable_value)
NielsRogge's avatar
NielsRogge committed
1427
1428
1429
1430
1431
                    elif isinstance(tuple_object, Dict):
                        for tuple_iterable_value, dict_iterable_value in zip(
                            tuple_object.values(), dict_object.values()
                        ):
                            recursive_check(tuple_iterable_value, dict_iterable_value)
1432
1433
1434
1435
                    elif tuple_object is None:
                        return
                    else:
                        self.assertTrue(
Sam Shleifer's avatar
Sam Shleifer committed
1436
1437
1438
                            torch.allclose(
                                set_nan_tensor_to_zero(tuple_object), set_nan_tensor_to_zero(dict_object), atol=1e-5
                            ),
1439
                            msg=f"Tuple and dict output are not equal. Difference: {torch.max(torch.abs(tuple_object - dict_object))}. Tuple has `nan`: {torch.isnan(tuple_object).any()} and `inf`: {torch.isinf(tuple_object)}. Dict has `nan`: {torch.isnan(dict_object).any()} and `inf`: {torch.isinf(dict_object)}.",
1440
1441
1442
1443
1444
1445
1446
1447
1448
1449
1450
1451
1452
1453
1454
1455
1456
1457
1458
1459
1460
1461
1462
1463
1464
                        )

                recursive_check(tuple_output, dict_output)

        for model_class in self.all_model_classes:
            model = model_class(config)
            model.to(torch_device)
            model.eval()

            tuple_inputs = self._prepare_for_class(inputs_dict, model_class)
            dict_inputs = self._prepare_for_class(inputs_dict, model_class)
            check_equivalence(model, tuple_inputs, dict_inputs)

            tuple_inputs = self._prepare_for_class(inputs_dict, model_class, return_labels=True)
            dict_inputs = self._prepare_for_class(inputs_dict, model_class, return_labels=True)
            check_equivalence(model, tuple_inputs, dict_inputs)

            tuple_inputs = self._prepare_for_class(inputs_dict, model_class)
            dict_inputs = self._prepare_for_class(inputs_dict, model_class)
            check_equivalence(model, tuple_inputs, dict_inputs, {"output_hidden_states": True})

            tuple_inputs = self._prepare_for_class(inputs_dict, model_class, return_labels=True)
            dict_inputs = self._prepare_for_class(inputs_dict, model_class, return_labels=True)
            check_equivalence(model, tuple_inputs, dict_inputs, {"output_hidden_states": True})

1465
1466
1467
1468
            if self.has_attentions:
                tuple_inputs = self._prepare_for_class(inputs_dict, model_class)
                dict_inputs = self._prepare_for_class(inputs_dict, model_class)
                check_equivalence(model, tuple_inputs, dict_inputs, {"output_attentions": True})
1469

1470
1471
1472
1473
1474
1475
1476
1477
1478
                tuple_inputs = self._prepare_for_class(inputs_dict, model_class, return_labels=True)
                dict_inputs = self._prepare_for_class(inputs_dict, model_class, return_labels=True)
                check_equivalence(model, tuple_inputs, dict_inputs, {"output_attentions": True})

                tuple_inputs = self._prepare_for_class(inputs_dict, model_class, return_labels=True)
                dict_inputs = self._prepare_for_class(inputs_dict, model_class, return_labels=True)
                check_equivalence(
                    model, tuple_inputs, dict_inputs, {"output_hidden_states": True, "output_attentions": True}
                )
1479

1480
1481
1482
1483
1484
1485
1486
    @is_pt_tf_cross_test
    def test_pt_tf_model_equivalence(self):
        import numpy as np
        import tensorflow as tf

        import transformers

1487
1488
1489
1490
1491
1492
1493
1494
1495
1496
1497
1498
1499
1500
1501
1502
1503
1504
1505
1506
1507
1508
1509
1510
1511
1512
1513
1514
1515
1516
1517
1518
1519
1520
1521
1522
1523
1524
1525
1526
1527
1528
1529
1530
1531
1532
1533
1534
1535
1536
1537
1538
1539
1540
1541
1542
1543
1544
1545
1546
1547
1548
1549
1550
1551
1552
1553
1554
1555
1556
1557
1558
1559
1560
1561
1562
1563
1564
1565
1566
1567
1568
1569
1570
1571
1572
1573
1574
1575
1576
1577
1578
1579
1580
1581
1582
1583
1584
1585
1586
1587
1588
1589
1590
1591
1592
1593
1594
1595
1596
1597
1598
1599
1600
1601
1602
1603
1604
1605
1606
1607
1608
1609
1610
1611
1612
1613
1614
1615
1616
1617
1618
1619
1620
1621
1622
1623
1624
1625
1626
1627
1628
1629
1630
1631
1632
1633
1634
1635
1636
1637
1638
1639
1640
1641
1642
1643
1644
1645
1646
1647
1648
1649
1650
1651
1652
1653
1654
1655
1656
1657
1658
1659
1660
1661
1662
1663
1664
1665
1666
1667
1668
1669
1670
1671
1672
1673
        def prepare_tf_inputs_from_pt_inputs(pt_inputs_dict):

            tf_inputs_dict = {}
            for key, tensor in pt_inputs_dict.items():
                # skip key that does not exist in tf
                if type(tensor) == bool:
                    tf_inputs_dict[key] = tensor
                elif key == "input_values":
                    tf_inputs_dict[key] = tf.convert_to_tensor(tensor.cpu().numpy(), dtype=tf.float32)
                elif key == "pixel_values":
                    tf_inputs_dict[key] = tf.convert_to_tensor(tensor.cpu().numpy(), dtype=tf.float32)
                elif key == "input_features":
                    tf_inputs_dict[key] = tf.convert_to_tensor(tensor.cpu().numpy(), dtype=tf.float32)
                # To deal with the edge cases from `TFTapasForQuestionAnswering`.
                # PyTorch can deal with type casting automatically, but TensorFlow is more strict!
                # TODO: find a clean/better way to deal with these extra keys that are not common.
                elif key in ["float_answer", "numeric_values", "numeric_values_scale"]:
                    tf_inputs_dict[key] = tf.convert_to_tensor(tensor.cpu().numpy(), dtype=tf.float32)
                else:
                    tf_inputs_dict[key] = tf.convert_to_tensor(tensor.cpu().numpy(), dtype=tf.int32)

            return tf_inputs_dict

        def check_outputs(tf_outputs, pt_outputs, model_class, names):
            """
            Args:
                model_class: The class of the model that is currently testing. For example, `TFBertModel`,
                    TFBertForMaskedLM`, `TFBertForSequenceClassification`, etc. Currently unused, but it could make
                    debugging easier and faster.

                names: A string, or a tuple of strings. These specify what tf_outputs/pt_outputs represent in the model outputs.
                    Currently unused, but in the future, we could use this information to make the error message clearer
                    by giving the name(s) of the output tensor(s) with large difference(s) between PT and TF.
            """

            # Some issue (`about past_key_values`) to solve (e.g. `TFPegasusForConditionalGeneration`) in a separate PR.
            if names == "past_key_values":
                return

            # Allow `list` because `(TF)TransfoXLModelOutput.mems` is a list of tensors.
            if type(tf_outputs) in [tuple, list]:
                self.assertEqual(type(tf_outputs), type(pt_outputs))
                self.assertEqual(len(tf_outputs), len(pt_outputs))
                if type(names) == tuple:
                    for tf_output, pt_output, name in zip(tf_outputs, pt_outputs, names):
                        check_outputs(tf_output, pt_output, model_class, names=name)
                elif type(names) == str:
                    for idx, (tf_output, pt_output) in enumerate(zip(tf_outputs, pt_outputs)):
                        check_outputs(tf_output, pt_output, model_class, names=f"{names}_{idx}")
                else:
                    raise ValueError(f"`names` should be a `tuple` or a string. Got {type(names)} instead.")
            elif isinstance(tf_outputs, tf.Tensor):
                self.assertTrue(isinstance(pt_outputs, torch.Tensor))

                tf_outputs = tf_outputs.numpy()
                pt_outputs = pt_outputs.detach().to("cpu").numpy()

                tf_nans = np.isnan(tf_outputs)
                pt_nans = np.isnan(pt_outputs)

                pt_outputs[tf_nans] = 0
                tf_outputs[tf_nans] = 0
                pt_outputs[pt_nans] = 0
                tf_outputs[pt_nans] = 0

                max_diff = np.amax(np.abs(tf_outputs - pt_outputs))
                self.assertLessEqual(max_diff, 1e-5)
            else:
                raise ValueError(
                    f"`tf_outputs` should be a `tuple` or an instance of `tf.Tensor`. Got {type(tf_outputs)} instead."
                )

        def check_pt_tf_models(tf_model, pt_model, pt_inputs_dict, pt_inputs_dict_maybe_with_labels):

            # send pytorch model to the correct device
            pt_model.to(torch_device)

            # Check predictions on first output (logits/hidden-states) are close enough given low-level computational differences
            pt_model.eval()

            tf_inputs_dict = prepare_tf_inputs_from_pt_inputs(pt_inputs_dict)
            tf_inputs_dict_maybe_with_labels = prepare_tf_inputs_from_pt_inputs(pt_inputs_dict_maybe_with_labels)

            # send pytorch inputs to the correct device
            pt_inputs_dict = {
                k: v.to(device=torch_device) if isinstance(v, torch.Tensor) else v for k, v in pt_inputs_dict.items()
            }
            pt_inputs_dict_maybe_with_labels = {
                k: v.to(device=torch_device) if isinstance(v, torch.Tensor) else v
                for k, v in pt_inputs_dict_maybe_with_labels.items()
            }

            # Original test: check without `labels`
            with torch.no_grad():
                pt_outputs = pt_model(**pt_inputs_dict)
            tf_outputs = tf_model(tf_inputs_dict)

            tf_keys = tuple([k for k, v in tf_outputs.items() if v is not None])
            pt_keys = tuple([k for k, v in pt_outputs.items() if v is not None])

            self.assertEqual(tf_keys, pt_keys)
            check_outputs(tf_outputs.to_tuple(), pt_outputs.to_tuple(), model_class, names=tf_keys)

            # check the case where `labels` is passed
            has_labels = any(
                x in tf_inputs_dict_maybe_with_labels for x in ["labels", "next_sentence_label", "start_positions"]
            )
            if has_labels:

                with torch.no_grad():
                    pt_outputs = pt_model(**pt_inputs_dict_maybe_with_labels)
                tf_outputs = tf_model(tf_inputs_dict_maybe_with_labels)

                # Some models' output class don't have `loss` attribute despite `labels` is used.
                # TODO: identify which models
                tf_loss = getattr(tf_outputs, "loss", None)
                pt_loss = getattr(pt_outputs, "loss", None)

                # Some PT models return loss while the corresponding TF models don't (i.e. `None` for `loss`).
                #   - FlaubertWithLMHeadModel
                #   - FunnelForPreTraining
                #   - ElectraForPreTraining
                #   - XLMWithLMHeadModel
                # TODO: Fix PT/TF diff -> remove this condition to fail the test if a diff occurs
                if not ((tf_loss is None and pt_loss is None) or (tf_loss is not None and pt_loss is not None)):
                    if model_class.__name__ not in [
                        "FlaubertWithLMHeadModel",
                        "FunnelForPreTraining",
                        "ElectraForPreTraining",
                        "XLMWithLMHeadModel",
                        "TransfoXLLMHeadModel",
                    ]:
                        self.assertEqual(tf_loss is None, pt_loss is None)

                tf_keys = tuple([k for k, v in tf_outputs.items() if v is not None])
                pt_keys = tuple([k for k, v in pt_outputs.items() if v is not None])

                # TODO: remove these 2 conditions once the above TODOs (above loss) are implemented
                # (Also, `TFTransfoXLLMHeadModel` has no `loss` while `TransfoXLLMHeadModel` return `losses`)
                if tf_keys != pt_keys:
                    if model_class.__name__ not in [
                        "FlaubertWithLMHeadModel",
                        "FunnelForPreTraining",
                        "ElectraForPreTraining",
                        "XLMWithLMHeadModel",
                        "TransfoXLLMHeadModel",
                    ]:
                        self.assertEqual(tf_keys, pt_keys)

                # Since we deliberately make some tests pass above (regarding the `loss`), let's still try to test
                # some remaining attributes in the outputs.
                # TODO: remove this block of `index` computing once the above TODOs (above loss) are implemented
                # compute the 1st `index` where `tf_keys` and `pt_keys` is different
                index = 0
                for _ in range(min(len(tf_keys), len(pt_keys))):
                    if tf_keys[index] == pt_keys[index]:
                        index += 1
                    else:
                        break
                if tf_keys[:index] != pt_keys[:index]:
                    self.assertEqual(tf_keys, pt_keys)

                # Some models require extra condition to return loss. For example, `(TF)BertForPreTraining` requires
                # both`labels` and `next_sentence_label`.
                if tf_loss is not None and pt_loss is not None:

                    # check anything else than `loss`
                    keys = tuple([k for k in tf_keys])
                    check_outputs(tf_outputs[1:index], pt_outputs[1:index], model_class, names=keys[1:index])

                    # check `loss`

                    # tf models returned loss is usually a tensor rather than a scalar.
                    # (see `hf_compute_loss`: it uses `tf.keras.losses.Reduction.NONE`)
                    # Change it here to a scalar to match PyTorch models' loss
                    tf_loss = tf.math.reduce_mean(tf_loss).numpy()
                    pt_loss = pt_loss.detach().to("cpu").numpy()

                    tf_nans = np.isnan(tf_loss)
                    pt_nans = np.isnan(pt_loss)
                    # the 2 losses need to be both nan or both not nan
                    self.assertEqual(tf_nans, pt_nans)

                    if not tf_nans:
                        max_diff = np.amax(np.abs(tf_loss - pt_loss))
                        self.assertLessEqual(max_diff, 1e-5)

1674
1675
1676
1677
1678
1679
1680
1681
1682
        config, inputs_dict = self.model_tester.prepare_config_and_inputs_for_common()

        for model_class in self.all_model_classes:
            tf_model_class_name = "TF" + model_class.__name__  # Add the "TF" at the beginning

            if not hasattr(transformers, tf_model_class_name):
                # transformers does not have TF version yet
                return

1683
1684
1685
            # Output all for aggressive testing
            config.output_hidden_states = True
            config.output_attentions = self.has_attentions
1686

1687
1688
1689
1690
1691
1692
1693
1694
1695
1696
1697
1698
1699
1700
1701
1702
1703
1704
1705
1706
1707
            for k in ["attention_mask", "encoder_attention_mask", "decoder_attention_mask"]:
                if k in inputs_dict:
                    attention_mask = inputs_dict[k]
                    # make sure no all 0s attention masks - to avoid failure at this moment.
                    # TODO: remove this line once the TODO below is implemented.
                    attention_mask = torch.ones_like(attention_mask, dtype=torch.int32)
                    # Here we make the first sequence with all 0s as attention mask.
                    # Currently, this will fail for `TFWav2Vec2Model`. This is caused by the different large negative
                    # values, like `1e-4`, `1e-9`, `1e-30` and `-inf` for attention mask across models/frameworks.
                    # TODO: enable this block once the large negative values thing is cleaned up.
                    # (see https://github.com/huggingface/transformers/issues/14859)
                    # attention_mask = torch.cat(
                    #     [
                    #         torch.zeros_like(attention_mask[:1], dtype=torch.int32),
                    #         attention_mask[1:].type(dtype=torch.int32)
                    #     ],
                    #     dim=0
                    # )
                    inputs_dict[k] = attention_mask

            tf_model_class = getattr(transformers, tf_model_class_name)
1708
1709
1710
1711
1712
1713
1714
1715
1716
1717
1718
1719

            tf_model = tf_model_class(config)
            pt_model = model_class(config)

            # make sure only tf inputs are forward that actually exist in function args
            tf_input_keys = set(inspect.signature(tf_model.call).parameters.keys())

            # remove all head masks
            tf_input_keys.discard("head_mask")
            tf_input_keys.discard("cross_attn_head_mask")
            tf_input_keys.discard("decoder_head_mask")

1720
1721
            pt_inputs_dict = self._prepare_for_class(inputs_dict, model_class)
            pt_inputs_dict_maybe_with_labels = self._prepare_for_class(inputs_dict, model_class, return_labels=True)
1722

1723
1724
1725
1726
            pt_inputs_dict = {k: v for k, v in pt_inputs_dict.items() if k in tf_input_keys}
            pt_inputs_dict_maybe_with_labels = {
                k: v for k, v in pt_inputs_dict_maybe_with_labels.items() if k in tf_input_keys
            }
1727
1728

            # Check we can load pt model in tf and vice-versa with model => model functions
1729
            tf_inputs_dict = prepare_tf_inputs_from_pt_inputs(pt_inputs_dict)
1730
            tf_model = transformers.load_pytorch_model_in_tf2_model(tf_model, pt_model, tf_inputs=tf_inputs_dict)
1731
            pt_model = transformers.load_tf2_model_in_pytorch_model(pt_model, tf_model)
1732

1733
            check_pt_tf_models(tf_model, pt_model, pt_inputs_dict, pt_inputs_dict_maybe_with_labels)
1734
1735
1736
1737
1738
1739
1740
1741
1742
1743

            # Check we can load pt model in tf and vice-versa with checkpoint => model functions
            with tempfile.TemporaryDirectory() as tmpdirname:
                pt_checkpoint_path = os.path.join(tmpdirname, "pt_model.bin")
                torch.save(pt_model.state_dict(), pt_checkpoint_path)
                tf_model = transformers.load_pytorch_checkpoint_in_tf2_model(tf_model, pt_checkpoint_path)

                tf_checkpoint_path = os.path.join(tmpdirname, "tf_model.h5")
                tf_model.save_weights(tf_checkpoint_path)
                pt_model = transformers.load_tf2_checkpoint_in_pytorch_model(pt_model, tf_checkpoint_path)
1744
                pt_model = pt_model.to(torch_device)
1745

1746
            check_pt_tf_models(tf_model, pt_model, pt_inputs_dict, pt_inputs_dict_maybe_with_labels)
1747
1748
1749
1750
1751

    def assert_almost_equals(self, a: np.ndarray, b: np.ndarray, tol: float):
        diff = np.abs((a - b)).max()
        self.assertLessEqual(diff, tol, f"Difference between torch and flax is {diff} (>= {tol}).")

1752
1753
1754
1755
1756
1757
1758
1759
1760
1761
1762
1763
1764
1765
1766
1767
1768
1769
1770
1771
1772
1773
1774
1775
1776
1777
1778
1779
1780
1781
1782
1783
1784
1785
1786
1787
1788
1789
1790
1791
1792
1793
    def check_outputs(self, fx_outputs, pt_outputs, model_class, names):
        """
        Args:
            model_class: The class of the model that is currently testing. For example, ..., etc.
            Currently unused, but it could make debugging easier and faster.

            names: A string, or a list of strings. These specify what fx_outputs/pt_outputs represent in the model outputs.
                Currently unused, but in the future, we could use this information to make the error message clearer
                by giving the name(s) of the output tensor(s) with large difference(s) between PT and Flax.
        """
        if type(fx_outputs) in [tuple, list]:
            self.assertEqual(type(fx_outputs), type(pt_outputs))
            self.assertEqual(len(fx_outputs), len(pt_outputs))
            if type(names) == tuple:
                for fo, po, name in zip(fx_outputs, pt_outputs, names):
                    self.check_outputs(fo, po, model_class, names=name)
            elif type(names) == str:
                for idx, (fo, po) in enumerate(zip(fx_outputs, pt_outputs)):
                    self.check_outputs(fo, po, model_class, names=f"{names}_{idx}")
            else:
                raise ValueError(f"`names` should be a `tuple` or a string. Got {type(names)} instead.")
        elif isinstance(fx_outputs, jnp.ndarray):
            self.assertTrue(isinstance(pt_outputs, torch.Tensor))

            # Using `np.asarray` gives `ValueError: assignment destination is read-only` at the line `fx_outputs[fx_nans] = 0`.
            fx_outputs = np.array(fx_outputs)
            pt_outputs = pt_outputs.detach().to("cpu").numpy()

            fx_nans = np.isnan(fx_outputs)
            pt_nans = np.isnan(pt_outputs)

            pt_outputs[fx_nans] = 0
            fx_outputs[fx_nans] = 0
            pt_outputs[pt_nans] = 0
            fx_outputs[pt_nans] = 0

            self.assert_almost_equals(fx_outputs, pt_outputs, 1e-5)
        else:
            raise ValueError(
                f"`fx_outputs` should be a `tuple` or an instance of `jnp.ndarray`. Got {type(fx_outputs)} instead."
            )

1794
1795
1796
1797
1798
1799
1800
1801
1802
    @is_pt_flax_cross_test
    def test_equivalence_pt_to_flax(self):
        config, inputs_dict = self.model_tester.prepare_config_and_inputs_for_common()

        for model_class in self.all_model_classes:
            with self.subTest(model_class.__name__):
                fx_model_class_name = "Flax" + model_class.__name__

                if not hasattr(transformers, fx_model_class_name):
1803
                    # no flax model exists for this class
1804
1805
                    return

1806
1807
1808
1809
                # Output all for aggressive testing
                config.output_hidden_states = True
                config.output_attentions = self.has_attentions

1810
1811
                fx_model_class = getattr(transformers, fx_model_class_name)

1812
1813
1814
1815
1816
1817
                # load PyTorch class
                pt_model = model_class(config).eval()
                # Flax models don't use the `use_cache` option and cache is not returned as a default.
                # So we disable `use_cache` here for PyTorch model.
                pt_model.config.use_cache = False

1818
1819
                # load Flax class
                fx_model = fx_model_class(config, dtype=jnp.float32)
1820

1821
1822
1823
1824
1825
1826
1827
1828
1829
                # make sure only flax inputs are forward that actually exist in function args
                fx_input_keys = inspect.signature(fx_model.__call__).parameters.keys()

                # prepare inputs
                pt_inputs = self._prepare_for_class(inputs_dict, model_class)

                # remove function args that don't exist in Flax
                pt_inputs = {k: v for k, v in pt_inputs.items() if k in fx_input_keys}

1830
1831
1832
1833
1834
1835
1836
1837
                # send pytorch inputs to the correct device
                pt_inputs = {
                    k: v.to(device=torch_device) if isinstance(v, torch.Tensor) else v for k, v in pt_inputs.items()
                }

                # convert inputs to Flax
                fx_inputs = {k: np.array(v) for k, v in pt_inputs.items() if torch.is_tensor(v)}

1838
1839
1840
                fx_state = convert_pytorch_state_dict_to_flax(pt_model.state_dict(), fx_model)
                fx_model.params = fx_state

1841
1842
1843
                # send pytorch model to the correct device
                pt_model.to(torch_device)

1844
                with torch.no_grad():
1845
1846
                    pt_outputs = pt_model(**pt_inputs)
                fx_outputs = fx_model(**fx_inputs)
1847

1848
1849
1850
1851
1852
                fx_keys = tuple([k for k, v in fx_outputs.items() if v is not None])
                pt_keys = tuple([k for k, v in pt_outputs.items() if v is not None])

                self.assertEqual(fx_keys, pt_keys)
                self.check_outputs(fx_outputs.to_tuple(), pt_outputs.to_tuple(), model_class, names=fx_keys)
1853
1854
1855
1856
1857

                with tempfile.TemporaryDirectory() as tmpdirname:
                    pt_model.save_pretrained(tmpdirname)
                    fx_model_loaded = fx_model_class.from_pretrained(tmpdirname, from_pt=True)

1858
1859
1860
1861
1862
1863
1864
                fx_outputs_loaded = fx_model_loaded(**fx_inputs)

                fx_keys = tuple([k for k, v in fx_outputs_loaded.items() if v is not None])
                pt_keys = tuple([k for k, v in pt_outputs.items() if v is not None])

                self.assertEqual(fx_keys, pt_keys)
                self.check_outputs(fx_outputs_loaded.to_tuple(), pt_outputs.to_tuple(), model_class, names=fx_keys)
1865
1866
1867
1868
1869
1870
1871
1872
1873
1874
1875
1876
1877

    @is_pt_flax_cross_test
    def test_equivalence_flax_to_pt(self):
        config, inputs_dict = self.model_tester.prepare_config_and_inputs_for_common()

        for model_class in self.all_model_classes:
            with self.subTest(model_class.__name__):
                fx_model_class_name = "Flax" + model_class.__name__

                if not hasattr(transformers, fx_model_class_name):
                    # no flax model exists for this class
                    return

1878
1879
1880
1881
                # Output all for aggressive testing
                config.output_hidden_states = True
                config.output_attentions = self.has_attentions

1882
1883
                fx_model_class = getattr(transformers, fx_model_class_name)

1884
1885
1886
1887
1888
1889
                # load PyTorch class
                pt_model = model_class(config).eval()
                # Flax models don't use the `use_cache` option and cache is not returned as a default.
                # So we disable `use_cache` here for PyTorch model.
                pt_model.config.use_cache = False

1890
1891
                # load Flax class
                fx_model = fx_model_class(config, dtype=jnp.float32)
1892

1893
1894
1895
1896
1897
1898
1899
1900
1901
                # make sure only flax inputs are forward that actually exist in function args
                fx_input_keys = inspect.signature(fx_model.__call__).parameters.keys()

                # prepare inputs
                pt_inputs = self._prepare_for_class(inputs_dict, model_class)

                # remove function args that don't exist in Flax
                pt_inputs = {k: v for k, v in pt_inputs.items() if k in fx_input_keys}

1902
1903
1904
1905
                # send pytorch inputs to the correct device
                pt_inputs = {
                    k: v.to(device=torch_device) if isinstance(v, torch.Tensor) else v for k, v in pt_inputs.items()
                }
1906

1907
                # convert inputs to Flax
1908
1909
                fx_inputs = {k: np.array(v) for k, v in pt_inputs.items() if torch.is_tensor(v)}

1910
1911
1912
1913
1914
1915
1916
                pt_model = load_flax_weights_in_pytorch_model(pt_model, fx_model.params)

                # make sure weights are tied in PyTorch
                pt_model.tie_weights()

                # send pytorch model to the correct device
                pt_model.to(torch_device)
1917

1918
1919
1920
1921
1922
1923
1924
1925
1926
                with torch.no_grad():
                    pt_outputs = pt_model(**pt_inputs)
                fx_outputs = fx_model(**fx_inputs)

                fx_keys = tuple([k for k, v in fx_outputs.items() if v is not None])
                pt_keys = tuple([k for k, v in pt_outputs.items() if v is not None])

                self.assertEqual(fx_keys, pt_keys)
                self.check_outputs(fx_outputs.to_tuple(), pt_outputs.to_tuple(), model_class, names=fx_keys)
1927
1928
1929
1930
1931

                with tempfile.TemporaryDirectory() as tmpdirname:
                    fx_model.save_pretrained(tmpdirname)
                    pt_model_loaded = model_class.from_pretrained(tmpdirname, from_flax=True)

1932
1933
1934
1935
                # send pytorch model to the correct device
                pt_model_loaded.to(torch_device)
                pt_model_loaded.eval()

1936
                with torch.no_grad():
1937
                    pt_outputs_loaded = pt_model_loaded(**pt_inputs)
1938

1939
1940
1941
1942
1943
                fx_keys = tuple([k for k, v in fx_outputs.items() if v is not None])
                pt_keys = tuple([k for k, v in pt_outputs_loaded.items() if v is not None])

                self.assertEqual(fx_keys, pt_keys)
                self.check_outputs(fx_outputs.to_tuple(), pt_outputs_loaded.to_tuple(), model_class, names=fx_keys)
1944

Patrick von Platen's avatar
Patrick von Platen committed
1945
    def test_inputs_embeds(self):
1946
1947
1948
1949
        config, inputs_dict = self.model_tester.prepare_config_and_inputs_for_common()

        for model_class in self.all_model_classes:
            model = model_class(config)
1950
            model.to(torch_device)
thomwolf's avatar
thomwolf committed
1951
            model.eval()
1952

1953
            inputs = copy.deepcopy(self._prepare_for_class(inputs_dict, model_class))
Weizhen's avatar
Weizhen committed
1954

1955
1956
1957
1958
1959
1960
1961
1962
1963
            if not self.is_encoder_decoder:
                input_ids = inputs["input_ids"]
                del inputs["input_ids"]
            else:
                encoder_input_ids = inputs["input_ids"]
                decoder_input_ids = inputs.get("decoder_input_ids", encoder_input_ids)
                del inputs["input_ids"]
                inputs.pop("decoder_input_ids", None)

1964
1965
            wte = model.get_input_embeddings()
            if not self.is_encoder_decoder:
1966
                inputs["inputs_embeds"] = wte(input_ids)
1967
            else:
1968
1969
                inputs["inputs_embeds"] = wte(encoder_input_ids)
                inputs["decoder_inputs_embeds"] = wte(decoder_input_ids)
1970

thomwolf's avatar
thomwolf committed
1971
            with torch.no_grad():
Weizhen's avatar
Weizhen committed
1972
                model(**inputs)[0]
1973

1974
1975
    @require_torch_multi_gpu
    def test_multi_gpu_data_parallel_forward(self):
1976
1977
1978
1979
        config, inputs_dict = self.model_tester.prepare_config_and_inputs_for_common()

        # some params shouldn't be scattered by nn.DataParallel
        # so just remove them if they are present.
1980
        blacklist_non_batched_params = ["head_mask", "decoder_head_mask", "cross_attn_head_mask"]
1981
1982
1983
1984
1985
1986
1987
1988
1989
1990
1991
1992
1993
1994
        for k in blacklist_non_batched_params:
            inputs_dict.pop(k, None)

        # move input tensors to cuda:O
        for k, v in inputs_dict.items():
            if torch.is_tensor(v):
                inputs_dict[k] = v.to(0)

        for model_class in self.all_model_classes:
            model = model_class(config=config)
            model.to(0)
            model.eval()

            # Wrap model in nn.DataParallel
1995
            model = nn.DataParallel(model)
1996
            with torch.no_grad():
1997
                _ = model(**self._prepare_for_class(inputs_dict, model_class))
1998

1999
2000
2001
    @require_torch_multi_gpu
    def test_model_parallelization(self):
        if not self.test_model_parallel:
2002
            return
2003

2004
        # a candidate for testing_utils
2005
        def get_current_gpu_memory_use():
Patrick von Platen's avatar
Patrick von Platen committed
2006
            """returns a list of cuda memory allocations per GPU in MBs"""
2007
2008
2009
2010
2011

            per_device_memory = []
            for id in range(torch.cuda.device_count()):
                with torch.cuda.device(id):
                    per_device_memory.append(torch.cuda.memory_allocated() >> 20)
2012
2013
2014
2015
2016
2017
2018
2019
2020

            return per_device_memory

        # Needs a large model to see the difference.
        config = self.model_tester.get_large_model_config()

        for model_class in self.all_parallelizable_model_classes:
            torch.cuda.empty_cache()

2021
2022
2023
            # 1. single gpu memory load + unload + memory measurements
            # Retrieve initial memory usage (can easily be ~0.6-1.5GB if cuda-kernels have been preloaded by previous tests)
            memory_at_start = get_current_gpu_memory_use()
2024

2025
2026
            # Put model on device 0 and take a memory snapshot
            model = model_class(config)
2027
2028
2029
            model.to("cuda:0")
            memory_after_model_load = get_current_gpu_memory_use()

2030
2031
2032
            # The memory use on device 0 should be higher than it was initially.
            self.assertGreater(memory_after_model_load[0], memory_at_start[0])

2033
            del model
2034
            gc.collect()
2035
2036
            torch.cuda.empty_cache()

2037
2038
2039
            # 2. MP test
            # it's essential to re-calibrate the usage before the next stage
            memory_at_start = get_current_gpu_memory_use()
2040
2041

            # Spread model layers over multiple devices
2042
            model = model_class(config)
2043
2044
2045
2046
2047
            model.parallelize()
            memory_after_parallelization = get_current_gpu_memory_use()

            # Assert that the memory use on all devices is higher than it was when loaded only on CPU
            for n in range(torch.cuda.device_count()):
2048
                self.assertGreater(memory_after_parallelization[n], memory_at_start[n])
2049

2050
            # Assert that the memory use of device 0 is lower than it was when the entire model was loaded on it
2051
2052
            self.assertLess(memory_after_parallelization[0], memory_after_model_load[0])

2053
2054
            # Assert that the memory use of device 1 is higher than it was when the entire model was loaded
            # on device 0 and device 1 wasn't used at all
2055
2056
2057
            self.assertGreater(memory_after_parallelization[1], memory_after_model_load[1])

            del model
2058
            gc.collect()
2059
2060
2061
2062
2063
            torch.cuda.empty_cache()

    @require_torch_multi_gpu
    def test_model_parallel_equal_results(self):
        if not self.test_model_parallel:
2064
            return
2065
2066
2067
2068
2069
2070

        config, inputs_dict = self.model_tester.prepare_config_and_inputs_for_common()

        for model_class in self.all_parallelizable_model_classes:
            inputs_dict = self._prepare_for_class(inputs_dict, model_class)

2071
            def cast_to_device(dictionary, device):
2072
2073
2074
                output = {}
                for k, v in dictionary.items():
                    if isinstance(v, torch.Tensor):
2075
                        output[k] = v.to(device)
2076
2077
2078
2079
2080
                    else:
                        output[k] = v

                return output

2081
2082
2083
2084
2085
2086
            model = model_class(config)
            output = model(**cast_to_device(inputs_dict, "cpu"))

            model.parallelize()

            parallel_output = model(**cast_to_device(inputs_dict, "cuda:0"))
2087
2088
2089
2090
2091
2092
2093
2094

            for value, parallel_value in zip(output, parallel_output):
                if isinstance(value, torch.Tensor):
                    self.assertTrue(torch.allclose(value, parallel_value.to("cpu"), atol=1e-7))
                elif isinstance(value, (Tuple, List)):
                    for value_, parallel_value_ in zip(value, parallel_value):
                        self.assertTrue(torch.allclose(value_, parallel_value_.to("cpu"), atol=1e-7))

2095
2096
2097
2098
2099
2100
2101
2102
2103
2104
2105
2106
2107
2108
2109
2110
2111
2112
2113
2114
2115
2116
2117
2118
2119
2120
2121
2122
    @require_torch_multi_gpu
    def test_model_parallel_beam_search(self):
        if not self.test_model_parallel:
            return

        all_generative_and_parallelizable_model_classes = tuple(
            set(self.all_generative_model_classes).intersection(self.all_parallelizable_model_classes)
        )

        config, inputs_dict = self.model_tester.prepare_config_and_inputs_for_common()

        for model_class in all_generative_and_parallelizable_model_classes:
            inputs_dict = self._prepare_for_class(inputs_dict, model_class)
            model = model_class(config)

            def cast_to_device(dictionary, device):
                output = {}
                for k, v in dictionary.items():
                    if isinstance(v, torch.Tensor):
                        output[k] = v.to(device)
                    else:
                        output[k] = v

                return output

            model.parallelize()
            model.generate(**cast_to_device(inputs_dict, "cuda:0"), num_beams=2)

2123
2124
2125
2126
2127
2128
2129
2130
2131
2132
    def test_problem_types(self):
        config, inputs_dict = self.model_tester.prepare_config_and_inputs_for_common()

        problem_types = [
            {"title": "multi_label_classification", "num_labels": 2, "dtype": torch.float},
            {"title": "single_label_classification", "num_labels": 1, "dtype": torch.long},
            {"title": "regression", "num_labels": 1, "dtype": torch.float},
        ]

        for model_class in self.all_model_classes:
2133
2134
2135
2136
            if model_class not in [
                *get_values(MODEL_FOR_SEQUENCE_CLASSIFICATION_MAPPING),
                *get_values(MODEL_FOR_IMAGE_CLASSIFICATION_MAPPING),
            ]:
2137
2138
2139
2140
2141
2142
2143
2144
2145
2146
2147
2148
2149
2150
2151
2152
2153
2154
2155
                continue

            for problem_type in problem_types:
                with self.subTest(msg=f"Testing {model_class} with {problem_type['title']}"):

                    config.problem_type = problem_type["title"]
                    config.num_labels = problem_type["num_labels"]

                    model = model_class(config)
                    model.to(torch_device)
                    model.train()

                    inputs = self._prepare_for_class(inputs_dict, model_class, return_labels=True)

                    if problem_type["num_labels"] > 1:
                        inputs["labels"] = inputs["labels"].unsqueeze(1).repeat(1, problem_type["num_labels"])

                    inputs["labels"] = inputs["labels"].to(problem_type["dtype"])

2156
2157
2158
2159
2160
2161
                    # This tests that we do not trigger the warning form PyTorch "Using a target size that is different
                    # to the input size. This will likely lead to incorrect results due to broadcasting. Please ensure
                    # they have the same size." which is a symptom something in wrong for the regression problem.
                    # See https://github.com/huggingface/transformers/issues/11780
                    with warnings.catch_warnings(record=True) as warning_list:
                        loss = model(**inputs).loss
2162
2163
2164
2165
2166
                    for w in warning_list:
                        if "Using a target size that is different to the input size" in str(w.message):
                            raise ValueError(
                                f"Something is going wrong in the regression problem: intercepted {w.message}"
                            )
2167

2168
2169
                    loss.backward()

2170
    def test_load_with_mismatched_shapes(self):
2171
2172
        if not self.test_mismatched_shapes:
            return
2173
2174
2175
2176
2177
2178
2179
2180
2181
2182
2183
2184
        config, inputs_dict = self.model_tester.prepare_config_and_inputs_for_common()

        for model_class in self.all_model_classes:
            if model_class not in get_values(MODEL_FOR_SEQUENCE_CLASSIFICATION_MAPPING):
                continue

            with self.subTest(msg=f"Testing {model_class}"):
                with tempfile.TemporaryDirectory() as tmp_dir:
                    model = model_class(config)
                    model.save_pretrained(tmp_dir)

                    # Fails when we don't set ignore_mismatched_sizes=True
2185
                    with self.assertRaises(RuntimeError):
2186
                        new_model = AutoModelForSequenceClassification.from_pretrained(tmp_dir, num_labels=42)
2187
2188
                    with self.assertRaises(RuntimeError):
                        new_model_without_prefix = AutoModel.from_pretrained(tmp_dir, vocab_size=10)
2189
2190

                    logger = logging.get_logger("transformers.modeling_utils")
2191

2192
2193
2194
2195
2196
2197
2198
2199
2200
2201
                    with CaptureLogger(logger) as cl:
                        new_model = AutoModelForSequenceClassification.from_pretrained(
                            tmp_dir, num_labels=42, ignore_mismatched_sizes=True
                        )
                    self.assertIn("the shapes did not match", cl.out)
                    new_model.to(torch_device)
                    inputs = self._prepare_for_class(inputs_dict, model_class)
                    logits = new_model(**inputs).logits
                    self.assertEqual(logits.shape[1], 42)

2202
2203
2204
2205
2206
2207
2208
2209
2210
2211
2212
2213
                    with CaptureLogger(logger) as cl:
                        new_model_without_prefix = AutoModel.from_pretrained(
                            tmp_dir, vocab_size=10, ignore_mismatched_sizes=True
                        )
                    self.assertIn("the shapes did not match", cl.out)
                    input_ids = ids_tensor((2, 8), 10)
                    new_model_without_prefix.to(torch_device)
                    if self.is_encoder_decoder:
                        new_model_without_prefix(input_ids, decoder_input_ids=input_ids)
                    else:
                        new_model_without_prefix(input_ids)

2214

2215
global_rng = random.Random()
thomwolf's avatar
thomwolf committed
2216
2217


thomwolf's avatar
thomwolf committed
2218
def ids_tensor(shape, vocab_size, rng=None, name=None):
2219
    #  Creates a random int32 tensor of the shape within the vocab size
thomwolf's avatar
thomwolf committed
2220
    if rng is None:
2221
        rng = global_rng
thomwolf's avatar
thomwolf committed
2222

thomwolf's avatar
thomwolf committed
2223
2224
2225
    total_dims = 1
    for dim in shape:
        total_dims *= dim
thomwolf's avatar
thomwolf committed
2226

thomwolf's avatar
thomwolf committed
2227
2228
2229
    values = []
    for _ in range(total_dims):
        values.append(rng.randint(0, vocab_size - 1))
thomwolf's avatar
thomwolf committed
2230

2231
    return torch.tensor(data=values, dtype=torch.long, device=torch_device).view(shape).contiguous()
thomwolf's avatar
thomwolf committed
2232
2233


2234
2235
2236
2237
2238
2239
2240
def random_attention_mask(shape, rng=None, name=None):
    attn_mask = ids_tensor(shape, vocab_size=2, rng=None, name=None)
    # make sure that at least one token is attended to for each batch
    attn_mask[:, -1] = 1
    return attn_mask


2241
def floats_tensor(shape, scale=1.0, rng=None, name=None):
Patrick von Platen's avatar
Patrick von Platen committed
2242
    """Creates a random float32 tensor"""
2243
2244
2245
2246
2247
2248
2249
2250
2251
2252
2253
    if rng is None:
        rng = global_rng

    total_dims = 1
    for dim in shape:
        total_dims *= dim

    values = []
    for _ in range(total_dims):
        values.append(rng.random() * scale)

2254
    return torch.tensor(data=values, dtype=torch.float, device=torch_device).view(shape).contiguous()
2255
2256


2257
@require_torch
2258
class ModelUtilsTest(TestCasePlus):
2259
    @slow
Patrick von Platen's avatar
Patrick von Platen committed
2260
    def test_model_from_pretrained(self):
2261
        for model_name in BERT_PRETRAINED_MODEL_ARCHIVE_LIST[:1]:
thomwolf's avatar
thomwolf committed
2262
2263
2264
2265
2266
2267
2268
2269
            config = BertConfig.from_pretrained(model_name)
            self.assertIsNotNone(config)
            self.assertIsInstance(config, PretrainedConfig)

            model = BertModel.from_pretrained(model_name)
            model, loading_info = BertModel.from_pretrained(model_name, output_loading_info=True)
            self.assertIsNotNone(model)
            self.assertIsInstance(model, PreTrainedModel)
Lysandre Debut's avatar
Lysandre Debut committed
2270
2271
2272
2273
2274

            self.assertEqual(len(loading_info["missing_keys"]), 0)
            self.assertEqual(len(loading_info["unexpected_keys"]), 8)
            self.assertEqual(len(loading_info["mismatched_keys"]), 0)
            self.assertEqual(len(loading_info["error_msgs"]), 0)
thomwolf's avatar
thomwolf committed
2275
2276

            config = BertConfig.from_pretrained(model_name, output_attentions=True, output_hidden_states=True)
Lysandre Debut's avatar
Lysandre Debut committed
2277
2278
2279
2280

            # Not sure this is the intended behavior. TODO fix Lysandre & Thom
            config.name_or_path = model_name

thomwolf's avatar
thomwolf committed
2281
2282
2283
            model = BertModel.from_pretrained(model_name, output_attentions=True, output_hidden_states=True)
            self.assertEqual(model.config.output_hidden_states, True)
            self.assertEqual(model.config, config)
2284
2285
2286
2287
2288

    def test_model_from_pretrained_with_different_pretrained_model_name(self):
        model = T5ForConditionalGeneration.from_pretrained(TINY_T5)
        self.assertIsNotNone(model)

2289
2290
        logger = logging.get_logger("transformers.configuration_utils")
        with CaptureLogger(logger) as cl:
2291
            BertModel.from_pretrained(TINY_T5)
2292
        self.assertTrue("You are using a model of type t5 to instantiate a model of type bert" in cl.out)
Sylvain Gugger's avatar
Sylvain Gugger committed
2293

2294
2295
2296
2297
2298
2299
2300
2301
2302
2303
2304
2305
2306
2307
2308
2309
2310
2311
2312
2313
2314
2315
    @require_torch
    def test_model_from_config_torch_dtype(self):
        # test that the model can be instantiated with dtype of user's choice - as long as it's a
        # float dtype. To make it happen config.torch_dtype needs to be set before instantiating the
        # model from the config object.

        config = T5Config.from_pretrained(TINY_T5)
        model = AutoModel.from_config(config)
        # XXX: isn't supported
        # model = T5ForConditionalGeneration.from_config(config)
        self.assertEqual(model.dtype, torch.float32)

        model = AutoModel.from_config(config, torch_dtype=torch.float16)
        self.assertEqual(model.dtype, torch.float16)

        # torch.set_default_dtype() supports only float dtypes, so will fail with non-float type
        with self.assertRaises(ValueError):
            model = AutoModel.from_config(config, torch_dtype=torch.int64)

    @require_torch
    def test_model_from_pretrained_torch_dtype(self):
        # test that the model can be instantiated with dtype of either
2316
2317
        # 1. explicit from_pretrained's torch_dtype argument
        # 2. via autodiscovery by looking at model weights (torch_dtype="auto")
2318
        # so if a model.half() was saved, we want it to be instantiated as such.
2319
2320
        #
        # test an explicit model class, but also AutoModel separately as the latter goes through a different code path
2321
2322
2323
2324
2325
2326
2327
2328
2329
2330
2331
2332
2333
2334
2335
2336
2337
2338
2339
2340
2341
2342
        model_path = self.get_auto_remove_tmp_dir()

        # baseline - we know TINY_T5 is fp32 model
        model = T5ForConditionalGeneration.from_pretrained(TINY_T5)
        self.assertEqual(model.dtype, torch.float32)

        # test the default fp32 save_pretrained => from_pretrained cycle
        model.save_pretrained(model_path)
        model = T5ForConditionalGeneration.from_pretrained(model_path)
        self.assertEqual(model.dtype, torch.float32)
        # test with auto-detection
        model = T5ForConditionalGeneration.from_pretrained(model_path, torch_dtype="auto")
        self.assertEqual(model.dtype, torch.float32)

        # test forced loading in fp16 (even though the weights are in fp32)
        model = T5ForConditionalGeneration.from_pretrained(model_path, torch_dtype=torch.float16)
        self.assertEqual(model.dtype, torch.float16)

        # test fp16 save_pretrained, loaded with auto-detection
        model = model.half()
        model.save_pretrained(model_path)
        model = T5ForConditionalGeneration.from_pretrained(model_path, torch_dtype="auto")
2343
        self.assertEqual(model.config.torch_dtype, torch.float16)
2344
2345
        self.assertEqual(model.dtype, torch.float16)

2346
2347
2348
2349
2350
        # tests `config.torch_dtype` saving
        with open(f"{model_path}/config.json") as f:
            config_dict = json.load(f)
        self.assertEqual(config_dict["torch_dtype"], "float16")

2351
2352
2353
2354
        # test fp16 save_pretrained, loaded with the explicit fp16
        model = T5ForConditionalGeneration.from_pretrained(model_path, torch_dtype=torch.float16)
        self.assertEqual(model.dtype, torch.float16)

2355
2356
2357
2358
2359
2360
2361
2362
        # test AutoModel separately as it goes through a different path
        # test auto-detection
        model = AutoModel.from_pretrained(TINY_T5, torch_dtype="auto")
        self.assertEqual(model.dtype, torch.float32)
        # test forcing an explicit dtype
        model = AutoModel.from_pretrained(TINY_T5, torch_dtype=torch.float16)
        self.assertEqual(model.dtype, torch.float16)

2363
2364
2365
2366
2367
2368
2369
    def test_no_super_init_config_and_model(self):
        config = NoSuperInitConfig(attribute=32)
        model = NoSuperInitModel(config)

        with tempfile.TemporaryDirectory() as tmp_dir:
            model.save_pretrained(tmp_dir)

2370
2371
2372
2373
            new_model = NoSuperInitModel.from_pretrained(tmp_dir)

        for p1, p2 in zip(model.parameters(), new_model.parameters()):
            self.assertTrue(torch.equal(p1, p2))
2374

Sylvain Gugger's avatar
Sylvain Gugger committed
2375
2376
2377
2378
2379
2380
2381
2382
2383
2384
2385
2386
2387
2388
2389
2390
2391
2392
2393
2394
2395
2396
2397
2398
2399
2400
2401
2402
2403
2404
2405
2406
2407
2408
2409
2410
2411
2412
2413
2414
2415
2416
2417
2418
2419
2420
2421
2422
2423
2424
2425
2426
2427
2428
2429
2430
2431
2432
2433
2434
2435
2436
2437
2438
2439
2440
2441
2442
2443
2444
2445
2446
2447
2448
2449
2450
2451
2452
2453
2454
2455
2456
2457
2458
2459
2460
2461
2462
2463
2464
2465
2466
2467
2468
2469
2470
2471
2472
2473
2474
2475
2476
2477
2478
2479
2480
2481
2482
2483
2484
2485
2486
2487
2488
2489
2490
2491
    def test_shard_checkpoint(self):
        # This is the model we will use, total size 340,000 bytes.
        model = torch.nn.Sequential(
            torch.nn.Linear(100, 200, bias=False),  # size 80,000
            torch.nn.Linear(200, 200, bias=False),  # size 160,000
            torch.nn.Linear(200, 100, bias=False),  # size 80,000
            torch.nn.Linear(100, 50, bias=False),  # size 20,000
        )
        state_dict = model.state_dict()

        with self.subTest("No shard when max size is bigger than model size"):
            shards, index = shard_checkpoint(state_dict)
            self.assertIsNone(index)
            self.assertDictEqual(shards, {WEIGHTS_NAME: state_dict})

        with self.subTest("Test sharding, no weights bigger than max size"):
            shards, index = shard_checkpoint(state_dict, max_shard_size="300kB")
            # Split is first two layers then last two.
            self.assertDictEqual(
                index,
                {
                    "metadata": {"total_size": 340000},
                    "weight_map": {
                        "0.weight": "pytorch_model-00001-of-00002.bin",
                        "1.weight": "pytorch_model-00001-of-00002.bin",
                        "2.weight": "pytorch_model-00002-of-00002.bin",
                        "3.weight": "pytorch_model-00002-of-00002.bin",
                    },
                },
            )

            shard1 = {"0.weight": state_dict["0.weight"], "1.weight": state_dict["1.weight"]}
            shard2 = {"2.weight": state_dict["2.weight"], "3.weight": state_dict["3.weight"]}
            self.assertDictEqual(
                shards, {"pytorch_model-00001-of-00002.bin": shard1, "pytorch_model-00002-of-00002.bin": shard2}
            )

        with self.subTest("Test sharding with weights bigger than max size"):
            shards, index = shard_checkpoint(state_dict, max_shard_size="100kB")
            # Split is first layer, second layer then last 2.
            self.assertDictEqual(
                index,
                {
                    "metadata": {"total_size": 340000},
                    "weight_map": {
                        "0.weight": "pytorch_model-00001-of-00003.bin",
                        "1.weight": "pytorch_model-00002-of-00003.bin",
                        "2.weight": "pytorch_model-00003-of-00003.bin",
                        "3.weight": "pytorch_model-00003-of-00003.bin",
                    },
                },
            )

            shard1 = {"0.weight": state_dict["0.weight"]}
            shard2 = {"1.weight": state_dict["1.weight"]}
            shard3 = {"2.weight": state_dict["2.weight"], "3.weight": state_dict["3.weight"]}
            self.assertDictEqual(
                shards,
                {
                    "pytorch_model-00001-of-00003.bin": shard1,
                    "pytorch_model-00002-of-00003.bin": shard2,
                    "pytorch_model-00003-of-00003.bin": shard3,
                },
            )

    def test_checkpoint_sharding_local(self):
        model = BertModel.from_pretrained("hf-internal-testing/tiny-random-bert")

        with tempfile.TemporaryDirectory() as tmp_dir:
            # We use the same folder for various sizes to make sure a new save erases the old checkpoint.
            for max_size in ["50kB", "50kiB", "100kB", "100kiB", "200kB", "200kiB"]:
                model.save_pretrained(tmp_dir, max_shard_size=max_size)

                # Get each shard file and its size
                shard_to_size = {}
                for shard in os.listdir(tmp_dir):
                    if shard.endswith(".bin"):
                        shard_file = os.path.join(tmp_dir, shard)
                        shard_to_size[shard_file] = os.path.getsize(shard_file)

                index_file = os.path.join(tmp_dir, WEIGHTS_INDEX_NAME)
                # Check there is an index but no regular weight file
                self.assertTrue(os.path.isfile(index_file))
                self.assertFalse(os.path.isfile(os.path.join(tmp_dir, WEIGHTS_NAME)))

                # Check a file is bigger than max_size only when it has a single weight
                for shard_file, size in shard_to_size.items():
                    if max_size.endswith("kiB"):
                        max_size_int = int(max_size[:-3]) * 2**10
                    else:
                        max_size_int = int(max_size[:-2]) * 10**3
                    # Note: pickle adds some junk so the weight of the file can end up being slightly bigger than
                    # the size asked for (since we count parameters)
                    if size >= max_size_int + 50000:
                        state_dict = torch.load(shard_file)
                        self.assertEqual(len(state_dict), 1)

                # Check the index and the shard files found match
                with open(index_file, "r", encoding="utf-8") as f:
                    index = json.loads(f.read())

                all_shards = set(index["weight_map"].values())
                shards_found = set(f for f in os.listdir(tmp_dir) if f.endswith(".bin"))
                self.assertSetEqual(all_shards, shards_found)

                # Finally, check the model can be reloaded
                new_model = BertModel.from_pretrained(tmp_dir)
                for p1, p2 in zip(model.parameters(), new_model.parameters()):
                    self.assertTrue(torch.allclose(p1, p2))

    def test_checkpoint_sharding_from_hub(self):
        model = BertModel.from_pretrained("hf-internal-testing/tiny-random-bert-sharded")
        # the model above is the same as the model below, just a sharded version.
        ref_model = BertModel.from_pretrained("hf-internal-testing/tiny-random-bert")
        for p1, p2 in zip(model.parameters(), ref_model.parameters()):
            self.assertTrue(torch.allclose(p1, p2))

2492
2493
2494
2495
2496
2497
2498
2499
2500
2501
2502
2503
2504
2505
2506
2507
    def test_cached_files_are_used_when_internet_is_down(self):
        # A mock response for an HTTP head request to emulate server down
        response_mock = mock.Mock()
        response_mock.status_code = 500
        response_mock.headers = []
        response_mock.raise_for_status.side_effect = HTTPError

        # Download this model to make sure it's in the cache.
        _ = BertModel.from_pretrained("hf-internal-testing/tiny-random-bert")

        # Under the mock environment we get a 500 error when trying to reach the model.
        with mock.patch("transformers.utils.hub.requests.head", return_value=response_mock) as mock_head:
            _ = BertModel.from_pretrained("hf-internal-testing/tiny-random-bert")
            # This check we did call the fake head request
            mock_head.assert_called()

Sylvain Gugger's avatar
Sylvain Gugger committed
2508
2509
2510
2511
2512
2513

@require_torch
@is_staging_test
class ModelPushToHubTester(unittest.TestCase):
    @classmethod
    def setUpClass(cls):
2514
        cls._token = login(username=USER, password=PASS)
Sylvain Gugger's avatar
Sylvain Gugger committed
2515
2516
2517
2518

    @classmethod
    def tearDownClass(cls):
        try:
2519
            delete_repo(token=cls._token, name="test-model")
Sylvain Gugger's avatar
Sylvain Gugger committed
2520
2521
2522
2523
        except HTTPError:
            pass

        try:
2524
            delete_repo(token=cls._token, name="test-model-org", organization="valid_org")
Sylvain Gugger's avatar
Sylvain Gugger committed
2525
2526
2527
        except HTTPError:
            pass

2528
        try:
2529
            delete_repo(token=cls._token, name="test-dynamic-model")
2530
2531
2532
        except HTTPError:
            pass

2533
2534
2535
2536
2537
        try:
            delete_repo(token=cls._token, name="test-dynamic-model-config")
        except HTTPError:
            pass

Sylvain Gugger's avatar
Sylvain Gugger committed
2538
2539
2540
2541
2542
2543
    def test_push_to_hub(self):
        config = BertConfig(
            vocab_size=99, hidden_size=32, num_hidden_layers=5, num_attention_heads=4, intermediate_size=37
        )
        model = BertModel(config)
        with tempfile.TemporaryDirectory() as tmp_dir:
2544
            model.save_pretrained(os.path.join(tmp_dir, "test-model"), push_to_hub=True, use_auth_token=self._token)
Sylvain Gugger's avatar
Sylvain Gugger committed
2545
2546
2547
2548
2549
2550
2551
2552
2553
2554
2555
2556

            new_model = BertModel.from_pretrained(f"{USER}/test-model")
            for p1, p2 in zip(model.parameters(), new_model.parameters()):
                self.assertTrue(torch.equal(p1, p2))

    def test_push_to_hub_in_organization(self):
        config = BertConfig(
            vocab_size=99, hidden_size=32, num_hidden_layers=5, num_attention_heads=4, intermediate_size=37
        )
        model = BertModel(config)
        with tempfile.TemporaryDirectory() as tmp_dir:
            model.save_pretrained(
2557
                os.path.join(tmp_dir, "test-model-org"),
Sylvain Gugger's avatar
Sylvain Gugger committed
2558
2559
2560
2561
2562
2563
2564
2565
                push_to_hub=True,
                use_auth_token=self._token,
                organization="valid_org",
            )

            new_model = BertModel.from_pretrained("valid_org/test-model-org")
            for p1, p2 in zip(model.parameters(), new_model.parameters()):
                self.assertTrue(torch.equal(p1, p2))
2566
2567

    def test_push_to_hub_dynamic_model(self):
2568
2569
2570
2571
2572
        CustomConfig.register_for_auto_class()
        CustomModel.register_for_auto_class()

        config = CustomConfig(hidden_size=32)
        model = CustomModel(config)
2573
2574
2575
2576

        with tempfile.TemporaryDirectory() as tmp_dir:
            repo = Repository(tmp_dir, clone_from=f"{USER}/test-dynamic-model", use_auth_token=self._token)
            model.save_pretrained(tmp_dir)
2577
2578
2579
2580
2581
            # checks
            self.assertDictEqual(
                config.auto_map,
                {"AutoConfig": "custom_configuration.CustomConfig", "AutoModel": "custom_modeling.CustomModel"},
            )
2582
2583
2584
2585

            repo.push_to_hub()

        new_model = AutoModel.from_pretrained(f"{USER}/test-dynamic-model", trust_remote_code=True)
2586
2587
        # Can't make an isinstance check because the new_model is from the CustomModel class of a dynamic module
        self.assertEqual(new_model.__class__.__name__, "CustomModel")
2588
2589
        for p1, p2 in zip(model.parameters(), new_model.parameters()):
            self.assertTrue(torch.equal(p1, p2))
2590

2591
        config = AutoConfig.from_pretrained(f"{USER}/test-dynamic-model", trust_remote_code=True)
2592
        new_model = AutoModel.from_config(config, trust_remote_code=True)
2593
        self.assertEqual(new_model.__class__.__name__, "CustomModel")