test_modeling_common.py 50.9 KB
Newer Older
thomwolf's avatar
thomwolf committed
1
2
3
4
5
6
7
8
9
10
11
12
13
14
# coding=utf-8
# Copyright 2019 HuggingFace Inc.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
#     http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
Aymeric Augustin's avatar
Aymeric Augustin committed
15

16
import copy
17
import inspect
18
import os.path
Aymeric Augustin's avatar
Aymeric Augustin committed
19
import random
20
import tempfile
thomwolf's avatar
thomwolf committed
21
import unittest
22
from typing import List, Tuple
thomwolf's avatar
thomwolf committed
23

24
from transformers import is_torch_available
25
from transformers.file_utils import WEIGHTS_NAME
26
from transformers.testing_utils import require_torch, require_torch_multigpu, slow, torch_device
27

Aymeric Augustin's avatar
Aymeric Augustin committed
28

29
if is_torch_available():
30
    import numpy as np
31
    import torch
thomwolf's avatar
thomwolf committed
32

33
    from transformers import (
34
        BERT_PRETRAINED_MODEL_ARCHIVE_LIST,
35
36
        MODEL_FOR_CAUSAL_LM_MAPPING,
        MODEL_FOR_MASKED_LM_MAPPING,
37
38
        MODEL_FOR_MULTIPLE_CHOICE_MAPPING,
        MODEL_FOR_QUESTION_ANSWERING_MAPPING,
39
40
41
        MODEL_FOR_SEQ_TO_SEQ_CAUSAL_LM_MAPPING,
        MODEL_FOR_SEQUENCE_CLASSIFICATION_MAPPING,
        MODEL_FOR_TOKEN_CLASSIFICATION_MAPPING,
42
43
44
45
46
        AdaptiveEmbedding,
        BertConfig,
        BertModel,
        PretrainedConfig,
        PreTrainedModel,
47
        top_k_top_p_filtering,
48
    )
thomwolf's avatar
thomwolf committed
49

50

51
52
53
def _config_zero_init(config):
    configs_no_init = copy.deepcopy(config)
    for key in configs_no_init.__dict__.keys():
54
        if "_range" in key or "_std" in key or "initializer_factor" in key:
Lysandre Debut's avatar
Lysandre Debut committed
55
            setattr(configs_no_init, key, 1e-10)
56
57
    return configs_no_init

thomwolf's avatar
thomwolf committed
58

59
60
61
62
63
@require_torch
class ModelTesterMixin:

    model_tester = None
    all_model_classes = ()
64
    all_generative_model_classes = ()
Patrick von Platen's avatar
Patrick von Platen committed
65
66
67
68
    test_torchscript = True
    test_pruning = True
    test_resize_embeddings = True
    test_head_masking = True
69
    test_missing_keys = True
70
71
    is_encoder_decoder = False

72
73
    def _prepare_for_class(self, inputs_dict, model_class, return_labels=False):
        inputs_dict = copy.deepcopy(inputs_dict)
74
        if model_class in MODEL_FOR_MULTIPLE_CHOICE_MAPPING.values():
75
            inputs_dict = {
76
                k: v.unsqueeze(1).expand(-1, self.model_tester.num_choices, -1).contiguous()
77
                if isinstance(v, torch.Tensor) and v.ndim > 1
Sylvain Gugger's avatar
Sylvain Gugger committed
78
                else v
79
80
                for k, v in inputs_dict.items()
            }
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104

        if return_labels:
            if model_class in MODEL_FOR_MULTIPLE_CHOICE_MAPPING.values():
                inputs_dict["labels"] = torch.ones(self.model_tester.batch_size, dtype=torch.long, device=torch_device)
            elif model_class in MODEL_FOR_QUESTION_ANSWERING_MAPPING.values():
                inputs_dict["start_positions"] = torch.zeros(
                    self.model_tester.batch_size, dtype=torch.long, device=torch_device
                )
                inputs_dict["end_positions"] = torch.zeros(
                    self.model_tester.batch_size, dtype=torch.long, device=torch_device
                )
            elif model_class in MODEL_FOR_SEQUENCE_CLASSIFICATION_MAPPING.values():
                inputs_dict["labels"] = torch.zeros(
                    self.model_tester.batch_size, dtype=torch.long, device=torch_device
                )
            elif model_class in [
                *MODEL_FOR_TOKEN_CLASSIFICATION_MAPPING.values(),
                *MODEL_FOR_CAUSAL_LM_MAPPING.values(),
                *MODEL_FOR_MASKED_LM_MAPPING.values(),
                *MODEL_FOR_SEQ_TO_SEQ_CAUSAL_LM_MAPPING.values(),
            ]:
                inputs_dict["labels"] = torch.zeros(
                    (self.model_tester.batch_size, self.model_tester.seq_length), dtype=torch.long, device=torch_device
                )
105
106
        return inputs_dict

Patrick von Platen's avatar
Patrick von Platen committed
107
    def test_save_load(self):
108
109
110
111
112
113
114
        config, inputs_dict = self.model_tester.prepare_config_and_inputs_for_common()

        for model_class in self.all_model_classes:
            model = model_class(config)
            model.to(torch_device)
            model.eval()
            with torch.no_grad():
115
                outputs = model(**self._prepare_for_class(inputs_dict, model_class))
Weizhen's avatar
Weizhen committed
116

117
            out_2 = outputs[0].cpu().numpy()
118
            out_2[np.isnan(out_2)] = 0
119

120
            with tempfile.TemporaryDirectory() as tmpdirname:
121
122
                model.save_pretrained(tmpdirname)
                model = model_class.from_pretrained(tmpdirname)
123
                model.to(torch_device)
124
                with torch.no_grad():
125
                    after_outputs = model(**self._prepare_for_class(inputs_dict, model_class))
thomwolf's avatar
thomwolf committed
126

127
128
129
                # Make sure we don't have nans
                out_1 = after_outputs[0].cpu().numpy()
                out_1[np.isnan(out_1)] = 0
thomwolf's avatar
thomwolf committed
130
131
                max_diff = np.amax(np.abs(out_1 - out_2))
                self.assertLessEqual(max_diff, 1e-5)
132

133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
    def test_save_load_keys_to_never_save(self):
        config, inputs_dict = self.model_tester.prepare_config_and_inputs_for_common()

        for model_class in self.all_model_classes:
            model = model_class(config)
            keys_to_never_save = getattr(model, "keys_to_never_save", None)
            if keys_to_never_save is None:
                continue

            # check the keys are in the original state_dict
            for k in keys_to_never_save:
                self.assertIn(k, model.state_dict())

            # check that certain keys didn't get saved with the model
            with tempfile.TemporaryDirectory() as tmpdirname:
                model.save_pretrained(tmpdirname)
                output_model_file = os.path.join(tmpdirname, WEIGHTS_NAME)
                state_dict_saved = torch.load(output_model_file)
                for k in keys_to_never_save:
                    self.assertNotIn(k, state_dict_saved)

Patrick von Platen's avatar
Patrick von Platen committed
154
    def test_initialization(self):
155
156
157
158
159
160
161
162
        config, inputs_dict = self.model_tester.prepare_config_and_inputs_for_common()

        configs_no_init = _config_zero_init(config)
        for model_class in self.all_model_classes:
            model = model_class(config=configs_no_init)
            for name, param in model.named_parameters():
                if param.requires_grad:
                    self.assertIn(
Lysandre Debut's avatar
Lysandre Debut committed
163
                        ((param.data.mean() * 1e9).round() / 1e9).item(),
164
165
166
                        [0.0, 1.0],
                        msg="Parameter {} of model {} seems not properly initialized".format(name, model_class),
                    )
thomwolf's avatar
thomwolf committed
167

Patrick von Platen's avatar
Patrick von Platen committed
168
    def test_determinism(self):
169
170
171
172
173
174
175
        config, inputs_dict = self.model_tester.prepare_config_and_inputs_for_common()

        for model_class in self.all_model_classes:
            model = model_class(config)
            model.to(torch_device)
            model.eval()
            with torch.no_grad():
176
177
                first = model(**self._prepare_for_class(inputs_dict, model_class))[0]
                second = model(**self._prepare_for_class(inputs_dict, model_class))[0]
Weizhen's avatar
Weizhen committed
178

179
180
181
182
183
184
185
            out_1 = first.cpu().numpy()
            out_2 = second.cpu().numpy()
            out_1 = out_1[~np.isnan(out_1)]
            out_2 = out_2[~np.isnan(out_2)]
            max_diff = np.amax(np.abs(out_1 - out_2))
            self.assertLessEqual(max_diff, 1e-5)

186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
    def test_forward_signature(self):
        config, _ = self.model_tester.prepare_config_and_inputs_for_common()

        for model_class in self.all_model_classes:
            model = model_class(config)
            signature = inspect.signature(model.forward)
            # signature.parameters is an OrderedDict => so arg_names order is deterministic
            arg_names = [*signature.parameters.keys()]

            if model.config.is_encoder_decoder:
                expected_arg_names = [
                    "input_ids",
                    "attention_mask",
                    "decoder_input_ids",
                    "decoder_attention_mask",
                    "encoder_outputs",
                ]
                self.assertListEqual(arg_names[:5], expected_arg_names)
            else:
                expected_arg_names = ["input_ids"]
                self.assertListEqual(arg_names[:1], expected_arg_names)

Patrick von Platen's avatar
Patrick von Platen committed
208
    def test_attention_outputs(self):
209
        config, inputs_dict = self.model_tester.prepare_config_and_inputs_for_common()
Weizhen's avatar
Weizhen committed
210
211
        config.return_dict = True

sshleifer's avatar
sshleifer committed
212
        seq_len = getattr(self.model_tester, "seq_length", None)
sshleifer's avatar
sshleifer committed
213
214
        decoder_seq_length = getattr(self.model_tester, "decoder_seq_length", seq_len)
        encoder_seq_length = getattr(self.model_tester, "encoder_seq_length", seq_len)
Weizhen's avatar
Weizhen committed
215
        decoder_key_length = getattr(self.model_tester, "decoder_key_length", decoder_seq_length)
216
        encoder_key_length = getattr(self.model_tester, "key_length", encoder_seq_length)
Patrick von Platen's avatar
Patrick von Platen committed
217
218
219
        chunk_length = getattr(self.model_tester, "chunk_length", None)
        if chunk_length is not None and hasattr(self.model_tester, "num_hashes"):
            encoder_seq_length = encoder_seq_length * self.model_tester.num_hashes
220
221

        for model_class in self.all_model_classes:
222
            inputs_dict["output_attentions"] = True
Joseph Liu's avatar
Joseph Liu committed
223
            inputs_dict["output_hidden_states"] = False
224
225
226
227
            model = model_class(config)
            model.to(torch_device)
            model.eval()
            with torch.no_grad():
228
                outputs = model(**self._prepare_for_class(inputs_dict, model_class))
229
            attentions = outputs[-1]
230
231
232
233
234
235
236
237
238
            self.assertEqual(len(attentions), self.model_tester.num_hidden_layers)

            # check that output_attentions also work using config
            del inputs_dict["output_attentions"]
            config.output_attentions = True
            model = model_class(config)
            model.to(torch_device)
            model.eval()
            with torch.no_grad():
239
                outputs = model(**self._prepare_for_class(inputs_dict, model_class), return_dict=True)
Weizhen's avatar
Weizhen committed
240
            attentions = outputs["attentions"] if "attentions" in outputs.keys() else outputs[-1]
241
            self.assertEqual(len(attentions), self.model_tester.num_hidden_layers)
Patrick von Platen's avatar
Patrick von Platen committed
242
243
244
245
246
247
248
249
250
251
252

            if chunk_length is not None:
                self.assertListEqual(
                    list(attentions[0].shape[-4:]),
                    [self.model_tester.num_attention_heads, encoder_seq_length, chunk_length, encoder_key_length],
                )
            else:
                self.assertListEqual(
                    list(attentions[0].shape[-3:]),
                    [self.model_tester.num_attention_heads, encoder_seq_length, encoder_key_length],
                )
253
            out_len = len(outputs)
thomwolf's avatar
thomwolf committed
254

255
            if self.is_encoder_decoder:
Weizhen's avatar
Weizhen committed
256
257
258
259
260
261
262
263
                correct_outlen = (
                    self.model_tester.base_model_out_len if hasattr(self.model_tester, "base_model_out_len") else 4
                )
                decoder_attention_idx = (
                    self.model_tester.decoder_attention_idx
                    if hasattr(self.model_tester, "decoder_attention_idx")
                    else 1
                )
264

265
266
267
268
269
270
271
                # loss is at first position
                if "labels" in inputs_dict:
                    correct_outlen += 1  # loss is added to beginning
                    decoder_attention_idx += 1
                # Question Answering model returns start_logits and end_logits
                if model_class in MODEL_FOR_QUESTION_ANSWERING_MAPPING.values():
                    correct_outlen += 1  # start_logits and end_logits instead of only 1 output
Sam Shleifer's avatar
Sam Shleifer committed
272
                    decoder_attention_idx += 1
Weizhen's avatar
Weizhen committed
273

Sam Shleifer's avatar
Sam Shleifer committed
274
275
276
277
                self.assertEqual(out_len, correct_outlen)

                decoder_attentions = outputs[decoder_attention_idx]
                self.assertIsInstance(decoder_attentions, (list, tuple))
278
                self.assertEqual(len(decoder_attentions), self.model_tester.num_hidden_layers)
thomwolf's avatar
thomwolf committed
279
                self.assertListEqual(
280
281
                    list(decoder_attentions[0].shape[-3:]),
                    [self.model_tester.num_attention_heads, decoder_seq_length, decoder_key_length],
282
                )
thomwolf's avatar
thomwolf committed
283

284
            # Check attention is always last and order is fine
285
            inputs_dict["output_attentions"] = True
Joseph Liu's avatar
Joseph Liu committed
286
            inputs_dict["output_hidden_states"] = True
287
288
289
290
            model = model_class(config)
            model.to(torch_device)
            model.eval()
            with torch.no_grad():
291
                outputs = model(**self._prepare_for_class(inputs_dict, model_class))
292

Weizhen's avatar
Weizhen committed
293
294
295
296
297
298
299
300
301
            if hasattr(self.model_tester, "num_hidden_states_types"):
                added_hidden_states = self.model_tester.num_hidden_states_types
            elif self.is_encoder_decoder:
                added_hidden_states = 2
            else:
                added_hidden_states = 1
            self.assertEqual(out_len + added_hidden_states, len(outputs))

            self_attentions = outputs["attentions"] if "attentions" in outputs else outputs[-1]
302
            self.assertEqual(len(self_attentions), self.model_tester.num_hidden_layers)
Patrick von Platen's avatar
Patrick von Platen committed
303
304
305
306
307
308
309
310
311
312
            if chunk_length is not None:
                self.assertListEqual(
                    list(self_attentions[0].shape[-4:]),
                    [self.model_tester.num_attention_heads, encoder_seq_length, chunk_length, encoder_key_length],
                )
            else:
                self.assertListEqual(
                    list(self_attentions[0].shape[-3:]),
                    [self.model_tester.num_attention_heads, encoder_seq_length, encoder_key_length],
                )
thomwolf's avatar
thomwolf committed
313

Patrick von Platen's avatar
Patrick von Platen committed
314
    def test_torchscript(self):
315
316
        config, inputs_dict = self.model_tester.prepare_config_and_inputs_for_common()
        self._create_and_check_torchscript(config, inputs_dict)
thomwolf's avatar
thomwolf committed
317

Patrick von Platen's avatar
Patrick von Platen committed
318
    def test_torchscript_output_attentions(self):
319
320
321
        config, inputs_dict = self.model_tester.prepare_config_and_inputs_for_common()
        config.output_attentions = True
        self._create_and_check_torchscript(config, inputs_dict)
thomwolf's avatar
thomwolf committed
322

Patrick von Platen's avatar
Patrick von Platen committed
323
    def test_torchscript_output_hidden_state(self):
324
325
326
        config, inputs_dict = self.model_tester.prepare_config_and_inputs_for_common()
        config.output_hidden_states = True
        self._create_and_check_torchscript(config, inputs_dict)
thomwolf's avatar
thomwolf committed
327

328
    def _create_and_check_torchscript(self, config, inputs_dict):
Patrick von Platen's avatar
Patrick von Platen committed
329
        if not self.test_torchscript:
330
            return
331

332
333
334
335
336
337
        configs_no_init = _config_zero_init(config)  # To be sure we have no Nan
        configs_no_init.torchscript = True
        for model_class in self.all_model_classes:
            model = model_class(config=configs_no_init)
            model.to(torch_device)
            model.eval()
338
            inputs = self._prepare_for_class(inputs_dict, model_class)
thomwolf's avatar
thomwolf committed
339

340
            try:
341
342
343
344
345
346
347
348
349
350
351
352
353
                if model.config.is_encoder_decoder:
                    model.config.use_cache = False  # TODO: this should be deleted after bug #7474 is solved
                    input_ids = inputs["input_ids"]
                    attention_mask = inputs["attention_mask"]
                    decoder_input_ids = inputs["decoder_input_ids"]
                    decoder_attention_mask = inputs["decoder_attention_mask"]

                    traced_model = torch.jit.trace(
                        model, (input_ids, attention_mask, decoder_input_ids, decoder_attention_mask)
                    )
                else:
                    input_ids = inputs["input_ids"]
                    traced_model = torch.jit.trace(model, input_ids)
354
355
            except RuntimeError:
                self.fail("Couldn't trace module.")
thomwolf's avatar
thomwolf committed
356

357
            with tempfile.TemporaryDirectory() as tmp_dir_name:
358
                pt_file_name = os.path.join(tmp_dir_name, "traced_model.pt")
thomwolf's avatar
thomwolf committed
359

360
                try:
361
                    torch.jit.save(traced_model, pt_file_name)
362
363
                except Exception:
                    self.fail("Couldn't save module.")
thomwolf's avatar
thomwolf committed
364

365
366
367
368
                try:
                    loaded_model = torch.jit.load(pt_file_name)
                except Exception:
                    self.fail("Couldn't load module.")
LysandreJik's avatar
LysandreJik committed
369

370
371
            model.to(torch_device)
            model.eval()
thomwolf's avatar
thomwolf committed
372

373
374
            loaded_model.to(torch_device)
            loaded_model.eval()
thomwolf's avatar
thomwolf committed
375

376
377
378
379
            model_state_dict = model.state_dict()
            loaded_model_state_dict = loaded_model.state_dict()

            self.assertEqual(set(model_state_dict.keys()), set(loaded_model_state_dict.keys()))
thomwolf's avatar
thomwolf committed
380

381
            models_equal = True
382
383
            for layer_name, p1 in model_state_dict.items():
                p2 = loaded_model_state_dict[layer_name]
384
385
                if p1.data.ne(p2.data).sum() > 0:
                    models_equal = False
thomwolf's avatar
thomwolf committed
386

387
            self.assertTrue(models_equal)
thomwolf's avatar
thomwolf committed
388

Patrick von Platen's avatar
Patrick von Platen committed
389
390
    def test_headmasking(self):
        if not self.test_head_masking:
391
            return
392

393
394
395
        global_rng.seed(42)
        config, inputs_dict = self.model_tester.prepare_config_and_inputs_for_common()
        global_rng.seed()
LysandreJik's avatar
LysandreJik committed
396

397
        inputs_dict["output_attentions"] = True
398
399
400
401
402
403
        config.output_hidden_states = True
        configs_no_init = _config_zero_init(config)  # To be sure we have no Nan
        for model_class in self.all_model_classes:
            model = model_class(config=configs_no_init)
            model.to(torch_device)
            model.eval()
LysandreJik's avatar
LysandreJik committed
404

405
406
407
            # Prepare head_mask
            # Set require_grad after having prepared the tensor to avoid error (leaf variable has been moved into the graph interior)
            head_mask = torch.ones(
Lysandre's avatar
Lysandre committed
408
409
410
                self.model_tester.num_hidden_layers,
                self.model_tester.num_attention_heads,
                device=torch_device,
411
412
413
414
            )
            head_mask[0, 0] = 0
            head_mask[-1, :-1] = 0
            head_mask.requires_grad_(requires_grad=True)
415
            inputs = self._prepare_for_class(inputs_dict, model_class).copy()
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
            inputs["head_mask"] = head_mask

            outputs = model(**inputs)

            # Test that we can get a gradient back for importance score computation
            output = sum(t.sum() for t in outputs[0])
            output = output.sum()
            output.backward()
            multihead_outputs = head_mask.grad

            attentions = outputs[-1]

            # Remove Nan
            for t in attentions:
                self.assertLess(
                    torch.sum(torch.isnan(t)), t.numel() / 4
                )  # Check we don't have more than 25% nans (arbitrary)
            attentions = [
                t.masked_fill(torch.isnan(t), 0.0) for t in attentions
            ]  # remove them (the test is less complete)

            self.assertIsNotNone(multihead_outputs)
            self.assertEqual(len(multihead_outputs), self.model_tester.num_hidden_layers)
            self.assertAlmostEqual(attentions[0][..., 0, :, :].flatten().sum().item(), 0.0)
            self.assertNotEqual(attentions[0][..., -1, :, :].flatten().sum().item(), 0.0)
            self.assertNotEqual(attentions[1][..., 0, :, :].flatten().sum().item(), 0.0)
            self.assertAlmostEqual(attentions[-1][..., -2, :, :].flatten().sum().item(), 0.0)
            self.assertNotEqual(attentions[-1][..., -1, :, :].flatten().sum().item(), 0.0)

Patrick von Platen's avatar
Patrick von Platen committed
445
446
    def test_head_pruning(self):
        if not self.test_pruning:
447
448
449
            return

        for model_class in self.all_model_classes:
Lysandre's avatar
Lysandre committed
450
451
452
453
            (
                config,
                inputs_dict,
            ) = self.model_tester.prepare_config_and_inputs_for_common()
454

455
456
            if "head_mask" in inputs_dict:
                del inputs_dict["head_mask"]
457

458
            inputs_dict["output_attentions"] = True
459
460
461
462
            config.output_hidden_states = False
            model = model_class(config=config)
            model.to(torch_device)
            model.eval()
463
464
465
466
            heads_to_prune = {
                0: list(range(1, self.model_tester.num_attention_heads)),
                -1: [0],
            }
467
468
            model.prune_heads(heads_to_prune)
            with torch.no_grad():
469
                outputs = model(**self._prepare_for_class(inputs_dict, model_class))
470

471
            attentions = outputs[-1]
472

473
474
475
            self.assertEqual(attentions[0].shape[-3], 1)
            self.assertEqual(attentions[1].shape[-3], self.model_tester.num_attention_heads)
            self.assertEqual(attentions[-1].shape[-3], self.model_tester.num_attention_heads - 1)
LysandreJik's avatar
LysandreJik committed
476

Patrick von Platen's avatar
Patrick von Platen committed
477
478
    def test_head_pruning_save_load_from_pretrained(self):
        if not self.test_pruning:
479
            return
LysandreJik's avatar
LysandreJik committed
480

481
        for model_class in self.all_model_classes:
Lysandre's avatar
Lysandre committed
482
483
484
485
            (
                config,
                inputs_dict,
            ) = self.model_tester.prepare_config_and_inputs_for_common()
486
487
488

            if "head_mask" in inputs_dict:
                del inputs_dict["head_mask"]
489

490
            inputs_dict["output_attentions"] = True
491
492
493
494
            config.output_hidden_states = False
            model = model_class(config=config)
            model.to(torch_device)
            model.eval()
495
496
497
498
            heads_to_prune = {
                0: list(range(1, self.model_tester.num_attention_heads)),
                -1: [0],
            }
499
            model.prune_heads(heads_to_prune)
500

501
            with tempfile.TemporaryDirectory() as temp_dir_name:
502
503
                model.save_pretrained(temp_dir_name)
                model = model_class.from_pretrained(temp_dir_name)
504
                model.to(torch_device)
505

506
            with torch.no_grad():
507
                outputs = model(**self._prepare_for_class(inputs_dict, model_class))
508
509
510
511
            attentions = outputs[-1]
            self.assertEqual(attentions[0].shape[-3], 1)
            self.assertEqual(attentions[1].shape[-3], self.model_tester.num_attention_heads)
            self.assertEqual(attentions[-1].shape[-3], self.model_tester.num_attention_heads - 1)
512

Patrick von Platen's avatar
Patrick von Platen committed
513
514
    def test_head_pruning_save_load_from_config_init(self):
        if not self.test_pruning:
515
            return
516

517
        for model_class in self.all_model_classes:
Lysandre's avatar
Lysandre committed
518
519
520
521
            (
                config,
                inputs_dict,
            ) = self.model_tester.prepare_config_and_inputs_for_common()
522

523
524
            if "head_mask" in inputs_dict:
                del inputs_dict["head_mask"]
525

526
            inputs_dict["output_attentions"] = True
527
            config.output_hidden_states = False
528

529
530
531
532
            heads_to_prune = {
                0: list(range(1, self.model_tester.num_attention_heads)),
                -1: [0],
            }
533
            config.pruned_heads = heads_to_prune
534

535
536
537
            model = model_class(config=config)
            model.to(torch_device)
            model.eval()
538

539
            with torch.no_grad():
540
                outputs = model(**self._prepare_for_class(inputs_dict, model_class))
541
            attentions = outputs[-1]
542

543
544
545
            self.assertEqual(attentions[0].shape[-3], 1)
            self.assertEqual(attentions[1].shape[-3], self.model_tester.num_attention_heads)
            self.assertEqual(attentions[-1].shape[-3], self.model_tester.num_attention_heads - 1)
546

Patrick von Platen's avatar
Patrick von Platen committed
547
548
    def test_head_pruning_integration(self):
        if not self.test_pruning:
549
            return
550

551
        for model_class in self.all_model_classes:
Lysandre's avatar
Lysandre committed
552
553
554
555
            (
                config,
                inputs_dict,
            ) = self.model_tester.prepare_config_and_inputs_for_common()
556

557
558
            if "head_mask" in inputs_dict:
                del inputs_dict["head_mask"]
559

560
            inputs_dict["output_attentions"] = True
561
            config.output_hidden_states = False
562

563
564
            heads_to_prune = {0: [0], 1: [1, 2]}
            config.pruned_heads = heads_to_prune
565

566
567
568
            model = model_class(config=config)
            model.to(torch_device)
            model.eval()
569

570
            with torch.no_grad():
571
                outputs = model(**self._prepare_for_class(inputs_dict, model_class))
572
            attentions = outputs[-1]
573

574
575
576
577
            self.assertEqual(attentions[0].shape[-3], self.model_tester.num_attention_heads - 1)
            self.assertEqual(attentions[1].shape[-3], self.model_tester.num_attention_heads - 2)
            self.assertEqual(attentions[2].shape[-3], self.model_tester.num_attention_heads)
            self.assertEqual(attentions[3].shape[-3], self.model_tester.num_attention_heads)
thomwolf's avatar
thomwolf committed
578

579
            with tempfile.TemporaryDirectory() as temp_dir_name:
580
581
                model.save_pretrained(temp_dir_name)
                model = model_class.from_pretrained(temp_dir_name)
582
                model.to(torch_device)
thomwolf's avatar
thomwolf committed
583

584
            with torch.no_grad():
585
                outputs = model(**self._prepare_for_class(inputs_dict, model_class))
586
            attentions = outputs[-1]
LysandreJik's avatar
LysandreJik committed
587

588
589
590
591
            self.assertEqual(attentions[0].shape[-3], self.model_tester.num_attention_heads - 1)
            self.assertEqual(attentions[1].shape[-3], self.model_tester.num_attention_heads - 2)
            self.assertEqual(attentions[2].shape[-3], self.model_tester.num_attention_heads)
            self.assertEqual(attentions[3].shape[-3], self.model_tester.num_attention_heads)
thomwolf's avatar
thomwolf committed
592

593
594
            heads_to_prune = {0: [0], 2: [1, 2]}
            model.prune_heads(heads_to_prune)
595

596
            with torch.no_grad():
597
                outputs = model(**self._prepare_for_class(inputs_dict, model_class))
598
            attentions = outputs[-1]
599

600
601
602
603
            self.assertEqual(attentions[0].shape[-3], self.model_tester.num_attention_heads - 1)
            self.assertEqual(attentions[1].shape[-3], self.model_tester.num_attention_heads - 2)
            self.assertEqual(attentions[2].shape[-3], self.model_tester.num_attention_heads - 2)
            self.assertEqual(attentions[3].shape[-3], self.model_tester.num_attention_heads)
604

605
            self.assertDictEqual(model.config.pruned_heads, {0: [0], 1: [1, 2], 2: [1, 2]})
thomwolf's avatar
thomwolf committed
606

Patrick von Platen's avatar
Patrick von Platen committed
607
    def test_hidden_states_output(self):
Joseph Liu's avatar
Joseph Liu committed
608
        def check_hidden_states_output(inputs_dict, config, model_class):
609
            model = model_class(config)
610
            model.to(torch_device)
thomwolf's avatar
thomwolf committed
611
            model.eval()
Joseph Liu's avatar
Joseph Liu committed
612

thomwolf's avatar
thomwolf committed
613
            with torch.no_grad():
Weizhen's avatar
Weizhen committed
614
615
                outputs = model(**self._prepare_for_class(inputs_dict, model_class), return_dict=True)
            hidden_states = outputs["hidden_states"] if "hidden_states" in outputs else outputs[-1]
Patrick von Platen's avatar
Patrick von Platen committed
616

Sylvain Gugger's avatar
Sylvain Gugger committed
617
618
619
620
            expected_num_layers = getattr(
                self.model_tester, "expected_num_hidden_layers", self.model_tester.num_hidden_layers + 1
            )
            self.assertEqual(len(hidden_states), expected_num_layers)
Patrick von Platen's avatar
Patrick von Platen committed
621
622
623
624
625
626
627
            if hasattr(self.model_tester, "encoder_seq_length"):
                seq_length = self.model_tester.encoder_seq_length
                if hasattr(self.model_tester, "chunk_length") and self.model_tester.chunk_length > 1:
                    seq_length = seq_length * self.model_tester.chunk_length
            else:
                seq_length = self.model_tester.seq_length

628
            self.assertListEqual(
Lysandre's avatar
Lysandre committed
629
630
                list(hidden_states[0].shape[-2:]),
                [seq_length, self.model_tester.hidden_size],
631
            )
thomwolf's avatar
thomwolf committed
632

Joseph Liu's avatar
Joseph Liu committed
633
634
635
636
637
638
639
640
641
642
643
644
        config, inputs_dict = self.model_tester.prepare_config_and_inputs_for_common()

        for model_class in self.all_model_classes:
            inputs_dict["output_hidden_states"] = True
            check_hidden_states_output(inputs_dict, config, model_class)

            # check that output_hidden_states also work using config
            del inputs_dict["output_hidden_states"]
            config.output_hidden_states = True

            check_hidden_states_output(inputs_dict, config, model_class)

Pradhy729's avatar
Pradhy729 committed
645
    def test_feed_forward_chunking(self):
Lysandre's avatar
Lysandre committed
646
647
648
649
        (
            original_config,
            inputs_dict,
        ) = self.model_tester.prepare_config_and_inputs_for_common()
Pradhy729's avatar
Pradhy729 committed
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
        for model_class in self.all_model_classes:
            torch.manual_seed(0)
            config = copy.deepcopy(original_config)
            model = model_class(config)
            model.to(torch_device)
            model.eval()

            hidden_states_no_chunk = model(**self._prepare_for_class(inputs_dict, model_class))[0]

            torch.manual_seed(0)
            config.chunk_size_feed_forward = 1
            model = model_class(config)
            model.to(torch_device)
            model.eval()

            hidden_states_with_chunk = model(**self._prepare_for_class(inputs_dict, model_class))[0]
            self.assertTrue(torch.allclose(hidden_states_no_chunk, hidden_states_with_chunk, atol=1e-3))

Patrick von Platen's avatar
Patrick von Platen committed
668
    def test_resize_tokens_embeddings(self):
Lysandre's avatar
Lysandre committed
669
670
671
672
        (
            original_config,
            inputs_dict,
        ) = self.model_tester.prepare_config_and_inputs_for_common()
Patrick von Platen's avatar
Patrick von Platen committed
673
        if not self.test_resize_embeddings:
674
675
676
677
678
            return

        for model_class in self.all_model_classes:
            config = copy.deepcopy(original_config)
            model = model_class(config)
679
            model.to(torch_device)
680

Patrick von Platen's avatar
Patrick von Platen committed
681
682
683
            if self.model_tester.is_training is False:
                model.eval()

684
685
686
687
688
689
690
691
692
693
            model_vocab_size = config.vocab_size
            # Retrieve the embeddings and clone theme
            model_embed = model.resize_token_embeddings(model_vocab_size)
            cloned_embeddings = model_embed.weight.clone()

            # Check that resizing the token embeddings with a larger vocab size increases the model's vocab size
            model_embed = model.resize_token_embeddings(model_vocab_size + 10)
            self.assertEqual(model.config.vocab_size, model_vocab_size + 10)
            # Check that it actually resizes the embeddings matrix
            self.assertEqual(model_embed.weight.shape[0], cloned_embeddings.shape[0] + 10)
694
            # Check that the model can still do a forward pass successfully (every parameter should be resized)
695
            model(**self._prepare_for_class(inputs_dict, model_class))
696
697
698
699
700
701
702

            # Check that resizing the token embeddings with a smaller vocab size decreases the model's vocab size
            model_embed = model.resize_token_embeddings(model_vocab_size - 15)
            self.assertEqual(model.config.vocab_size, model_vocab_size - 15)
            # Check that it actually resizes the embeddings matrix
            self.assertEqual(model_embed.weight.shape[0], cloned_embeddings.shape[0] - 15)

703
704
705
            # Check that the model can still do a forward pass successfully (every parameter should be resized)
            # Input ids should be clamped to the maximum size of the vocabulary
            inputs_dict["input_ids"].clamp_(max=model_vocab_size - 15 - 1)
706
            model(**self._prepare_for_class(inputs_dict, model_class))
707

708
709
710
711
712
713
714
715
            # Check that adding and removing tokens has not modified the first part of the embedding matrix.
            models_equal = True
            for p1, p2 in zip(cloned_embeddings, model_embed.weight):
                if p1.data.ne(p2.data).sum() > 0:
                    models_equal = False

            self.assertTrue(models_equal)

Patrick von Platen's avatar
Patrick von Platen committed
716
    def test_model_common_attributes(self):
717
718
719
720
721
722
723
724
725
        config, inputs_dict = self.model_tester.prepare_config_and_inputs_for_common()

        for model_class in self.all_model_classes:
            model = model_class(config)
            self.assertIsInstance(model.get_input_embeddings(), (torch.nn.Embedding, AdaptiveEmbedding))
            model.set_input_embeddings(torch.nn.Embedding(10, 10))
            x = model.get_output_embeddings()
            self.assertTrue(x is None or isinstance(x, torch.nn.Linear))

726
    def test_correct_missing_keys(self):
727
728
        if not self.test_missing_keys:
            return
729
730
731
732
733
734
735
736
737
738
739
740
741
742
        config, _ = self.model_tester.prepare_config_and_inputs_for_common()

        for model_class in self.all_model_classes:
            model = model_class(config)
            base_model_prefix = model.base_model_prefix

            if hasattr(model, base_model_prefix):
                with tempfile.TemporaryDirectory() as temp_dir_name:
                    model.base_model.save_pretrained(temp_dir_name)
                    model, loading_info = model_class.from_pretrained(temp_dir_name, output_loading_info=True)

                    with self.subTest(msg="Missing keys for {}".format(model.__class__.__name__)):
                        self.assertGreater(len(loading_info["missing_keys"]), 0)

743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
    def test_tie_model_weights(self):
        if not self.test_torchscript:
            return

        config, inputs_dict = self.model_tester.prepare_config_and_inputs_for_common()

        def check_same_values(layer_1, layer_2):
            equal = True
            for p1, p2 in zip(layer_1.weight, layer_2.weight):
                if p1.data.ne(p2.data).sum() > 0:
                    equal = False
            return equal

        for model_class in self.all_model_classes:
            config.torchscript = True
            model_not_tied = model_class(config)
            if model_not_tied.get_output_embeddings() is None:
                continue

            config_tied = copy.deepcopy(config)
            config_tied.torchscript = False
            model_tied = model_class(config_tied)
            params_tied = list(model_tied.parameters())
            # Check that the embedding layer and decoding layer are the same in size and in value
            # self.assertTrue(check_same_values(embeddings, decoding))

            # # Check that after modification, they remain the same.
            # embeddings.weight.data.div_(2)
            # # Check that the embedding layer and decoding layer are the same in size and in value
            # self.assertTrue(embeddings.weight.shape, decoding.weight.shape)
            # self.assertTrue(check_same_values(embeddings, decoding))

            # # Check that after modification, they remain the same.
            # decoding.weight.data.div_(4)
            # # Check that the embedding layer and decoding layer are the same in size and in value
            # self.assertTrue(embeddings.weight.shape, decoding.weight.shape)
            # self.assertTrue(check_same_values(embeddings, decoding))

            # Check that after resize they remain tied.
            model_tied.resize_token_embeddings(config.vocab_size + 10)
            params_tied_2 = list(model_tied.parameters())
            self.assertEqual(len(params_tied_2), len(params_tied))

            # decoding.weight.data.mul_(20)
            # # Check that the embedding layer and decoding layer are the same in size and in value
            # self.assertTrue(model.transformer.wte.weight.shape, model.lm_head.weight.shape)
            # self.assertTrue(check_same_values(model.transformer.wte, model.lm_head))

791
792
793
794
    def test_model_outputs_equivalence(self):

        config, inputs_dict = self.model_tester.prepare_config_and_inputs_for_common()

Sam Shleifer's avatar
Sam Shleifer committed
795
796
797
798
        def set_nan_tensor_to_zero(t):
            t[t != t] = 0
            return t

799
800
801
802
803
804
805
806
807
808
809
810
811
        def check_equivalence(model, tuple_inputs, dict_inputs, additional_kwargs={}):
            with torch.no_grad():
                tuple_output = model(**tuple_inputs, return_dict=False, **additional_kwargs)
                dict_output = model(**dict_inputs, return_dict=True, **additional_kwargs).to_tuple()

                def recursive_check(tuple_object, dict_object):
                    if isinstance(tuple_object, (List, Tuple)):
                        for tuple_iterable_value, dict_iterable_value in zip(tuple_object, dict_object):
                            recursive_check(tuple_iterable_value, dict_iterable_value)
                    elif tuple_object is None:
                        return
                    else:
                        self.assertTrue(
Sam Shleifer's avatar
Sam Shleifer committed
812
813
814
                            torch.allclose(
                                set_nan_tensor_to_zero(tuple_object), set_nan_tensor_to_zero(dict_object), atol=1e-5
                            ),
815
                            msg=f"Tuple and dict output are not equal. Difference: {torch.max(torch.abs(tuple_object - dict_object))}. Tuple has `nan`: {torch.isnan(tuple_object).any()} and `inf`: {torch.isinf(tuple_object)}. Dict has `nan`: {torch.isnan(dict_object).any()} and `inf`: {torch.isinf(dict_object)}.",
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
                        )

                recursive_check(tuple_output, dict_output)

        for model_class in self.all_model_classes:
            model = model_class(config)
            model.to(torch_device)
            model.eval()

            tuple_inputs = self._prepare_for_class(inputs_dict, model_class)
            dict_inputs = self._prepare_for_class(inputs_dict, model_class)
            check_equivalence(model, tuple_inputs, dict_inputs)

            tuple_inputs = self._prepare_for_class(inputs_dict, model_class, return_labels=True)
            dict_inputs = self._prepare_for_class(inputs_dict, model_class, return_labels=True)
            check_equivalence(model, tuple_inputs, dict_inputs)

            tuple_inputs = self._prepare_for_class(inputs_dict, model_class)
            dict_inputs = self._prepare_for_class(inputs_dict, model_class)
            check_equivalence(model, tuple_inputs, dict_inputs, {"output_hidden_states": True})

            tuple_inputs = self._prepare_for_class(inputs_dict, model_class)
            dict_inputs = self._prepare_for_class(inputs_dict, model_class)
            check_equivalence(model, tuple_inputs, dict_inputs, {"output_attentions": True})

            tuple_inputs = self._prepare_for_class(inputs_dict, model_class, return_labels=True)
            dict_inputs = self._prepare_for_class(inputs_dict, model_class, return_labels=True)
            check_equivalence(model, tuple_inputs, dict_inputs, {"output_hidden_states": True})

            tuple_inputs = self._prepare_for_class(inputs_dict, model_class, return_labels=True)
            dict_inputs = self._prepare_for_class(inputs_dict, model_class, return_labels=True)
            check_equivalence(model, tuple_inputs, dict_inputs, {"output_attentions": True})

            tuple_inputs = self._prepare_for_class(inputs_dict, model_class, return_labels=True)
            dict_inputs = self._prepare_for_class(inputs_dict, model_class, return_labels=True)
            check_equivalence(
                model, tuple_inputs, dict_inputs, {"output_hidden_states": True, "output_attentions": True}
            )

Patrick von Platen's avatar
Patrick von Platen committed
855
    def test_inputs_embeds(self):
Sam Shleifer's avatar
Sam Shleifer committed
856

857
858
859
860
        config, inputs_dict = self.model_tester.prepare_config_and_inputs_for_common()

        for model_class in self.all_model_classes:
            model = model_class(config)
861
            model.to(torch_device)
thomwolf's avatar
thomwolf committed
862
            model.eval()
863

864
            inputs = copy.deepcopy(self._prepare_for_class(inputs_dict, model_class))
Weizhen's avatar
Weizhen committed
865

866
867
868
869
870
871
872
873
874
            if not self.is_encoder_decoder:
                input_ids = inputs["input_ids"]
                del inputs["input_ids"]
            else:
                encoder_input_ids = inputs["input_ids"]
                decoder_input_ids = inputs.get("decoder_input_ids", encoder_input_ids)
                del inputs["input_ids"]
                inputs.pop("decoder_input_ids", None)

875
876
            wte = model.get_input_embeddings()
            if not self.is_encoder_decoder:
877
                inputs["inputs_embeds"] = wte(input_ids)
878
            else:
879
880
                inputs["inputs_embeds"] = wte(encoder_input_ids)
                inputs["decoder_inputs_embeds"] = wte(decoder_input_ids)
881

thomwolf's avatar
thomwolf committed
882
            with torch.no_grad():
Weizhen's avatar
Weizhen committed
883
                model(**inputs)[0]
884

885
    def test_lm_head_model_random_no_beam_search_generate(self):
886
        config, inputs_dict = self.model_tester.prepare_config_and_inputs_for_common()
887
        input_ids = inputs_dict["input_ids"] if "input_ids" in inputs_dict else inputs_dict["inputs"]
888

Patrick von Platen's avatar
Patrick von Platen committed
889
890
891
        # make sure that input_ids is at most of size 15
        input_ids = input_ids[..., :15]

892
        # iterate over all generative models
893
        for model_class in self.all_generative_model_classes:
894
            model = model_class(config).to(torch_device)
Patrick von Platen's avatar
Patrick von Platen committed
895
            model.eval()
896
897

            if config.bos_token_id is None:
898
                # if bos token id is not defined, model needs input_ids
899
                with self.assertRaises(AssertionError):
900
                    model.generate(do_sample=True, max_length=5)
901
                # num_return_sequences = 1
902
                self._check_generated_ids(model.generate(input_ids, do_sample=True))
903
            else:
904
                # num_return_sequences = 1
905
                self._check_generated_ids(model.generate(do_sample=True, max_length=5))
906

907
            with self.assertRaises(AssertionError):
908
                # generating multiple sequences when no beam search generation
909
                # is not allowed as it would always generate the same sequences
910
                model.generate(input_ids, do_sample=False, num_beams=1, num_return_sequences=2)
911

912
913
            # num_return_sequences > 1, sample
            self._check_generated_ids(model.generate(input_ids, do_sample=True, num_return_sequences=2))
914
915

            # check bad words tokens language generation
916
            # create list of 1-seq bad token and list of 2-seq of bad tokens
917
918
919
920
            bad_words_ids = [
                self._generate_random_bad_tokens(1, model.config),
                self._generate_random_bad_tokens(2, model.config),
            ]
921
            output_tokens = model.generate(
922
                input_ids, do_sample=True, bad_words_ids=bad_words_ids, num_return_sequences=2
923
            )
924
            # only count generated tokens
925
926
            generated_ids = output_tokens[:, input_ids.shape[-1] :]
            self.assertFalse(self._check_match_tokens(generated_ids.tolist(), bad_words_ids))
927

928
929
    def test_lm_head_model_random_beam_search_generate(self):
        config, inputs_dict = self.model_tester.prepare_config_and_inputs_for_common()
930
931
932
        input_ids = (inputs_dict["input_ids"] if "input_ids" in inputs_dict else inputs_dict["inputs"]).to(
            torch_device
        )
933

Patrick von Platen's avatar
Patrick von Platen committed
934
935
936
        # make sure that input_ids is at most of size 15
        input_ids = input_ids[..., :15]

937
        for model_class in self.all_generative_model_classes:
938
            model = model_class(config).to(torch_device)
Patrick von Platen's avatar
Patrick von Platen committed
939
            model.eval()
940
941
942
943
944
945
946
947
948
949
950
951
952

            if config.bos_token_id is None:
                # if bos token id is not defined mobel needs input_ids, num_return_sequences = 1
                self._check_generated_ids(model.generate(input_ids, do_sample=True, num_beams=2))
            else:
                # num_return_sequences = 1
                self._check_generated_ids(model.generate(do_sample=True, max_length=5, num_beams=2))

            with self.assertRaises(AssertionError):
                # generating more sequences than having beams leads is not possible
                model.generate(input_ids, do_sample=False, num_return_sequences=3, num_beams=2)

            # num_return_sequences > 1, sample
Lysandre's avatar
Lysandre committed
953
954
955
956
957
958
959
960
            self._check_generated_ids(
                model.generate(
                    input_ids,
                    do_sample=True,
                    num_beams=2,
                    num_return_sequences=2,
                )
            )
961
962
963
964
965
            # num_return_sequences > 1, greedy
            self._check_generated_ids(model.generate(input_ids, do_sample=False, num_beams=2, num_return_sequences=2))

            # check bad words tokens language generation
            # create list of 1-seq bad token and list of 2-seq of bad tokens
966
967
968
969
            bad_words_ids = [
                self._generate_random_bad_tokens(1, model.config),
                self._generate_random_bad_tokens(2, model.config),
            ]
970
            output_tokens = model.generate(
971
                input_ids, do_sample=False, bad_words_ids=bad_words_ids, num_beams=2, num_return_sequences=2
972
            )
973
            # only count generated tokens
974
975
976
            generated_ids = output_tokens[:, input_ids.shape[-1] :]
            self.assertFalse(self._check_match_tokens(generated_ids.tolist(), bad_words_ids))

977
    def _generate_random_bad_tokens(self, num_bad_tokens: int, config) -> List[int]:
978
        # special tokens cannot be bad tokens
979
        special_tokens = [x for x in [config.bos_token_id, config.eos_token_id, config.pad_token_id] if x is not None]
980
981
982
        # create random bad tokens that are not special tokens
        bad_tokens = []
        while len(bad_tokens) < num_bad_tokens:
983
            token = ids_tensor((1, 1), self.model_tester.vocab_size).squeeze(0).cpu().numpy()[0]
984
985
986
987
            if token not in special_tokens:
                bad_tokens.append(token)
        return bad_tokens

988
    def _check_generated_ids(self, output_ids):
989
990
991
992
        for token_id in output_ids[0].tolist():
            self.assertGreaterEqual(token_id, 0)
            self.assertLess(token_id, self.model_tester.vocab_size)

993
994
995
996
997
998
999
1000
1001
1002
1003
1004
    def _check_match_tokens(self, generated_ids, bad_words_ids):
        # for all bad word tokens
        for bad_word_ids in bad_words_ids:
            # for all slices in batch
            for generated_ids_slice in generated_ids:
                # for all word idx
                for i in range(len(bad_word_ids), len(generated_ids_slice)):
                    # if tokens match
                    if generated_ids_slice[i - len(bad_word_ids) : i] == bad_word_ids:
                        return True
        return False

1005
    @require_torch_multigpu
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025
1026
1027
    def test_multigpu_data_parallel_forward(self):
        config, inputs_dict = self.model_tester.prepare_config_and_inputs_for_common()

        # some params shouldn't be scattered by nn.DataParallel
        # so just remove them if they are present.
        blacklist_non_batched_params = ["head_mask"]
        for k in blacklist_non_batched_params:
            inputs_dict.pop(k, None)

        # move input tensors to cuda:O
        for k, v in inputs_dict.items():
            if torch.is_tensor(v):
                inputs_dict[k] = v.to(0)

        for model_class in self.all_model_classes:
            model = model_class(config=config)
            model.to(0)
            model.eval()

            # Wrap model in nn.DataParallel
            model = torch.nn.DataParallel(model)
            with torch.no_grad():
1028
                _ = model(**self._prepare_for_class(inputs_dict, model_class))
1029

1030

1031
global_rng = random.Random()
thomwolf's avatar
thomwolf committed
1032
1033


thomwolf's avatar
thomwolf committed
1034
def ids_tensor(shape, vocab_size, rng=None, name=None):
1035
    #  Creates a random int32 tensor of the shape within the vocab size
thomwolf's avatar
thomwolf committed
1036
    if rng is None:
1037
        rng = global_rng
thomwolf's avatar
thomwolf committed
1038

thomwolf's avatar
thomwolf committed
1039
1040
1041
    total_dims = 1
    for dim in shape:
        total_dims *= dim
thomwolf's avatar
thomwolf committed
1042

thomwolf's avatar
thomwolf committed
1043
1044
1045
    values = []
    for _ in range(total_dims):
        values.append(rng.randint(0, vocab_size - 1))
thomwolf's avatar
thomwolf committed
1046

1047
    return torch.tensor(data=values, dtype=torch.long, device=torch_device).view(shape).contiguous()
thomwolf's avatar
thomwolf committed
1048
1049


1050
1051
1052
1053
1054
1055
1056
def random_attention_mask(shape, rng=None, name=None):
    attn_mask = ids_tensor(shape, vocab_size=2, rng=None, name=None)
    # make sure that at least one token is attended to for each batch
    attn_mask[:, -1] = 1
    return attn_mask


1057
def floats_tensor(shape, scale=1.0, rng=None, name=None):
Patrick von Platen's avatar
Patrick von Platen committed
1058
    """Creates a random float32 tensor"""
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
    if rng is None:
        rng = global_rng

    total_dims = 1
    for dim in shape:
        total_dims *= dim

    values = []
    for _ in range(total_dims):
        values.append(rng.random() * scale)

1070
    return torch.tensor(data=values, dtype=torch.float, device=torch_device).view(shape).contiguous()
1071
1072


1073
@require_torch
thomwolf's avatar
thomwolf committed
1074
class ModelUtilsTest(unittest.TestCase):
1075
    @slow
Patrick von Platen's avatar
Patrick von Platen committed
1076
    def test_model_from_pretrained(self):
1077
        for model_name in BERT_PRETRAINED_MODEL_ARCHIVE_LIST[:1]:
thomwolf's avatar
thomwolf committed
1078
1079
1080
1081
1082
1083
1084
1085
1086
1087
1088
1089
1090
1091
1092
            config = BertConfig.from_pretrained(model_name)
            self.assertIsNotNone(config)
            self.assertIsInstance(config, PretrainedConfig)

            model = BertModel.from_pretrained(model_name)
            model, loading_info = BertModel.from_pretrained(model_name, output_loading_info=True)
            self.assertIsNotNone(model)
            self.assertIsInstance(model, PreTrainedModel)
            for value in loading_info.values():
                self.assertEqual(len(value), 0)

            config = BertConfig.from_pretrained(model_name, output_attentions=True, output_hidden_states=True)
            model = BertModel.from_pretrained(model_name, output_attentions=True, output_hidden_states=True)
            self.assertEqual(model.config.output_hidden_states, True)
            self.assertEqual(model.config, config)
1093
1094
1095
1096
1097
1098


@require_torch
class UtilsFunctionsTest(unittest.TestCase):

    # tests whether the top_k_top_p function behaves as expected
Patrick von Platen's avatar
Patrick von Platen committed
1099
    def test_top_k_top_p_filtering(self):
1100
1101
1102
1103
1104
1105
1106
1107
1108
1109
1110
1111
1112
1113
1114
1115
1116
1117
1118
1119
1120
1121
1122
1123
1124
1125
1126
1127
1128
1129
1130
1131
1132
        logits = torch.tensor(
            [
                [
                    8.2220991,  # 3rd highest value; idx. 0
                    -0.5620044,
                    5.23229752,
                    4.0386393,
                    -6.8798378,
                    -0.54785802,
                    -3.2012153,
                    2.92777176,
                    1.88171953,
                    7.35341276,  # 5th highest value; idx. 9
                    8.43207833,  # 2nd highest value; idx. 10
                    -9.85711836,
                    -5.96209236,
                    -1.13039161,
                    -7.1115294,
                    -0.8369633,
                    -5.3186408,
                    7.06427407,
                    0.81369344,
                    -0.82023817,
                    -5.9179796,
                    0.58813443,
                    -6.99778438,
                    4.71551189,
                    -0.18771637,
                    7.44020759,  # 4th highest value; idx. 25
                    9.38450987,  # 1st highest value; idx. 26
                    2.12662941,
                    -9.32562038,
                    2.35652522,
1133
                ],  # cumulative prob of 5 highest values <= 0.6
1134
1135
1136
1137
1138
1139
1140
1141
1142
1143
1144
1145
1146
1147
1148
1149
1150
1151
1152
1153
1154
1155
1156
1157
1158
1159
1160
1161
1162
1163
1164
                [
                    0.58425518,
                    4.53139238,
                    -5.57510464,
                    -6.28030699,
                    -7.19529503,
                    -4.02122551,
                    1.39337037,
                    -6.06707057,
                    1.59480517,
                    -9.643119,
                    0.03907799,
                    0.67231762,
                    -8.88206726,
                    6.27115922,  # 4th highest value; idx. 13
                    2.28520723,
                    4.82767506,
                    4.30421368,
                    8.8275313,  # 2nd highest value; idx. 17
                    5.44029958,  # 5th highest value; idx. 18
                    -4.4735794,
                    7.38579536,  # 3rd highest value; idx. 20
                    -2.91051663,
                    2.61946077,
                    -2.5674762,
                    -9.48959302,
                    -4.02922645,
                    -1.35416918,
                    9.67702323,  # 1st highest value; idx. 27
                    -5.89478553,
                    1.85370467,
1165
                ],  # cumulative prob of 5 highest values <= 0.6
1166
1167
1168
1169
1170
1171
1172
1173
1174
1175
1176
1177
1178
1179
1180
1181
1182
1183
1184
1185
1186
1187
1188
1189
1190
1191
1192
1193
1194
1195
1196
1197
1198
1199
            ],
            dtype=torch.float,
            device=torch_device,
        )

        non_inf_expected_idx = torch.tensor(
            [[0, 0], [0, 9], [0, 10], [0, 25], [0, 26], [1, 13], [1, 17], [1, 18], [1, 20], [1, 27]],
            dtype=torch.long,
            device=torch_device,
        )  # expected non filtered idx as noted above

        non_inf_expected_output = torch.tensor(
            [
                8.2221,
                7.3534,
                8.4321,
                7.4402,
                9.3845,
                6.2712,
                8.8275,
                5.4403,
                7.3858,
                9.6770,
            ],  # expected non filtered values as noted above
            dtype=torch.float,
            device=torch_device,
        )

        output = top_k_top_p_filtering(logits, top_k=10, top_p=0.6, min_tokens_to_keep=4)
        non_inf_output = output[output != -float("inf")].to(device=torch_device)
        non_inf_idx = (output != -float("inf")).nonzero().to(device=torch_device)

        self.assertTrue(torch.allclose(non_inf_expected_output, non_inf_output, atol=1e-12))
        self.assertTrue(torch.all(torch.eq(non_inf_expected_idx, non_inf_idx)))