test_modeling_common.py 46.9 KB
Newer Older
thomwolf's avatar
thomwolf committed
1
2
3
4
5
6
7
8
9
10
11
12
13
14
# coding=utf-8
# Copyright 2019 HuggingFace Inc.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
#     http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
Aymeric Augustin's avatar
Aymeric Augustin committed
15

16
import copy
17
import inspect
18
import os.path
Aymeric Augustin's avatar
Aymeric Augustin committed
19
import random
20
import tempfile
thomwolf's avatar
thomwolf committed
21
import unittest
22
from typing import List, Tuple
thomwolf's avatar
thomwolf committed
23

24
from transformers import is_torch_available
25
from transformers.file_utils import WEIGHTS_NAME
26
from transformers.testing_utils import require_torch, require_torch_multi_gpu, slow, torch_device
27

Aymeric Augustin's avatar
Aymeric Augustin committed
28

29
if is_torch_available():
30
    import numpy as np
31
    import torch
thomwolf's avatar
thomwolf committed
32

33
    from transformers import (
34
        BERT_PRETRAINED_MODEL_ARCHIVE_LIST,
35
36
        MODEL_FOR_CAUSAL_LM_MAPPING,
        MODEL_FOR_MASKED_LM_MAPPING,
37
        MODEL_FOR_MULTIPLE_CHOICE_MAPPING,
38
        MODEL_FOR_NEXT_SENTENCE_PREDICTION_MAPPING,
39
        MODEL_FOR_QUESTION_ANSWERING_MAPPING,
40
41
42
        MODEL_FOR_SEQ_TO_SEQ_CAUSAL_LM_MAPPING,
        MODEL_FOR_SEQUENCE_CLASSIFICATION_MAPPING,
        MODEL_FOR_TOKEN_CLASSIFICATION_MAPPING,
43
        MODEL_MAPPING,
44
45
46
47
48
        AdaptiveEmbedding,
        BertConfig,
        BertModel,
        PretrainedConfig,
        PreTrainedModel,
49
    )
thomwolf's avatar
thomwolf committed
50

51

52
53
54
def _config_zero_init(config):
    configs_no_init = copy.deepcopy(config)
    for key in configs_no_init.__dict__.keys():
55
        if "_range" in key or "_std" in key or "initializer_factor" in key:
Lysandre Debut's avatar
Lysandre Debut committed
56
            setattr(configs_no_init, key, 1e-10)
57
58
    return configs_no_init

thomwolf's avatar
thomwolf committed
59

60
61
62
63
64
@require_torch
class ModelTesterMixin:

    model_tester = None
    all_model_classes = ()
65
    all_generative_model_classes = ()
Patrick von Platen's avatar
Patrick von Platen committed
66
67
68
69
    test_torchscript = True
    test_pruning = True
    test_resize_embeddings = True
    test_head_masking = True
70
    test_missing_keys = True
71
    test_model_parallel = False
72
73
    is_encoder_decoder = False

74
75
    def _prepare_for_class(self, inputs_dict, model_class, return_labels=False):
        inputs_dict = copy.deepcopy(inputs_dict)
76
        if model_class in MODEL_FOR_MULTIPLE_CHOICE_MAPPING.values():
77
            inputs_dict = {
78
                k: v.unsqueeze(1).expand(-1, self.model_tester.num_choices, -1).contiguous()
79
                if isinstance(v, torch.Tensor) and v.ndim > 1
Sylvain Gugger's avatar
Sylvain Gugger committed
80
                else v
81
82
                for k, v in inputs_dict.items()
            }
83
84
85
86
87
88
89
90
91
92
93

        if return_labels:
            if model_class in MODEL_FOR_MULTIPLE_CHOICE_MAPPING.values():
                inputs_dict["labels"] = torch.ones(self.model_tester.batch_size, dtype=torch.long, device=torch_device)
            elif model_class in MODEL_FOR_QUESTION_ANSWERING_MAPPING.values():
                inputs_dict["start_positions"] = torch.zeros(
                    self.model_tester.batch_size, dtype=torch.long, device=torch_device
                )
                inputs_dict["end_positions"] = torch.zeros(
                    self.model_tester.batch_size, dtype=torch.long, device=torch_device
                )
94
95
96
97
            elif model_class in [
                *MODEL_FOR_SEQUENCE_CLASSIFICATION_MAPPING.values(),
                *MODEL_FOR_NEXT_SENTENCE_PREDICTION_MAPPING.values(),
            ]:
98
99
100
101
102
103
104
105
106
107
108
109
                inputs_dict["labels"] = torch.zeros(
                    self.model_tester.batch_size, dtype=torch.long, device=torch_device
                )
            elif model_class in [
                *MODEL_FOR_TOKEN_CLASSIFICATION_MAPPING.values(),
                *MODEL_FOR_CAUSAL_LM_MAPPING.values(),
                *MODEL_FOR_MASKED_LM_MAPPING.values(),
                *MODEL_FOR_SEQ_TO_SEQ_CAUSAL_LM_MAPPING.values(),
            ]:
                inputs_dict["labels"] = torch.zeros(
                    (self.model_tester.batch_size, self.model_tester.seq_length), dtype=torch.long, device=torch_device
                )
110
111
        return inputs_dict

Patrick von Platen's avatar
Patrick von Platen committed
112
    def test_save_load(self):
113
114
115
116
117
118
119
        config, inputs_dict = self.model_tester.prepare_config_and_inputs_for_common()

        for model_class in self.all_model_classes:
            model = model_class(config)
            model.to(torch_device)
            model.eval()
            with torch.no_grad():
120
                outputs = model(**self._prepare_for_class(inputs_dict, model_class))
Weizhen's avatar
Weizhen committed
121

122
            out_2 = outputs[0].cpu().numpy()
123
            out_2[np.isnan(out_2)] = 0
124

125
            with tempfile.TemporaryDirectory() as tmpdirname:
126
127
                model.save_pretrained(tmpdirname)
                model = model_class.from_pretrained(tmpdirname)
128
                model.to(torch_device)
129
                with torch.no_grad():
130
                    after_outputs = model(**self._prepare_for_class(inputs_dict, model_class))
thomwolf's avatar
thomwolf committed
131

132
133
134
                # Make sure we don't have nans
                out_1 = after_outputs[0].cpu().numpy()
                out_1[np.isnan(out_1)] = 0
thomwolf's avatar
thomwolf committed
135
136
                max_diff = np.amax(np.abs(out_1 - out_2))
                self.assertLessEqual(max_diff, 1e-5)
137

138
    def test_save_load__keys_to_ignore_on_save(self):
139
140
141
142
        config, inputs_dict = self.model_tester.prepare_config_and_inputs_for_common()

        for model_class in self.all_model_classes:
            model = model_class(config)
143
144
            _keys_to_ignore_on_save = getattr(model, "_keys_to_ignore_on_save", None)
            if _keys_to_ignore_on_save is None:
145
146
147
                continue

            # check the keys are in the original state_dict
148
            for k in _keys_to_ignore_on_save:
149
150
151
152
153
154
155
                self.assertIn(k, model.state_dict())

            # check that certain keys didn't get saved with the model
            with tempfile.TemporaryDirectory() as tmpdirname:
                model.save_pretrained(tmpdirname)
                output_model_file = os.path.join(tmpdirname, WEIGHTS_NAME)
                state_dict_saved = torch.load(output_model_file)
156
                for k in _keys_to_ignore_on_save:
157
158
                    self.assertNotIn(k, state_dict_saved)

Patrick von Platen's avatar
Patrick von Platen committed
159
    def test_initialization(self):
160
161
162
163
164
165
166
167
        config, inputs_dict = self.model_tester.prepare_config_and_inputs_for_common()

        configs_no_init = _config_zero_init(config)
        for model_class in self.all_model_classes:
            model = model_class(config=configs_no_init)
            for name, param in model.named_parameters():
                if param.requires_grad:
                    self.assertIn(
Lysandre Debut's avatar
Lysandre Debut committed
168
                        ((param.data.mean() * 1e9).round() / 1e9).item(),
169
170
171
                        [0.0, 1.0],
                        msg="Parameter {} of model {} seems not properly initialized".format(name, model_class),
                    )
thomwolf's avatar
thomwolf committed
172

Patrick von Platen's avatar
Patrick von Platen committed
173
    def test_determinism(self):
174
175
176
177
178
179
180
        config, inputs_dict = self.model_tester.prepare_config_and_inputs_for_common()

        for model_class in self.all_model_classes:
            model = model_class(config)
            model.to(torch_device)
            model.eval()
            with torch.no_grad():
181
182
                first = model(**self._prepare_for_class(inputs_dict, model_class))[0]
                second = model(**self._prepare_for_class(inputs_dict, model_class))[0]
Weizhen's avatar
Weizhen committed
183

184
185
186
187
188
189
190
            out_1 = first.cpu().numpy()
            out_2 = second.cpu().numpy()
            out_1 = out_1[~np.isnan(out_1)]
            out_2 = out_2[~np.isnan(out_2)]
            max_diff = np.amax(np.abs(out_1 - out_2))
            self.assertLessEqual(max_diff, 1e-5)

191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
    def test_forward_signature(self):
        config, _ = self.model_tester.prepare_config_and_inputs_for_common()

        for model_class in self.all_model_classes:
            model = model_class(config)
            signature = inspect.signature(model.forward)
            # signature.parameters is an OrderedDict => so arg_names order is deterministic
            arg_names = [*signature.parameters.keys()]

            if model.config.is_encoder_decoder:
                expected_arg_names = [
                    "input_ids",
                    "attention_mask",
                    "decoder_input_ids",
                    "decoder_attention_mask",
                    "encoder_outputs",
                ]
                self.assertListEqual(arg_names[:5], expected_arg_names)
            else:
                expected_arg_names = ["input_ids"]
                self.assertListEqual(arg_names[:1], expected_arg_names)

213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
    def test_training(self):
        if not self.model_tester.is_training:
            return

        config, inputs_dict = self.model_tester.prepare_config_and_inputs_for_common()
        config.return_dict = True

        for model_class in self.all_model_classes:
            if model_class in MODEL_MAPPING.values():
                continue
            model = model_class(config)
            model.to(torch_device)
            model.train()
            inputs = self._prepare_for_class(inputs_dict, model_class, return_labels=True)
            loss = model(**inputs).loss
            loss.backward()

    def test_training_gradient_checkpointing(self):
        config, inputs_dict = self.model_tester.prepare_config_and_inputs_for_common()
        if not self.model_tester.is_training or not hasattr(config, "gradient_checkpointing"):
            return

        config.gradient_checkpointing = True
        config.return_dict = True

        for model_class in self.all_model_classes:
            if model_class in MODEL_MAPPING.values():
                continue
            model = model_class(config)
            model.to(torch_device)
            model.train()
            inputs = self._prepare_for_class(inputs_dict, model_class, return_labels=True)
            loss = model(**inputs).loss
            loss.backward()

Patrick von Platen's avatar
Patrick von Platen committed
248
    def test_attention_outputs(self):
249
        config, inputs_dict = self.model_tester.prepare_config_and_inputs_for_common()
Weizhen's avatar
Weizhen committed
250
251
        config.return_dict = True

sshleifer's avatar
sshleifer committed
252
        seq_len = getattr(self.model_tester, "seq_length", None)
sshleifer's avatar
sshleifer committed
253
254
        decoder_seq_length = getattr(self.model_tester, "decoder_seq_length", seq_len)
        encoder_seq_length = getattr(self.model_tester, "encoder_seq_length", seq_len)
Weizhen's avatar
Weizhen committed
255
        decoder_key_length = getattr(self.model_tester, "decoder_key_length", decoder_seq_length)
256
        encoder_key_length = getattr(self.model_tester, "key_length", encoder_seq_length)
Patrick von Platen's avatar
Patrick von Platen committed
257
258
259
        chunk_length = getattr(self.model_tester, "chunk_length", None)
        if chunk_length is not None and hasattr(self.model_tester, "num_hashes"):
            encoder_seq_length = encoder_seq_length * self.model_tester.num_hashes
260
261

        for model_class in self.all_model_classes:
262
            inputs_dict["output_attentions"] = True
Joseph Liu's avatar
Joseph Liu committed
263
            inputs_dict["output_hidden_states"] = False
264
            config.return_dict = True
265
266
267
268
            model = model_class(config)
            model.to(torch_device)
            model.eval()
            with torch.no_grad():
269
                outputs = model(**self._prepare_for_class(inputs_dict, model_class))
270
            attentions = outputs.encoder_attentions if config.is_encoder_decoder else outputs.attentions
271
272
273
274
275
276
277
278
279
            self.assertEqual(len(attentions), self.model_tester.num_hidden_layers)

            # check that output_attentions also work using config
            del inputs_dict["output_attentions"]
            config.output_attentions = True
            model = model_class(config)
            model.to(torch_device)
            model.eval()
            with torch.no_grad():
280
281
                outputs = model(**self._prepare_for_class(inputs_dict, model_class))
            attentions = outputs.encoder_attentions if config.is_encoder_decoder else outputs.attentions
282
            self.assertEqual(len(attentions), self.model_tester.num_hidden_layers)
Patrick von Platen's avatar
Patrick von Platen committed
283
284
285
286
287
288
289
290
291
292
293

            if chunk_length is not None:
                self.assertListEqual(
                    list(attentions[0].shape[-4:]),
                    [self.model_tester.num_attention_heads, encoder_seq_length, chunk_length, encoder_key_length],
                )
            else:
                self.assertListEqual(
                    list(attentions[0].shape[-3:]),
                    [self.model_tester.num_attention_heads, encoder_seq_length, encoder_key_length],
                )
294
            out_len = len(outputs)
thomwolf's avatar
thomwolf committed
295

296
            if self.is_encoder_decoder:
297
                correct_outlen = 5
298

299
300
301
302
303
304
                # loss is at first position
                if "labels" in inputs_dict:
                    correct_outlen += 1  # loss is added to beginning
                # Question Answering model returns start_logits and end_logits
                if model_class in MODEL_FOR_QUESTION_ANSWERING_MAPPING.values():
                    correct_outlen += 1  # start_logits and end_logits instead of only 1 output
Weizhen's avatar
Weizhen committed
305

Sam Shleifer's avatar
Sam Shleifer committed
306
307
                self.assertEqual(out_len, correct_outlen)

308
                # decoder attentions
309
                decoder_attentions = outputs.decoder_attentions
Sam Shleifer's avatar
Sam Shleifer committed
310
                self.assertIsInstance(decoder_attentions, (list, tuple))
311
                self.assertEqual(len(decoder_attentions), self.model_tester.num_hidden_layers)
thomwolf's avatar
thomwolf committed
312
                self.assertListEqual(
313
314
                    list(decoder_attentions[0].shape[-3:]),
                    [self.model_tester.num_attention_heads, decoder_seq_length, decoder_key_length],
315
                )
thomwolf's avatar
thomwolf committed
316

317
318
319
320
321
322
323
324
325
326
327
328
329
                # cross attentions
                cross_attentions = outputs.cross_attentions
                self.assertIsInstance(cross_attentions, (list, tuple))
                self.assertEqual(len(cross_attentions), self.model_tester.num_hidden_layers)
                self.assertListEqual(
                    list(cross_attentions[0].shape[-3:]),
                    [
                        self.model_tester.num_attention_heads,
                        decoder_seq_length,
                        encoder_key_length,
                    ],
                )

330
            # Check attention is always last and order is fine
331
            inputs_dict["output_attentions"] = True
Joseph Liu's avatar
Joseph Liu committed
332
            inputs_dict["output_hidden_states"] = True
333
334
335
336
            model = model_class(config)
            model.to(torch_device)
            model.eval()
            with torch.no_grad():
337
                outputs = model(**self._prepare_for_class(inputs_dict, model_class))
338

Weizhen's avatar
Weizhen committed
339
340
341
342
343
344
345
346
            if hasattr(self.model_tester, "num_hidden_states_types"):
                added_hidden_states = self.model_tester.num_hidden_states_types
            elif self.is_encoder_decoder:
                added_hidden_states = 2
            else:
                added_hidden_states = 1
            self.assertEqual(out_len + added_hidden_states, len(outputs))

347
348
            self_attentions = outputs.encoder_attentions if config.is_encoder_decoder else outputs.attentions

349
            self.assertEqual(len(self_attentions), self.model_tester.num_hidden_layers)
Patrick von Platen's avatar
Patrick von Platen committed
350
351
352
353
354
355
356
357
358
359
            if chunk_length is not None:
                self.assertListEqual(
                    list(self_attentions[0].shape[-4:]),
                    [self.model_tester.num_attention_heads, encoder_seq_length, chunk_length, encoder_key_length],
                )
            else:
                self.assertListEqual(
                    list(self_attentions[0].shape[-3:]),
                    [self.model_tester.num_attention_heads, encoder_seq_length, encoder_key_length],
                )
thomwolf's avatar
thomwolf committed
360

Patrick von Platen's avatar
Patrick von Platen committed
361
    def test_torchscript(self):
362
363
        config, inputs_dict = self.model_tester.prepare_config_and_inputs_for_common()
        self._create_and_check_torchscript(config, inputs_dict)
thomwolf's avatar
thomwolf committed
364

Patrick von Platen's avatar
Patrick von Platen committed
365
    def test_torchscript_output_attentions(self):
366
367
368
        config, inputs_dict = self.model_tester.prepare_config_and_inputs_for_common()
        config.output_attentions = True
        self._create_and_check_torchscript(config, inputs_dict)
thomwolf's avatar
thomwolf committed
369

Patrick von Platen's avatar
Patrick von Platen committed
370
    def test_torchscript_output_hidden_state(self):
371
372
373
        config, inputs_dict = self.model_tester.prepare_config_and_inputs_for_common()
        config.output_hidden_states = True
        self._create_and_check_torchscript(config, inputs_dict)
thomwolf's avatar
thomwolf committed
374

375
    def _create_and_check_torchscript(self, config, inputs_dict):
Patrick von Platen's avatar
Patrick von Platen committed
376
        if not self.test_torchscript:
377
            return
378

379
380
381
382
383
384
        configs_no_init = _config_zero_init(config)  # To be sure we have no Nan
        configs_no_init.torchscript = True
        for model_class in self.all_model_classes:
            model = model_class(config=configs_no_init)
            model.to(torch_device)
            model.eval()
385
            inputs = self._prepare_for_class(inputs_dict, model_class)
thomwolf's avatar
thomwolf committed
386

387
            try:
388
389
390
391
392
393
394
395
396
397
398
399
400
                if model.config.is_encoder_decoder:
                    model.config.use_cache = False  # TODO: this should be deleted after bug #7474 is solved
                    input_ids = inputs["input_ids"]
                    attention_mask = inputs["attention_mask"]
                    decoder_input_ids = inputs["decoder_input_ids"]
                    decoder_attention_mask = inputs["decoder_attention_mask"]

                    traced_model = torch.jit.trace(
                        model, (input_ids, attention_mask, decoder_input_ids, decoder_attention_mask)
                    )
                else:
                    input_ids = inputs["input_ids"]
                    traced_model = torch.jit.trace(model, input_ids)
401
402
            except RuntimeError:
                self.fail("Couldn't trace module.")
thomwolf's avatar
thomwolf committed
403

404
            with tempfile.TemporaryDirectory() as tmp_dir_name:
405
                pt_file_name = os.path.join(tmp_dir_name, "traced_model.pt")
thomwolf's avatar
thomwolf committed
406

407
                try:
408
                    torch.jit.save(traced_model, pt_file_name)
409
410
                except Exception:
                    self.fail("Couldn't save module.")
thomwolf's avatar
thomwolf committed
411

412
413
414
415
                try:
                    loaded_model = torch.jit.load(pt_file_name)
                except Exception:
                    self.fail("Couldn't load module.")
LysandreJik's avatar
LysandreJik committed
416

417
418
            model.to(torch_device)
            model.eval()
thomwolf's avatar
thomwolf committed
419

420
421
            loaded_model.to(torch_device)
            loaded_model.eval()
thomwolf's avatar
thomwolf committed
422

423
424
425
426
            model_state_dict = model.state_dict()
            loaded_model_state_dict = loaded_model.state_dict()

            self.assertEqual(set(model_state_dict.keys()), set(loaded_model_state_dict.keys()))
thomwolf's avatar
thomwolf committed
427

428
            models_equal = True
429
430
            for layer_name, p1 in model_state_dict.items():
                p2 = loaded_model_state_dict[layer_name]
431
432
                if p1.data.ne(p2.data).sum() > 0:
                    models_equal = False
thomwolf's avatar
thomwolf committed
433

434
            self.assertTrue(models_equal)
thomwolf's avatar
thomwolf committed
435

Patrick von Platen's avatar
Patrick von Platen committed
436
437
    def test_headmasking(self):
        if not self.test_head_masking:
438
            return
439

440
441
442
        global_rng.seed(42)
        config, inputs_dict = self.model_tester.prepare_config_and_inputs_for_common()
        global_rng.seed()
LysandreJik's avatar
LysandreJik committed
443

444
        inputs_dict["output_attentions"] = True
445
446
447
448
449
450
        config.output_hidden_states = True
        configs_no_init = _config_zero_init(config)  # To be sure we have no Nan
        for model_class in self.all_model_classes:
            model = model_class(config=configs_no_init)
            model.to(torch_device)
            model.eval()
LysandreJik's avatar
LysandreJik committed
451

452
453
454
            # Prepare head_mask
            # Set require_grad after having prepared the tensor to avoid error (leaf variable has been moved into the graph interior)
            head_mask = torch.ones(
Lysandre's avatar
Lysandre committed
455
456
457
                self.model_tester.num_hidden_layers,
                self.model_tester.num_attention_heads,
                device=torch_device,
458
459
460
461
            )
            head_mask[0, 0] = 0
            head_mask[-1, :-1] = 0
            head_mask.requires_grad_(requires_grad=True)
462
            inputs = self._prepare_for_class(inputs_dict, model_class).copy()
463
464
            inputs["head_mask"] = head_mask

465
            outputs = model(**inputs, return_dict=True)
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491

            # Test that we can get a gradient back for importance score computation
            output = sum(t.sum() for t in outputs[0])
            output = output.sum()
            output.backward()
            multihead_outputs = head_mask.grad

            attentions = outputs[-1]

            # Remove Nan
            for t in attentions:
                self.assertLess(
                    torch.sum(torch.isnan(t)), t.numel() / 4
                )  # Check we don't have more than 25% nans (arbitrary)
            attentions = [
                t.masked_fill(torch.isnan(t), 0.0) for t in attentions
            ]  # remove them (the test is less complete)

            self.assertIsNotNone(multihead_outputs)
            self.assertEqual(len(multihead_outputs), self.model_tester.num_hidden_layers)
            self.assertAlmostEqual(attentions[0][..., 0, :, :].flatten().sum().item(), 0.0)
            self.assertNotEqual(attentions[0][..., -1, :, :].flatten().sum().item(), 0.0)
            self.assertNotEqual(attentions[1][..., 0, :, :].flatten().sum().item(), 0.0)
            self.assertAlmostEqual(attentions[-1][..., -2, :, :].flatten().sum().item(), 0.0)
            self.assertNotEqual(attentions[-1][..., -1, :, :].flatten().sum().item(), 0.0)

Patrick von Platen's avatar
Patrick von Platen committed
492
493
    def test_head_pruning(self):
        if not self.test_pruning:
494
495
496
            return

        for model_class in self.all_model_classes:
Lysandre's avatar
Lysandre committed
497
498
499
500
            (
                config,
                inputs_dict,
            ) = self.model_tester.prepare_config_and_inputs_for_common()
501

502
503
            if "head_mask" in inputs_dict:
                del inputs_dict["head_mask"]
504

505
            inputs_dict["output_attentions"] = True
506
507
508
509
            config.output_hidden_states = False
            model = model_class(config=config)
            model.to(torch_device)
            model.eval()
510
511
512
513
            heads_to_prune = {
                0: list(range(1, self.model_tester.num_attention_heads)),
                -1: [0],
            }
514
515
            model.prune_heads(heads_to_prune)
            with torch.no_grad():
516
                outputs = model(**self._prepare_for_class(inputs_dict, model_class))
517

518
            attentions = outputs[-1]
519

520
521
522
            self.assertEqual(attentions[0].shape[-3], 1)
            self.assertEqual(attentions[1].shape[-3], self.model_tester.num_attention_heads)
            self.assertEqual(attentions[-1].shape[-3], self.model_tester.num_attention_heads - 1)
LysandreJik's avatar
LysandreJik committed
523

Patrick von Platen's avatar
Patrick von Platen committed
524
525
    def test_head_pruning_save_load_from_pretrained(self):
        if not self.test_pruning:
526
            return
LysandreJik's avatar
LysandreJik committed
527

528
        for model_class in self.all_model_classes:
Lysandre's avatar
Lysandre committed
529
530
531
532
            (
                config,
                inputs_dict,
            ) = self.model_tester.prepare_config_and_inputs_for_common()
533
534
535

            if "head_mask" in inputs_dict:
                del inputs_dict["head_mask"]
536

537
            inputs_dict["output_attentions"] = True
538
539
540
541
            config.output_hidden_states = False
            model = model_class(config=config)
            model.to(torch_device)
            model.eval()
542
543
544
545
            heads_to_prune = {
                0: list(range(1, self.model_tester.num_attention_heads)),
                -1: [0],
            }
546
            model.prune_heads(heads_to_prune)
547

548
            with tempfile.TemporaryDirectory() as temp_dir_name:
549
550
                model.save_pretrained(temp_dir_name)
                model = model_class.from_pretrained(temp_dir_name)
551
                model.to(torch_device)
552

553
            with torch.no_grad():
554
                outputs = model(**self._prepare_for_class(inputs_dict, model_class))
555
556
557
558
            attentions = outputs[-1]
            self.assertEqual(attentions[0].shape[-3], 1)
            self.assertEqual(attentions[1].shape[-3], self.model_tester.num_attention_heads)
            self.assertEqual(attentions[-1].shape[-3], self.model_tester.num_attention_heads - 1)
559

Patrick von Platen's avatar
Patrick von Platen committed
560
561
    def test_head_pruning_save_load_from_config_init(self):
        if not self.test_pruning:
562
            return
563

564
        for model_class in self.all_model_classes:
Lysandre's avatar
Lysandre committed
565
566
567
568
            (
                config,
                inputs_dict,
            ) = self.model_tester.prepare_config_and_inputs_for_common()
569

570
571
            if "head_mask" in inputs_dict:
                del inputs_dict["head_mask"]
572

573
            inputs_dict["output_attentions"] = True
574
            config.output_hidden_states = False
575

576
577
578
579
            heads_to_prune = {
                0: list(range(1, self.model_tester.num_attention_heads)),
                -1: [0],
            }
580
            config.pruned_heads = heads_to_prune
581

582
583
584
            model = model_class(config=config)
            model.to(torch_device)
            model.eval()
585

586
            with torch.no_grad():
587
                outputs = model(**self._prepare_for_class(inputs_dict, model_class))
588
            attentions = outputs[-1]
589

590
591
592
            self.assertEqual(attentions[0].shape[-3], 1)
            self.assertEqual(attentions[1].shape[-3], self.model_tester.num_attention_heads)
            self.assertEqual(attentions[-1].shape[-3], self.model_tester.num_attention_heads - 1)
593

Patrick von Platen's avatar
Patrick von Platen committed
594
595
    def test_head_pruning_integration(self):
        if not self.test_pruning:
596
            return
597

598
        for model_class in self.all_model_classes:
Lysandre's avatar
Lysandre committed
599
600
601
602
            (
                config,
                inputs_dict,
            ) = self.model_tester.prepare_config_and_inputs_for_common()
603

604
605
            if "head_mask" in inputs_dict:
                del inputs_dict["head_mask"]
606

607
            inputs_dict["output_attentions"] = True
608
            config.output_hidden_states = False
609

610
611
            heads_to_prune = {0: [0], 1: [1, 2]}
            config.pruned_heads = heads_to_prune
612

613
614
615
            model = model_class(config=config)
            model.to(torch_device)
            model.eval()
616

617
            with torch.no_grad():
618
                outputs = model(**self._prepare_for_class(inputs_dict, model_class))
619
            attentions = outputs[-1]
620

621
622
623
624
            self.assertEqual(attentions[0].shape[-3], self.model_tester.num_attention_heads - 1)
            self.assertEqual(attentions[1].shape[-3], self.model_tester.num_attention_heads - 2)
            self.assertEqual(attentions[2].shape[-3], self.model_tester.num_attention_heads)
            self.assertEqual(attentions[3].shape[-3], self.model_tester.num_attention_heads)
thomwolf's avatar
thomwolf committed
625

626
            with tempfile.TemporaryDirectory() as temp_dir_name:
627
628
                model.save_pretrained(temp_dir_name)
                model = model_class.from_pretrained(temp_dir_name)
629
                model.to(torch_device)
thomwolf's avatar
thomwolf committed
630

631
            with torch.no_grad():
632
                outputs = model(**self._prepare_for_class(inputs_dict, model_class))
633
            attentions = outputs[-1]
LysandreJik's avatar
LysandreJik committed
634

635
636
637
638
            self.assertEqual(attentions[0].shape[-3], self.model_tester.num_attention_heads - 1)
            self.assertEqual(attentions[1].shape[-3], self.model_tester.num_attention_heads - 2)
            self.assertEqual(attentions[2].shape[-3], self.model_tester.num_attention_heads)
            self.assertEqual(attentions[3].shape[-3], self.model_tester.num_attention_heads)
thomwolf's avatar
thomwolf committed
639

640
641
            heads_to_prune = {0: [0], 2: [1, 2]}
            model.prune_heads(heads_to_prune)
642

643
            with torch.no_grad():
644
                outputs = model(**self._prepare_for_class(inputs_dict, model_class))
645
            attentions = outputs[-1]
646

647
648
649
650
            self.assertEqual(attentions[0].shape[-3], self.model_tester.num_attention_heads - 1)
            self.assertEqual(attentions[1].shape[-3], self.model_tester.num_attention_heads - 2)
            self.assertEqual(attentions[2].shape[-3], self.model_tester.num_attention_heads - 2)
            self.assertEqual(attentions[3].shape[-3], self.model_tester.num_attention_heads)
651

652
            self.assertDictEqual(model.config.pruned_heads, {0: [0], 1: [1, 2], 2: [1, 2]})
thomwolf's avatar
thomwolf committed
653

Patrick von Platen's avatar
Patrick von Platen committed
654
    def test_hidden_states_output(self):
Joseph Liu's avatar
Joseph Liu committed
655
        def check_hidden_states_output(inputs_dict, config, model_class):
656
            model = model_class(config)
657
            model.to(torch_device)
thomwolf's avatar
thomwolf committed
658
            model.eval()
Joseph Liu's avatar
Joseph Liu committed
659

thomwolf's avatar
thomwolf committed
660
            with torch.no_grad():
661
                outputs = model(**self._prepare_for_class(inputs_dict, model_class))
Weizhen's avatar
Weizhen committed
662
            hidden_states = outputs["hidden_states"] if "hidden_states" in outputs else outputs[-1]
Patrick von Platen's avatar
Patrick von Platen committed
663

Sylvain Gugger's avatar
Sylvain Gugger committed
664
665
666
667
            expected_num_layers = getattr(
                self.model_tester, "expected_num_hidden_layers", self.model_tester.num_hidden_layers + 1
            )
            self.assertEqual(len(hidden_states), expected_num_layers)
Patrick von Platen's avatar
Patrick von Platen committed
668
669
670
671
672
673
674
            if hasattr(self.model_tester, "encoder_seq_length"):
                seq_length = self.model_tester.encoder_seq_length
                if hasattr(self.model_tester, "chunk_length") and self.model_tester.chunk_length > 1:
                    seq_length = seq_length * self.model_tester.chunk_length
            else:
                seq_length = self.model_tester.seq_length

675
            self.assertListEqual(
Lysandre's avatar
Lysandre committed
676
677
                list(hidden_states[0].shape[-2:]),
                [seq_length, self.model_tester.hidden_size],
678
            )
thomwolf's avatar
thomwolf committed
679

Joseph Liu's avatar
Joseph Liu committed
680
681
682
683
684
685
686
687
688
689
690
691
        config, inputs_dict = self.model_tester.prepare_config_and_inputs_for_common()

        for model_class in self.all_model_classes:
            inputs_dict["output_hidden_states"] = True
            check_hidden_states_output(inputs_dict, config, model_class)

            # check that output_hidden_states also work using config
            del inputs_dict["output_hidden_states"]
            config.output_hidden_states = True

            check_hidden_states_output(inputs_dict, config, model_class)

Pradhy729's avatar
Pradhy729 committed
692
    def test_feed_forward_chunking(self):
Lysandre's avatar
Lysandre committed
693
694
695
696
        (
            original_config,
            inputs_dict,
        ) = self.model_tester.prepare_config_and_inputs_for_common()
Pradhy729's avatar
Pradhy729 committed
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
        for model_class in self.all_model_classes:
            torch.manual_seed(0)
            config = copy.deepcopy(original_config)
            model = model_class(config)
            model.to(torch_device)
            model.eval()

            hidden_states_no_chunk = model(**self._prepare_for_class(inputs_dict, model_class))[0]

            torch.manual_seed(0)
            config.chunk_size_feed_forward = 1
            model = model_class(config)
            model.to(torch_device)
            model.eval()

            hidden_states_with_chunk = model(**self._prepare_for_class(inputs_dict, model_class))[0]
            self.assertTrue(torch.allclose(hidden_states_no_chunk, hidden_states_with_chunk, atol=1e-3))

Patrick von Platen's avatar
Patrick von Platen committed
715
    def test_resize_tokens_embeddings(self):
Lysandre's avatar
Lysandre committed
716
717
718
719
        (
            original_config,
            inputs_dict,
        ) = self.model_tester.prepare_config_and_inputs_for_common()
Patrick von Platen's avatar
Patrick von Platen committed
720
        if not self.test_resize_embeddings:
721
722
723
724
725
            return

        for model_class in self.all_model_classes:
            config = copy.deepcopy(original_config)
            model = model_class(config)
726
            model.to(torch_device)
727

Patrick von Platen's avatar
Patrick von Platen committed
728
729
730
            if self.model_tester.is_training is False:
                model.eval()

731
732
733
734
735
736
737
738
739
740
            model_vocab_size = config.vocab_size
            # Retrieve the embeddings and clone theme
            model_embed = model.resize_token_embeddings(model_vocab_size)
            cloned_embeddings = model_embed.weight.clone()

            # Check that resizing the token embeddings with a larger vocab size increases the model's vocab size
            model_embed = model.resize_token_embeddings(model_vocab_size + 10)
            self.assertEqual(model.config.vocab_size, model_vocab_size + 10)
            # Check that it actually resizes the embeddings matrix
            self.assertEqual(model_embed.weight.shape[0], cloned_embeddings.shape[0] + 10)
741
            # Check that the model can still do a forward pass successfully (every parameter should be resized)
742
            model(**self._prepare_for_class(inputs_dict, model_class))
743
744
745
746
747
748
749

            # Check that resizing the token embeddings with a smaller vocab size decreases the model's vocab size
            model_embed = model.resize_token_embeddings(model_vocab_size - 15)
            self.assertEqual(model.config.vocab_size, model_vocab_size - 15)
            # Check that it actually resizes the embeddings matrix
            self.assertEqual(model_embed.weight.shape[0], cloned_embeddings.shape[0] - 15)

750
751
752
            # Check that the model can still do a forward pass successfully (every parameter should be resized)
            # Input ids should be clamped to the maximum size of the vocabulary
            inputs_dict["input_ids"].clamp_(max=model_vocab_size - 15 - 1)
753
            model(**self._prepare_for_class(inputs_dict, model_class))
754

755
756
757
758
759
760
761
762
            # Check that adding and removing tokens has not modified the first part of the embedding matrix.
            models_equal = True
            for p1, p2 in zip(cloned_embeddings, model_embed.weight):
                if p1.data.ne(p2.data).sum() > 0:
                    models_equal = False

            self.assertTrue(models_equal)

Patrick von Platen's avatar
Patrick von Platen committed
763
    def test_model_common_attributes(self):
764
765
766
767
768
769
770
771
772
        config, inputs_dict = self.model_tester.prepare_config_and_inputs_for_common()

        for model_class in self.all_model_classes:
            model = model_class(config)
            self.assertIsInstance(model.get_input_embeddings(), (torch.nn.Embedding, AdaptiveEmbedding))
            model.set_input_embeddings(torch.nn.Embedding(10, 10))
            x = model.get_output_embeddings()
            self.assertTrue(x is None or isinstance(x, torch.nn.Linear))

773
    def test_correct_missing_keys(self):
774
775
        if not self.test_missing_keys:
            return
776
777
778
779
780
781
782
783
784
785
786
787
788
789
        config, _ = self.model_tester.prepare_config_and_inputs_for_common()

        for model_class in self.all_model_classes:
            model = model_class(config)
            base_model_prefix = model.base_model_prefix

            if hasattr(model, base_model_prefix):
                with tempfile.TemporaryDirectory() as temp_dir_name:
                    model.base_model.save_pretrained(temp_dir_name)
                    model, loading_info = model_class.from_pretrained(temp_dir_name, output_loading_info=True)

                    with self.subTest(msg="Missing keys for {}".format(model.__class__.__name__)):
                        self.assertGreater(len(loading_info["missing_keys"]), 0)

790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
    def test_tie_model_weights(self):
        if not self.test_torchscript:
            return

        config, inputs_dict = self.model_tester.prepare_config_and_inputs_for_common()

        def check_same_values(layer_1, layer_2):
            equal = True
            for p1, p2 in zip(layer_1.weight, layer_2.weight):
                if p1.data.ne(p2.data).sum() > 0:
                    equal = False
            return equal

        for model_class in self.all_model_classes:
            config.torchscript = True
            model_not_tied = model_class(config)
            if model_not_tied.get_output_embeddings() is None:
                continue

            config_tied = copy.deepcopy(config)
            config_tied.torchscript = False
            model_tied = model_class(config_tied)
            params_tied = list(model_tied.parameters())
            # Check that the embedding layer and decoding layer are the same in size and in value
            # self.assertTrue(check_same_values(embeddings, decoding))

            # # Check that after modification, they remain the same.
            # embeddings.weight.data.div_(2)
            # # Check that the embedding layer and decoding layer are the same in size and in value
            # self.assertTrue(embeddings.weight.shape, decoding.weight.shape)
            # self.assertTrue(check_same_values(embeddings, decoding))

            # # Check that after modification, they remain the same.
            # decoding.weight.data.div_(4)
            # # Check that the embedding layer and decoding layer are the same in size and in value
            # self.assertTrue(embeddings.weight.shape, decoding.weight.shape)
            # self.assertTrue(check_same_values(embeddings, decoding))

            # Check that after resize they remain tied.
            model_tied.resize_token_embeddings(config.vocab_size + 10)
            params_tied_2 = list(model_tied.parameters())
            self.assertEqual(len(params_tied_2), len(params_tied))

            # decoding.weight.data.mul_(20)
            # # Check that the embedding layer and decoding layer are the same in size and in value
            # self.assertTrue(model.transformer.wte.weight.shape, model.lm_head.weight.shape)
            # self.assertTrue(check_same_values(model.transformer.wte, model.lm_head))

838
839
840
841
    def test_model_outputs_equivalence(self):

        config, inputs_dict = self.model_tester.prepare_config_and_inputs_for_common()

Sam Shleifer's avatar
Sam Shleifer committed
842
843
844
845
        def set_nan_tensor_to_zero(t):
            t[t != t] = 0
            return t

846
847
848
849
850
851
852
853
854
855
856
857
858
        def check_equivalence(model, tuple_inputs, dict_inputs, additional_kwargs={}):
            with torch.no_grad():
                tuple_output = model(**tuple_inputs, return_dict=False, **additional_kwargs)
                dict_output = model(**dict_inputs, return_dict=True, **additional_kwargs).to_tuple()

                def recursive_check(tuple_object, dict_object):
                    if isinstance(tuple_object, (List, Tuple)):
                        for tuple_iterable_value, dict_iterable_value in zip(tuple_object, dict_object):
                            recursive_check(tuple_iterable_value, dict_iterable_value)
                    elif tuple_object is None:
                        return
                    else:
                        self.assertTrue(
Sam Shleifer's avatar
Sam Shleifer committed
859
860
861
                            torch.allclose(
                                set_nan_tensor_to_zero(tuple_object), set_nan_tensor_to_zero(dict_object), atol=1e-5
                            ),
862
                            msg=f"Tuple and dict output are not equal. Difference: {torch.max(torch.abs(tuple_object - dict_object))}. Tuple has `nan`: {torch.isnan(tuple_object).any()} and `inf`: {torch.isinf(tuple_object)}. Dict has `nan`: {torch.isnan(dict_object).any()} and `inf`: {torch.isinf(dict_object)}.",
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
                        )

                recursive_check(tuple_output, dict_output)

        for model_class in self.all_model_classes:
            model = model_class(config)
            model.to(torch_device)
            model.eval()

            tuple_inputs = self._prepare_for_class(inputs_dict, model_class)
            dict_inputs = self._prepare_for_class(inputs_dict, model_class)
            check_equivalence(model, tuple_inputs, dict_inputs)

            tuple_inputs = self._prepare_for_class(inputs_dict, model_class, return_labels=True)
            dict_inputs = self._prepare_for_class(inputs_dict, model_class, return_labels=True)
            check_equivalence(model, tuple_inputs, dict_inputs)

            tuple_inputs = self._prepare_for_class(inputs_dict, model_class)
            dict_inputs = self._prepare_for_class(inputs_dict, model_class)
            check_equivalence(model, tuple_inputs, dict_inputs, {"output_hidden_states": True})

            tuple_inputs = self._prepare_for_class(inputs_dict, model_class)
            dict_inputs = self._prepare_for_class(inputs_dict, model_class)
            check_equivalence(model, tuple_inputs, dict_inputs, {"output_attentions": True})

            tuple_inputs = self._prepare_for_class(inputs_dict, model_class, return_labels=True)
            dict_inputs = self._prepare_for_class(inputs_dict, model_class, return_labels=True)
            check_equivalence(model, tuple_inputs, dict_inputs, {"output_hidden_states": True})

            tuple_inputs = self._prepare_for_class(inputs_dict, model_class, return_labels=True)
            dict_inputs = self._prepare_for_class(inputs_dict, model_class, return_labels=True)
            check_equivalence(model, tuple_inputs, dict_inputs, {"output_attentions": True})

            tuple_inputs = self._prepare_for_class(inputs_dict, model_class, return_labels=True)
            dict_inputs = self._prepare_for_class(inputs_dict, model_class, return_labels=True)
            check_equivalence(
                model, tuple_inputs, dict_inputs, {"output_hidden_states": True, "output_attentions": True}
            )

Patrick von Platen's avatar
Patrick von Platen committed
902
    def test_inputs_embeds(self):
Sam Shleifer's avatar
Sam Shleifer committed
903

904
905
906
907
        config, inputs_dict = self.model_tester.prepare_config_and_inputs_for_common()

        for model_class in self.all_model_classes:
            model = model_class(config)
908
            model.to(torch_device)
thomwolf's avatar
thomwolf committed
909
            model.eval()
910

911
            inputs = copy.deepcopy(self._prepare_for_class(inputs_dict, model_class))
Weizhen's avatar
Weizhen committed
912

913
914
915
916
917
918
919
920
921
            if not self.is_encoder_decoder:
                input_ids = inputs["input_ids"]
                del inputs["input_ids"]
            else:
                encoder_input_ids = inputs["input_ids"]
                decoder_input_ids = inputs.get("decoder_input_ids", encoder_input_ids)
                del inputs["input_ids"]
                inputs.pop("decoder_input_ids", None)

922
923
            wte = model.get_input_embeddings()
            if not self.is_encoder_decoder:
924
                inputs["inputs_embeds"] = wte(input_ids)
925
            else:
926
927
                inputs["inputs_embeds"] = wte(encoder_input_ids)
                inputs["decoder_inputs_embeds"] = wte(decoder_input_ids)
928

thomwolf's avatar
thomwolf committed
929
            with torch.no_grad():
Weizhen's avatar
Weizhen committed
930
                model(**inputs)[0]
931

932
933
    @require_torch_multi_gpu
    def test_multi_gpu_data_parallel_forward(self):
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
        config, inputs_dict = self.model_tester.prepare_config_and_inputs_for_common()

        # some params shouldn't be scattered by nn.DataParallel
        # so just remove them if they are present.
        blacklist_non_batched_params = ["head_mask"]
        for k in blacklist_non_batched_params:
            inputs_dict.pop(k, None)

        # move input tensors to cuda:O
        for k, v in inputs_dict.items():
            if torch.is_tensor(v):
                inputs_dict[k] = v.to(0)

        for model_class in self.all_model_classes:
            model = model_class(config=config)
            model.to(0)
            model.eval()

            # Wrap model in nn.DataParallel
            model = torch.nn.DataParallel(model)
            with torch.no_grad():
955
                _ = model(**self._prepare_for_class(inputs_dict, model_class))
956

957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025
1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
    @require_torch_multi_gpu
    def test_model_parallelization(self):
        if not self.test_model_parallel:
            pass

        import subprocess

        def get_current_gpu_memory_use():
            run_process = subprocess.Popen(
                "nvidia-smi --query-gpu=memory.used --format=csv,nounits,noheader", shell=True, stdout=subprocess.PIPE
            )

            memory_usage = run_process.stdout.read().decode("utf-8").strip()
            per_device_memory = [int(memory) for memory in memory_usage.split("\n")]
            return per_device_memory

        # Needs a large model to see the difference.
        config = self.model_tester.get_large_model_config()

        for model_class in self.all_parallelizable_model_classes:
            torch.cuda.empty_cache()

            # Retrieve initial memory usage (should be close to 0)
            initial_memory = get_current_gpu_memory_use()

            # Put model on device
            model = model_class(config.from_pretrained("gpt2"))
            model.to("cuda:0")

            # Retrieve the memory after the model is put on the device
            memory_after_model_load = get_current_gpu_memory_use()

            del model
            torch.cuda.empty_cache()

            # The memory use on that device should be higher than it was initially.
            self.assertGreater(memory_after_model_load[0], initial_memory[0])

            # Spread model layers over multiple devices
            model = model_class(config.from_pretrained("gpt2"))
            model.parallelize()
            memory_after_parallelization = get_current_gpu_memory_use()

            # Assert that the memory use on all devices is higher than it was when loaded only on CPU
            for n in range(torch.cuda.device_count()):
                self.assertGreater(memory_after_parallelization[n], initial_memory[n])

            # Assert that the memory use of the first device is lower than it was when the entire model was loaded on it
            self.assertLess(memory_after_parallelization[0], memory_after_model_load[0])

            # Assert that the memory use of the second device is higher than it was when the entire model was loaded
            # on the other device.
            self.assertGreater(memory_after_parallelization[1], memory_after_model_load[1])

            del model
            torch.cuda.empty_cache()

    @require_torch_multi_gpu
    def test_model_parallel_equal_results(self):
        if not self.test_model_parallel:
            pass

        config, inputs_dict = self.model_tester.prepare_config_and_inputs_for_common()

        for model_class in self.all_parallelizable_model_classes:
            inputs_dict = self._prepare_for_class(inputs_dict, model_class)

            model = model_class(config)
            output = model(**inputs_dict)

            model.parallelize()

            def cast_to_gpu(dictionary):
                output = {}
                for k, v in dictionary.items():
                    if isinstance(v, torch.Tensor):
                        output[k] = v.to("cuda:0")
                    else:
                        output[k] = v

                return output

            parallel_output = model(**cast_to_gpu(inputs_dict))

            for value, parallel_value in zip(output, parallel_output):
                if isinstance(value, torch.Tensor):
                    self.assertTrue(torch.allclose(value, parallel_value.to("cpu"), atol=1e-7))
                elif isinstance(value, (Tuple, List)):
                    for value_, parallel_value_ in zip(value, parallel_value):
                        self.assertTrue(torch.allclose(value_, parallel_value_.to("cpu"), atol=1e-7))

1048

1049
global_rng = random.Random()
thomwolf's avatar
thomwolf committed
1050
1051


thomwolf's avatar
thomwolf committed
1052
def ids_tensor(shape, vocab_size, rng=None, name=None):
1053
    #  Creates a random int32 tensor of the shape within the vocab size
thomwolf's avatar
thomwolf committed
1054
    if rng is None:
1055
        rng = global_rng
thomwolf's avatar
thomwolf committed
1056

thomwolf's avatar
thomwolf committed
1057
1058
1059
    total_dims = 1
    for dim in shape:
        total_dims *= dim
thomwolf's avatar
thomwolf committed
1060

thomwolf's avatar
thomwolf committed
1061
1062
1063
    values = []
    for _ in range(total_dims):
        values.append(rng.randint(0, vocab_size - 1))
thomwolf's avatar
thomwolf committed
1064

1065
    return torch.tensor(data=values, dtype=torch.long, device=torch_device).view(shape).contiguous()
thomwolf's avatar
thomwolf committed
1066
1067


1068
1069
1070
1071
1072
1073
1074
def random_attention_mask(shape, rng=None, name=None):
    attn_mask = ids_tensor(shape, vocab_size=2, rng=None, name=None)
    # make sure that at least one token is attended to for each batch
    attn_mask[:, -1] = 1
    return attn_mask


1075
def floats_tensor(shape, scale=1.0, rng=None, name=None):
Patrick von Platen's avatar
Patrick von Platen committed
1076
    """Creates a random float32 tensor"""
1077
1078
1079
1080
1081
1082
1083
1084
1085
1086
1087
    if rng is None:
        rng = global_rng

    total_dims = 1
    for dim in shape:
        total_dims *= dim

    values = []
    for _ in range(total_dims):
        values.append(rng.random() * scale)

1088
    return torch.tensor(data=values, dtype=torch.float, device=torch_device).view(shape).contiguous()
1089
1090


1091
@require_torch
thomwolf's avatar
thomwolf committed
1092
class ModelUtilsTest(unittest.TestCase):
1093
    @slow
Patrick von Platen's avatar
Patrick von Platen committed
1094
    def test_model_from_pretrained(self):
1095
        for model_name in BERT_PRETRAINED_MODEL_ARCHIVE_LIST[:1]:
thomwolf's avatar
thomwolf committed
1096
1097
1098
1099
1100
1101
1102
1103
1104
1105
1106
1107
            config = BertConfig.from_pretrained(model_name)
            self.assertIsNotNone(config)
            self.assertIsInstance(config, PretrainedConfig)

            model = BertModel.from_pretrained(model_name)
            model, loading_info = BertModel.from_pretrained(model_name, output_loading_info=True)
            self.assertIsNotNone(model)
            self.assertIsInstance(model, PreTrainedModel)
            for value in loading_info.values():
                self.assertEqual(len(value), 0)

            config = BertConfig.from_pretrained(model_name, output_attentions=True, output_hidden_states=True)
Lysandre Debut's avatar
Lysandre Debut committed
1108
1109
1110
1111

            # Not sure this is the intended behavior. TODO fix Lysandre & Thom
            config.name_or_path = model_name

thomwolf's avatar
thomwolf committed
1112
1113
1114
            model = BertModel.from_pretrained(model_name, output_attentions=True, output_hidden_states=True)
            self.assertEqual(model.config.output_hidden_states, True)
            self.assertEqual(model.config, config)