check_repo.py 40.6 KB
Newer Older
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
# coding=utf-8
# Copyright 2020 The HuggingFace Inc. team.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
#     http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.

16
17
18
import inspect
import os
import re
19
import warnings
20
from collections import OrderedDict
21
from difflib import get_close_matches
22
from pathlib import Path
23

24
from transformers import is_flax_available, is_tf_available, is_torch_available
25
from transformers.models.auto import get_values
Yih-Dar's avatar
Yih-Dar committed
26
from transformers.models.auto.configuration_auto import CONFIG_MAPPING_NAMES
27
28
29
30
from transformers.models.auto.feature_extraction_auto import FEATURE_EXTRACTOR_MAPPING_NAMES
from transformers.models.auto.image_processing_auto import IMAGE_PROCESSOR_MAPPING_NAMES
from transformers.models.auto.processing_auto import PROCESSOR_MAPPING_NAMES
from transformers.models.auto.tokenization_auto import TOKENIZER_MAPPING_NAMES
31
from transformers.utils import ENV_VARS_TRUE_VALUES, direct_transformers_import
32

33
34
35
36
37

# All paths are set with the intent you should run this script from the root of the repo with the command
# python utils/check_repo.py
PATH_TO_TRANSFORMERS = "src/transformers"
PATH_TO_TESTS = "tests"
38
PATH_TO_DOC = "docs/source/en"
39

40
41
# Update this list with models that are supposed to be private.
PRIVATE_MODELS = [
Jongjyh's avatar
Jongjyh committed
42
    "AltRobertaModel",
43
    "DPRSpanPredictor",
Daniel Stancl's avatar
Daniel Stancl committed
44
    "LongT5Stack",
Li-Huai (Allan) Lin's avatar
Li-Huai (Allan) Lin committed
45
    "RealmBertModel",
46
    "T5Stack",
47
    "MT5Stack",
48
    "SwitchTransformersStack",
49
    "TFDPRSpanPredictor",
50
51
    "MaskFormerSwinModel",
    "MaskFormerSwinPreTrainedModel",
52
53
    "BridgeTowerTextModel",
    "BridgeTowerVisionModel",
54
55
]

56
57
# Update this list for models that are not tested with a comment explaining the reason it should not be.
# Being in this list is an exception and should **not** be the rule.
58
IGNORE_NON_TESTED = PRIVATE_MODELS.copy() + [
59
    # models to ignore for not tested
Jason Phang's avatar
Jason Phang committed
60
    "LlamaDecoder",  # Building part of bigger (tested) model.
NielsRogge's avatar
NielsRogge committed
61
    "Blip2QFormerModel",  # Building part of bigger (tested) model.
NielsRogge's avatar
NielsRogge committed
62
63
    "DetaEncoder",  # Building part of bigger (tested) model.
    "DetaDecoder",  # Building part of bigger (tested) model.
64
    "ErnieMForInformationExtraction",
65
66
    "GraphormerEncoder",  # Building part of bigger (tested) model.
    "GraphormerDecoderHead",  # Building part of bigger (tested) model.
NielsRogge's avatar
NielsRogge committed
67
    "CLIPSegDecoder",  # Building part of bigger (tested) model.
68
69
    "TableTransformerEncoder",  # Building part of bigger (tested) model.
    "TableTransformerDecoder",  # Building part of bigger (tested) model.
70
71
    "TimeSeriesTransformerEncoder",  # Building part of bigger (tested) model.
    "TimeSeriesTransformerDecoder",  # Building part of bigger (tested) model.
72
73
    "InformerEncoder",  # Building part of bigger (tested) model.
    "InformerDecoder",  # Building part of bigger (tested) model.
74
75
    "JukeboxVQVAE",  # Building part of bigger (tested) model.
    "JukeboxPrior",  # Building part of bigger (tested) model.
NielsRogge's avatar
NielsRogge committed
76
77
    "DeformableDetrEncoder",  # Building part of bigger (tested) model.
    "DeformableDetrDecoder",  # Building part of bigger (tested) model.
Younes Belkada's avatar
Younes Belkada committed
78
    "OPTDecoder",  # Building part of bigger (tested) model.
79
80
    "FlaxWhisperDecoder",  # Building part of bigger (tested) model.
    "FlaxWhisperEncoder",  # Building part of bigger (tested) model.
81
82
    "WhisperDecoder",  # Building part of bigger (tested) model.
    "WhisperEncoder",  # Building part of bigger (tested) model.
83
    "DecisionTransformerGPT2Model",  # Building part of bigger (tested) model.
NielsRogge's avatar
NielsRogge committed
84
    "SegformerDecodeHead",  # Building part of bigger (tested) model.
Gunjan Chhablani's avatar
Gunjan Chhablani committed
85
86
87
    "PLBartEncoder",  # Building part of bigger (tested) model.
    "PLBartDecoder",  # Building part of bigger (tested) model.
    "PLBartDecoderWrapper",  # Building part of bigger (tested) model.
Vasudev Gupta's avatar
Vasudev Gupta committed
88
89
90
    "BigBirdPegasusEncoder",  # Building part of bigger (tested) model.
    "BigBirdPegasusDecoder",  # Building part of bigger (tested) model.
    "BigBirdPegasusDecoderWrapper",  # Building part of bigger (tested) model.
NielsRogge's avatar
NielsRogge committed
91
92
93
    "DetrEncoder",  # Building part of bigger (tested) model.
    "DetrDecoder",  # Building part of bigger (tested) model.
    "DetrDecoderWrapper",  # Building part of bigger (tested) model.
94
95
    "ConditionalDetrEncoder",  # Building part of bigger (tested) model.
    "ConditionalDetrDecoder",  # Building part of bigger (tested) model.
Suraj Patil's avatar
Suraj Patil committed
96
97
    "M2M100Encoder",  # Building part of bigger (tested) model.
    "M2M100Decoder",  # Building part of bigger (tested) model.
Chan Woo Kim's avatar
Chan Woo Kim committed
98
    "MCTCTEncoder",  # Building part of bigger (tested) model.
wangpeng's avatar
wangpeng committed
99
    "MgpstrModel",  # Building part of bigger (tested) model.
Suraj Patil's avatar
Suraj Patil committed
100
101
    "Speech2TextEncoder",  # Building part of bigger (tested) model.
    "Speech2TextDecoder",  # Building part of bigger (tested) model.
Patrick von Platen's avatar
Patrick von Platen committed
102
103
    "LEDEncoder",  # Building part of bigger (tested) model.
    "LEDDecoder",  # Building part of bigger (tested) model.
104
    "BartDecoderWrapper",  # Building part of bigger (tested) model.
105
    "BartEncoder",  # Building part of bigger (tested) model.
106
    "BertLMHeadModel",  # Needs to be setup as decoder.
107
    "BlenderbotSmallEncoder",  # Building part of bigger (tested) model.
108
    "BlenderbotSmallDecoderWrapper",  # Building part of bigger (tested) model.
109
    "BlenderbotEncoder",  # Building part of bigger (tested) model.
110
    "BlenderbotDecoderWrapper",  # Building part of bigger (tested) model.
111
    "MBartEncoder",  # Building part of bigger (tested) model.
112
    "MBartDecoderWrapper",  # Building part of bigger (tested) model.
113
114
115
116
    "MegatronBertLMHeadModel",  # Building part of bigger (tested) model.
    "MegatronBertEncoder",  # Building part of bigger (tested) model.
    "MegatronBertDecoder",  # Building part of bigger (tested) model.
    "MegatronBertDecoderWrapper",  # Building part of bigger (tested) model.
StevenTang1998's avatar
StevenTang1998 committed
117
118
    "MvpDecoderWrapper",  # Building part of bigger (tested) model.
    "MvpEncoder",  # Building part of bigger (tested) model.
119
    "PegasusEncoder",  # Building part of bigger (tested) model.
120
    "PegasusDecoderWrapper",  # Building part of bigger (tested) model.
Jason Phang's avatar
Jason Phang committed
121
122
123
    "PegasusXEncoder",  # Building part of bigger (tested) model.
    "PegasusXDecoder",  # Building part of bigger (tested) model.
    "PegasusXDecoderWrapper",  # Building part of bigger (tested) model.
124
    "DPREncoder",  # Building part of bigger (tested) model.
125
    "ProphetNetDecoderWrapper",  # Building part of bigger (tested) model.
Li-Huai (Allan) Lin's avatar
Li-Huai (Allan) Lin committed
126
127
128
129
    "RealmBertModel",  # Building part of bigger (tested) model.
    "RealmReader",  # Not regular model.
    "RealmScorer",  # Not regular model.
    "RealmForOpenQA",  # Not regular model.
130
    "ReformerForMaskedLM",  # Needs to be setup as decoder.
131
    "Speech2Text2DecoderWrapper",  # Building part of bigger (tested) model.
Ratthachat (Jung)'s avatar
Ratthachat (Jung) committed
132
    "TFDPREncoder",  # Building part of bigger (tested) model.
133
134
    "TFElectraMainLayer",  # Building part of bigger (tested) model (should it be a TFPreTrainedModel ?)
    "TFRobertaForMultipleChoice",  # TODO: fix
135
    "TFRobertaPreLayerNormForMultipleChoice",  # TODO: fix
136
    "TrOCRDecoderWrapper",  # Building part of bigger (tested) model.
amyeroberts's avatar
amyeroberts committed
137
138
    "TFWhisperEncoder",  # Building part of bigger (tested) model.
    "TFWhisperDecoder",  # Building part of bigger (tested) model.
abhishek thakur's avatar
abhishek thakur committed
139
    "SeparableConv1D",  # Building part of bigger (tested) model.
140
    "FlaxBartForCausalLM",  # Building part of bigger (tested) model.
141
    "FlaxBertForCausalLM",  # Building part of bigger (tested) model. Tested implicitly through FlaxRobertaForCausalLM.
Younes Belkada's avatar
Younes Belkada committed
142
    "OPTDecoderWrapper",
143
    "TFSegformerDecodeHead",  # Not a regular model.
Jongjyh's avatar
Jongjyh committed
144
    "AltRobertaModel",  # Building part of bigger (tested) model.
Younes Belkada's avatar
Younes Belkada committed
145
    "BlipTextLMHeadModel",  # No need to test it as it is tested by BlipTextVision models
146
147
    "BridgeTowerTextModel",  # No need to test it as it is tested by BridgeTowerModel model.
    "BridgeTowerVisionModel",  # No need to test it as it is tested by BridgeTowerModel model.
148
149
150
151
152
153
154
155
156
157
158
159
    "SpeechT5Decoder",  # Building part of bigger (tested) model.
    "SpeechT5DecoderWithoutPrenet",  # Building part of bigger (tested) model.
    "SpeechT5DecoderWithSpeechPrenet",  # Building part of bigger (tested) model.
    "SpeechT5DecoderWithTextPrenet",  # Building part of bigger (tested) model.
    "SpeechT5Encoder",  # Building part of bigger (tested) model.
    "SpeechT5EncoderWithoutPrenet",  # Building part of bigger (tested) model.
    "SpeechT5EncoderWithSpeechPrenet",  # Building part of bigger (tested) model.
    "SpeechT5EncoderWithTextPrenet",  # Building part of bigger (tested) model.
    "SpeechT5SpeechDecoder",  # Building part of bigger (tested) model.
    "SpeechT5SpeechEncoder",  # Building part of bigger (tested) model.
    "SpeechT5TextDecoder",  # Building part of bigger (tested) model.
    "SpeechT5TextEncoder",  # Building part of bigger (tested) model.
160
161
162
163
164
]

# Update this list with test files that don't have a tester with a `all_model_classes` variable and which don't
# trigger the common tests.
TEST_FILES_WITH_NO_COMMON_TESTS = [
Yih-Dar's avatar
Yih-Dar committed
165
166
167
168
169
170
171
172
173
174
175
176
177
    "models/decision_transformer/test_modeling_decision_transformer.py",
    "models/camembert/test_modeling_camembert.py",
    "models/mt5/test_modeling_flax_mt5.py",
    "models/mbart/test_modeling_mbart.py",
    "models/mt5/test_modeling_mt5.py",
    "models/pegasus/test_modeling_pegasus.py",
    "models/camembert/test_modeling_tf_camembert.py",
    "models/mt5/test_modeling_tf_mt5.py",
    "models/xlm_roberta/test_modeling_tf_xlm_roberta.py",
    "models/xlm_roberta/test_modeling_flax_xlm_roberta.py",
    "models/xlm_prophetnet/test_modeling_xlm_prophetnet.py",
    "models/xlm_roberta/test_modeling_xlm_roberta.py",
    "models/vision_text_dual_encoder/test_modeling_vision_text_dual_encoder.py",
Matt's avatar
Matt committed
178
    "models/vision_text_dual_encoder/test_modeling_tf_vision_text_dual_encoder.py",
Yih-Dar's avatar
Yih-Dar committed
179
180
    "models/vision_text_dual_encoder/test_modeling_flax_vision_text_dual_encoder.py",
    "models/decision_transformer/test_modeling_decision_transformer.py",
181
182
]

183
184
# Update this list for models that are not in any of the auto MODEL_XXX_MAPPING. Being in this list is an exception and
# should **not** be the rule.
185
IGNORE_NON_AUTO_CONFIGURED = PRIVATE_MODELS.copy() + [
186
    # models to ignore for model xxx mapping
187
188
    "AlignTextModel",
    "AlignVisionModel",
189
190
191
192
    "ClapTextModel",
    "ClapTextModelWithProjection",
    "ClapAudioModel",
    "ClapAudioModelWithProjection",
NielsRogge's avatar
NielsRogge committed
193
194
195
    "Blip2ForConditionalGeneration",
    "Blip2QFormerModel",
    "Blip2VisionModel",
196
    "ErnieMForInformationExtraction",
197
    "GitVisionModel",
198
199
    "GraphormerModel",
    "GraphormerForGraphClassification",
Younes Belkada's avatar
Younes Belkada committed
200
201
202
203
204
205
    "BlipForConditionalGeneration",
    "BlipForImageTextRetrieval",
    "BlipForQuestionAnswering",
    "BlipVisionModel",
    "BlipTextLMHeadModel",
    "BlipTextModel",
NielsRogge's avatar
NielsRogge committed
206
    "Swin2SRForImageSuperResolution",
207
208
    "BridgeTowerForImageAndTextRetrieval",
    "BridgeTowerForMaskedLM",
209
    "BridgeTowerForContrastiveLearning",
NielsRogge's avatar
NielsRogge committed
210
211
212
    "CLIPSegForImageSegmentation",
    "CLIPSegVisionModel",
    "CLIPSegTextModel",
Matt's avatar
Matt committed
213
    "EsmForProteinFolding",
214
    "GPTSanJapaneseModel",
215
    "TimeSeriesTransformerForPrediction",
216
    "InformerForPrediction",
217
218
    "JukeboxVQVAE",
    "JukeboxPrior",
Jason Phang's avatar
Jason Phang committed
219
220
221
222
223
224
    "PegasusXEncoder",
    "PegasusXDecoder",
    "PegasusXDecoderWrapper",
    "PegasusXEncoder",
    "PegasusXDecoder",
    "PegasusXDecoderWrapper",
NielsRogge's avatar
NielsRogge committed
225
    "DPTForDepthEstimation",
226
    "DecisionTransformerGPT2Model",
NielsRogge's avatar
NielsRogge committed
227
    "GLPNForDepthEstimation",
NielsRogge's avatar
NielsRogge committed
228
229
    "ViltForImagesAndTextClassification",
    "ViltForImageAndTextRetrieval",
230
    "ViltForTokenClassification",
NielsRogge's avatar
NielsRogge committed
231
    "ViltForMaskedLM",
Suraj Patil's avatar
Suraj Patil committed
232
233
234
    "XGLMEncoder",
    "XGLMDecoder",
    "XGLMDecoderWrapper",
NielsRogge's avatar
NielsRogge committed
235
236
    "PerceiverForMultimodalAutoencoding",
    "PerceiverForOpticalFlow",
NielsRogge's avatar
NielsRogge committed
237
    "SegformerDecodeHead",
238
    "TFSegformerDecodeHead",
Kamal Raj's avatar
Kamal Raj committed
239
    "FlaxBeitForMaskedImageModeling",
Gunjan Chhablani's avatar
Gunjan Chhablani committed
240
241
242
    "PLBartEncoder",
    "PLBartDecoder",
    "PLBartDecoderWrapper",
NielsRogge's avatar
NielsRogge committed
243
    "BeitForMaskedImageModeling",
244
245
    "ChineseCLIPTextModel",
    "ChineseCLIPVisionModel",
Suraj Patil's avatar
Suraj Patil committed
246
    "CLIPTextModel",
247
    "CLIPTextModelWithProjection",
Suraj Patil's avatar
Suraj Patil committed
248
    "CLIPVisionModel",
249
    "CLIPVisionModelWithProjection",
250
251
    "GroupViTTextModel",
    "GroupViTVisionModel",
Yih-Dar's avatar
Yih-Dar committed
252
253
    "TFCLIPTextModel",
    "TFCLIPVisionModel",
254
255
    "TFGroupViTTextModel",
    "TFGroupViTVisionModel",
Suraj Patil's avatar
Suraj Patil committed
256
257
    "FlaxCLIPTextModel",
    "FlaxCLIPVisionModel",
258
    "FlaxWav2Vec2ForCTC",
NielsRogge's avatar
NielsRogge committed
259
    "DetrForSegmentation",
260
    "ConditionalDetrForSegmentation",
261
262
    "DPRReader",
    "FlaubertForQuestionAnswering",
263
264
265
266
    "FlavaImageCodebook",
    "FlavaTextModel",
    "FlavaImageModel",
    "FlavaMultimodalModel",
267
    "GPT2DoubleHeadsModel",
268
    "GPTSw3DoubleHeadsModel",
269
    "LayoutLMForQuestionAnswering",
Ryokan RI's avatar
Ryokan RI committed
270
    "LukeForMaskedLM",
NielsRogge's avatar
NielsRogge committed
271
272
273
    "LukeForEntityClassification",
    "LukeForEntityPairClassification",
    "LukeForEntitySpanClassification",
wangpeng's avatar
wangpeng committed
274
    "MgpstrModel",
275
    "OpenAIGPTDoubleHeadsModel",
276
277
278
    "OwlViTTextModel",
    "OwlViTVisionModel",
    "OwlViTForObjectDetection",
279
280
281
    "RagModel",
    "RagSequenceForGeneration",
    "RagTokenForGeneration",
Li-Huai (Allan) Lin's avatar
Li-Huai (Allan) Lin committed
282
283
284
285
    "RealmEmbedder",
    "RealmForOpenQA",
    "RealmScorer",
    "RealmReader",
Ratthachat (Jung)'s avatar
Ratthachat (Jung) committed
286
    "TFDPRReader",
287
    "TFGPT2DoubleHeadsModel",
288
    "TFLayoutLMForQuestionAnswering",
289
    "TFOpenAIGPTDoubleHeadsModel",
Ratthachat (Jung)'s avatar
Ratthachat (Jung) committed
290
291
292
    "TFRagModel",
    "TFRagSequenceForGeneration",
    "TFRagTokenForGeneration",
293
    "Wav2Vec2ForCTC",
Patrick von Platen's avatar
Patrick von Platen committed
294
    "HubertForCTC",
295
296
    "SEWForCTC",
    "SEWDForCTC",
297
298
    "XLMForQuestionAnswering",
    "XLNetForQuestionAnswering",
abhishek thakur's avatar
abhishek thakur committed
299
    "SeparableConv1D",
Gunjan Chhablani's avatar
Gunjan Chhablani committed
300
301
302
303
    "VisualBertForRegionToPhraseAlignment",
    "VisualBertForVisualReasoning",
    "VisualBertForQuestionAnswering",
    "VisualBertForMultipleChoice",
Will Rice's avatar
Will Rice committed
304
    "TFWav2Vec2ForCTC",
Will Rice's avatar
Will Rice committed
305
    "TFHubertForCTC",
NielsRogge's avatar
NielsRogge committed
306
307
    "XCLIPVisionModel",
    "XCLIPTextModel",
Jongjyh's avatar
Jongjyh committed
308
309
310
    "AltCLIPTextModel",
    "AltCLIPVisionModel",
    "AltRobertaModel",
Zineng Tang's avatar
Zineng Tang committed
311
    "TvltForAudioVisualClassification",
312
313
314
    "SpeechT5ForSpeechToSpeech",
    "SpeechT5ForTextToSpeech",
    "SpeechT5HifiGan",
315
316
]

317
318
319
320
321
322
# Update this list for models that have multiple model types for the same
# model doc
MODEL_TYPE_TO_DOC_MAPPING = OrderedDict(
    [
        ("data2vec-text", "data2vec"),
        ("data2vec-audio", "data2vec"),
323
        ("data2vec-vision", "data2vec"),
NielsRogge's avatar
NielsRogge committed
324
        ("donut-swin", "donut"),
325
326
327
328
    ]
)


329
# This is to make sure the transformers module imported is the one in the repo.
330
transformers = direct_transformers_import(PATH_TO_TRANSFORMERS)
331
332


333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
def check_missing_backends():
    missing_backends = []
    if not is_torch_available():
        missing_backends.append("PyTorch")
    if not is_tf_available():
        missing_backends.append("TensorFlow")
    if not is_flax_available():
        missing_backends.append("Flax")
    if len(missing_backends) > 0:
        missing = ", ".join(missing_backends)
        if os.getenv("TRANSFORMERS_IS_CI", "").upper() in ENV_VARS_TRUE_VALUES:
            raise Exception(
                "Full repo consistency checks require all backends to be installed (with `pip install -e .[dev]` in the "
                f"Transformers repo, the following are missing: {missing}."
            )
        else:
            warnings.warn(
                "Full repo consistency checks require all backends to be installed (with `pip install -e .[dev]` in the "
                f"Transformers repo, the following are missing: {missing}. While it's probably fine as long as you "
                "didn't make any change in one of those backends modeling files, you should probably execute the "
                "command above to be on the safe side."
            )


357
358
359
360
361
362
363
364
365
366
367
368
369
def check_model_list():
    """Check the model list inside the transformers library."""
    # Get the models from the directory structure of `src/transformers/models/`
    models_dir = os.path.join(PATH_TO_TRANSFORMERS, "models")
    _models = []
    for model in os.listdir(models_dir):
        model_dir = os.path.join(models_dir, model)
        if os.path.isdir(model_dir) and "__init__.py" in os.listdir(model_dir):
            _models.append(model)

    # Get the models from the directory structure of `src/transformers/models/`
    models = [model for model in dir(transformers.models) if not model.startswith("__")]

370
    missing_models = sorted(set(_models).difference(models))
371
372
373
374
375
376
    if missing_models:
        raise Exception(
            f"The following models should be included in {models_dir}/__init__.py: {','.join(missing_models)}."
        )


377
378
379
# If some modeling modules should be ignored for all checks, they should be added in the nested list
# _ignore_modules of this function.
def get_model_modules():
Patrick von Platen's avatar
Patrick von Platen committed
380
    """Get the model modules inside the transformers library."""
381
382
383
384
385
386
387
388
    _ignore_modules = [
        "modeling_auto",
        "modeling_encoder_decoder",
        "modeling_marian",
        "modeling_mmbt",
        "modeling_outputs",
        "modeling_retribert",
        "modeling_utils",
Sylvain Gugger's avatar
Sylvain Gugger committed
389
        "modeling_flax_auto",
390
        "modeling_flax_encoder_decoder",
Stas Bekman's avatar
Stas Bekman committed
391
        "modeling_flax_utils",
392
        "modeling_speech_encoder_decoder",
393
        "modeling_flax_speech_encoder_decoder",
394
        "modeling_flax_vision_encoder_decoder",
395
396
        "modeling_transfo_xl_utilities",
        "modeling_tf_auto",
397
        "modeling_tf_encoder_decoder",
398
399
400
401
        "modeling_tf_outputs",
        "modeling_tf_pytorch_utils",
        "modeling_tf_utils",
        "modeling_tf_transfo_xl_utilities",
402
        "modeling_tf_vision_encoder_decoder",
403
        "modeling_vision_encoder_decoder",
404
405
    ]
    modules = []
Sylvain Gugger's avatar
Sylvain Gugger committed
406
407
408
409
410
411
412
413
414
    for model in dir(transformers.models):
        # There are some magic dunder attributes in the dir, we ignore them
        if not model.startswith("__"):
            model_module = getattr(transformers.models, model)
            for submodule in dir(model_module):
                if submodule.startswith("modeling") and submodule not in _ignore_modules:
                    modeling_module = getattr(model_module, submodule)
                    if inspect.ismodule(modeling_module):
                        modules.append(modeling_module)
415
416
417
    return modules


418
def get_models(module, include_pretrained=False):
Patrick von Platen's avatar
Patrick von Platen committed
419
    """Get the objects in module that are models."""
420
    models = []
421
    model_classes = (transformers.PreTrainedModel, transformers.TFPreTrainedModel, transformers.FlaxPreTrainedModel)
422
    for attr_name in dir(module):
423
        if not include_pretrained and ("Pretrained" in attr_name or "PreTrained" in attr_name):
424
425
426
427
428
429
430
            continue
        attr = getattr(module, attr_name)
        if isinstance(attr, type) and issubclass(attr, model_classes) and attr.__module__ == module.__name__:
            models.append((attr_name, attr))
    return models


431
432
433
434
435
436
437
438
439
440
441
442
def is_a_private_model(model):
    """Returns True if the model should not be in the main init."""
    if model in PRIVATE_MODELS:
        return True

    # Wrapper, Encoder and Decoder are all privates
    if model.endswith("Wrapper"):
        return True
    if model.endswith("Encoder"):
        return True
    if model.endswith("Decoder"):
        return True
443
444
    if model.endswith("Prenet"):
        return True
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
    return False


def check_models_are_in_init():
    """Checks all models defined in the library are in the main init."""
    models_not_in_init = []
    dir_transformers = dir(transformers)
    for module in get_model_modules():
        models_not_in_init += [
            model[0] for model in get_models(module, include_pretrained=True) if model[0] not in dir_transformers
        ]

    # Remove private models
    models_not_in_init = [model for model in models_not_in_init if not is_a_private_model(model)]
    if len(models_not_in_init) > 0:
        raise Exception(f"The following models should be in the main init: {','.join(models_not_in_init)}.")


463
464
465
# If some test_modeling files should be ignored when checking models are all tested, they should be added in the
# nested list _ignore_files of this function.
def get_model_test_files():
Yih-Dar's avatar
Yih-Dar committed
466
467
468
469
470
471
    """Get the model test files.

    The returned files should NOT contain the `tests` (i.e. `PATH_TO_TESTS` defined in this script). They will be
    considered as paths relative to `tests`. A caller has to use `os.path.join(PATH_TO_TESTS, ...)` to access the files.
    """

472
473
474
    _ignore_files = [
        "test_modeling_common",
        "test_modeling_encoder_decoder",
475
        "test_modeling_flax_encoder_decoder",
476
        "test_modeling_flax_speech_encoder_decoder",
477
478
        "test_modeling_marian",
        "test_modeling_tf_common",
479
        "test_modeling_tf_encoder_decoder",
480
481
    ]
    test_files = []
Yih-Dar's avatar
Yih-Dar committed
482
483
484
485
486
487
488
489
490
491
492
493
494
    # Check both `PATH_TO_TESTS` and `PATH_TO_TESTS/models`
    model_test_root = os.path.join(PATH_TO_TESTS, "models")
    model_test_dirs = []
    for x in os.listdir(model_test_root):
        x = os.path.join(model_test_root, x)
        if os.path.isdir(x):
            model_test_dirs.append(x)

    for target_dir in [PATH_TO_TESTS] + model_test_dirs:
        for file_or_dir in os.listdir(target_dir):
            path = os.path.join(target_dir, file_or_dir)
            if os.path.isfile(path):
                filename = os.path.split(path)[-1]
495
                if "test_modeling" in filename and os.path.splitext(filename)[0] not in _ignore_files:
Yih-Dar's avatar
Yih-Dar committed
496
497
498
                    file = os.path.join(*path.split(os.sep)[1:])
                    test_files.append(file)

499
500
501
502
503
504
    return test_files


# This is a bit hacky but I didn't find a way to import the test_file as a module and read inside the tester class
# for the all_model_classes variable.
def find_tested_models(test_file):
Patrick von Platen's avatar
Patrick von Platen committed
505
    """Parse the content of test_file to detect what's in all_model_classes"""
Sylvain Gugger's avatar
Sylvain Gugger committed
506
    # This is a bit hacky but I didn't find a way to import the test_file as a module and read inside the class
507
    with open(os.path.join(PATH_TO_TESTS, test_file), "r", encoding="utf-8", newline="\n") as f:
508
        content = f.read()
Sylvain Gugger's avatar
Sylvain Gugger committed
509
    all_models = re.findall(r"all_model_classes\s+=\s+\(\s*\(([^\)]*)\)", content)
510
511
    # Check with one less parenthesis as well
    all_models += re.findall(r"all_model_classes\s+=\s+\(([^\)]*)\)", content)
Sylvain Gugger's avatar
Sylvain Gugger committed
512
    if len(all_models) > 0:
513
        model_tested = []
Sylvain Gugger's avatar
Sylvain Gugger committed
514
515
516
517
518
        for entry in all_models:
            for line in entry.split(","):
                name = line.strip()
                if len(name) > 0:
                    model_tested.append(name)
519
520
521
522
        return model_tested


def check_models_are_tested(module, test_file):
Patrick von Platen's avatar
Patrick von Platen committed
523
    """Check models defined in module are tested in test_file."""
524
    # XxxPreTrainedModel are not tested
525
526
527
    defined_models = get_models(module)
    tested_models = find_tested_models(test_file)
    if tested_models is None:
528
        if test_file.replace(os.path.sep, "/") in TEST_FILES_WITH_NO_COMMON_TESTS:
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
            return
        return [
            f"{test_file} should define `all_model_classes` to apply common tests to the models it tests. "
            + "If this intentional, add the test filename to `TEST_FILES_WITH_NO_COMMON_TESTS` in the file "
            + "`utils/check_repo.py`."
        ]
    failures = []
    for model_name, _ in defined_models:
        if model_name not in tested_models and model_name not in IGNORE_NON_TESTED:
            failures.append(
                f"{model_name} is defined in {module.__name__} but is not tested in "
                + f"{os.path.join(PATH_TO_TESTS, test_file)}. Add it to the all_model_classes in that file."
                + "If common tests should not applied to that model, add its name to `IGNORE_NON_TESTED`"
                + "in the file `utils/check_repo.py`."
            )
    return failures


def check_all_models_are_tested():
Patrick von Platen's avatar
Patrick von Platen committed
548
    """Check all models are properly tested."""
549
550
551
552
    modules = get_model_modules()
    test_files = get_model_test_files()
    failures = []
    for module in modules:
553
554
        test_file = [file for file in test_files if f"test_{module.__name__.split('.')[-1]}.py" in file]
        if len(test_file) == 0:
555
            failures.append(f"{module.__name__} does not have its corresponding test file {test_file}.")
556
557
558
559
        elif len(test_file) > 1:
            failures.append(f"{module.__name__} has several test files: {test_file}.")
        else:
            test_file = test_file[0]
560
561
562
            new_failures = check_models_are_tested(module, test_file)
            if new_failures is not None:
                failures += new_failures
563
564
565
566
    if len(failures) > 0:
        raise Exception(f"There were {len(failures)} failures:\n" + "\n".join(failures))


567
def get_all_auto_configured_models():
Patrick von Platen's avatar
Patrick von Platen committed
568
    """Return the list of all models in at least one auto class."""
569
    result = set()  # To avoid duplicates we concatenate all model classes in a set.
570
571
    if is_torch_available():
        for attr_name in dir(transformers.models.auto.modeling_auto):
572
            if attr_name.startswith("MODEL_") and attr_name.endswith("MAPPING_NAMES"):
573
574
575
                result = result | set(get_values(getattr(transformers.models.auto.modeling_auto, attr_name)))
    if is_tf_available():
        for attr_name in dir(transformers.models.auto.modeling_tf_auto):
576
            if attr_name.startswith("TF_MODEL_") and attr_name.endswith("MAPPING_NAMES"):
577
578
579
                result = result | set(get_values(getattr(transformers.models.auto.modeling_tf_auto, attr_name)))
    if is_flax_available():
        for attr_name in dir(transformers.models.auto.modeling_flax_auto):
580
            if attr_name.startswith("FLAX_MODEL_") and attr_name.endswith("MAPPING_NAMES"):
581
                result = result | set(get_values(getattr(transformers.models.auto.modeling_flax_auto, attr_name)))
582
    return list(result)
583
584


585
586
587
588
589
590
591
592
593
594
595
def ignore_unautoclassed(model_name):
    """Rules to determine if `name` should be in an auto class."""
    # Special white list
    if model_name in IGNORE_NON_AUTO_CONFIGURED:
        return True
    # Encoder and Decoder should be ignored
    if "Encoder" in model_name or "Decoder" in model_name:
        return True
    return False


596
def check_models_are_auto_configured(module, all_auto_models):
Patrick von Platen's avatar
Patrick von Platen committed
597
    """Check models defined in module are each in an auto class."""
598
599
600
    defined_models = get_models(module)
    failures = []
    for model_name, _ in defined_models:
601
        if model_name not in all_auto_models and not ignore_unautoclassed(model_name):
602
603
604
605
606
607
608
609
610
            failures.append(
                f"{model_name} is defined in {module.__name__} but is not present in any of the auto mapping. "
                "If that is intended behavior, add its name to `IGNORE_NON_AUTO_CONFIGURED` in the file "
                "`utils/check_repo.py`."
            )
    return failures


def check_all_models_are_auto_configured():
Patrick von Platen's avatar
Patrick von Platen committed
611
    """Check all models are each in an auto class."""
612
    check_missing_backends()
613
614
615
616
617
618
619
620
621
622
623
    modules = get_model_modules()
    all_auto_models = get_all_auto_configured_models()
    failures = []
    for module in modules:
        new_failures = check_models_are_auto_configured(module, all_auto_models)
        if new_failures is not None:
            failures += new_failures
    if len(failures) > 0:
        raise Exception(f"There were {len(failures)} failures:\n" + "\n".join(failures))


624
625
def check_all_auto_object_names_being_defined():
    """Check all names defined in auto (name) mappings exist in the library."""
626
    check_missing_backends()
627

628
    failures = []
629
    mappings_to_check = {
630
631
632
633
634
635
        "TOKENIZER_MAPPING_NAMES": TOKENIZER_MAPPING_NAMES,
        "IMAGE_PROCESSOR_MAPPING_NAMES": IMAGE_PROCESSOR_MAPPING_NAMES,
        "FEATURE_EXTRACTOR_MAPPING_NAMES": FEATURE_EXTRACTOR_MAPPING_NAMES,
        "PROCESSOR_MAPPING_NAMES": PROCESSOR_MAPPING_NAMES,
    }

636
637
    # Each auto modeling files contains multiple mappings. Let's get them in a dynamic way.
    for module_name in ["modeling_auto", "modeling_tf_auto", "modeling_flax_auto"]:
638
639
640
        module = getattr(transformers.models.auto, module_name, None)
        if module is None:
            continue
641
642
643
644
645
        # all mappings in a single auto modeling file
        mapping_names = [x for x in dir(module) if x.endswith("_MAPPING_NAMES")]
        mappings_to_check.update({name: getattr(module, name) for name in mapping_names})

    for name, mapping in mappings_to_check.items():
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
        for model_type, class_names in mapping.items():
            if not isinstance(class_names, tuple):
                class_names = (class_names,)
                for class_name in class_names:
                    if class_name is None:
                        continue
                    # dummy object is accepted
                    if not hasattr(transformers, class_name):
                        # If the class name is in a model name mapping, let's not check if there is a definition in any modeling
                        # module, if it's a private model defined in this file.
                        if name.endswith("MODEL_MAPPING_NAMES") and is_a_private_model(class_name):
                            continue
                        failures.append(
                            f"`{class_name}` appears in the mapping `{name}` but it is not defined in the library."
                        )
    if len(failures) > 0:
        raise Exception(f"There were {len(failures)} failures:\n" + "\n".join(failures))


Yih-Dar's avatar
Yih-Dar committed
665
666
def check_all_auto_mapping_names_in_config_mapping_names():
    """Check all keys defined in auto mappings (mappings of names) appear in `CONFIG_MAPPING_NAMES`."""
667
    check_missing_backends()
Yih-Dar's avatar
Yih-Dar committed
668

669
    failures = []
Yih-Dar's avatar
Yih-Dar committed
670
    # `TOKENIZER_PROCESSOR_MAPPING_NAMES` and `AutoTokenizer` is special, and don't need to follow the rule.
671
    mappings_to_check = {
Yih-Dar's avatar
Yih-Dar committed
672
673
674
675
676
        "IMAGE_PROCESSOR_MAPPING_NAMES": IMAGE_PROCESSOR_MAPPING_NAMES,
        "FEATURE_EXTRACTOR_MAPPING_NAMES": FEATURE_EXTRACTOR_MAPPING_NAMES,
        "PROCESSOR_MAPPING_NAMES": PROCESSOR_MAPPING_NAMES,
    }

677
678
    # Each auto modeling files contains multiple mappings. Let's get them in a dynamic way.
    for module_name in ["modeling_auto", "modeling_tf_auto", "modeling_flax_auto"]:
679
680
681
        module = getattr(transformers.models.auto, module_name, None)
        if module is None:
            continue
682
683
684
685
686
        # all mappings in a single auto modeling file
        mapping_names = [x for x in dir(module) if x.endswith("_MAPPING_NAMES")]
        mappings_to_check.update({name: getattr(module, name) for name in mapping_names})

    for name, mapping in mappings_to_check.items():
Yih-Dar's avatar
Yih-Dar committed
687
688
689
690
691
692
693
694
695
696
        for model_type, class_names in mapping.items():
            if model_type not in CONFIG_MAPPING_NAMES:
                failures.append(
                    f"`{model_type}` appears in the mapping `{name}` but it is not defined in the keys of "
                    "`CONFIG_MAPPING_NAMES`."
                )
    if len(failures) > 0:
        raise Exception(f"There were {len(failures)} failures:\n" + "\n".join(failures))


Sylvain Gugger's avatar
Sylvain Gugger committed
697
698
699
700
_re_decorator = re.compile(r"^\s*@(\S+)\s+$")


def check_decorator_order(filename):
Patrick von Platen's avatar
Patrick von Platen committed
701
    """Check that in the test file `filename` the slow decorator is always last."""
702
    with open(filename, "r", encoding="utf-8", newline="\n") as f:
Sylvain Gugger's avatar
Sylvain Gugger committed
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
        lines = f.readlines()
    decorator_before = None
    errors = []
    for i, line in enumerate(lines):
        search = _re_decorator.search(line)
        if search is not None:
            decorator_name = search.groups()[0]
            if decorator_before is not None and decorator_name.startswith("parameterized"):
                errors.append(i)
            decorator_before = decorator_name
        elif decorator_before is not None:
            decorator_before = None
    return errors


def check_all_decorator_order():
Patrick von Platen's avatar
Patrick von Platen committed
719
    """Check that in all test files, the slow decorator is always last."""
Sylvain Gugger's avatar
Sylvain Gugger committed
720
721
722
723
724
725
726
727
728
    errors = []
    for fname in os.listdir(PATH_TO_TESTS):
        if fname.endswith(".py"):
            filename = os.path.join(PATH_TO_TESTS, fname)
            new_errors = check_decorator_order(filename)
            errors += [f"- {filename}, line {i}" for i in new_errors]
    if len(errors) > 0:
        msg = "\n".join(errors)
        raise ValueError(
Sylvain Gugger's avatar
Sylvain Gugger committed
729
730
            "The parameterized decorator (and its variants) should always be first, but this is not the case in the"
            f" following files:\n{msg}"
Sylvain Gugger's avatar
Sylvain Gugger committed
731
732
733
        )


734
def find_all_documented_objects():
Patrick von Platen's avatar
Patrick von Platen committed
735
    """Parse the content of all doc files to detect which classes and functions it documents"""
736
737
    documented_obj = []
    for doc_file in Path(PATH_TO_DOC).glob("**/*.rst"):
Julien Plu's avatar
Julien Plu committed
738
        with open(doc_file, "r", encoding="utf-8", newline="\n") as f:
739
740
741
            content = f.read()
        raw_doc_objs = re.findall(r"(?:autoclass|autofunction):: transformers.(\S+)\s+", content)
        documented_obj += [obj.split(".")[-1] for obj in raw_doc_objs]
Sylvain Gugger's avatar
Sylvain Gugger committed
742
743
744
745
746
    for doc_file in Path(PATH_TO_DOC).glob("**/*.mdx"):
        with open(doc_file, "r", encoding="utf-8", newline="\n") as f:
            content = f.read()
        raw_doc_objs = re.findall("\[\[autodoc\]\]\s+(\S+)\s+", content)
        documented_obj += [obj.split(".")[-1] for obj in raw_doc_objs]
747
748
749
750
751
752
    return documented_obj


# One good reason for not being documented is to be deprecated. Put in this list deprecated objects.
DEPRECATED_OBJECTS = [
    "AutoModelWithLMHead",
753
    "BartPretrainedModel",
754
755
    "DataCollator",
    "DataCollatorForSOP",
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
    "GlueDataset",
    "GlueDataTrainingArguments",
    "LineByLineTextDataset",
    "LineByLineWithRefDataset",
    "LineByLineWithSOPTextDataset",
    "PretrainedBartModel",
    "PretrainedFSMTModel",
    "SingleSentenceClassificationProcessor",
    "SquadDataTrainingArguments",
    "SquadDataset",
    "SquadExample",
    "SquadFeatures",
    "SquadV1Processor",
    "SquadV2Processor",
    "TFAutoModelWithLMHead",
771
    "TFBartPretrainedModel",
772
773
    "TextDataset",
    "TextDatasetForNextSentencePrediction",
774
    "Wav2Vec2ForMaskedLM",
775
    "Wav2Vec2Tokenizer",
776
777
778
779
780
781
782
783
784
785
    "glue_compute_metrics",
    "glue_convert_examples_to_features",
    "glue_output_modes",
    "glue_processors",
    "glue_tasks_num_labels",
    "squad_convert_examples_to_features",
    "xnli_compute_metrics",
    "xnli_output_modes",
    "xnli_processors",
    "xnli_tasks_num_labels",
786
787
    "TFTrainer",
    "TFTrainingArguments",
788
789
790
791
792
793
794
]

# Exceptionally, some objects should not be documented after all rules passed.
# ONLY PUT SOMETHING IN THIS LIST AS A LAST RESORT!
UNDOCUMENTED_OBJECTS = [
    "AddedToken",  # This is a tokenizers class.
    "BasicTokenizer",  # Internal, should never have been in the main init.
795
    "CharacterTokenizer",  # Internal, should never have been in the main init.
796
    "DPRPretrainedReader",  # Like an Encoder.
Sylvain Gugger's avatar
Sylvain Gugger committed
797
    "DummyObject",  # Just picked by mistake sometimes.
798
    "MecabTokenizer",  # Internal, should never have been in the main init.
799
800
801
802
803
804
805
806
807
808
809
    "ModelCard",  # Internal type.
    "SqueezeBertModule",  # Internal building block (should have been called SqueezeBertLayer)
    "TFDPRPretrainedReader",  # Like an Encoder.
    "TransfoXLCorpus",  # Internal type.
    "WordpieceTokenizer",  # Internal, should never have been in the main init.
    "absl",  # External module
    "add_end_docstrings",  # Internal, should never have been in the main init.
    "add_start_docstrings",  # Internal, should never have been in the main init.
    "convert_tf_weight_name_to_pt_weight_name",  # Internal used to convert model weights
    "logger",  # Internal logger
    "logging",  # External module
810
    "requires_backends",  # Internal function
Jongjyh's avatar
Jongjyh committed
811
    "AltRobertaModel",  # Internal module
812
813
814
815
816
817
818
819
820
]

# This list should be empty. Objects in it should get their own doc page.
SHOULD_HAVE_THEIR_OWN_PAGE = [
    # Benchmarks
    "PyTorchBenchmark",
    "PyTorchBenchmarkArguments",
    "TensorFlowBenchmark",
    "TensorFlowBenchmarkArguments",
821
    "AutoBackbone",
NielsRogge's avatar
NielsRogge committed
822
823
    "BitBackbone",
    "ConvNextBackbone",
Alara Dirik's avatar
Alara Dirik committed
824
    "ConvNextV2Backbone",
825
    "DinatBackbone",
NielsRogge's avatar
NielsRogge committed
826
    "MaskFormerSwinBackbone",
827
828
    "MaskFormerSwinConfig",
    "MaskFormerSwinModel",
NielsRogge's avatar
NielsRogge committed
829
830
    "NatBackbone",
    "ResNetBackbone",
NielsRogge's avatar
NielsRogge committed
831
    "SwinBackbone",
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
]


def ignore_undocumented(name):
    """Rules to determine if `name` should be undocumented."""
    # NOT DOCUMENTED ON PURPOSE.
    # Constants uppercase are not documented.
    if name.isupper():
        return True
    # PreTrainedModels / Encoders / Decoders / Layers / Embeddings / Attention are not documented.
    if (
        name.endswith("PreTrainedModel")
        or name.endswith("Decoder")
        or name.endswith("Encoder")
        or name.endswith("Layer")
        or name.endswith("Embeddings")
        or name.endswith("Attention")
    ):
        return True
    # Submodules are not documented.
    if os.path.isdir(os.path.join(PATH_TO_TRANSFORMERS, name)) or os.path.isfile(
        os.path.join(PATH_TO_TRANSFORMERS, f"{name}.py")
    ):
        return True
    # All load functions are not documented.
    if name.startswith("load_tf") or name.startswith("load_pytorch"):
        return True
    # is_xxx_available functions are not documented.
    if name.startswith("is_") and name.endswith("_available"):
        return True
    # Deprecated objects are not documented.
    if name in DEPRECATED_OBJECTS or name in UNDOCUMENTED_OBJECTS:
        return True
    # MMBT model does not really work.
    if name.startswith("MMBT"):
        return True
    if name in SHOULD_HAVE_THEIR_OWN_PAGE:
        return True
    return False


def check_all_objects_are_documented():
Patrick von Platen's avatar
Patrick von Platen committed
874
    """Check all models are properly documented."""
875
    documented_objs = find_all_documented_objects()
876
877
878
    modules = transformers._modules
    objects = [c for c in dir(transformers) if c not in modules and not c.startswith("_")]
    undocumented_objs = [c for c in objects if c not in documented_objs and not ignore_undocumented(c)]
879
880
881
882
883
    if len(undocumented_objs) > 0:
        raise Exception(
            "The following objects are in the public init so should be documented:\n - "
            + "\n - ".join(undocumented_objs)
        )
884
    check_docstrings_are_in_md()
885
886
887
888
889
890
891
892
893
    check_model_type_doc_match()


def check_model_type_doc_match():
    """Check all doc pages have a corresponding model type."""
    model_doc_folder = Path(PATH_TO_DOC) / "model_doc"
    model_docs = [m.stem for m in model_doc_folder.glob("*.mdx")]

    model_types = list(transformers.models.auto.configuration_auto.MODEL_NAMES_MAPPING.keys())
894
    model_types = [MODEL_TYPE_TO_DOC_MAPPING[m] if m in MODEL_TYPE_TO_DOC_MAPPING else m for m in model_types]
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912

    errors = []
    for m in model_docs:
        if m not in model_types and m != "auto":
            close_matches = get_close_matches(m, model_types)
            error_message = f"{m} is not a proper model identifier."
            if len(close_matches) > 0:
                close_matches = "/".join(close_matches)
                error_message += f" Did you mean {close_matches}?"
            errors.append(error_message)

    if len(errors) > 0:
        raise ValueError(
            "Some model doc pages do not match any existing model type:\n"
            + "\n".join(errors)
            + "\nYou can add any missing model type to the `MODEL_NAMES_MAPPING` constant in "
            "models/auto/configuration_auto.py."
        )
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939


# Re pattern to catch :obj:`xx`, :class:`xx`, :func:`xx` or :meth:`xx`.
_re_rst_special_words = re.compile(r":(?:obj|func|class|meth):`([^`]+)`")
# Re pattern to catch things between double backquotes.
_re_double_backquotes = re.compile(r"(^|[^`])``([^`]+)``([^`]|$)")
# Re pattern to catch example introduction.
_re_rst_example = re.compile(r"^\s*Example.*::\s*$", flags=re.MULTILINE)


def is_rst_docstring(docstring):
    """
    Returns `True` if `docstring` is written in rst.
    """
    if _re_rst_special_words.search(docstring) is not None:
        return True
    if _re_double_backquotes.search(docstring) is not None:
        return True
    if _re_rst_example.search(docstring) is not None:
        return True
    return False


def check_docstrings_are_in_md():
    """Check all docstrings are in md"""
    files_with_rst = []
    for file in Path(PATH_TO_TRANSFORMERS).glob("**/*.py"):
940
        with open(file, encoding="utf-8") as f:
941
942
943
944
945
946
947
948
949
950
951
952
953
            code = f.read()
        docstrings = code.split('"""')

        for idx, docstring in enumerate(docstrings):
            if idx % 2 == 0 or not is_rst_docstring(docstring):
                continue
            files_with_rst.append(file)
            break

    if len(files_with_rst) > 0:
        raise ValueError(
            "The following files have docstrings written in rst:\n"
            + "\n".join([f"- {f}" for f in files_with_rst])
Kamal Raj's avatar
Kamal Raj committed
954
            + "\nTo fix this run `doc-builder convert path_to_py_file` after installing `doc-builder`\n"
955
956
            "(`pip install git+https://github.com/huggingface/doc-builder`)"
        )
957
958


959
def check_repo_quality():
Patrick von Platen's avatar
Patrick von Platen committed
960
    """Check all models are properly tested and documented."""
961
962
    print("Checking all models are included.")
    check_model_list()
963
964
    print("Checking all models are public.")
    check_models_are_in_init()
965
    print("Checking all models are properly tested.")
Sylvain Gugger's avatar
Sylvain Gugger committed
966
    check_all_decorator_order()
967
    check_all_models_are_tested()
968
    print("Checking all objects are properly documented.")
969
    check_all_objects_are_documented()
970
971
    print("Checking all models are in at least one auto class.")
    check_all_models_are_auto_configured()
972
973
    print("Checking all names in auto name mappings are defined.")
    check_all_auto_object_names_being_defined()
Yih-Dar's avatar
Yih-Dar committed
974
975
    print("Checking all keys in auto name mappings are defined in `CONFIG_MAPPING_NAMES`.")
    check_all_auto_mapping_names_in_config_mapping_names()
976
977
978
979


if __name__ == "__main__":
    check_repo_quality()