nodes.py 53.8 KB
Newer Older
comfyanonymous's avatar
comfyanonymous committed
1
2
3
4
5
import torch

import os
import sys
import json
6
import hashlib
7
import traceback
8
import math
9
import time
comfyanonymous's avatar
comfyanonymous committed
10

11
from PIL import Image, ImageOps
comfyanonymous's avatar
comfyanonymous committed
12
13
from PIL.PngImagePlugin import PngInfo
import numpy as np
14
import safetensors.torch
comfyanonymous's avatar
comfyanonymous committed
15

comfyanonymous's avatar
comfyanonymous committed
16
sys.path.insert(0, os.path.join(os.path.dirname(os.path.realpath(__file__)), "comfy"))
comfyanonymous's avatar
comfyanonymous committed
17
18


19
import comfy.diffusers_load
comfyanonymous's avatar
comfyanonymous committed
20
import comfy.samplers
21
import comfy.sample
comfyanonymous's avatar
comfyanonymous committed
22
import comfy.sd
comfyanonymous's avatar
comfyanonymous committed
23
24
import comfy.utils

25
import comfy.clip_vision
26

27
import comfy.model_management
28
import importlib
comfyanonymous's avatar
comfyanonymous committed
29

30
import folder_paths
31
import latent_preview
space-nuko's avatar
space-nuko committed
32

33
def before_node_execution():
34
    comfy.model_management.throw_exception_if_processing_interrupted()
35

36
def interrupt_processing(value=True):
37
    comfy.model_management.interrupt_current_processing(value)
38

39
40
MAX_RESOLUTION=8192

comfyanonymous's avatar
comfyanonymous committed
41
42
43
class CLIPTextEncode:
    @classmethod
    def INPUT_TYPES(s):
44
        return {"required": {"text": ("STRING", {"multiline": True}), "clip": ("CLIP", )}}
comfyanonymous's avatar
comfyanonymous committed
45
46
47
    RETURN_TYPES = ("CONDITIONING",)
    FUNCTION = "encode"

48
49
    CATEGORY = "conditioning"

comfyanonymous's avatar
comfyanonymous committed
50
    def encode(self, clip, text):
51
52
53
        tokens = clip.tokenize(text)
        cond, pooled = clip.encode_from_tokens(tokens, return_pooled=True)
        return ([[cond, {"pooled_output": pooled}]], )
comfyanonymous's avatar
comfyanonymous committed
54
55
56
57
58
59
60
61

class ConditioningCombine:
    @classmethod
    def INPUT_TYPES(s):
        return {"required": {"conditioning_1": ("CONDITIONING", ), "conditioning_2": ("CONDITIONING", )}}
    RETURN_TYPES = ("CONDITIONING",)
    FUNCTION = "combine"

62
63
    CATEGORY = "conditioning"

comfyanonymous's avatar
comfyanonymous committed
64
65
66
    def combine(self, conditioning_1, conditioning_2):
        return (conditioning_1 + conditioning_2, )

FizzleDorf's avatar
FizzleDorf committed
67
68
69
class ConditioningAverage :
    @classmethod
    def INPUT_TYPES(s):
comfyanonymous's avatar
comfyanonymous committed
70
71
        return {"required": {"conditioning_to": ("CONDITIONING", ), "conditioning_from": ("CONDITIONING", ),
                              "conditioning_to_strength": ("FLOAT", {"default": 1.0, "min": 0.0, "max": 1.0, "step": 0.01})
FizzleDorf's avatar
FizzleDorf committed
72
73
74
75
76
77
                             }}
    RETURN_TYPES = ("CONDITIONING",)
    FUNCTION = "addWeighted"

    CATEGORY = "conditioning"

comfyanonymous's avatar
comfyanonymous committed
78
    def addWeighted(self, conditioning_to, conditioning_from, conditioning_to_strength):
FizzleDorf's avatar
FizzleDorf committed
79
        out = []
comfyanonymous's avatar
comfyanonymous committed
80
81
82
83
84
85
86
87
88
89
90
91
92
93

        if len(conditioning_from) > 1:
            print("Warning: ConditioningAverage conditioning_from contains more than 1 cond, only the first one will actually be applied to conditioning_to.")

        cond_from = conditioning_from[0][0]

        for i in range(len(conditioning_to)):
            t1 = conditioning_to[i][0]
            t0 = cond_from[:,:t1.shape[1]]
            if t0.shape[1] < t1.shape[1]:
                t0 = torch.cat([t0] + [torch.zeros((1, (t1.shape[1] - t0.shape[1]), t1.shape[2]))], dim=1)

            tw = torch.mul(t1, conditioning_to_strength) + torch.mul(t0, (1.0 - conditioning_to_strength))
            n = [tw, conditioning_to[i][1].copy()]
FizzleDorf's avatar
FizzleDorf committed
94
95
96
            out.append(n)
        return (out, )

comfyanonymous's avatar
comfyanonymous committed
97
98
99
100
class ConditioningSetArea:
    @classmethod
    def INPUT_TYPES(s):
        return {"required": {"conditioning": ("CONDITIONING", ),
101
102
103
104
                              "width": ("INT", {"default": 64, "min": 64, "max": MAX_RESOLUTION, "step": 8}),
                              "height": ("INT", {"default": 64, "min": 64, "max": MAX_RESOLUTION, "step": 8}),
                              "x": ("INT", {"default": 0, "min": 0, "max": MAX_RESOLUTION, "step": 8}),
                              "y": ("INT", {"default": 0, "min": 0, "max": MAX_RESOLUTION, "step": 8}),
comfyanonymous's avatar
comfyanonymous committed
105
106
107
108
109
                              "strength": ("FLOAT", {"default": 1.0, "min": 0.0, "max": 10.0, "step": 0.01}),
                             }}
    RETURN_TYPES = ("CONDITIONING",)
    FUNCTION = "append"

110
111
    CATEGORY = "conditioning"

112
    def append(self, conditioning, width, height, x, y, strength):
comfyanonymous's avatar
comfyanonymous committed
113
114
115
116
117
        c = []
        for t in conditioning:
            n = [t[0], t[1].copy()]
            n[1]['area'] = (height // 8, width // 8, y // 8, x // 8)
            n[1]['strength'] = strength
118
            n[1]['set_area_to_bounds'] = False
comfyanonymous's avatar
comfyanonymous committed
119
            c.append(n)
comfyanonymous's avatar
comfyanonymous committed
120
        return (c, )
comfyanonymous's avatar
comfyanonymous committed
121

Jacob Segal's avatar
Jacob Segal committed
122
123
124
125
126
127
class ConditioningSetMask:
    @classmethod
    def INPUT_TYPES(s):
        return {"required": {"conditioning": ("CONDITIONING", ),
                              "mask": ("MASK", ),
                              "strength": ("FLOAT", {"default": 1.0, "min": 0.0, "max": 10.0, "step": 0.01}),
128
                              "set_cond_area": (["default", "mask bounds"],),
Jacob Segal's avatar
Jacob Segal committed
129
130
131
132
133
134
                             }}
    RETURN_TYPES = ("CONDITIONING",)
    FUNCTION = "append"

    CATEGORY = "conditioning"

135
    def append(self, conditioning, mask, set_cond_area, strength):
Jacob Segal's avatar
Jacob Segal committed
136
        c = []
137
138
139
        set_area_to_bounds = False
        if set_cond_area != "default":
            set_area_to_bounds = True
Jacob Segal's avatar
Jacob Segal committed
140
141
142
143
144
145
        if len(mask.shape) < 3:
            mask = mask.unsqueeze(0)
        for t in conditioning:
            n = [t[0], t[1].copy()]
            _, h, w = mask.shape
            n[1]['mask'] = mask
Jacob Segal's avatar
Jacob Segal committed
146
            n[1]['set_area_to_bounds'] = set_area_to_bounds
147
            n[1]['mask_strength'] = strength
Jacob Segal's avatar
Jacob Segal committed
148
149
150
            c.append(n)
        return (c, )

comfyanonymous's avatar
comfyanonymous committed
151
152
153
154
155
156
157
class VAEDecode:
    @classmethod
    def INPUT_TYPES(s):
        return {"required": { "samples": ("LATENT", ), "vae": ("VAE", )}}
    RETURN_TYPES = ("IMAGE",)
    FUNCTION = "decode"

158
159
    CATEGORY = "latent"

comfyanonymous's avatar
comfyanonymous committed
160
    def decode(self, vae, samples):
161
        return (vae.decode(samples["samples"]), )
comfyanonymous's avatar
comfyanonymous committed
162

163
164
165
166
167
168
169
170
171
172
173
174
class VAEDecodeTiled:
    @classmethod
    def INPUT_TYPES(s):
        return {"required": { "samples": ("LATENT", ), "vae": ("VAE", )}}
    RETURN_TYPES = ("IMAGE",)
    FUNCTION = "decode"

    CATEGORY = "_for_testing"

    def decode(self, vae, samples):
        return (vae.decode_tiled(samples["samples"]), )

comfyanonymous's avatar
comfyanonymous committed
175
176
177
178
179
180
181
class VAEEncode:
    @classmethod
    def INPUT_TYPES(s):
        return {"required": { "pixels": ("IMAGE", ), "vae": ("VAE", )}}
    RETURN_TYPES = ("LATENT",)
    FUNCTION = "encode"

182
183
    CATEGORY = "latent"

184
185
186
187
    @staticmethod
    def vae_encode_crop_pixels(pixels):
        x = (pixels.shape[1] // 8) * 8
        y = (pixels.shape[2] // 8) * 8
188
        if pixels.shape[1] != x or pixels.shape[2] != y:
189
190
191
192
            x_offset = (pixels.shape[1] % 8) // 2
            y_offset = (pixels.shape[2] % 8) // 2
            pixels = pixels[:, x_offset:x + x_offset, y_offset:y + y_offset, :]
        return pixels
193

194
195
196
    def encode(self, vae, pixels):
        pixels = self.vae_encode_crop_pixels(pixels)
        t = vae.encode(pixels[:,:,:,:3])
197
        return ({"samples":t}, )
comfyanonymous's avatar
comfyanonymous committed
198

comfyanonymous's avatar
comfyanonymous committed
199
200
201
202
203
204
205
206
207
208
class VAEEncodeTiled:
    @classmethod
    def INPUT_TYPES(s):
        return {"required": { "pixels": ("IMAGE", ), "vae": ("VAE", )}}
    RETURN_TYPES = ("LATENT",)
    FUNCTION = "encode"

    CATEGORY = "_for_testing"

    def encode(self, vae, pixels):
209
        pixels = VAEEncode.vae_encode_crop_pixels(pixels)
comfyanonymous's avatar
comfyanonymous committed
210
211
        t = vae.encode_tiled(pixels[:,:,:,:3])
        return ({"samples":t}, )
212

213
214
215
class VAEEncodeForInpaint:
    @classmethod
    def INPUT_TYPES(s):
216
        return {"required": { "pixels": ("IMAGE", ), "vae": ("VAE", ), "mask": ("MASK", ), "grow_mask_by": ("INT", {"default": 6, "min": 0, "max": 64, "step": 1}),}}
217
218
219
220
221
    RETURN_TYPES = ("LATENT",)
    FUNCTION = "encode"

    CATEGORY = "latent/inpaint"

222
    def encode(self, vae, pixels, mask, grow_mask_by=6):
223
224
        x = (pixels.shape[1] // 8) * 8
        y = (pixels.shape[2] // 8) * 8
225
        mask = torch.nn.functional.interpolate(mask.reshape((-1, 1, mask.shape[-2], mask.shape[-1])), size=(pixels.shape[1], pixels.shape[2]), mode="bilinear")
226

227
        pixels = pixels.clone()
228
        if pixels.shape[1] != x or pixels.shape[2] != y:
229
230
231
232
            x_offset = (pixels.shape[1] % 8) // 2
            y_offset = (pixels.shape[2] % 8) // 2
            pixels = pixels[:,x_offset:x + x_offset, y_offset:y + y_offset,:]
            mask = mask[:,:,x_offset:x + x_offset, y_offset:y + y_offset]
233

234
        #grow mask by a few pixels to keep things seamless in latent space
235
236
237
238
239
240
241
242
        if grow_mask_by == 0:
            mask_erosion = mask
        else:
            kernel_tensor = torch.ones((1, 1, grow_mask_by, grow_mask_by))
            padding = math.ceil((grow_mask_by - 1) / 2)

            mask_erosion = torch.clamp(torch.nn.functional.conv2d(mask.round(), kernel_tensor, padding=padding), 0, 1)

243
        m = (1.0 - mask.round()).squeeze(1)
244
245
        for i in range(3):
            pixels[:,:,:,i] -= 0.5
246
            pixels[:,:,:,i] *= m
247
248
249
            pixels[:,:,:,i] += 0.5
        t = vae.encode(pixels)

250
        return ({"samples":t, "noise_mask": (mask_erosion[:,:,:x,:y].round())}, )
comfyanonymous's avatar
comfyanonymous committed
251

Dr.Lt.Data's avatar
Dr.Lt.Data committed
252
253
class SaveLatent:
    def __init__(self):
254
        self.output_dir = folder_paths.get_output_directory()
Dr.Lt.Data's avatar
Dr.Lt.Data committed
255
256
257
258

    @classmethod
    def INPUT_TYPES(s):
        return {"required": { "samples": ("LATENT", ),
259
                              "filename_prefix": ("STRING", {"default": "latents/ComfyUI"})},
Dr.Lt.Data's avatar
Dr.Lt.Data committed
260
261
262
263
264
265
266
267
268
269
                "hidden": {"prompt": "PROMPT", "extra_pnginfo": "EXTRA_PNGINFO"},
                }
    RETURN_TYPES = ()
    FUNCTION = "save"

    OUTPUT_NODE = True

    CATEGORY = "_for_testing"

    def save(self, samples, filename_prefix="ComfyUI", prompt=None, extra_pnginfo=None):
270
        full_output_folder, filename, counter, subfolder, filename_prefix = folder_paths.get_save_image_path(filename_prefix, self.output_dir)
Dr.Lt.Data's avatar
Dr.Lt.Data committed
271
272
273
274
275
276

        # support save metadata for latent sharing
        prompt_info = ""
        if prompt is not None:
            prompt_info = json.dumps(prompt)

277
        metadata = {"prompt": prompt_info}
Dr.Lt.Data's avatar
Dr.Lt.Data committed
278
279
280
281
282
283
284
        if extra_pnginfo is not None:
            for x in extra_pnginfo:
                metadata[x] = json.dumps(extra_pnginfo[x])

        file = f"{filename}_{counter:05}_.latent"
        file = os.path.join(full_output_folder, file)

285
286
287
288
        output = {}
        output["latent_tensor"] = samples["samples"]

        safetensors.torch.save_file(output, file, metadata=metadata)
Dr.Lt.Data's avatar
Dr.Lt.Data committed
289
290
291
292
293
294
295

        return {}


class LoadLatent:
    @classmethod
    def INPUT_TYPES(s):
296
297
        input_dir = folder_paths.get_input_directory()
        files = [f for f in os.listdir(input_dir) if os.path.isfile(os.path.join(input_dir, f)) and f.endswith(".latent")]
Dr.Lt.Data's avatar
Dr.Lt.Data committed
298
299
300
301
302
303
304
305
        return {"required": {"latent": [sorted(files), ]}, }

    CATEGORY = "_for_testing"

    RETURN_TYPES = ("LATENT", )
    FUNCTION = "load"

    def load(self, latent):
306
307
        latent_path = folder_paths.get_annotated_filepath(latent)
        latent = safetensors.torch.load_file(latent_path, device="cpu")
308
        samples = {"samples": latent["latent_tensor"].float()}
309
        return (samples, )
Dr.Lt.Data's avatar
Dr.Lt.Data committed
310

311
312
313
314
315
316
317
318
319
320
321
322
323
324
    @classmethod
    def IS_CHANGED(s, latent):
        image_path = folder_paths.get_annotated_filepath(latent)
        m = hashlib.sha256()
        with open(image_path, 'rb') as f:
            m.update(f.read())
        return m.digest().hex()

    @classmethod
    def VALIDATE_INPUTS(s, latent):
        if not folder_paths.exists_annotated_filepath(latent):
            return "Invalid latent file: {}".format(latent)
        return True

Dr.Lt.Data's avatar
Dr.Lt.Data committed
325

comfyanonymous's avatar
comfyanonymous committed
326
327
328
class CheckpointLoader:
    @classmethod
    def INPUT_TYPES(s):
329
330
        return {"required": { "config_name": (folder_paths.get_filename_list("configs"), ),
                              "ckpt_name": (folder_paths.get_filename_list("checkpoints"), )}}
comfyanonymous's avatar
comfyanonymous committed
331
332
333
    RETURN_TYPES = ("MODEL", "CLIP", "VAE")
    FUNCTION = "load_checkpoint"

334
    CATEGORY = "advanced/loaders"
335

comfyanonymous's avatar
comfyanonymous committed
336
    def load_checkpoint(self, config_name, ckpt_name, output_vae=True, output_clip=True):
337
338
        config_path = folder_paths.get_full_path("configs", config_name)
        ckpt_path = folder_paths.get_full_path("checkpoints", ckpt_name)
339
        return comfy.sd.load_checkpoint(config_path, ckpt_path, output_vae=True, output_clip=True, embedding_directory=folder_paths.get_folder_paths("embeddings"))
comfyanonymous's avatar
comfyanonymous committed
340

341
342
343
class CheckpointLoaderSimple:
    @classmethod
    def INPUT_TYPES(s):
344
        return {"required": { "ckpt_name": (folder_paths.get_filename_list("checkpoints"), ),
345
346
347
348
                             }}
    RETURN_TYPES = ("MODEL", "CLIP", "VAE")
    FUNCTION = "load_checkpoint"

349
    CATEGORY = "loaders"
350

351
    def load_checkpoint(self, ckpt_name, output_vae=True, output_clip=True):
352
        ckpt_path = folder_paths.get_full_path("checkpoints", ckpt_name)
353
        out = comfy.sd.load_checkpoint_guess_config(ckpt_path, output_vae=True, output_clip=True, embedding_directory=folder_paths.get_folder_paths("embeddings"))
354
355
        return out

sALTaccount's avatar
sALTaccount committed
356
357
358
class DiffusersLoader:
    @classmethod
    def INPUT_TYPES(cls):
359
        paths = []
sALTaccount's avatar
sALTaccount committed
360
        for search_path in folder_paths.get_folder_paths("diffusers"):
361
            if os.path.exists(search_path):
362
363
364
365
                for root, subdir, files in os.walk(search_path, followlinks=True):
                    if "model_index.json" in files:
                        paths.append(os.path.relpath(root, start=search_path))

366
        return {"required": {"model_path": (paths,), }}
sALTaccount's avatar
sALTaccount committed
367
368
369
    RETURN_TYPES = ("MODEL", "CLIP", "VAE")
    FUNCTION = "load_checkpoint"

370
    CATEGORY = "advanced/loaders"
sALTaccount's avatar
sALTaccount committed
371
372

    def load_checkpoint(self, model_path, output_vae=True, output_clip=True):
sALTaccount's avatar
sALTaccount committed
373
374
        for search_path in folder_paths.get_folder_paths("diffusers"):
            if os.path.exists(search_path):
375
376
377
                path = os.path.join(search_path, model_path)
                if os.path.exists(path):
                    model_path = path
sALTaccount's avatar
sALTaccount committed
378
                    break
379

380
        return comfy.diffusers_load.load_diffusers(model_path, fp16=comfy.model_management.should_use_fp16(), output_vae=output_vae, output_clip=output_clip, embedding_directory=folder_paths.get_folder_paths("embeddings"))
sALTaccount's avatar
sALTaccount committed
381
382


383
384
385
386
387
388
389
390
class unCLIPCheckpointLoader:
    @classmethod
    def INPUT_TYPES(s):
        return {"required": { "ckpt_name": (folder_paths.get_filename_list("checkpoints"), ),
                             }}
    RETURN_TYPES = ("MODEL", "CLIP", "VAE", "CLIP_VISION")
    FUNCTION = "load_checkpoint"

391
    CATEGORY = "loaders"
392
393
394
395
396
397

    def load_checkpoint(self, ckpt_name, output_vae=True, output_clip=True):
        ckpt_path = folder_paths.get_full_path("checkpoints", ckpt_name)
        out = comfy.sd.load_checkpoint_guess_config(ckpt_path, output_vae=True, output_clip=True, output_clipvision=True, embedding_directory=folder_paths.get_folder_paths("embeddings"))
        return out

comfyanonymous's avatar
comfyanonymous committed
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
class CLIPSetLastLayer:
    @classmethod
    def INPUT_TYPES(s):
        return {"required": { "clip": ("CLIP", ),
                              "stop_at_clip_layer": ("INT", {"default": -1, "min": -24, "max": -1, "step": 1}),
                              }}
    RETURN_TYPES = ("CLIP",)
    FUNCTION = "set_last_layer"

    CATEGORY = "conditioning"

    def set_last_layer(self, clip, stop_at_clip_layer):
        clip = clip.clone()
        clip.clip_layer(stop_at_clip_layer)
        return (clip,)

414
415
416
417
418
class LoraLoader:
    @classmethod
    def INPUT_TYPES(s):
        return {"required": { "model": ("MODEL",),
                              "clip": ("CLIP", ),
419
                              "lora_name": (folder_paths.get_filename_list("loras"), ),
420
421
                              "strength_model": ("FLOAT", {"default": 1.0, "min": -10.0, "max": 10.0, "step": 0.01}),
                              "strength_clip": ("FLOAT", {"default": 1.0, "min": -10.0, "max": 10.0, "step": 0.01}),
422
423
424
425
426
427
428
                              }}
    RETURN_TYPES = ("MODEL", "CLIP")
    FUNCTION = "load_lora"

    CATEGORY = "loaders"

    def load_lora(self, model, clip, lora_name, strength_model, strength_clip):
429
430
431
        if strength_model == 0 and strength_clip == 0:
            return (model, clip)

432
        lora_path = folder_paths.get_full_path("loras", lora_name)
433
434
435
        model_lora, clip_lora = comfy.sd.load_lora_for_models(model, clip, lora_path, strength_model, strength_clip)
        return (model_lora, clip_lora)

436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
class TomePatchModel:
    @classmethod
    def INPUT_TYPES(s):
        return {"required": { "model": ("MODEL",),
                              "ratio": ("FLOAT", {"default": 0.3, "min": 0.0, "max": 1.0, "step": 0.01}),
                              }}
    RETURN_TYPES = ("MODEL",)
    FUNCTION = "patch"

    CATEGORY = "_for_testing"

    def patch(self, model, ratio):
        m = model.clone()
        m.set_model_tomesd(ratio)
        return (m, )

comfyanonymous's avatar
comfyanonymous committed
452
453
454
class VAELoader:
    @classmethod
    def INPUT_TYPES(s):
455
        return {"required": { "vae_name": (folder_paths.get_filename_list("vae"), )}}
comfyanonymous's avatar
comfyanonymous committed
456
457
458
    RETURN_TYPES = ("VAE",)
    FUNCTION = "load_vae"

459
460
    CATEGORY = "loaders"

comfyanonymous's avatar
comfyanonymous committed
461
462
    #TODO: scale factor?
    def load_vae(self, vae_name):
463
        vae_path = folder_paths.get_full_path("vae", vae_name)
comfyanonymous's avatar
comfyanonymous committed
464
465
466
        vae = comfy.sd.VAE(ckpt_path=vae_path)
        return (vae,)

comfyanonymous's avatar
comfyanonymous committed
467
468
469
class ControlNetLoader:
    @classmethod
    def INPUT_TYPES(s):
470
        return {"required": { "control_net_name": (folder_paths.get_filename_list("controlnet"), )}}
comfyanonymous's avatar
comfyanonymous committed
471
472
473
474
475
476
477

    RETURN_TYPES = ("CONTROL_NET",)
    FUNCTION = "load_controlnet"

    CATEGORY = "loaders"

    def load_controlnet(self, control_net_name):
478
        controlnet_path = folder_paths.get_full_path("controlnet", control_net_name)
comfyanonymous's avatar
comfyanonymous committed
479
480
481
        controlnet = comfy.sd.load_controlnet(controlnet_path)
        return (controlnet,)

482
483
484
485
class DiffControlNetLoader:
    @classmethod
    def INPUT_TYPES(s):
        return {"required": { "model": ("MODEL",),
486
                              "control_net_name": (folder_paths.get_filename_list("controlnet"), )}}
487
488
489
490
491
492
493

    RETURN_TYPES = ("CONTROL_NET",)
    FUNCTION = "load_controlnet"

    CATEGORY = "loaders"

    def load_controlnet(self, model, control_net_name):
494
        controlnet_path = folder_paths.get_full_path("controlnet", control_net_name)
495
496
497
        controlnet = comfy.sd.load_controlnet(controlnet_path, model)
        return (controlnet,)

comfyanonymous's avatar
comfyanonymous committed
498
499
500
501

class ControlNetApply:
    @classmethod
    def INPUT_TYPES(s):
502
503
504
505
506
        return {"required": {"conditioning": ("CONDITIONING", ),
                             "control_net": ("CONTROL_NET", ),
                             "image": ("IMAGE", ),
                             "strength": ("FLOAT", {"default": 1.0, "min": 0.0, "max": 10.0, "step": 0.01})
                             }}
comfyanonymous's avatar
comfyanonymous committed
507
508
509
510
511
    RETURN_TYPES = ("CONDITIONING",)
    FUNCTION = "apply_controlnet"

    CATEGORY = "conditioning"

512
    def apply_controlnet(self, conditioning, control_net, image, strength):
513
514
515
        if strength == 0:
            return (conditioning, )

comfyanonymous's avatar
comfyanonymous committed
516
517
518
519
        c = []
        control_hint = image.movedim(-1,1)
        for t in conditioning:
            n = [t[0], t[1].copy()]
comfyanonymous's avatar
comfyanonymous committed
520
521
522
523
            c_net = control_net.copy().set_cond_hint(control_hint, strength)
            if 'control' in t[1]:
                c_net.set_previous_controlnet(t[1]['control'])
            n[1]['control'] = c_net
comfyanonymous's avatar
comfyanonymous committed
524
525
526
            c.append(n)
        return (c, )

527
528
529
class CLIPLoader:
    @classmethod
    def INPUT_TYPES(s):
530
        return {"required": { "clip_name": (folder_paths.get_filename_list("clip"), ),
531
532
533
534
535
536
                             }}
    RETURN_TYPES = ("CLIP",)
    FUNCTION = "load_clip"

    CATEGORY = "loaders"

537
    def load_clip(self, clip_name):
538
        clip_path = folder_paths.get_full_path("clip", clip_name)
comfyanonymous's avatar
comfyanonymous committed
539
        clip = comfy.sd.load_clip(ckpt_path=clip_path, embedding_directory=folder_paths.get_folder_paths("embeddings"))
540
541
        return (clip,)

542
543
544
class CLIPVisionLoader:
    @classmethod
    def INPUT_TYPES(s):
545
        return {"required": { "clip_name": (folder_paths.get_filename_list("clip_vision"), ),
546
547
548
549
550
551
552
                             }}
    RETURN_TYPES = ("CLIP_VISION",)
    FUNCTION = "load_clip"

    CATEGORY = "loaders"

    def load_clip(self, clip_name):
553
        clip_path = folder_paths.get_full_path("clip_vision", clip_name)
554
        clip_vision = comfy.clip_vision.load(clip_path)
555
556
557
558
559
560
561
562
        return (clip_vision,)

class CLIPVisionEncode:
    @classmethod
    def INPUT_TYPES(s):
        return {"required": { "clip_vision": ("CLIP_VISION",),
                              "image": ("IMAGE",)
                             }}
comfyanonymous's avatar
comfyanonymous committed
563
    RETURN_TYPES = ("CLIP_VISION_OUTPUT",)
564
565
    FUNCTION = "encode"

566
    CATEGORY = "conditioning"
567
568
569
570
571
572
573
574

    def encode(self, clip_vision, image):
        output = clip_vision.encode_image(image)
        return (output,)

class StyleModelLoader:
    @classmethod
    def INPUT_TYPES(s):
575
        return {"required": { "style_model_name": (folder_paths.get_filename_list("style_models"), )}}
576
577
578
579
580
581
582

    RETURN_TYPES = ("STYLE_MODEL",)
    FUNCTION = "load_style_model"

    CATEGORY = "loaders"

    def load_style_model(self, style_model_name):
583
        style_model_path = folder_paths.get_full_path("style_models", style_model_name)
584
585
586
587
588
589
590
        style_model = comfy.sd.load_style_model(style_model_path)
        return (style_model,)


class StyleModelApply:
    @classmethod
    def INPUT_TYPES(s):
591
592
593
        return {"required": {"conditioning": ("CONDITIONING", ),
                             "style_model": ("STYLE_MODEL", ),
                             "clip_vision_output": ("CLIP_VISION_OUTPUT", ),
594
595
596
597
                             }}
    RETURN_TYPES = ("CONDITIONING",)
    FUNCTION = "apply_stylemodel"

comfyanonymous's avatar
comfyanonymous committed
598
    CATEGORY = "conditioning/style_model"
599

600
601
    def apply_stylemodel(self, clip_vision_output, style_model, conditioning):
        cond = style_model.get_cond(clip_vision_output)
602
        c = []
603
604
        for t in conditioning:
            n = [torch.cat((t[0], cond), dim=1), t[1].copy()]
605
606
607
            c.append(n)
        return (c, )

608
609
610
611
612
613
class unCLIPConditioning:
    @classmethod
    def INPUT_TYPES(s):
        return {"required": {"conditioning": ("CONDITIONING", ),
                             "clip_vision_output": ("CLIP_VISION_OUTPUT", ),
                             "strength": ("FLOAT", {"default": 1.0, "min": -10.0, "max": 10.0, "step": 0.01}),
614
                             "noise_augmentation": ("FLOAT", {"default": 0.0, "min": 0.0, "max": 1.0, "step": 0.01}),
615
616
617
618
                             }}
    RETURN_TYPES = ("CONDITIONING",)
    FUNCTION = "apply_adm"

619
    CATEGORY = "conditioning"
620

621
    def apply_adm(self, conditioning, clip_vision_output, strength, noise_augmentation):
622
623
624
        if strength == 0:
            return (conditioning, )

625
626
627
        c = []
        for t in conditioning:
            o = t[1].copy()
628
629
630
            x = {"clip_vision_output": clip_vision_output, "strength": strength, "noise_augmentation": noise_augmentation}
            if "unclip_conditioning" in o:
                o["unclip_conditioning"] = o["unclip_conditioning"][:] + [x]
631
            else:
632
                o["unclip_conditioning"] = [x]
633
634
635
636
            n = [t[0], o]
            c.append(n)
        return (c, )

637
638
639
640
641
642
643
644
class GLIGENLoader:
    @classmethod
    def INPUT_TYPES(s):
        return {"required": { "gligen_name": (folder_paths.get_filename_list("gligen"), )}}

    RETURN_TYPES = ("GLIGEN",)
    FUNCTION = "load_gligen"

comfyanonymous's avatar
comfyanonymous committed
645
    CATEGORY = "loaders"
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666

    def load_gligen(self, gligen_name):
        gligen_path = folder_paths.get_full_path("gligen", gligen_name)
        gligen = comfy.sd.load_gligen(gligen_path)
        return (gligen,)

class GLIGENTextBoxApply:
    @classmethod
    def INPUT_TYPES(s):
        return {"required": {"conditioning_to": ("CONDITIONING", ),
                              "clip": ("CLIP", ),
                              "gligen_textbox_model": ("GLIGEN", ),
                              "text": ("STRING", {"multiline": True}),
                              "width": ("INT", {"default": 64, "min": 8, "max": MAX_RESOLUTION, "step": 8}),
                              "height": ("INT", {"default": 64, "min": 8, "max": MAX_RESOLUTION, "step": 8}),
                              "x": ("INT", {"default": 0, "min": 0, "max": MAX_RESOLUTION, "step": 8}),
                              "y": ("INT", {"default": 0, "min": 0, "max": MAX_RESOLUTION, "step": 8}),
                             }}
    RETURN_TYPES = ("CONDITIONING",)
    FUNCTION = "append"

comfyanonymous's avatar
comfyanonymous committed
667
    CATEGORY = "conditioning/gligen"
668
669
670
671
672
673
674
675
676
677
678
679
680
681

    def append(self, conditioning_to, clip, gligen_textbox_model, text, width, height, x, y):
        c = []
        cond, cond_pooled = clip.encode_from_tokens(clip.tokenize(text), return_pooled=True)
        for t in conditioning_to:
            n = [t[0], t[1].copy()]
            position_params = [(cond_pooled, height // 8, width // 8, y // 8, x // 8)]
            prev = []
            if "gligen" in n[1]:
                prev = n[1]['gligen'][2]

            n[1]['gligen'] = ("position", gligen_textbox_model, prev + position_params)
            c.append(n)
        return (c, )
682

comfyanonymous's avatar
comfyanonymous committed
683
684
685
686
687
688
class EmptyLatentImage:
    def __init__(self, device="cpu"):
        self.device = device

    @classmethod
    def INPUT_TYPES(s):
689
690
        return {"required": { "width": ("INT", {"default": 512, "min": 64, "max": MAX_RESOLUTION, "step": 8}),
                              "height": ("INT", {"default": 512, "min": 64, "max": MAX_RESOLUTION, "step": 8}),
comfyanonymous's avatar
comfyanonymous committed
691
692
693
694
                              "batch_size": ("INT", {"default": 1, "min": 1, "max": 64})}}
    RETURN_TYPES = ("LATENT",)
    FUNCTION = "generate"

695
696
    CATEGORY = "latent"

comfyanonymous's avatar
comfyanonymous committed
697
698
    def generate(self, width, height, batch_size=1):
        latent = torch.zeros([batch_size, 4, height // 8, width // 8])
699
        return ({"samples":latent}, )
comfyanonymous's avatar
comfyanonymous committed
700

comfyanonymous's avatar
comfyanonymous committed
701

702
703
704
705
706
class LatentFromBatch:
    @classmethod
    def INPUT_TYPES(s):
        return {"required": { "samples": ("LATENT",),
                              "batch_index": ("INT", {"default": 0, "min": 0, "max": 63}),
707
                              "length": ("INT", {"default": 1, "min": 1, "max": 64}),
708
709
                              }}
    RETURN_TYPES = ("LATENT",)
710
    FUNCTION = "frombatch"
711

712
    CATEGORY = "latent/batch"
713

714
    def frombatch(self, samples, batch_index, length):
715
716
717
        s = samples.copy()
        s_in = samples["samples"]
        batch_index = min(s_in.shape[0] - 1, batch_index)
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
        length = min(s_in.shape[0] - batch_index, length)
        s["samples"] = s_in[batch_index:batch_index + length].clone()
        if "noise_mask" in samples:
            masks = samples["noise_mask"]
            if masks.shape[0] == 1:
                s["noise_mask"] = masks.clone()
            else:
                if masks.shape[0] < s_in.shape[0]:
                    masks = masks.repeat(math.ceil(s_in.shape[0] / masks.shape[0]), 1, 1, 1)[:s_in.shape[0]]
                s["noise_mask"] = masks[batch_index:batch_index + length].clone()
        if "batch_index" not in s:
            s["batch_index"] = [x for x in range(batch_index, batch_index+length)]
        else:
            s["batch_index"] = samples["batch_index"][batch_index:batch_index + length]
        return (s,)
    
class RepeatLatentBatch:
    @classmethod
    def INPUT_TYPES(s):
        return {"required": { "samples": ("LATENT",),
                              "amount": ("INT", {"default": 1, "min": 1, "max": 64}),
                              }}
    RETURN_TYPES = ("LATENT",)
    FUNCTION = "repeat"

    CATEGORY = "latent/batch"

    def repeat(self, samples, amount):
        s = samples.copy()
        s_in = samples["samples"]
        
        s["samples"] = s_in.repeat((amount, 1,1,1))
        if "noise_mask" in samples and samples["noise_mask"].shape[0] > 1:
            masks = samples["noise_mask"]
            if masks.shape[0] < s_in.shape[0]:
                masks = masks.repeat(math.ceil(s_in.shape[0] / masks.shape[0]), 1, 1, 1)[:s_in.shape[0]]
            s["noise_mask"] = samples["noise_mask"].repeat((amount, 1,1,1))
        if "batch_index" in s:
            offset = max(s["batch_index"]) - min(s["batch_index"]) + 1
            s["batch_index"] = s["batch_index"] + [x + (i * offset) for i in range(1, amount) for x in s["batch_index"]]
758
        return (s,)
comfyanonymous's avatar
comfyanonymous committed
759

comfyanonymous's avatar
comfyanonymous committed
760
class LatentUpscale:
comfyanonymous's avatar
comfyanonymous committed
761
    upscale_methods = ["nearest-exact", "bilinear", "area", "bicubic", "bislerp"]
762
    crop_methods = ["disabled", "center"]
comfyanonymous's avatar
comfyanonymous committed
763
764
765
766

    @classmethod
    def INPUT_TYPES(s):
        return {"required": { "samples": ("LATENT",), "upscale_method": (s.upscale_methods,),
767
768
                              "width": ("INT", {"default": 512, "min": 64, "max": MAX_RESOLUTION, "step": 8}),
                              "height": ("INT", {"default": 512, "min": 64, "max": MAX_RESOLUTION, "step": 8}),
769
                              "crop": (s.crop_methods,)}}
comfyanonymous's avatar
comfyanonymous committed
770
771
772
    RETURN_TYPES = ("LATENT",)
    FUNCTION = "upscale"

773
774
    CATEGORY = "latent"

775
    def upscale(self, samples, upscale_method, width, height, crop):
776
        s = samples.copy()
comfyanonymous's avatar
comfyanonymous committed
777
        s["samples"] = comfy.utils.common_upscale(samples["samples"], width // 8, height // 8, upscale_method, crop)
comfyanonymous's avatar
comfyanonymous committed
778
779
        return (s,)

comfyanonymous's avatar
comfyanonymous committed
780
class LatentUpscaleBy:
comfyanonymous's avatar
comfyanonymous committed
781
    upscale_methods = ["nearest-exact", "bilinear", "area", "bicubic", "bislerp"]
comfyanonymous's avatar
comfyanonymous committed
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798

    @classmethod
    def INPUT_TYPES(s):
        return {"required": { "samples": ("LATENT",), "upscale_method": (s.upscale_methods,),
                              "scale_by": ("FLOAT", {"default": 1.5, "min": 0.01, "max": 8.0, "step": 0.01}),}}
    RETURN_TYPES = ("LATENT",)
    FUNCTION = "upscale"

    CATEGORY = "latent"

    def upscale(self, samples, upscale_method, scale_by):
        s = samples.copy()
        width = round(samples["samples"].shape[3] * scale_by)
        height = round(samples["samples"].shape[2] * scale_by)
        s["samples"] = comfy.utils.common_upscale(samples["samples"], width, height, upscale_method, "disabled")
        return (s,)

comfyanonymous's avatar
comfyanonymous committed
799
800
801
802
803
804
805
806
807
class LatentRotate:
    @classmethod
    def INPUT_TYPES(s):
        return {"required": { "samples": ("LATENT",),
                              "rotation": (["none", "90 degrees", "180 degrees", "270 degrees"],),
                              }}
    RETURN_TYPES = ("LATENT",)
    FUNCTION = "rotate"

comfyanonymous's avatar
comfyanonymous committed
808
    CATEGORY = "latent/transform"
comfyanonymous's avatar
comfyanonymous committed
809
810

    def rotate(self, samples, rotation):
811
        s = samples.copy()
comfyanonymous's avatar
comfyanonymous committed
812
813
814
815
816
817
818
819
        rotate_by = 0
        if rotation.startswith("90"):
            rotate_by = 1
        elif rotation.startswith("180"):
            rotate_by = 2
        elif rotation.startswith("270"):
            rotate_by = 3

820
        s["samples"] = torch.rot90(samples["samples"], k=rotate_by, dims=[3, 2])
comfyanonymous's avatar
comfyanonymous committed
821
        return (s,)
comfyanonymous's avatar
comfyanonymous committed
822
823
824
825
826
827
828
829
830
831

class LatentFlip:
    @classmethod
    def INPUT_TYPES(s):
        return {"required": { "samples": ("LATENT",),
                              "flip_method": (["x-axis: vertically", "y-axis: horizontally"],),
                              }}
    RETURN_TYPES = ("LATENT",)
    FUNCTION = "flip"

comfyanonymous's avatar
comfyanonymous committed
832
    CATEGORY = "latent/transform"
comfyanonymous's avatar
comfyanonymous committed
833
834

    def flip(self, samples, flip_method):
835
        s = samples.copy()
comfyanonymous's avatar
comfyanonymous committed
836
        if flip_method.startswith("x"):
837
            s["samples"] = torch.flip(samples["samples"], dims=[2])
comfyanonymous's avatar
comfyanonymous committed
838
        elif flip_method.startswith("y"):
839
            s["samples"] = torch.flip(samples["samples"], dims=[3])
comfyanonymous's avatar
comfyanonymous committed
840
841

        return (s,)
comfyanonymous's avatar
comfyanonymous committed
842
843
844
845

class LatentComposite:
    @classmethod
    def INPUT_TYPES(s):
comfyanonymous's avatar
comfyanonymous committed
846
847
848
849
850
851
        return {"required": { "samples_to": ("LATENT",),
                              "samples_from": ("LATENT",),
                              "x": ("INT", {"default": 0, "min": 0, "max": MAX_RESOLUTION, "step": 8}),
                              "y": ("INT", {"default": 0, "min": 0, "max": MAX_RESOLUTION, "step": 8}),
                              "feather": ("INT", {"default": 0, "min": 0, "max": MAX_RESOLUTION, "step": 8}),
                              }}
comfyanonymous's avatar
comfyanonymous committed
852
853
854
855
856
    RETURN_TYPES = ("LATENT",)
    FUNCTION = "composite"

    CATEGORY = "latent"

comfyanonymous's avatar
comfyanonymous committed
857
858
859
    def composite(self, samples_to, samples_from, x, y, composite_method="normal", feather=0):
        x =  x // 8
        y = y // 8
860
        feather = feather // 8
comfyanonymous's avatar
comfyanonymous committed
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
        samples_out = samples_to.copy()
        s = samples_to["samples"].clone()
        samples_to = samples_to["samples"]
        samples_from = samples_from["samples"]
        if feather == 0:
            s[:,:,y:y+samples_from.shape[2],x:x+samples_from.shape[3]] = samples_from[:,:,:samples_to.shape[2] - y, :samples_to.shape[3] - x]
        else:
            samples_from = samples_from[:,:,:samples_to.shape[2] - y, :samples_to.shape[3] - x]
            mask = torch.ones_like(samples_from)
            for t in range(feather):
                if y != 0:
                    mask[:,:,t:1+t,:] *= ((1.0/feather) * (t + 1))

                if y + samples_from.shape[2] < samples_to.shape[2]:
                    mask[:,:,mask.shape[2] -1 -t: mask.shape[2]-t,:] *= ((1.0/feather) * (t + 1))
                if x != 0:
                    mask[:,:,:,t:1+t] *= ((1.0/feather) * (t + 1))
                if x + samples_from.shape[3] < samples_to.shape[3]:
                    mask[:,:,:,mask.shape[3]- 1 - t: mask.shape[3]- t] *= ((1.0/feather) * (t + 1))
            rev_mask = torch.ones_like(mask) - mask
            s[:,:,y:y+samples_from.shape[2],x:x+samples_from.shape[3]] = samples_from[:,:,:samples_to.shape[2] - y, :samples_to.shape[3] - x] * mask + s[:,:,y:y+samples_from.shape[2],x:x+samples_from.shape[3]] * rev_mask
        samples_out["samples"] = s
        return (samples_out,)
comfyanonymous's avatar
comfyanonymous committed
884

comfyanonymous's avatar
comfyanonymous committed
885
886
887
888
class LatentCrop:
    @classmethod
    def INPUT_TYPES(s):
        return {"required": { "samples": ("LATENT",),
889
890
                              "width": ("INT", {"default": 512, "min": 64, "max": MAX_RESOLUTION, "step": 8}),
                              "height": ("INT", {"default": 512, "min": 64, "max": MAX_RESOLUTION, "step": 8}),
891
892
                              "x": ("INT", {"default": 0, "min": 0, "max": MAX_RESOLUTION, "step": 8}),
                              "y": ("INT", {"default": 0, "min": 0, "max": MAX_RESOLUTION, "step": 8}),
comfyanonymous's avatar
comfyanonymous committed
893
894
895
896
                              }}
    RETURN_TYPES = ("LATENT",)
    FUNCTION = "crop"

comfyanonymous's avatar
comfyanonymous committed
897
    CATEGORY = "latent/transform"
comfyanonymous's avatar
comfyanonymous committed
898
899

    def crop(self, samples, width, height, x, y):
900
901
        s = samples.copy()
        samples = samples['samples']
comfyanonymous's avatar
comfyanonymous committed
902
903
904
905
906
907
908
909
910
911
912
913
914
        x =  x // 8
        y = y // 8

        #enfonce minimum size of 64
        if x > (samples.shape[3] - 8):
            x = samples.shape[3] - 8
        if y > (samples.shape[2] - 8):
            y = samples.shape[2] - 8

        new_height = height // 8
        new_width = width // 8
        to_x = new_width + x
        to_y = new_height + y
915
        s['samples'] = samples[:,:,y:to_y, x:to_x]
comfyanonymous's avatar
comfyanonymous committed
916
917
        return (s,)

918
919
920
921
922
923
924
925
926
class SetLatentNoiseMask:
    @classmethod
    def INPUT_TYPES(s):
        return {"required": { "samples": ("LATENT",),
                              "mask": ("MASK",),
                              }}
    RETURN_TYPES = ("LATENT",)
    FUNCTION = "set_mask"

927
    CATEGORY = "latent/inpaint"
928
929
930

    def set_mask(self, samples, mask):
        s = samples.copy()
931
        s["noise_mask"] = mask.reshape((-1, 1, mask.shape[-2], mask.shape[-1]))
932
933
        return (s,)

space-nuko's avatar
space-nuko committed
934

space-nuko's avatar
space-nuko committed
935
def common_ksampler(model, seed, steps, cfg, sampler_name, scheduler, positive, negative, latent, denoise=1.0, disable_noise=False, start_step=None, last_step=None, force_full_denoise=False):
936
    device = comfy.model_management.get_torch_device()
937
    latent_image = latent["samples"]
938

comfyanonymous's avatar
comfyanonymous committed
939
940
941
    if disable_noise:
        noise = torch.zeros(latent_image.size(), dtype=latent_image.dtype, layout=latent_image.layout, device="cpu")
    else:
942
943
        batch_inds = latent["batch_index"] if "batch_index" in latent else None
        noise = comfy.sample.prepare_noise(latent_image, seed, batch_inds)
comfyanonymous's avatar
comfyanonymous committed
944

945
    noise_mask = None
946
    if "noise_mask" in latent:
947
        noise_mask = latent["noise_mask"]
comfyanonymous's avatar
comfyanonymous committed
948

space-nuko's avatar
space-nuko committed
949
950
951
952
    preview_format = "JPEG"
    if preview_format not in ["JPEG", "PNG"]:
        preview_format = "JPEG"

953
    previewer = latent_preview.get_previewer(device)
space-nuko's avatar
space-nuko committed
954

955
    pbar = comfy.utils.ProgressBar(steps)
956
    def callback(step, x0, x, total_steps):
space-nuko's avatar
space-nuko committed
957
        preview_bytes = None
958
        if previewer:
959
            preview_bytes = previewer.decode_latent_to_preview_image(preview_format, x0)
space-nuko's avatar
space-nuko committed
960
        pbar.update_absolute(step + 1, total_steps, preview_bytes)
961

962
963
    samples = comfy.sample.sample(model, noise, steps, cfg, sampler_name, scheduler, positive, negative, latent_image,
                                  denoise=denoise, disable_noise=disable_noise, start_step=start_step, last_step=last_step,
964
                                  force_full_denoise=force_full_denoise, noise_mask=noise_mask, callback=callback)
965
966
967
    out = latent.copy()
    out["samples"] = samples
    return (out, )
comfyanonymous's avatar
comfyanonymous committed
968

comfyanonymous's avatar
comfyanonymous committed
969
970
971
class KSampler:
    @classmethod
    def INPUT_TYPES(s):
comfyanonymous's avatar
comfyanonymous committed
972
        return {"required":
comfyanonymous's avatar
comfyanonymous committed
973
974
975
976
977
978
979
980
981
982
                    {"model": ("MODEL",),
                    "seed": ("INT", {"default": 0, "min": 0, "max": 0xffffffffffffffff}),
                    "steps": ("INT", {"default": 20, "min": 1, "max": 10000}),
                    "cfg": ("FLOAT", {"default": 8.0, "min": 0.0, "max": 100.0}),
                    "sampler_name": (comfy.samplers.KSampler.SAMPLERS, ),
                    "scheduler": (comfy.samplers.KSampler.SCHEDULERS, ),
                    "positive": ("CONDITIONING", ),
                    "negative": ("CONDITIONING", ),
                    "latent_image": ("LATENT", ),
                    "denoise": ("FLOAT", {"default": 1.0, "min": 0.0, "max": 1.0, "step": 0.01}),
space-nuko's avatar
space-nuko committed
983
984
                     }
                }
comfyanonymous's avatar
comfyanonymous committed
985
986
987
988

    RETURN_TYPES = ("LATENT",)
    FUNCTION = "sample"

989
990
    CATEGORY = "sampling"

space-nuko's avatar
space-nuko committed
991
992
    def sample(self, model, seed, steps, cfg, sampler_name, scheduler, positive, negative, latent_image, denoise=1.0):
        return common_ksampler(model, seed, steps, cfg, sampler_name, scheduler, positive, negative, latent_image, denoise=denoise)
comfyanonymous's avatar
comfyanonymous committed
993

comfyanonymous's avatar
comfyanonymous committed
994
995
996
997
998
999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
class KSamplerAdvanced:
    @classmethod
    def INPUT_TYPES(s):
        return {"required":
                    {"model": ("MODEL",),
                    "add_noise": (["enable", "disable"], ),
                    "noise_seed": ("INT", {"default": 0, "min": 0, "max": 0xffffffffffffffff}),
                    "steps": ("INT", {"default": 20, "min": 1, "max": 10000}),
                    "cfg": ("FLOAT", {"default": 8.0, "min": 0.0, "max": 100.0}),
                    "sampler_name": (comfy.samplers.KSampler.SAMPLERS, ),
                    "scheduler": (comfy.samplers.KSampler.SCHEDULERS, ),
                    "positive": ("CONDITIONING", ),
                    "negative": ("CONDITIONING", ),
                    "latent_image": ("LATENT", ),
                    "start_at_step": ("INT", {"default": 0, "min": 0, "max": 10000}),
                    "end_at_step": ("INT", {"default": 10000, "min": 0, "max": 10000}),
                    "return_with_leftover_noise": (["disable", "enable"], ),
space-nuko's avatar
space-nuko committed
1011
1012
                     }
                }
comfyanonymous's avatar
comfyanonymous committed
1013
1014
1015
1016
1017

    RETURN_TYPES = ("LATENT",)
    FUNCTION = "sample"

    CATEGORY = "sampling"
comfyanonymous's avatar
comfyanonymous committed
1018

space-nuko's avatar
space-nuko committed
1019
    def sample(self, model, add_noise, noise_seed, steps, cfg, sampler_name, scheduler, positive, negative, latent_image, start_at_step, end_at_step, return_with_leftover_noise, denoise=1.0):
comfyanonymous's avatar
comfyanonymous committed
1020
1021
1022
1023
1024
1025
        force_full_denoise = True
        if return_with_leftover_noise == "enable":
            force_full_denoise = False
        disable_noise = False
        if add_noise == "disable":
            disable_noise = True
space-nuko's avatar
space-nuko committed
1026
        return common_ksampler(model, noise_seed, steps, cfg, sampler_name, scheduler, positive, negative, latent_image, denoise=denoise, disable_noise=disable_noise, start_step=start_at_step, last_step=end_at_step, force_full_denoise=force_full_denoise)
comfyanonymous's avatar
comfyanonymous committed
1027
1028
1029

class SaveImage:
    def __init__(self):
1030
        self.output_dir = folder_paths.get_output_directory()
m957ymj75urz's avatar
m957ymj75urz committed
1031
        self.type = "output"
comfyanonymous's avatar
comfyanonymous committed
1032
1033
1034
1035

    @classmethod
    def INPUT_TYPES(s):
        return {"required": 
1036
                    {"images": ("IMAGE", ),
pythongosssss's avatar
tidy  
pythongosssss committed
1037
                     "filename_prefix": ("STRING", {"default": "ComfyUI"})},
pythongosssss's avatar
pythongosssss committed
1038
                "hidden": {"prompt": "PROMPT", "extra_pnginfo": "EXTRA_PNGINFO"},
comfyanonymous's avatar
comfyanonymous committed
1039
1040
1041
1042
1043
1044
1045
                }

    RETURN_TYPES = ()
    FUNCTION = "save_images"

    OUTPUT_NODE = True

1046
1047
    CATEGORY = "image"

pythongosssss's avatar
tidy  
pythongosssss committed
1048
    def save_images(self, images, filename_prefix="ComfyUI", prompt=None, extra_pnginfo=None):
1049
        full_output_folder, filename, counter, subfolder, filename_prefix = folder_paths.get_save_image_path(filename_prefix, self.output_dir, images[0].shape[1], images[0].shape[0])
m957ymj75urz's avatar
m957ymj75urz committed
1050
        results = list()
comfyanonymous's avatar
comfyanonymous committed
1051
1052
        for image in images:
            i = 255. * image.cpu().numpy()
1053
            img = Image.fromarray(np.clip(i, 0, 255).astype(np.uint8))
comfyanonymous's avatar
comfyanonymous committed
1054
1055
1056
1057
1058
1059
            metadata = PngInfo()
            if prompt is not None:
                metadata.add_text("prompt", json.dumps(prompt))
            if extra_pnginfo is not None:
                for x in extra_pnginfo:
                    metadata.add_text(x, json.dumps(extra_pnginfo[x]))
1060

1061
            file = f"{filename}_{counter:05}_.png"
1062
            img.save(os.path.join(full_output_folder, file), pnginfo=metadata, compress_level=4)
m957ymj75urz's avatar
m957ymj75urz committed
1063
1064
1065
1066
            results.append({
                "filename": file,
                "subfolder": subfolder,
                "type": self.type
Gavroche CryptoRUSH's avatar
Gavroche CryptoRUSH committed
1067
            })
1068
            counter += 1
comfyanonymous's avatar
comfyanonymous committed
1069

m957ymj75urz's avatar
m957ymj75urz committed
1070
        return { "ui": { "images": results } }
comfyanonymous's avatar
comfyanonymous committed
1071

pythongosssss's avatar
pythongosssss committed
1072
1073
class PreviewImage(SaveImage):
    def __init__(self):
1074
        self.output_dir = folder_paths.get_temp_directory()
m957ymj75urz's avatar
m957ymj75urz committed
1075
        self.type = "temp"
pythongosssss's avatar
pythongosssss committed
1076
1077
1078

    @classmethod
    def INPUT_TYPES(s):
1079
        return {"required":
pythongosssss's avatar
pythongosssss committed
1080
1081
1082
                    {"images": ("IMAGE", ), },
                "hidden": {"prompt": "PROMPT", "extra_pnginfo": "EXTRA_PNGINFO"},
                }
1083

1084
1085
1086
class LoadImage:
    @classmethod
    def INPUT_TYPES(s):
1087
        input_dir = folder_paths.get_input_directory()
comfyanonymous's avatar
comfyanonymous committed
1088
        files = [f for f in os.listdir(input_dir) if os.path.isfile(os.path.join(input_dir, f))]
1089
        return {"required":
comfyanonymous's avatar
comfyanonymous committed
1090
                    {"image": (sorted(files), )},
1091
                }
1092
1093

    CATEGORY = "image"
1094

1095
    RETURN_TYPES = ("IMAGE", "MASK")
1096
1097
    FUNCTION = "load_image"
    def load_image(self, image):
1098
        image_path = folder_paths.get_annotated_filepath(image)
1099
        i = Image.open(image_path)
1100
        i = ImageOps.exif_transpose(i)
1101
        image = i.convert("RGB")
1102
        image = np.array(image).astype(np.float32) / 255.0
1103
        image = torch.from_numpy(image)[None,]
1104
1105
1106
1107
1108
1109
        if 'A' in i.getbands():
            mask = np.array(i.getchannel('A')).astype(np.float32) / 255.0
            mask = 1. - torch.from_numpy(mask)
        else:
            mask = torch.zeros((64,64), dtype=torch.float32, device="cpu")
        return (image, mask)
1110

1111
1112
    @classmethod
    def IS_CHANGED(s, image):
1113
        image_path = folder_paths.get_annotated_filepath(image)
1114
1115
1116
1117
        m = hashlib.sha256()
        with open(image_path, 'rb') as f:
            m.update(f.read())
        return m.digest().hex()
pythongosssss's avatar
pythongosssss committed
1118

1119
1120
1121
1122
1123
1124
1125
    @classmethod
    def VALIDATE_INPUTS(s, image):
        if not folder_paths.exists_annotated_filepath(image):
            return "Invalid image file: {}".format(image)

        return True

1126
class LoadImageMask:
1127
    _color_channels = ["alpha", "red", "green", "blue"]
1128
1129
    @classmethod
    def INPUT_TYPES(s):
1130
        input_dir = folder_paths.get_input_directory()
comfyanonymous's avatar
comfyanonymous committed
1131
        files = [f for f in os.listdir(input_dir) if os.path.isfile(os.path.join(input_dir, f))]
1132
        return {"required":
comfyanonymous's avatar
comfyanonymous committed
1133
                    {"image": (sorted(files), ),
1134
                     "channel": (s._color_channels, ), }
1135
1136
                }

1137
    CATEGORY = "mask"
1138
1139
1140
1141

    RETURN_TYPES = ("MASK",)
    FUNCTION = "load_image"
    def load_image(self, image, channel):
1142
        image_path = folder_paths.get_annotated_filepath(image)
1143
        i = Image.open(image_path)
1144
        i = ImageOps.exif_transpose(i)
1145
1146
        if i.getbands() != ("R", "G", "B", "A"):
            i = i.convert("RGBA")
1147
1148
1149
1150
1151
1152
1153
1154
1155
1156
1157
1158
1159
        mask = None
        c = channel[0].upper()
        if c in i.getbands():
            mask = np.array(i.getchannel(c)).astype(np.float32) / 255.0
            mask = torch.from_numpy(mask)
            if c == 'A':
                mask = 1. - mask
        else:
            mask = torch.zeros((64,64), dtype=torch.float32, device="cpu")
        return (mask,)

    @classmethod
    def IS_CHANGED(s, image, channel):
1160
        image_path = folder_paths.get_annotated_filepath(image)
1161
1162
1163
1164
        m = hashlib.sha256()
        with open(image_path, 'rb') as f:
            m.update(f.read())
        return m.digest().hex()
pythongosssss's avatar
pythongosssss committed
1165

1166
1167
1168
1169
1170
1171
1172
1173
1174
1175
    @classmethod
    def VALIDATE_INPUTS(s, image, channel):
        if not folder_paths.exists_annotated_filepath(image):
            return "Invalid image file: {}".format(image)

        if channel not in s._color_channels:
            return "Invalid color channel: {}".format(channel)

        return True

comfyanonymous's avatar
comfyanonymous committed
1176
class ImageScale:
comfyanonymous's avatar
comfyanonymous committed
1177
    upscale_methods = ["nearest-exact", "bilinear", "area", "bicubic"]
comfyanonymous's avatar
comfyanonymous committed
1178
1179
1180
1181
1182
    crop_methods = ["disabled", "center"]

    @classmethod
    def INPUT_TYPES(s):
        return {"required": { "image": ("IMAGE",), "upscale_method": (s.upscale_methods,),
1183
1184
                              "width": ("INT", {"default": 512, "min": 1, "max": MAX_RESOLUTION, "step": 1}),
                              "height": ("INT", {"default": 512, "min": 1, "max": MAX_RESOLUTION, "step": 1}),
comfyanonymous's avatar
comfyanonymous committed
1185
1186
1187
1188
                              "crop": (s.crop_methods,)}}
    RETURN_TYPES = ("IMAGE",)
    FUNCTION = "upscale"

1189
    CATEGORY = "image/upscaling"
1190

comfyanonymous's avatar
comfyanonymous committed
1191
1192
    def upscale(self, image, upscale_method, width, height, crop):
        samples = image.movedim(-1,1)
comfyanonymous's avatar
comfyanonymous committed
1193
        s = comfy.utils.common_upscale(samples, width, height, upscale_method, crop)
comfyanonymous's avatar
comfyanonymous committed
1194
1195
        s = s.movedim(1,-1)
        return (s,)
comfyanonymous's avatar
comfyanonymous committed
1196

comfyanonymous's avatar
comfyanonymous committed
1197
class ImageScaleBy:
comfyanonymous's avatar
comfyanonymous committed
1198
    upscale_methods = ["nearest-exact", "bilinear", "area", "bicubic"]
comfyanonymous's avatar
comfyanonymous committed
1199
1200
1201
1202
1203
1204
1205
1206
1207
1208
1209
1210
1211
1212
1213
1214
1215
1216

    @classmethod
    def INPUT_TYPES(s):
        return {"required": { "image": ("IMAGE",), "upscale_method": (s.upscale_methods,),
                              "scale_by": ("FLOAT", {"default": 1.0, "min": 0.01, "max": 8.0, "step": 0.01}),}}
    RETURN_TYPES = ("IMAGE",)
    FUNCTION = "upscale"

    CATEGORY = "image/upscaling"

    def upscale(self, image, upscale_method, scale_by):
        samples = image.movedim(-1,1)
        width = round(samples.shape[3] * scale_by)
        height = round(samples.shape[2] * scale_by)
        s = comfy.utils.common_upscale(samples, width, height, upscale_method, "disabled")
        s = s.movedim(1,-1)
        return (s,)

1217
1218
1219
1220
1221
1222
1223
1224
1225
1226
1227
1228
1229
1230
1231
1232
class ImageInvert:

    @classmethod
    def INPUT_TYPES(s):
        return {"required": { "image": ("IMAGE",)}}

    RETURN_TYPES = ("IMAGE",)
    FUNCTION = "invert"

    CATEGORY = "image"

    def invert(self, image):
        s = 1.0 - image
        return (s,)


Guo Y.K's avatar
Guo Y.K committed
1233
1234
1235
1236
1237
1238
1239
class ImagePadForOutpaint:

    @classmethod
    def INPUT_TYPES(s):
        return {
            "required": {
                "image": ("IMAGE",),
1240
1241
1242
1243
                "left": ("INT", {"default": 0, "min": 0, "max": MAX_RESOLUTION, "step": 8}),
                "top": ("INT", {"default": 0, "min": 0, "max": MAX_RESOLUTION, "step": 8}),
                "right": ("INT", {"default": 0, "min": 0, "max": MAX_RESOLUTION, "step": 8}),
                "bottom": ("INT", {"default": 0, "min": 0, "max": MAX_RESOLUTION, "step": 8}),
1244
                "feathering": ("INT", {"default": 40, "min": 0, "max": MAX_RESOLUTION, "step": 1}),
Guo Y.K's avatar
Guo Y.K committed
1245
1246
1247
1248
1249
1250
1251
1252
            }
        }

    RETURN_TYPES = ("IMAGE", "MASK")
    FUNCTION = "expand_image"

    CATEGORY = "image"

1253
    def expand_image(self, image, left, top, right, bottom, feathering):
Guo Y.K's avatar
Guo Y.K committed
1254
1255
1256
1257
1258
1259
1260
1261
1262
1263
1264
1265
        d1, d2, d3, d4 = image.size()

        new_image = torch.zeros(
            (d1, d2 + top + bottom, d3 + left + right, d4),
            dtype=torch.float32,
        )
        new_image[:, top:top + d2, left:left + d3, :] = image

        mask = torch.ones(
            (d2 + top + bottom, d3 + left + right),
            dtype=torch.float32,
        )
1266

1267
1268
1269
1270
1271
        t = torch.zeros(
            (d2, d3),
            dtype=torch.float32
        )

1272
        if feathering > 0 and feathering * 2 < d2 and feathering * 2 < d3:
1273
1274
1275
1276
1277
1278
1279
1280
1281
1282
1283
1284
1285
1286
1287
1288
1289
1290
1291

            for i in range(d2):
                for j in range(d3):
                    dt = i if top != 0 else d2
                    db = d2 - i if bottom != 0 else d2

                    dl = j if left != 0 else d3
                    dr = d3 - j if right != 0 else d3

                    d = min(dt, db, dl, dr)

                    if d >= feathering:
                        continue

                    v = (feathering - d) / feathering

                    t[i, j] = v * v

        mask[top:top + d2, left:left + d3] = t
1292

Guo Y.K's avatar
Guo Y.K committed
1293
1294
1295
        return (new_image, mask)


comfyanonymous's avatar
comfyanonymous committed
1296
1297
NODE_CLASS_MAPPINGS = {
    "KSampler": KSampler,
1298
    "CheckpointLoaderSimple": CheckpointLoaderSimple,
comfyanonymous's avatar
comfyanonymous committed
1299
    "CLIPTextEncode": CLIPTextEncode,
comfyanonymous's avatar
comfyanonymous committed
1300
    "CLIPSetLastLayer": CLIPSetLastLayer,
comfyanonymous's avatar
comfyanonymous committed
1301
1302
    "VAEDecode": VAEDecode,
    "VAEEncode": VAEEncode,
1303
    "VAEEncodeForInpaint": VAEEncodeForInpaint,
comfyanonymous's avatar
comfyanonymous committed
1304
1305
1306
    "VAELoader": VAELoader,
    "EmptyLatentImage": EmptyLatentImage,
    "LatentUpscale": LatentUpscale,
comfyanonymous's avatar
comfyanonymous committed
1307
    "LatentUpscaleBy": LatentUpscaleBy,
1308
    "LatentFromBatch": LatentFromBatch,
1309
    "RepeatLatentBatch": RepeatLatentBatch,
comfyanonymous's avatar
comfyanonymous committed
1310
    "SaveImage": SaveImage,
pythongosssss's avatar
pythongosssss committed
1311
    "PreviewImage": PreviewImage,
comfyanonymous's avatar
comfyanonymous committed
1312
    "LoadImage": LoadImage,
1313
    "LoadImageMask": LoadImageMask,
comfyanonymous's avatar
comfyanonymous committed
1314
    "ImageScale": ImageScale,
comfyanonymous's avatar
comfyanonymous committed
1315
    "ImageScaleBy": ImageScaleBy,
1316
    "ImageInvert": ImageInvert,
Guo Y.K's avatar
Guo Y.K committed
1317
    "ImagePadForOutpaint": ImagePadForOutpaint,
FizzleDorf's avatar
FizzleDorf committed
1318
    "ConditioningAverage ": ConditioningAverage ,
comfyanonymous's avatar
comfyanonymous committed
1319
1320
    "ConditioningCombine": ConditioningCombine,
    "ConditioningSetArea": ConditioningSetArea,
Jacob Segal's avatar
Jacob Segal committed
1321
    "ConditioningSetMask": ConditioningSetMask,
comfyanonymous's avatar
comfyanonymous committed
1322
    "KSamplerAdvanced": KSamplerAdvanced,
1323
    "SetLatentNoiseMask": SetLatentNoiseMask,
comfyanonymous's avatar
comfyanonymous committed
1324
    "LatentComposite": LatentComposite,
comfyanonymous's avatar
comfyanonymous committed
1325
    "LatentRotate": LatentRotate,
comfyanonymous's avatar
comfyanonymous committed
1326
    "LatentFlip": LatentFlip,
comfyanonymous's avatar
comfyanonymous committed
1327
    "LatentCrop": LatentCrop,
1328
    "LoraLoader": LoraLoader,
1329
    "CLIPLoader": CLIPLoader,
1330
    "CLIPVisionEncode": CLIPVisionEncode,
1331
    "StyleModelApply": StyleModelApply,
1332
    "unCLIPConditioning": unCLIPConditioning,
comfyanonymous's avatar
comfyanonymous committed
1333
1334
    "ControlNetApply": ControlNetApply,
    "ControlNetLoader": ControlNetLoader,
1335
    "DiffControlNetLoader": DiffControlNetLoader,
comfyanonymous's avatar
comfyanonymous committed
1336
1337
    "StyleModelLoader": StyleModelLoader,
    "CLIPVisionLoader": CLIPVisionLoader,
1338
    "VAEDecodeTiled": VAEDecodeTiled,
comfyanonymous's avatar
comfyanonymous committed
1339
    "VAEEncodeTiled": VAEEncodeTiled,
1340
    "TomePatchModel": TomePatchModel,
1341
    "unCLIPCheckpointLoader": unCLIPCheckpointLoader,
1342
1343
1344
    "GLIGENLoader": GLIGENLoader,
    "GLIGENTextBoxApply": GLIGENTextBoxApply,

1345
    "CheckpointLoader": CheckpointLoader,
sALTaccount's avatar
sALTaccount committed
1346
    "DiffusersLoader": DiffusersLoader,
Dr.Lt.Data's avatar
Dr.Lt.Data committed
1347
1348

    "LoadLatent": LoadLatent,
1349
    "SaveLatent": SaveLatent,
comfyanonymous's avatar
comfyanonymous committed
1350
1351
}

City's avatar
City committed
1352
1353
1354
1355
1356
NODE_DISPLAY_NAME_MAPPINGS = {
    # Sampling
    "KSampler": "KSampler",
    "KSamplerAdvanced": "KSampler (Advanced)",
    # Loaders
comfyanonymous's avatar
Rename.  
comfyanonymous committed
1357
1358
    "CheckpointLoader": "Load Checkpoint (With Config)",
    "CheckpointLoaderSimple": "Load Checkpoint",
City's avatar
City committed
1359
1360
1361
1362
1363
1364
1365
1366
1367
1368
1369
1370
1371
1372
    "VAELoader": "Load VAE",
    "LoraLoader": "Load LoRA",
    "CLIPLoader": "Load CLIP",
    "ControlNetLoader": "Load ControlNet Model",
    "DiffControlNetLoader": "Load ControlNet Model (diff)",
    "StyleModelLoader": "Load Style Model",
    "CLIPVisionLoader": "Load CLIP Vision",
    "UpscaleModelLoader": "Load Upscale Model",
    # Conditioning
    "CLIPVisionEncode": "CLIP Vision Encode",
    "StyleModelApply": "Apply Style Model",
    "CLIPTextEncode": "CLIP Text Encode (Prompt)",
    "CLIPSetLastLayer": "CLIP Set Last Layer",
    "ConditioningCombine": "Conditioning (Combine)",
FizzleDorf's avatar
FizzleDorf committed
1373
    "ConditioningAverage ": "Conditioning (Average)",
City's avatar
City committed
1374
    "ConditioningSetArea": "Conditioning (Set Area)",
Jacob Segal's avatar
Jacob Segal committed
1375
    "ConditioningSetMask": "Conditioning (Set Mask)",
City's avatar
City committed
1376
1377
1378
1379
1380
1381
1382
1383
1384
1385
1386
    "ControlNetApply": "Apply ControlNet",
    # Latent
    "VAEEncodeForInpaint": "VAE Encode (for Inpainting)",
    "SetLatentNoiseMask": "Set Latent Noise Mask",
    "VAEDecode": "VAE Decode",
    "VAEEncode": "VAE Encode",
    "LatentRotate": "Rotate Latent",
    "LatentFlip": "Flip Latent",
    "LatentCrop": "Crop Latent",
    "EmptyLatentImage": "Empty Latent Image",
    "LatentUpscale": "Upscale Latent",
comfyanonymous's avatar
comfyanonymous committed
1387
    "LatentUpscaleBy": "Upscale Latent By",
City's avatar
City committed
1388
    "LatentComposite": "Latent Composite",
1389
1390
    "LatentFromBatch" : "Latent From Batch",
    "RepeatLatentBatch": "Repeat Latent Batch",
City's avatar
City committed
1391
1392
1393
1394
1395
1396
    # Image
    "SaveImage": "Save Image",
    "PreviewImage": "Preview Image",
    "LoadImage": "Load Image",
    "LoadImageMask": "Load Image (as Mask)",
    "ImageScale": "Upscale Image",
comfyanonymous's avatar
comfyanonymous committed
1397
    "ImageScaleBy": "Upscale Image By",
City's avatar
City committed
1398
1399
1400
1401
1402
1403
1404
1405
    "ImageUpscaleWithModel": "Upscale Image (using Model)",
    "ImageInvert": "Invert Image",
    "ImagePadForOutpaint": "Pad Image for Outpainting",
    # _for_testing
    "VAEDecodeTiled": "VAE Decode (Tiled)",
    "VAEEncodeTiled": "VAE Encode (Tiled)",
}

1406
1407
1408
1409
1410
1411
1412
1413
1414
1415
1416
1417
1418
1419
1420
def load_custom_node(module_path):
    module_name = os.path.basename(module_path)
    if os.path.isfile(module_path):
        sp = os.path.splitext(module_path)
        module_name = sp[0]
    try:
        if os.path.isfile(module_path):
            module_spec = importlib.util.spec_from_file_location(module_name, module_path)
        else:
            module_spec = importlib.util.spec_from_file_location(module_name, os.path.join(module_path, "__init__.py"))
        module = importlib.util.module_from_spec(module_spec)
        sys.modules[module_name] = module
        module_spec.loader.exec_module(module)
        if hasattr(module, "NODE_CLASS_MAPPINGS") and getattr(module, "NODE_CLASS_MAPPINGS") is not None:
            NODE_CLASS_MAPPINGS.update(module.NODE_CLASS_MAPPINGS)
1421
1422
            if hasattr(module, "NODE_DISPLAY_NAME_MAPPINGS") and getattr(module, "NODE_DISPLAY_NAME_MAPPINGS") is not None:
                NODE_DISPLAY_NAME_MAPPINGS.update(module.NODE_DISPLAY_NAME_MAPPINGS)
1423
            return True
1424
1425
        else:
            print(f"Skip {module_path} module for custom nodes due to the lack of NODE_CLASS_MAPPINGS.")
1426
            return False
1427
1428
1429
    except Exception as e:
        print(traceback.format_exc())
        print(f"Cannot import {module_path} module for custom nodes:", e)
1430
        return False
1431

Hacker 17082006's avatar
Hacker 17082006 committed
1432
def load_custom_nodes():
1433
    node_paths = folder_paths.get_folder_paths("custom_nodes")
1434
    node_import_times = []
1435
1436
1437
1438
1439
1440
1441
1442
    for custom_node_path in node_paths:
        possible_modules = os.listdir(custom_node_path)
        if "__pycache__" in possible_modules:
            possible_modules.remove("__pycache__")

        for possible_module in possible_modules:
            module_path = os.path.join(custom_node_path, possible_module)
            if os.path.isfile(module_path) and os.path.splitext(module_path)[1] != ".py": continue
1443
            if module_path.endswith(".disabled"): continue
1444
            time_before = time.perf_counter()
1445
            success = load_custom_node(module_path)
1446
            node_import_times.append((time.perf_counter() - time_before, module_path, success))
1447

1448
    if len(node_import_times) > 0:
comfyanonymous's avatar
comfyanonymous committed
1449
        print("\nImport times for custom nodes:")
1450
        for n in sorted(node_import_times):
1451
1452
1453
1454
1455
            if n[2]:
                import_message = ""
            else:
                import_message = " (IMPORT FAILED)"
            print("{:6.1f} seconds{}:".format(n[0], import_message), n[1])
1456
        print()
1457

1458
def init_custom_nodes():
1459
    load_custom_node(os.path.join(os.path.join(os.path.dirname(os.path.realpath(__file__)), "comfy_extras"), "nodes_hypernetwork.py"))
1460
1461
    load_custom_node(os.path.join(os.path.join(os.path.dirname(os.path.realpath(__file__)), "comfy_extras"), "nodes_upscale_model.py"))
    load_custom_node(os.path.join(os.path.join(os.path.dirname(os.path.realpath(__file__)), "comfy_extras"), "nodes_post_processing.py"))
1462
    load_custom_node(os.path.join(os.path.join(os.path.dirname(os.path.realpath(__file__)), "comfy_extras"), "nodes_mask.py"))
1463
    load_custom_node(os.path.join(os.path.join(os.path.dirname(os.path.realpath(__file__)), "comfy_extras"), "nodes_rebatch.py"))
1464
    load_custom_node(os.path.join(os.path.join(os.path.dirname(os.path.realpath(__file__)), "comfy_extras"), "nodes_model_merging.py"))
1465
    load_custom_nodes()