"src/vscode:/vscode.git/clone" did not exist on "d5cf2ba7ad6528a5c92e3387c1254faa3761a488"
nodes.py 55.5 KB
Newer Older
comfyanonymous's avatar
comfyanonymous committed
1
2
3
4
5
import torch

import os
import sys
import json
6
import hashlib
7
import traceback
8
import math
9
import time
space-nuko's avatar
space-nuko committed
10
11
import struct
from io import BytesIO
comfyanonymous's avatar
comfyanonymous committed
12

13
from PIL import Image, ImageOps
comfyanonymous's avatar
comfyanonymous committed
14
15
from PIL.PngImagePlugin import PngInfo
import numpy as np
16
import safetensors.torch
comfyanonymous's avatar
comfyanonymous committed
17

sALTaccount's avatar
sALTaccount committed
18

comfyanonymous's avatar
comfyanonymous committed
19
sys.path.insert(0, os.path.join(os.path.dirname(os.path.realpath(__file__)), "comfy"))
comfyanonymous's avatar
comfyanonymous committed
20
21


22
import comfy.diffusers_load
comfyanonymous's avatar
comfyanonymous committed
23
import comfy.samplers
24
import comfy.sample
comfyanonymous's avatar
comfyanonymous committed
25
import comfy.sd
comfyanonymous's avatar
comfyanonymous committed
26
import comfy.utils
space-nuko's avatar
space-nuko committed
27
from comfy.cli_args import args, LatentPreviewType
space-nuko's avatar
space-nuko committed
28
from comfy.taesd.taesd import TAESD
comfyanonymous's avatar
comfyanonymous committed
29

30
import comfy.clip_vision
31

32
import comfy.model_management
33
import importlib
comfyanonymous's avatar
comfyanonymous committed
34

35
import folder_paths
36

Dr.Lt.Data's avatar
Dr.Lt.Data committed
37

38
39
40
41
42
class LatentPreviewer:
    def decode_latent_to_preview(self, device, x0):
        pass


space-nuko's avatar
space-nuko committed
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
class Latent2RGBPreviewer(LatentPreviewer):
    def __init__(self):
        self.latent_rgb_factors = torch.tensor([
                    #   R        G        B
                    [0.298, 0.207, 0.208],  # L1
                    [0.187, 0.286, 0.173],  # L2
                    [-0.158, 0.189, 0.264],  # L3
                    [-0.184, -0.271, -0.473],  # L4
                ], device="cpu")

    def decode_latent_to_preview(self, device, x0):
        latent_image = x0[0].permute(1, 2, 0).cpu() @ self.latent_rgb_factors

        latents_ubyte = (((latent_image + 1) / 2)
                            .clamp(0, 1)  # change scale from -1..1 to 0..1
                            .mul(0xFF)  # to 0..255
                            .byte()).cpu()

        return Image.fromarray(latents_ubyte.numpy())


64
def before_node_execution():
65
    comfy.model_management.throw_exception_if_processing_interrupted()
66

67
def interrupt_processing(value=True):
68
    comfy.model_management.interrupt_current_processing(value)
69

70
MAX_RESOLUTION=8192
space-nuko's avatar
space-nuko committed
71
MAX_PREVIEW_RESOLUTION = 512
72

comfyanonymous's avatar
comfyanonymous committed
73
74
75
class CLIPTextEncode:
    @classmethod
    def INPUT_TYPES(s):
76
        return {"required": {"text": ("STRING", {"multiline": True}), "clip": ("CLIP", )}}
comfyanonymous's avatar
comfyanonymous committed
77
78
79
    RETURN_TYPES = ("CONDITIONING",)
    FUNCTION = "encode"

80
81
    CATEGORY = "conditioning"

comfyanonymous's avatar
comfyanonymous committed
82
    def encode(self, clip, text):
comfyanonymous's avatar
comfyanonymous committed
83
84
85
86
87
88
89
90
91
        return ([[clip.encode(text), {}]], )

class ConditioningCombine:
    @classmethod
    def INPUT_TYPES(s):
        return {"required": {"conditioning_1": ("CONDITIONING", ), "conditioning_2": ("CONDITIONING", )}}
    RETURN_TYPES = ("CONDITIONING",)
    FUNCTION = "combine"

92
93
    CATEGORY = "conditioning"

comfyanonymous's avatar
comfyanonymous committed
94
95
96
    def combine(self, conditioning_1, conditioning_2):
        return (conditioning_1 + conditioning_2, )

FizzleDorf's avatar
FizzleDorf committed
97
98
99
class ConditioningAverage :
    @classmethod
    def INPUT_TYPES(s):
comfyanonymous's avatar
comfyanonymous committed
100
101
        return {"required": {"conditioning_to": ("CONDITIONING", ), "conditioning_from": ("CONDITIONING", ),
                              "conditioning_to_strength": ("FLOAT", {"default": 1.0, "min": 0.0, "max": 1.0, "step": 0.01})
FizzleDorf's avatar
FizzleDorf committed
102
103
104
105
106
107
                             }}
    RETURN_TYPES = ("CONDITIONING",)
    FUNCTION = "addWeighted"

    CATEGORY = "conditioning"

comfyanonymous's avatar
comfyanonymous committed
108
    def addWeighted(self, conditioning_to, conditioning_from, conditioning_to_strength):
FizzleDorf's avatar
FizzleDorf committed
109
        out = []
comfyanonymous's avatar
comfyanonymous committed
110
111
112
113
114
115
116
117
118
119
120
121
122
123

        if len(conditioning_from) > 1:
            print("Warning: ConditioningAverage conditioning_from contains more than 1 cond, only the first one will actually be applied to conditioning_to.")

        cond_from = conditioning_from[0][0]

        for i in range(len(conditioning_to)):
            t1 = conditioning_to[i][0]
            t0 = cond_from[:,:t1.shape[1]]
            if t0.shape[1] < t1.shape[1]:
                t0 = torch.cat([t0] + [torch.zeros((1, (t1.shape[1] - t0.shape[1]), t1.shape[2]))], dim=1)

            tw = torch.mul(t1, conditioning_to_strength) + torch.mul(t0, (1.0 - conditioning_to_strength))
            n = [tw, conditioning_to[i][1].copy()]
FizzleDorf's avatar
FizzleDorf committed
124
125
126
            out.append(n)
        return (out, )

comfyanonymous's avatar
comfyanonymous committed
127
128
129
130
class ConditioningSetArea:
    @classmethod
    def INPUT_TYPES(s):
        return {"required": {"conditioning": ("CONDITIONING", ),
131
132
133
134
                              "width": ("INT", {"default": 64, "min": 64, "max": MAX_RESOLUTION, "step": 8}),
                              "height": ("INT", {"default": 64, "min": 64, "max": MAX_RESOLUTION, "step": 8}),
                              "x": ("INT", {"default": 0, "min": 0, "max": MAX_RESOLUTION, "step": 8}),
                              "y": ("INT", {"default": 0, "min": 0, "max": MAX_RESOLUTION, "step": 8}),
comfyanonymous's avatar
comfyanonymous committed
135
136
137
138
139
                              "strength": ("FLOAT", {"default": 1.0, "min": 0.0, "max": 10.0, "step": 0.01}),
                             }}
    RETURN_TYPES = ("CONDITIONING",)
    FUNCTION = "append"

140
141
    CATEGORY = "conditioning"

142
    def append(self, conditioning, width, height, x, y, strength):
comfyanonymous's avatar
comfyanonymous committed
143
144
145
146
147
        c = []
        for t in conditioning:
            n = [t[0], t[1].copy()]
            n[1]['area'] = (height // 8, width // 8, y // 8, x // 8)
            n[1]['strength'] = strength
148
            n[1]['set_area_to_bounds'] = False
comfyanonymous's avatar
comfyanonymous committed
149
            c.append(n)
comfyanonymous's avatar
comfyanonymous committed
150
        return (c, )
comfyanonymous's avatar
comfyanonymous committed
151

Jacob Segal's avatar
Jacob Segal committed
152
153
154
155
156
157
class ConditioningSetMask:
    @classmethod
    def INPUT_TYPES(s):
        return {"required": {"conditioning": ("CONDITIONING", ),
                              "mask": ("MASK", ),
                              "strength": ("FLOAT", {"default": 1.0, "min": 0.0, "max": 10.0, "step": 0.01}),
158
                              "set_cond_area": (["default", "mask bounds"],),
Jacob Segal's avatar
Jacob Segal committed
159
160
161
162
163
164
                             }}
    RETURN_TYPES = ("CONDITIONING",)
    FUNCTION = "append"

    CATEGORY = "conditioning"

165
    def append(self, conditioning, mask, set_cond_area, strength):
Jacob Segal's avatar
Jacob Segal committed
166
        c = []
167
168
169
        set_area_to_bounds = False
        if set_cond_area != "default":
            set_area_to_bounds = True
Jacob Segal's avatar
Jacob Segal committed
170
171
172
173
174
175
        if len(mask.shape) < 3:
            mask = mask.unsqueeze(0)
        for t in conditioning:
            n = [t[0], t[1].copy()]
            _, h, w = mask.shape
            n[1]['mask'] = mask
Jacob Segal's avatar
Jacob Segal committed
176
            n[1]['set_area_to_bounds'] = set_area_to_bounds
177
            n[1]['mask_strength'] = strength
Jacob Segal's avatar
Jacob Segal committed
178
179
180
            c.append(n)
        return (c, )

comfyanonymous's avatar
comfyanonymous committed
181
182
183
184
185
186
187
class VAEDecode:
    @classmethod
    def INPUT_TYPES(s):
        return {"required": { "samples": ("LATENT", ), "vae": ("VAE", )}}
    RETURN_TYPES = ("IMAGE",)
    FUNCTION = "decode"

188
189
    CATEGORY = "latent"

comfyanonymous's avatar
comfyanonymous committed
190
    def decode(self, vae, samples):
191
        return (vae.decode(samples["samples"]), )
comfyanonymous's avatar
comfyanonymous committed
192

193
194
195
196
197
198
199
200
201
202
203
204
class VAEDecodeTiled:
    @classmethod
    def INPUT_TYPES(s):
        return {"required": { "samples": ("LATENT", ), "vae": ("VAE", )}}
    RETURN_TYPES = ("IMAGE",)
    FUNCTION = "decode"

    CATEGORY = "_for_testing"

    def decode(self, vae, samples):
        return (vae.decode_tiled(samples["samples"]), )

comfyanonymous's avatar
comfyanonymous committed
205
206
207
208
209
210
211
class VAEEncode:
    @classmethod
    def INPUT_TYPES(s):
        return {"required": { "pixels": ("IMAGE", ), "vae": ("VAE", )}}
    RETURN_TYPES = ("LATENT",)
    FUNCTION = "encode"

212
213
    CATEGORY = "latent"

214
215
216
217
    @staticmethod
    def vae_encode_crop_pixels(pixels):
        x = (pixels.shape[1] // 8) * 8
        y = (pixels.shape[2] // 8) * 8
218
        if pixels.shape[1] != x or pixels.shape[2] != y:
219
220
221
222
            x_offset = (pixels.shape[1] % 8) // 2
            y_offset = (pixels.shape[2] % 8) // 2
            pixels = pixels[:, x_offset:x + x_offset, y_offset:y + y_offset, :]
        return pixels
223

224
225
226
    def encode(self, vae, pixels):
        pixels = self.vae_encode_crop_pixels(pixels)
        t = vae.encode(pixels[:,:,:,:3])
227
        return ({"samples":t}, )
comfyanonymous's avatar
comfyanonymous committed
228

comfyanonymous's avatar
comfyanonymous committed
229
230
231
232
233
234
235
236
237
238
class VAEEncodeTiled:
    @classmethod
    def INPUT_TYPES(s):
        return {"required": { "pixels": ("IMAGE", ), "vae": ("VAE", )}}
    RETURN_TYPES = ("LATENT",)
    FUNCTION = "encode"

    CATEGORY = "_for_testing"

    def encode(self, vae, pixels):
239
        pixels = VAEEncode.vae_encode_crop_pixels(pixels)
comfyanonymous's avatar
comfyanonymous committed
240
241
        t = vae.encode_tiled(pixels[:,:,:,:3])
        return ({"samples":t}, )
242

243
244
245
class VAEEncodeForInpaint:
    @classmethod
    def INPUT_TYPES(s):
246
        return {"required": { "pixels": ("IMAGE", ), "vae": ("VAE", ), "mask": ("MASK", ), "grow_mask_by": ("INT", {"default": 6, "min": 0, "max": 64, "step": 1}),}}
247
248
249
250
251
    RETURN_TYPES = ("LATENT",)
    FUNCTION = "encode"

    CATEGORY = "latent/inpaint"

252
    def encode(self, vae, pixels, mask, grow_mask_by=6):
253
254
        x = (pixels.shape[1] // 8) * 8
        y = (pixels.shape[2] // 8) * 8
255
        mask = torch.nn.functional.interpolate(mask.reshape((-1, 1, mask.shape[-2], mask.shape[-1])), size=(pixels.shape[1], pixels.shape[2]), mode="bilinear")
256

257
        pixels = pixels.clone()
258
        if pixels.shape[1] != x or pixels.shape[2] != y:
259
260
261
262
            x_offset = (pixels.shape[1] % 8) // 2
            y_offset = (pixels.shape[2] % 8) // 2
            pixels = pixels[:,x_offset:x + x_offset, y_offset:y + y_offset,:]
            mask = mask[:,:,x_offset:x + x_offset, y_offset:y + y_offset]
263

264
        #grow mask by a few pixels to keep things seamless in latent space
265
266
267
268
269
270
271
272
        if grow_mask_by == 0:
            mask_erosion = mask
        else:
            kernel_tensor = torch.ones((1, 1, grow_mask_by, grow_mask_by))
            padding = math.ceil((grow_mask_by - 1) / 2)

            mask_erosion = torch.clamp(torch.nn.functional.conv2d(mask.round(), kernel_tensor, padding=padding), 0, 1)

273
        m = (1.0 - mask.round()).squeeze(1)
274
275
        for i in range(3):
            pixels[:,:,:,i] -= 0.5
276
            pixels[:,:,:,i] *= m
277
278
279
            pixels[:,:,:,i] += 0.5
        t = vae.encode(pixels)

280
        return ({"samples":t, "noise_mask": (mask_erosion[:,:,:x,:y].round())}, )
comfyanonymous's avatar
comfyanonymous committed
281

282
283
284
285
286
287
class TAESDPreviewerImpl(LatentPreviewer):
    def __init__(self, taesd):
        self.taesd = taesd

    def decode_latent_to_preview(self, device, x0):
        x_sample = self.taesd.decoder(x0.to(device))[0].detach()
space-nuko's avatar
space-nuko committed
288
289
        # x_sample = self.taesd.unscale_latents(x_sample).div(4).add(0.5)  # returns value in [-2, 2]
        x_sample = x_sample.sub(0.5).mul(2)
space-nuko's avatar
space-nuko committed
290
291
292
293
294
295
296

        x_sample = torch.clamp((x_sample + 1.0) / 2.0, min=0.0, max=1.0)
        x_sample = 255. * np.moveaxis(x_sample.cpu().numpy(), 0, 2)
        x_sample = x_sample.astype(np.uint8)

        preview_image = Image.fromarray(x_sample)
        return preview_image
297

Dr.Lt.Data's avatar
Dr.Lt.Data committed
298
299
class SaveLatent:
    def __init__(self):
300
        self.output_dir = folder_paths.get_output_directory()
Dr.Lt.Data's avatar
Dr.Lt.Data committed
301
302
303
304

    @classmethod
    def INPUT_TYPES(s):
        return {"required": { "samples": ("LATENT", ),
305
                              "filename_prefix": ("STRING", {"default": "latents/ComfyUI"})},
Dr.Lt.Data's avatar
Dr.Lt.Data committed
306
307
308
309
310
311
312
313
314
315
                "hidden": {"prompt": "PROMPT", "extra_pnginfo": "EXTRA_PNGINFO"},
                }
    RETURN_TYPES = ()
    FUNCTION = "save"

    OUTPUT_NODE = True

    CATEGORY = "_for_testing"

    def save(self, samples, filename_prefix="ComfyUI", prompt=None, extra_pnginfo=None):
316
        full_output_folder, filename, counter, subfolder, filename_prefix = folder_paths.get_save_image_path(filename_prefix, self.output_dir)
Dr.Lt.Data's avatar
Dr.Lt.Data committed
317
318
319
320
321
322

        # support save metadata for latent sharing
        prompt_info = ""
        if prompt is not None:
            prompt_info = json.dumps(prompt)

323
        metadata = {"prompt": prompt_info}
Dr.Lt.Data's avatar
Dr.Lt.Data committed
324
325
326
327
328
329
330
        if extra_pnginfo is not None:
            for x in extra_pnginfo:
                metadata[x] = json.dumps(extra_pnginfo[x])

        file = f"{filename}_{counter:05}_.latent"
        file = os.path.join(full_output_folder, file)

331
332
333
334
        output = {}
        output["latent_tensor"] = samples["samples"]

        safetensors.torch.save_file(output, file, metadata=metadata)
Dr.Lt.Data's avatar
Dr.Lt.Data committed
335
336
337
338
339
340
341

        return {}


class LoadLatent:
    @classmethod
    def INPUT_TYPES(s):
342
343
        input_dir = folder_paths.get_input_directory()
        files = [f for f in os.listdir(input_dir) if os.path.isfile(os.path.join(input_dir, f)) and f.endswith(".latent")]
Dr.Lt.Data's avatar
Dr.Lt.Data committed
344
345
346
347
348
349
350
351
        return {"required": {"latent": [sorted(files), ]}, }

    CATEGORY = "_for_testing"

    RETURN_TYPES = ("LATENT", )
    FUNCTION = "load"

    def load(self, latent):
352
353
        latent_path = folder_paths.get_annotated_filepath(latent)
        latent = safetensors.torch.load_file(latent_path, device="cpu")
354
        samples = {"samples": latent["latent_tensor"].float()}
355
        return (samples, )
Dr.Lt.Data's avatar
Dr.Lt.Data committed
356

357
358
359
360
361
362
363
364
365
366
367
368
369
370
    @classmethod
    def IS_CHANGED(s, latent):
        image_path = folder_paths.get_annotated_filepath(latent)
        m = hashlib.sha256()
        with open(image_path, 'rb') as f:
            m.update(f.read())
        return m.digest().hex()

    @classmethod
    def VALIDATE_INPUTS(s, latent):
        if not folder_paths.exists_annotated_filepath(latent):
            return "Invalid latent file: {}".format(latent)
        return True

Dr.Lt.Data's avatar
Dr.Lt.Data committed
371

comfyanonymous's avatar
comfyanonymous committed
372
373
374
class CheckpointLoader:
    @classmethod
    def INPUT_TYPES(s):
375
376
        return {"required": { "config_name": (folder_paths.get_filename_list("configs"), ),
                              "ckpt_name": (folder_paths.get_filename_list("checkpoints"), )}}
comfyanonymous's avatar
comfyanonymous committed
377
378
379
    RETURN_TYPES = ("MODEL", "CLIP", "VAE")
    FUNCTION = "load_checkpoint"

380
    CATEGORY = "advanced/loaders"
381

comfyanonymous's avatar
comfyanonymous committed
382
    def load_checkpoint(self, config_name, ckpt_name, output_vae=True, output_clip=True):
383
384
        config_path = folder_paths.get_full_path("configs", config_name)
        ckpt_path = folder_paths.get_full_path("checkpoints", ckpt_name)
385
        return comfy.sd.load_checkpoint(config_path, ckpt_path, output_vae=True, output_clip=True, embedding_directory=folder_paths.get_folder_paths("embeddings"))
comfyanonymous's avatar
comfyanonymous committed
386

387
388
389
class CheckpointLoaderSimple:
    @classmethod
    def INPUT_TYPES(s):
390
        return {"required": { "ckpt_name": (folder_paths.get_filename_list("checkpoints"), ),
391
392
393
394
                             }}
    RETURN_TYPES = ("MODEL", "CLIP", "VAE")
    FUNCTION = "load_checkpoint"

395
    CATEGORY = "loaders"
396

397
    def load_checkpoint(self, ckpt_name, output_vae=True, output_clip=True):
398
        ckpt_path = folder_paths.get_full_path("checkpoints", ckpt_name)
399
        out = comfy.sd.load_checkpoint_guess_config(ckpt_path, output_vae=True, output_clip=True, embedding_directory=folder_paths.get_folder_paths("embeddings"))
400
401
        return out

sALTaccount's avatar
sALTaccount committed
402
403
404
class DiffusersLoader:
    @classmethod
    def INPUT_TYPES(cls):
405
        paths = []
sALTaccount's avatar
sALTaccount committed
406
        for search_path in folder_paths.get_folder_paths("diffusers"):
407
            if os.path.exists(search_path):
408
409
410
411
                for root, subdir, files in os.walk(search_path, followlinks=True):
                    if "model_index.json" in files:
                        paths.append(os.path.relpath(root, start=search_path))

412
        return {"required": {"model_path": (paths,), }}
sALTaccount's avatar
sALTaccount committed
413
414
415
    RETURN_TYPES = ("MODEL", "CLIP", "VAE")
    FUNCTION = "load_checkpoint"

416
    CATEGORY = "advanced/loaders"
sALTaccount's avatar
sALTaccount committed
417
418

    def load_checkpoint(self, model_path, output_vae=True, output_clip=True):
sALTaccount's avatar
sALTaccount committed
419
420
        for search_path in folder_paths.get_folder_paths("diffusers"):
            if os.path.exists(search_path):
421
422
423
                path = os.path.join(search_path, model_path)
                if os.path.exists(path):
                    model_path = path
sALTaccount's avatar
sALTaccount committed
424
                    break
425

426
        return comfy.diffusers_load.load_diffusers(model_path, fp16=comfy.model_management.should_use_fp16(), output_vae=output_vae, output_clip=output_clip, embedding_directory=folder_paths.get_folder_paths("embeddings"))
sALTaccount's avatar
sALTaccount committed
427
428


429
430
431
432
433
434
435
436
class unCLIPCheckpointLoader:
    @classmethod
    def INPUT_TYPES(s):
        return {"required": { "ckpt_name": (folder_paths.get_filename_list("checkpoints"), ),
                             }}
    RETURN_TYPES = ("MODEL", "CLIP", "VAE", "CLIP_VISION")
    FUNCTION = "load_checkpoint"

437
    CATEGORY = "loaders"
438
439
440
441
442
443

    def load_checkpoint(self, ckpt_name, output_vae=True, output_clip=True):
        ckpt_path = folder_paths.get_full_path("checkpoints", ckpt_name)
        out = comfy.sd.load_checkpoint_guess_config(ckpt_path, output_vae=True, output_clip=True, output_clipvision=True, embedding_directory=folder_paths.get_folder_paths("embeddings"))
        return out

comfyanonymous's avatar
comfyanonymous committed
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
class CLIPSetLastLayer:
    @classmethod
    def INPUT_TYPES(s):
        return {"required": { "clip": ("CLIP", ),
                              "stop_at_clip_layer": ("INT", {"default": -1, "min": -24, "max": -1, "step": 1}),
                              }}
    RETURN_TYPES = ("CLIP",)
    FUNCTION = "set_last_layer"

    CATEGORY = "conditioning"

    def set_last_layer(self, clip, stop_at_clip_layer):
        clip = clip.clone()
        clip.clip_layer(stop_at_clip_layer)
        return (clip,)

460
461
462
463
464
class LoraLoader:
    @classmethod
    def INPUT_TYPES(s):
        return {"required": { "model": ("MODEL",),
                              "clip": ("CLIP", ),
465
                              "lora_name": (folder_paths.get_filename_list("loras"), ),
466
467
                              "strength_model": ("FLOAT", {"default": 1.0, "min": -10.0, "max": 10.0, "step": 0.01}),
                              "strength_clip": ("FLOAT", {"default": 1.0, "min": -10.0, "max": 10.0, "step": 0.01}),
468
469
470
471
472
473
474
                              }}
    RETURN_TYPES = ("MODEL", "CLIP")
    FUNCTION = "load_lora"

    CATEGORY = "loaders"

    def load_lora(self, model, clip, lora_name, strength_model, strength_clip):
475
476
477
        if strength_model == 0 and strength_clip == 0:
            return (model, clip)

478
        lora_path = folder_paths.get_full_path("loras", lora_name)
479
480
481
        model_lora, clip_lora = comfy.sd.load_lora_for_models(model, clip, lora_path, strength_model, strength_clip)
        return (model_lora, clip_lora)

482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
class TomePatchModel:
    @classmethod
    def INPUT_TYPES(s):
        return {"required": { "model": ("MODEL",),
                              "ratio": ("FLOAT", {"default": 0.3, "min": 0.0, "max": 1.0, "step": 0.01}),
                              }}
    RETURN_TYPES = ("MODEL",)
    FUNCTION = "patch"

    CATEGORY = "_for_testing"

    def patch(self, model, ratio):
        m = model.clone()
        m.set_model_tomesd(ratio)
        return (m, )

comfyanonymous's avatar
comfyanonymous committed
498
499
500
class VAELoader:
    @classmethod
    def INPUT_TYPES(s):
501
        return {"required": { "vae_name": (folder_paths.get_filename_list("vae"), )}}
comfyanonymous's avatar
comfyanonymous committed
502
503
504
    RETURN_TYPES = ("VAE",)
    FUNCTION = "load_vae"

505
506
    CATEGORY = "loaders"

comfyanonymous's avatar
comfyanonymous committed
507
508
    #TODO: scale factor?
    def load_vae(self, vae_name):
509
        vae_path = folder_paths.get_full_path("vae", vae_name)
comfyanonymous's avatar
comfyanonymous committed
510
511
512
        vae = comfy.sd.VAE(ckpt_path=vae_path)
        return (vae,)

comfyanonymous's avatar
comfyanonymous committed
513
514
515
class ControlNetLoader:
    @classmethod
    def INPUT_TYPES(s):
516
        return {"required": { "control_net_name": (folder_paths.get_filename_list("controlnet"), )}}
comfyanonymous's avatar
comfyanonymous committed
517
518
519
520
521
522
523

    RETURN_TYPES = ("CONTROL_NET",)
    FUNCTION = "load_controlnet"

    CATEGORY = "loaders"

    def load_controlnet(self, control_net_name):
524
        controlnet_path = folder_paths.get_full_path("controlnet", control_net_name)
comfyanonymous's avatar
comfyanonymous committed
525
526
527
        controlnet = comfy.sd.load_controlnet(controlnet_path)
        return (controlnet,)

528
529
530
531
class DiffControlNetLoader:
    @classmethod
    def INPUT_TYPES(s):
        return {"required": { "model": ("MODEL",),
532
                              "control_net_name": (folder_paths.get_filename_list("controlnet"), )}}
533
534
535
536
537
538
539

    RETURN_TYPES = ("CONTROL_NET",)
    FUNCTION = "load_controlnet"

    CATEGORY = "loaders"

    def load_controlnet(self, model, control_net_name):
540
        controlnet_path = folder_paths.get_full_path("controlnet", control_net_name)
541
542
543
        controlnet = comfy.sd.load_controlnet(controlnet_path, model)
        return (controlnet,)

comfyanonymous's avatar
comfyanonymous committed
544
545
546
547

class ControlNetApply:
    @classmethod
    def INPUT_TYPES(s):
548
549
550
551
552
        return {"required": {"conditioning": ("CONDITIONING", ),
                             "control_net": ("CONTROL_NET", ),
                             "image": ("IMAGE", ),
                             "strength": ("FLOAT", {"default": 1.0, "min": 0.0, "max": 10.0, "step": 0.01})
                             }}
comfyanonymous's avatar
comfyanonymous committed
553
554
555
556
557
    RETURN_TYPES = ("CONDITIONING",)
    FUNCTION = "apply_controlnet"

    CATEGORY = "conditioning"

558
    def apply_controlnet(self, conditioning, control_net, image, strength):
559
560
561
        if strength == 0:
            return (conditioning, )

comfyanonymous's avatar
comfyanonymous committed
562
563
564
565
        c = []
        control_hint = image.movedim(-1,1)
        for t in conditioning:
            n = [t[0], t[1].copy()]
comfyanonymous's avatar
comfyanonymous committed
566
567
568
569
            c_net = control_net.copy().set_cond_hint(control_hint, strength)
            if 'control' in t[1]:
                c_net.set_previous_controlnet(t[1]['control'])
            n[1]['control'] = c_net
comfyanonymous's avatar
comfyanonymous committed
570
571
572
            c.append(n)
        return (c, )

573
574
575
class CLIPLoader:
    @classmethod
    def INPUT_TYPES(s):
576
        return {"required": { "clip_name": (folder_paths.get_filename_list("clip"), ),
577
578
579
580
581
582
                             }}
    RETURN_TYPES = ("CLIP",)
    FUNCTION = "load_clip"

    CATEGORY = "loaders"

583
    def load_clip(self, clip_name):
584
        clip_path = folder_paths.get_full_path("clip", clip_name)
comfyanonymous's avatar
comfyanonymous committed
585
        clip = comfy.sd.load_clip(ckpt_path=clip_path, embedding_directory=folder_paths.get_folder_paths("embeddings"))
586
587
        return (clip,)

588
589
590
class CLIPVisionLoader:
    @classmethod
    def INPUT_TYPES(s):
591
        return {"required": { "clip_name": (folder_paths.get_filename_list("clip_vision"), ),
592
593
594
595
596
597
598
                             }}
    RETURN_TYPES = ("CLIP_VISION",)
    FUNCTION = "load_clip"

    CATEGORY = "loaders"

    def load_clip(self, clip_name):
599
        clip_path = folder_paths.get_full_path("clip_vision", clip_name)
600
        clip_vision = comfy.clip_vision.load(clip_path)
601
602
603
604
605
606
607
608
        return (clip_vision,)

class CLIPVisionEncode:
    @classmethod
    def INPUT_TYPES(s):
        return {"required": { "clip_vision": ("CLIP_VISION",),
                              "image": ("IMAGE",)
                             }}
comfyanonymous's avatar
comfyanonymous committed
609
    RETURN_TYPES = ("CLIP_VISION_OUTPUT",)
610
611
    FUNCTION = "encode"

612
    CATEGORY = "conditioning"
613
614
615
616
617
618
619
620

    def encode(self, clip_vision, image):
        output = clip_vision.encode_image(image)
        return (output,)

class StyleModelLoader:
    @classmethod
    def INPUT_TYPES(s):
621
        return {"required": { "style_model_name": (folder_paths.get_filename_list("style_models"), )}}
622
623
624
625
626
627
628

    RETURN_TYPES = ("STYLE_MODEL",)
    FUNCTION = "load_style_model"

    CATEGORY = "loaders"

    def load_style_model(self, style_model_name):
629
        style_model_path = folder_paths.get_full_path("style_models", style_model_name)
630
631
632
633
634
635
636
        style_model = comfy.sd.load_style_model(style_model_path)
        return (style_model,)


class StyleModelApply:
    @classmethod
    def INPUT_TYPES(s):
637
638
639
        return {"required": {"conditioning": ("CONDITIONING", ),
                             "style_model": ("STYLE_MODEL", ),
                             "clip_vision_output": ("CLIP_VISION_OUTPUT", ),
640
641
642
643
                             }}
    RETURN_TYPES = ("CONDITIONING",)
    FUNCTION = "apply_stylemodel"

comfyanonymous's avatar
comfyanonymous committed
644
    CATEGORY = "conditioning/style_model"
645

646
647
    def apply_stylemodel(self, clip_vision_output, style_model, conditioning):
        cond = style_model.get_cond(clip_vision_output)
648
        c = []
649
650
        for t in conditioning:
            n = [torch.cat((t[0], cond), dim=1), t[1].copy()]
651
652
653
            c.append(n)
        return (c, )

654
655
656
657
658
659
class unCLIPConditioning:
    @classmethod
    def INPUT_TYPES(s):
        return {"required": {"conditioning": ("CONDITIONING", ),
                             "clip_vision_output": ("CLIP_VISION_OUTPUT", ),
                             "strength": ("FLOAT", {"default": 1.0, "min": -10.0, "max": 10.0, "step": 0.01}),
660
                             "noise_augmentation": ("FLOAT", {"default": 0.0, "min": 0.0, "max": 1.0, "step": 0.01}),
661
662
663
664
                             }}
    RETURN_TYPES = ("CONDITIONING",)
    FUNCTION = "apply_adm"

665
    CATEGORY = "conditioning"
666

667
    def apply_adm(self, conditioning, clip_vision_output, strength, noise_augmentation):
668
669
670
        if strength == 0:
            return (conditioning, )

671
672
673
        c = []
        for t in conditioning:
            o = t[1].copy()
674
            x = (clip_vision_output, strength, noise_augmentation)
675
676
677
678
679
680
681
682
            if "adm" in o:
                o["adm"] = o["adm"][:] + [x]
            else:
                o["adm"] = [x]
            n = [t[0], o]
            c.append(n)
        return (c, )

683
684
685
686
687
688
689
690
class GLIGENLoader:
    @classmethod
    def INPUT_TYPES(s):
        return {"required": { "gligen_name": (folder_paths.get_filename_list("gligen"), )}}

    RETURN_TYPES = ("GLIGEN",)
    FUNCTION = "load_gligen"

comfyanonymous's avatar
comfyanonymous committed
691
    CATEGORY = "loaders"
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712

    def load_gligen(self, gligen_name):
        gligen_path = folder_paths.get_full_path("gligen", gligen_name)
        gligen = comfy.sd.load_gligen(gligen_path)
        return (gligen,)

class GLIGENTextBoxApply:
    @classmethod
    def INPUT_TYPES(s):
        return {"required": {"conditioning_to": ("CONDITIONING", ),
                              "clip": ("CLIP", ),
                              "gligen_textbox_model": ("GLIGEN", ),
                              "text": ("STRING", {"multiline": True}),
                              "width": ("INT", {"default": 64, "min": 8, "max": MAX_RESOLUTION, "step": 8}),
                              "height": ("INT", {"default": 64, "min": 8, "max": MAX_RESOLUTION, "step": 8}),
                              "x": ("INT", {"default": 0, "min": 0, "max": MAX_RESOLUTION, "step": 8}),
                              "y": ("INT", {"default": 0, "min": 0, "max": MAX_RESOLUTION, "step": 8}),
                             }}
    RETURN_TYPES = ("CONDITIONING",)
    FUNCTION = "append"

comfyanonymous's avatar
comfyanonymous committed
713
    CATEGORY = "conditioning/gligen"
714
715
716
717
718
719
720
721
722
723
724
725
726
727

    def append(self, conditioning_to, clip, gligen_textbox_model, text, width, height, x, y):
        c = []
        cond, cond_pooled = clip.encode_from_tokens(clip.tokenize(text), return_pooled=True)
        for t in conditioning_to:
            n = [t[0], t[1].copy()]
            position_params = [(cond_pooled, height // 8, width // 8, y // 8, x // 8)]
            prev = []
            if "gligen" in n[1]:
                prev = n[1]['gligen'][2]

            n[1]['gligen'] = ("position", gligen_textbox_model, prev + position_params)
            c.append(n)
        return (c, )
728

comfyanonymous's avatar
comfyanonymous committed
729
730
731
732
733
734
class EmptyLatentImage:
    def __init__(self, device="cpu"):
        self.device = device

    @classmethod
    def INPUT_TYPES(s):
735
736
        return {"required": { "width": ("INT", {"default": 512, "min": 64, "max": MAX_RESOLUTION, "step": 8}),
                              "height": ("INT", {"default": 512, "min": 64, "max": MAX_RESOLUTION, "step": 8}),
comfyanonymous's avatar
comfyanonymous committed
737
738
739
740
                              "batch_size": ("INT", {"default": 1, "min": 1, "max": 64})}}
    RETURN_TYPES = ("LATENT",)
    FUNCTION = "generate"

741
742
    CATEGORY = "latent"

comfyanonymous's avatar
comfyanonymous committed
743
744
    def generate(self, width, height, batch_size=1):
        latent = torch.zeros([batch_size, 4, height // 8, width // 8])
745
        return ({"samples":latent}, )
comfyanonymous's avatar
comfyanonymous committed
746

comfyanonymous's avatar
comfyanonymous committed
747

748
749
750
751
752
class LatentFromBatch:
    @classmethod
    def INPUT_TYPES(s):
        return {"required": { "samples": ("LATENT",),
                              "batch_index": ("INT", {"default": 0, "min": 0, "max": 63}),
753
                              "length": ("INT", {"default": 1, "min": 1, "max": 64}),
754
755
                              }}
    RETURN_TYPES = ("LATENT",)
756
    FUNCTION = "frombatch"
757

758
    CATEGORY = "latent/batch"
759

760
    def frombatch(self, samples, batch_index, length):
761
762
763
        s = samples.copy()
        s_in = samples["samples"]
        batch_index = min(s_in.shape[0] - 1, batch_index)
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
        length = min(s_in.shape[0] - batch_index, length)
        s["samples"] = s_in[batch_index:batch_index + length].clone()
        if "noise_mask" in samples:
            masks = samples["noise_mask"]
            if masks.shape[0] == 1:
                s["noise_mask"] = masks.clone()
            else:
                if masks.shape[0] < s_in.shape[0]:
                    masks = masks.repeat(math.ceil(s_in.shape[0] / masks.shape[0]), 1, 1, 1)[:s_in.shape[0]]
                s["noise_mask"] = masks[batch_index:batch_index + length].clone()
        if "batch_index" not in s:
            s["batch_index"] = [x for x in range(batch_index, batch_index+length)]
        else:
            s["batch_index"] = samples["batch_index"][batch_index:batch_index + length]
        return (s,)
    
class RepeatLatentBatch:
    @classmethod
    def INPUT_TYPES(s):
        return {"required": { "samples": ("LATENT",),
                              "amount": ("INT", {"default": 1, "min": 1, "max": 64}),
                              }}
    RETURN_TYPES = ("LATENT",)
    FUNCTION = "repeat"

    CATEGORY = "latent/batch"

    def repeat(self, samples, amount):
        s = samples.copy()
        s_in = samples["samples"]
        
        s["samples"] = s_in.repeat((amount, 1,1,1))
        if "noise_mask" in samples and samples["noise_mask"].shape[0] > 1:
            masks = samples["noise_mask"]
            if masks.shape[0] < s_in.shape[0]:
                masks = masks.repeat(math.ceil(s_in.shape[0] / masks.shape[0]), 1, 1, 1)[:s_in.shape[0]]
            s["noise_mask"] = samples["noise_mask"].repeat((amount, 1,1,1))
        if "batch_index" in s:
            offset = max(s["batch_index"]) - min(s["batch_index"]) + 1
            s["batch_index"] = s["batch_index"] + [x + (i * offset) for i in range(1, amount) for x in s["batch_index"]]
804
        return (s,)
comfyanonymous's avatar
comfyanonymous committed
805

comfyanonymous's avatar
comfyanonymous committed
806
class LatentUpscale:
807
    upscale_methods = ["nearest-exact", "bilinear", "area", "bislerp"]
808
    crop_methods = ["disabled", "center"]
comfyanonymous's avatar
comfyanonymous committed
809
810
811
812

    @classmethod
    def INPUT_TYPES(s):
        return {"required": { "samples": ("LATENT",), "upscale_method": (s.upscale_methods,),
813
814
                              "width": ("INT", {"default": 512, "min": 64, "max": MAX_RESOLUTION, "step": 8}),
                              "height": ("INT", {"default": 512, "min": 64, "max": MAX_RESOLUTION, "step": 8}),
815
                              "crop": (s.crop_methods,)}}
comfyanonymous's avatar
comfyanonymous committed
816
817
818
    RETURN_TYPES = ("LATENT",)
    FUNCTION = "upscale"

819
820
    CATEGORY = "latent"

821
    def upscale(self, samples, upscale_method, width, height, crop):
822
        s = samples.copy()
comfyanonymous's avatar
comfyanonymous committed
823
        s["samples"] = comfy.utils.common_upscale(samples["samples"], width // 8, height // 8, upscale_method, crop)
comfyanonymous's avatar
comfyanonymous committed
824
825
        return (s,)

comfyanonymous's avatar
comfyanonymous committed
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
class LatentUpscaleBy:
    upscale_methods = ["nearest-exact", "bilinear", "area", "bislerp"]

    @classmethod
    def INPUT_TYPES(s):
        return {"required": { "samples": ("LATENT",), "upscale_method": (s.upscale_methods,),
                              "scale_by": ("FLOAT", {"default": 1.5, "min": 0.01, "max": 8.0, "step": 0.01}),}}
    RETURN_TYPES = ("LATENT",)
    FUNCTION = "upscale"

    CATEGORY = "latent"

    def upscale(self, samples, upscale_method, scale_by):
        s = samples.copy()
        width = round(samples["samples"].shape[3] * scale_by)
        height = round(samples["samples"].shape[2] * scale_by)
        s["samples"] = comfy.utils.common_upscale(samples["samples"], width, height, upscale_method, "disabled")
        return (s,)

comfyanonymous's avatar
comfyanonymous committed
845
846
847
848
849
850
851
852
853
class LatentRotate:
    @classmethod
    def INPUT_TYPES(s):
        return {"required": { "samples": ("LATENT",),
                              "rotation": (["none", "90 degrees", "180 degrees", "270 degrees"],),
                              }}
    RETURN_TYPES = ("LATENT",)
    FUNCTION = "rotate"

comfyanonymous's avatar
comfyanonymous committed
854
    CATEGORY = "latent/transform"
comfyanonymous's avatar
comfyanonymous committed
855
856

    def rotate(self, samples, rotation):
857
        s = samples.copy()
comfyanonymous's avatar
comfyanonymous committed
858
859
860
861
862
863
864
865
        rotate_by = 0
        if rotation.startswith("90"):
            rotate_by = 1
        elif rotation.startswith("180"):
            rotate_by = 2
        elif rotation.startswith("270"):
            rotate_by = 3

866
        s["samples"] = torch.rot90(samples["samples"], k=rotate_by, dims=[3, 2])
comfyanonymous's avatar
comfyanonymous committed
867
        return (s,)
comfyanonymous's avatar
comfyanonymous committed
868
869
870
871
872
873
874
875
876
877

class LatentFlip:
    @classmethod
    def INPUT_TYPES(s):
        return {"required": { "samples": ("LATENT",),
                              "flip_method": (["x-axis: vertically", "y-axis: horizontally"],),
                              }}
    RETURN_TYPES = ("LATENT",)
    FUNCTION = "flip"

comfyanonymous's avatar
comfyanonymous committed
878
    CATEGORY = "latent/transform"
comfyanonymous's avatar
comfyanonymous committed
879
880

    def flip(self, samples, flip_method):
881
        s = samples.copy()
comfyanonymous's avatar
comfyanonymous committed
882
        if flip_method.startswith("x"):
883
            s["samples"] = torch.flip(samples["samples"], dims=[2])
comfyanonymous's avatar
comfyanonymous committed
884
        elif flip_method.startswith("y"):
885
            s["samples"] = torch.flip(samples["samples"], dims=[3])
comfyanonymous's avatar
comfyanonymous committed
886
887

        return (s,)
comfyanonymous's avatar
comfyanonymous committed
888
889
890
891

class LatentComposite:
    @classmethod
    def INPUT_TYPES(s):
comfyanonymous's avatar
comfyanonymous committed
892
893
894
895
896
897
        return {"required": { "samples_to": ("LATENT",),
                              "samples_from": ("LATENT",),
                              "x": ("INT", {"default": 0, "min": 0, "max": MAX_RESOLUTION, "step": 8}),
                              "y": ("INT", {"default": 0, "min": 0, "max": MAX_RESOLUTION, "step": 8}),
                              "feather": ("INT", {"default": 0, "min": 0, "max": MAX_RESOLUTION, "step": 8}),
                              }}
comfyanonymous's avatar
comfyanonymous committed
898
899
900
901
902
    RETURN_TYPES = ("LATENT",)
    FUNCTION = "composite"

    CATEGORY = "latent"

comfyanonymous's avatar
comfyanonymous committed
903
904
905
    def composite(self, samples_to, samples_from, x, y, composite_method="normal", feather=0):
        x =  x // 8
        y = y // 8
906
        feather = feather // 8
comfyanonymous's avatar
comfyanonymous committed
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
        samples_out = samples_to.copy()
        s = samples_to["samples"].clone()
        samples_to = samples_to["samples"]
        samples_from = samples_from["samples"]
        if feather == 0:
            s[:,:,y:y+samples_from.shape[2],x:x+samples_from.shape[3]] = samples_from[:,:,:samples_to.shape[2] - y, :samples_to.shape[3] - x]
        else:
            samples_from = samples_from[:,:,:samples_to.shape[2] - y, :samples_to.shape[3] - x]
            mask = torch.ones_like(samples_from)
            for t in range(feather):
                if y != 0:
                    mask[:,:,t:1+t,:] *= ((1.0/feather) * (t + 1))

                if y + samples_from.shape[2] < samples_to.shape[2]:
                    mask[:,:,mask.shape[2] -1 -t: mask.shape[2]-t,:] *= ((1.0/feather) * (t + 1))
                if x != 0:
                    mask[:,:,:,t:1+t] *= ((1.0/feather) * (t + 1))
                if x + samples_from.shape[3] < samples_to.shape[3]:
                    mask[:,:,:,mask.shape[3]- 1 - t: mask.shape[3]- t] *= ((1.0/feather) * (t + 1))
            rev_mask = torch.ones_like(mask) - mask
            s[:,:,y:y+samples_from.shape[2],x:x+samples_from.shape[3]] = samples_from[:,:,:samples_to.shape[2] - y, :samples_to.shape[3] - x] * mask + s[:,:,y:y+samples_from.shape[2],x:x+samples_from.shape[3]] * rev_mask
        samples_out["samples"] = s
        return (samples_out,)
comfyanonymous's avatar
comfyanonymous committed
930

comfyanonymous's avatar
comfyanonymous committed
931
932
933
934
class LatentCrop:
    @classmethod
    def INPUT_TYPES(s):
        return {"required": { "samples": ("LATENT",),
935
936
                              "width": ("INT", {"default": 512, "min": 64, "max": MAX_RESOLUTION, "step": 8}),
                              "height": ("INT", {"default": 512, "min": 64, "max": MAX_RESOLUTION, "step": 8}),
937
938
                              "x": ("INT", {"default": 0, "min": 0, "max": MAX_RESOLUTION, "step": 8}),
                              "y": ("INT", {"default": 0, "min": 0, "max": MAX_RESOLUTION, "step": 8}),
comfyanonymous's avatar
comfyanonymous committed
939
940
941
942
                              }}
    RETURN_TYPES = ("LATENT",)
    FUNCTION = "crop"

comfyanonymous's avatar
comfyanonymous committed
943
    CATEGORY = "latent/transform"
comfyanonymous's avatar
comfyanonymous committed
944
945

    def crop(self, samples, width, height, x, y):
946
947
        s = samples.copy()
        samples = samples['samples']
comfyanonymous's avatar
comfyanonymous committed
948
949
950
951
952
953
954
955
956
957
958
959
960
        x =  x // 8
        y = y // 8

        #enfonce minimum size of 64
        if x > (samples.shape[3] - 8):
            x = samples.shape[3] - 8
        if y > (samples.shape[2] - 8):
            y = samples.shape[2] - 8

        new_height = height // 8
        new_width = width // 8
        to_x = new_width + x
        to_y = new_height + y
961
        s['samples'] = samples[:,:,y:to_y, x:to_x]
comfyanonymous's avatar
comfyanonymous committed
962
963
        return (s,)

964
965
966
967
968
969
970
971
972
class SetLatentNoiseMask:
    @classmethod
    def INPUT_TYPES(s):
        return {"required": { "samples": ("LATENT",),
                              "mask": ("MASK",),
                              }}
    RETURN_TYPES = ("LATENT",)
    FUNCTION = "set_mask"

973
    CATEGORY = "latent/inpaint"
974
975
976

    def set_mask(self, samples, mask):
        s = samples.copy()
977
        s["noise_mask"] = mask.reshape((-1, 1, mask.shape[-2], mask.shape[-1]))
978
979
        return (s,)

space-nuko's avatar
space-nuko committed
980

981
def decode_latent_to_preview_image(previewer, device, preview_format, x0):
space-nuko's avatar
space-nuko committed
982
983
    preview_image = previewer.decode_latent_to_preview(device, x0)
    preview_image = ImageOps.contain(preview_image, (MAX_PREVIEW_RESOLUTION, MAX_PREVIEW_RESOLUTION), Image.ANTIALIAS)
space-nuko's avatar
space-nuko committed
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999

    preview_type = 1
    if preview_format == "JPEG":
        preview_type = 1
    elif preview_format == "PNG":
        preview_type = 2

    bytesIO = BytesIO()
    header = struct.pack(">I", preview_type)
    bytesIO.write(header)
    preview_image.save(bytesIO, format=preview_format)
    preview_bytes = bytesIO.getvalue()

    return preview_bytes


space-nuko's avatar
space-nuko committed
1000
def common_ksampler(model, seed, steps, cfg, sampler_name, scheduler, positive, negative, latent, denoise=1.0, disable_noise=False, start_step=None, last_step=None, force_full_denoise=False):
1001
    device = comfy.model_management.get_torch_device()
1002
    latent_image = latent["samples"]
1003

comfyanonymous's avatar
comfyanonymous committed
1004
1005
1006
    if disable_noise:
        noise = torch.zeros(latent_image.size(), dtype=latent_image.dtype, layout=latent_image.layout, device="cpu")
    else:
1007
1008
        batch_inds = latent["batch_index"] if "batch_index" in latent else None
        noise = comfy.sample.prepare_noise(latent_image, seed, batch_inds)
comfyanonymous's avatar
comfyanonymous committed
1009

1010
    noise_mask = None
1011
    if "noise_mask" in latent:
1012
        noise_mask = latent["noise_mask"]
comfyanonymous's avatar
comfyanonymous committed
1013

space-nuko's avatar
space-nuko committed
1014
1015
1016
1017
    preview_format = "JPEG"
    if preview_format not in ["JPEG", "PNG"]:
        preview_format = "JPEG"

space-nuko's avatar
space-nuko committed
1018
1019
1020
    previewer = None
    if not args.disable_previews:
        # TODO previewer methods
space-nuko's avatar
space-nuko committed
1021
1022
1023
1024
1025
1026
1027
1028
1029
1030
1031
        if args.default_preview_method == LatentPreviewType.TAESD:
            encoder_path = folder_paths.get_full_path("taesd", "taesd_encoder.pth")
            decoder_path = folder_paths.get_full_path("taesd", "taesd_decoder.pth")
            if encoder_path and decoder_path:
                taesd = TAESD(encoder_path, decoder_path).to(device)
                previewer = TAESDPreviewerImpl(taesd)
            else:
                print("Warning: TAESD previews enabled, but could not find models/taesd/taesd_encoder.pth and models/taesd/taesd_decoder.pth")

        if previewer is None:
            previewer = Latent2RGBPreviewer()
space-nuko's avatar
space-nuko committed
1032

1033
    pbar = comfy.utils.ProgressBar(steps)
1034
    def callback(step, x0, x, total_steps):
space-nuko's avatar
space-nuko committed
1035
        preview_bytes = None
1036
1037
        if previewer:
            preview_bytes = decode_latent_to_preview_image(previewer, device, preview_format, x0)
space-nuko's avatar
space-nuko committed
1038
        pbar.update_absolute(step + 1, total_steps, preview_bytes)
1039

1040
1041
    samples = comfy.sample.sample(model, noise, steps, cfg, sampler_name, scheduler, positive, negative, latent_image,
                                  denoise=denoise, disable_noise=disable_noise, start_step=start_step, last_step=last_step,
1042
                                  force_full_denoise=force_full_denoise, noise_mask=noise_mask, callback=callback)
1043
1044
1045
    out = latent.copy()
    out["samples"] = samples
    return (out, )
comfyanonymous's avatar
comfyanonymous committed
1046

comfyanonymous's avatar
comfyanonymous committed
1047
1048
1049
class KSampler:
    @classmethod
    def INPUT_TYPES(s):
comfyanonymous's avatar
comfyanonymous committed
1050
        return {"required":
comfyanonymous's avatar
comfyanonymous committed
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
                    {"model": ("MODEL",),
                    "seed": ("INT", {"default": 0, "min": 0, "max": 0xffffffffffffffff}),
                    "steps": ("INT", {"default": 20, "min": 1, "max": 10000}),
                    "cfg": ("FLOAT", {"default": 8.0, "min": 0.0, "max": 100.0}),
                    "sampler_name": (comfy.samplers.KSampler.SAMPLERS, ),
                    "scheduler": (comfy.samplers.KSampler.SCHEDULERS, ),
                    "positive": ("CONDITIONING", ),
                    "negative": ("CONDITIONING", ),
                    "latent_image": ("LATENT", ),
                    "denoise": ("FLOAT", {"default": 1.0, "min": 0.0, "max": 1.0, "step": 0.01}),
space-nuko's avatar
space-nuko committed
1061
1062
                     }
                }
comfyanonymous's avatar
comfyanonymous committed
1063
1064
1065
1066

    RETURN_TYPES = ("LATENT",)
    FUNCTION = "sample"

1067
1068
    CATEGORY = "sampling"

space-nuko's avatar
space-nuko committed
1069
1070
    def sample(self, model, seed, steps, cfg, sampler_name, scheduler, positive, negative, latent_image, denoise=1.0):
        return common_ksampler(model, seed, steps, cfg, sampler_name, scheduler, positive, negative, latent_image, denoise=denoise)
comfyanonymous's avatar
comfyanonymous committed
1071

comfyanonymous's avatar
comfyanonymous committed
1072
1073
1074
1075
1076
1077
1078
1079
1080
1081
1082
1083
1084
1085
1086
1087
1088
class KSamplerAdvanced:
    @classmethod
    def INPUT_TYPES(s):
        return {"required":
                    {"model": ("MODEL",),
                    "add_noise": (["enable", "disable"], ),
                    "noise_seed": ("INT", {"default": 0, "min": 0, "max": 0xffffffffffffffff}),
                    "steps": ("INT", {"default": 20, "min": 1, "max": 10000}),
                    "cfg": ("FLOAT", {"default": 8.0, "min": 0.0, "max": 100.0}),
                    "sampler_name": (comfy.samplers.KSampler.SAMPLERS, ),
                    "scheduler": (comfy.samplers.KSampler.SCHEDULERS, ),
                    "positive": ("CONDITIONING", ),
                    "negative": ("CONDITIONING", ),
                    "latent_image": ("LATENT", ),
                    "start_at_step": ("INT", {"default": 0, "min": 0, "max": 10000}),
                    "end_at_step": ("INT", {"default": 10000, "min": 0, "max": 10000}),
                    "return_with_leftover_noise": (["disable", "enable"], ),
space-nuko's avatar
space-nuko committed
1089
1090
                     }
                }
comfyanonymous's avatar
comfyanonymous committed
1091
1092
1093
1094
1095

    RETURN_TYPES = ("LATENT",)
    FUNCTION = "sample"

    CATEGORY = "sampling"
comfyanonymous's avatar
comfyanonymous committed
1096

space-nuko's avatar
space-nuko committed
1097
    def sample(self, model, add_noise, noise_seed, steps, cfg, sampler_name, scheduler, positive, negative, latent_image, start_at_step, end_at_step, return_with_leftover_noise, denoise=1.0):
comfyanonymous's avatar
comfyanonymous committed
1098
1099
1100
1101
1102
1103
        force_full_denoise = True
        if return_with_leftover_noise == "enable":
            force_full_denoise = False
        disable_noise = False
        if add_noise == "disable":
            disable_noise = True
space-nuko's avatar
space-nuko committed
1104
        return common_ksampler(model, noise_seed, steps, cfg, sampler_name, scheduler, positive, negative, latent_image, denoise=denoise, disable_noise=disable_noise, start_step=start_at_step, last_step=end_at_step, force_full_denoise=force_full_denoise)
comfyanonymous's avatar
comfyanonymous committed
1105
1106
1107

class SaveImage:
    def __init__(self):
1108
        self.output_dir = folder_paths.get_output_directory()
m957ymj75urz's avatar
m957ymj75urz committed
1109
        self.type = "output"
comfyanonymous's avatar
comfyanonymous committed
1110
1111
1112
1113

    @classmethod
    def INPUT_TYPES(s):
        return {"required": 
1114
                    {"images": ("IMAGE", ),
pythongosssss's avatar
tidy  
pythongosssss committed
1115
                     "filename_prefix": ("STRING", {"default": "ComfyUI"})},
pythongosssss's avatar
pythongosssss committed
1116
                "hidden": {"prompt": "PROMPT", "extra_pnginfo": "EXTRA_PNGINFO"},
comfyanonymous's avatar
comfyanonymous committed
1117
1118
1119
1120
1121
1122
1123
                }

    RETURN_TYPES = ()
    FUNCTION = "save_images"

    OUTPUT_NODE = True

1124
1125
    CATEGORY = "image"

pythongosssss's avatar
tidy  
pythongosssss committed
1126
    def save_images(self, images, filename_prefix="ComfyUI", prompt=None, extra_pnginfo=None):
1127
        full_output_folder, filename, counter, subfolder, filename_prefix = folder_paths.get_save_image_path(filename_prefix, self.output_dir, images[0].shape[1], images[0].shape[0])
m957ymj75urz's avatar
m957ymj75urz committed
1128
        results = list()
comfyanonymous's avatar
comfyanonymous committed
1129
1130
        for image in images:
            i = 255. * image.cpu().numpy()
1131
            img = Image.fromarray(np.clip(i, 0, 255).astype(np.uint8))
comfyanonymous's avatar
comfyanonymous committed
1132
1133
1134
1135
1136
1137
            metadata = PngInfo()
            if prompt is not None:
                metadata.add_text("prompt", json.dumps(prompt))
            if extra_pnginfo is not None:
                for x in extra_pnginfo:
                    metadata.add_text(x, json.dumps(extra_pnginfo[x]))
1138

1139
            file = f"{filename}_{counter:05}_.png"
1140
            img.save(os.path.join(full_output_folder, file), pnginfo=metadata, compress_level=4)
m957ymj75urz's avatar
m957ymj75urz committed
1141
1142
1143
1144
            results.append({
                "filename": file,
                "subfolder": subfolder,
                "type": self.type
Gavroche CryptoRUSH's avatar
Gavroche CryptoRUSH committed
1145
            })
1146
            counter += 1
comfyanonymous's avatar
comfyanonymous committed
1147

m957ymj75urz's avatar
m957ymj75urz committed
1148
        return { "ui": { "images": results } }
comfyanonymous's avatar
comfyanonymous committed
1149

pythongosssss's avatar
pythongosssss committed
1150
1151
class PreviewImage(SaveImage):
    def __init__(self):
1152
        self.output_dir = folder_paths.get_temp_directory()
m957ymj75urz's avatar
m957ymj75urz committed
1153
        self.type = "temp"
pythongosssss's avatar
pythongosssss committed
1154
1155
1156

    @classmethod
    def INPUT_TYPES(s):
1157
        return {"required":
pythongosssss's avatar
pythongosssss committed
1158
1159
1160
                    {"images": ("IMAGE", ), },
                "hidden": {"prompt": "PROMPT", "extra_pnginfo": "EXTRA_PNGINFO"},
                }
1161

1162
1163
1164
class LoadImage:
    @classmethod
    def INPUT_TYPES(s):
1165
        input_dir = folder_paths.get_input_directory()
comfyanonymous's avatar
comfyanonymous committed
1166
        files = [f for f in os.listdir(input_dir) if os.path.isfile(os.path.join(input_dir, f))]
1167
        return {"required":
comfyanonymous's avatar
comfyanonymous committed
1168
                    {"image": (sorted(files), )},
1169
                }
1170
1171

    CATEGORY = "image"
1172

1173
    RETURN_TYPES = ("IMAGE", "MASK")
1174
1175
    FUNCTION = "load_image"
    def load_image(self, image):
1176
        image_path = folder_paths.get_annotated_filepath(image)
1177
        i = Image.open(image_path)
1178
        i = ImageOps.exif_transpose(i)
1179
        image = i.convert("RGB")
1180
        image = np.array(image).astype(np.float32) / 255.0
1181
        image = torch.from_numpy(image)[None,]
1182
1183
1184
1185
1186
1187
        if 'A' in i.getbands():
            mask = np.array(i.getchannel('A')).astype(np.float32) / 255.0
            mask = 1. - torch.from_numpy(mask)
        else:
            mask = torch.zeros((64,64), dtype=torch.float32, device="cpu")
        return (image, mask)
1188

1189
1190
    @classmethod
    def IS_CHANGED(s, image):
1191
        image_path = folder_paths.get_annotated_filepath(image)
1192
1193
1194
1195
        m = hashlib.sha256()
        with open(image_path, 'rb') as f:
            m.update(f.read())
        return m.digest().hex()
pythongosssss's avatar
pythongosssss committed
1196

1197
1198
1199
1200
1201
1202
1203
    @classmethod
    def VALIDATE_INPUTS(s, image):
        if not folder_paths.exists_annotated_filepath(image):
            return "Invalid image file: {}".format(image)

        return True

1204
class LoadImageMask:
1205
    _color_channels = ["alpha", "red", "green", "blue"]
1206
1207
    @classmethod
    def INPUT_TYPES(s):
1208
        input_dir = folder_paths.get_input_directory()
comfyanonymous's avatar
comfyanonymous committed
1209
        files = [f for f in os.listdir(input_dir) if os.path.isfile(os.path.join(input_dir, f))]
1210
        return {"required":
comfyanonymous's avatar
comfyanonymous committed
1211
                    {"image": (sorted(files), ),
1212
                     "channel": (s._color_channels, ), }
1213
1214
                }

1215
    CATEGORY = "mask"
1216
1217
1218
1219

    RETURN_TYPES = ("MASK",)
    FUNCTION = "load_image"
    def load_image(self, image, channel):
1220
        image_path = folder_paths.get_annotated_filepath(image)
1221
        i = Image.open(image_path)
1222
        i = ImageOps.exif_transpose(i)
1223
1224
        if i.getbands() != ("R", "G", "B", "A"):
            i = i.convert("RGBA")
1225
1226
1227
1228
1229
1230
1231
1232
1233
1234
1235
1236
1237
        mask = None
        c = channel[0].upper()
        if c in i.getbands():
            mask = np.array(i.getchannel(c)).astype(np.float32) / 255.0
            mask = torch.from_numpy(mask)
            if c == 'A':
                mask = 1. - mask
        else:
            mask = torch.zeros((64,64), dtype=torch.float32, device="cpu")
        return (mask,)

    @classmethod
    def IS_CHANGED(s, image, channel):
1238
        image_path = folder_paths.get_annotated_filepath(image)
1239
1240
1241
1242
        m = hashlib.sha256()
        with open(image_path, 'rb') as f:
            m.update(f.read())
        return m.digest().hex()
pythongosssss's avatar
pythongosssss committed
1243

1244
1245
1246
1247
1248
1249
1250
1251
1252
1253
    @classmethod
    def VALIDATE_INPUTS(s, image, channel):
        if not folder_paths.exists_annotated_filepath(image):
            return "Invalid image file: {}".format(image)

        if channel not in s._color_channels:
            return "Invalid color channel: {}".format(channel)

        return True

comfyanonymous's avatar
comfyanonymous committed
1254
1255
1256
1257
1258
1259
1260
class ImageScale:
    upscale_methods = ["nearest-exact", "bilinear", "area"]
    crop_methods = ["disabled", "center"]

    @classmethod
    def INPUT_TYPES(s):
        return {"required": { "image": ("IMAGE",), "upscale_method": (s.upscale_methods,),
1261
1262
                              "width": ("INT", {"default": 512, "min": 1, "max": MAX_RESOLUTION, "step": 1}),
                              "height": ("INT", {"default": 512, "min": 1, "max": MAX_RESOLUTION, "step": 1}),
comfyanonymous's avatar
comfyanonymous committed
1263
1264
1265
1266
                              "crop": (s.crop_methods,)}}
    RETURN_TYPES = ("IMAGE",)
    FUNCTION = "upscale"

1267
    CATEGORY = "image/upscaling"
1268

comfyanonymous's avatar
comfyanonymous committed
1269
1270
    def upscale(self, image, upscale_method, width, height, crop):
        samples = image.movedim(-1,1)
comfyanonymous's avatar
comfyanonymous committed
1271
        s = comfy.utils.common_upscale(samples, width, height, upscale_method, crop)
comfyanonymous's avatar
comfyanonymous committed
1272
1273
        s = s.movedim(1,-1)
        return (s,)
comfyanonymous's avatar
comfyanonymous committed
1274

1275
1276
1277
1278
1279
1280
1281
1282
1283
1284
1285
1286
1287
1288
1289
1290
class ImageInvert:

    @classmethod
    def INPUT_TYPES(s):
        return {"required": { "image": ("IMAGE",)}}

    RETURN_TYPES = ("IMAGE",)
    FUNCTION = "invert"

    CATEGORY = "image"

    def invert(self, image):
        s = 1.0 - image
        return (s,)


Guo Y.K's avatar
Guo Y.K committed
1291
1292
1293
1294
1295
1296
1297
class ImagePadForOutpaint:

    @classmethod
    def INPUT_TYPES(s):
        return {
            "required": {
                "image": ("IMAGE",),
1298
1299
1300
1301
                "left": ("INT", {"default": 0, "min": 0, "max": MAX_RESOLUTION, "step": 8}),
                "top": ("INT", {"default": 0, "min": 0, "max": MAX_RESOLUTION, "step": 8}),
                "right": ("INT", {"default": 0, "min": 0, "max": MAX_RESOLUTION, "step": 8}),
                "bottom": ("INT", {"default": 0, "min": 0, "max": MAX_RESOLUTION, "step": 8}),
1302
                "feathering": ("INT", {"default": 40, "min": 0, "max": MAX_RESOLUTION, "step": 1}),
Guo Y.K's avatar
Guo Y.K committed
1303
1304
1305
1306
1307
1308
1309
1310
            }
        }

    RETURN_TYPES = ("IMAGE", "MASK")
    FUNCTION = "expand_image"

    CATEGORY = "image"

1311
    def expand_image(self, image, left, top, right, bottom, feathering):
Guo Y.K's avatar
Guo Y.K committed
1312
1313
1314
1315
1316
1317
1318
1319
1320
1321
1322
1323
        d1, d2, d3, d4 = image.size()

        new_image = torch.zeros(
            (d1, d2 + top + bottom, d3 + left + right, d4),
            dtype=torch.float32,
        )
        new_image[:, top:top + d2, left:left + d3, :] = image

        mask = torch.ones(
            (d2 + top + bottom, d3 + left + right),
            dtype=torch.float32,
        )
1324

1325
1326
1327
1328
1329
        t = torch.zeros(
            (d2, d3),
            dtype=torch.float32
        )

1330
        if feathering > 0 and feathering * 2 < d2 and feathering * 2 < d3:
1331
1332
1333
1334
1335
1336
1337
1338
1339
1340
1341
1342
1343
1344
1345
1346
1347
1348
1349

            for i in range(d2):
                for j in range(d3):
                    dt = i if top != 0 else d2
                    db = d2 - i if bottom != 0 else d2

                    dl = j if left != 0 else d3
                    dr = d3 - j if right != 0 else d3

                    d = min(dt, db, dl, dr)

                    if d >= feathering:
                        continue

                    v = (feathering - d) / feathering

                    t[i, j] = v * v

        mask[top:top + d2, left:left + d3] = t
1350

Guo Y.K's avatar
Guo Y.K committed
1351
1352
1353
        return (new_image, mask)


comfyanonymous's avatar
comfyanonymous committed
1354
1355
NODE_CLASS_MAPPINGS = {
    "KSampler": KSampler,
1356
    "CheckpointLoaderSimple": CheckpointLoaderSimple,
comfyanonymous's avatar
comfyanonymous committed
1357
    "CLIPTextEncode": CLIPTextEncode,
comfyanonymous's avatar
comfyanonymous committed
1358
    "CLIPSetLastLayer": CLIPSetLastLayer,
comfyanonymous's avatar
comfyanonymous committed
1359
1360
    "VAEDecode": VAEDecode,
    "VAEEncode": VAEEncode,
1361
    "VAEEncodeForInpaint": VAEEncodeForInpaint,
comfyanonymous's avatar
comfyanonymous committed
1362
1363
1364
    "VAELoader": VAELoader,
    "EmptyLatentImage": EmptyLatentImage,
    "LatentUpscale": LatentUpscale,
comfyanonymous's avatar
comfyanonymous committed
1365
    "LatentUpscaleBy": LatentUpscaleBy,
1366
    "LatentFromBatch": LatentFromBatch,
1367
    "RepeatLatentBatch": RepeatLatentBatch,
comfyanonymous's avatar
comfyanonymous committed
1368
    "SaveImage": SaveImage,
pythongosssss's avatar
pythongosssss committed
1369
    "PreviewImage": PreviewImage,
comfyanonymous's avatar
comfyanonymous committed
1370
    "LoadImage": LoadImage,
1371
    "LoadImageMask": LoadImageMask,
comfyanonymous's avatar
comfyanonymous committed
1372
    "ImageScale": ImageScale,
1373
    "ImageInvert": ImageInvert,
Guo Y.K's avatar
Guo Y.K committed
1374
    "ImagePadForOutpaint": ImagePadForOutpaint,
FizzleDorf's avatar
FizzleDorf committed
1375
    "ConditioningAverage ": ConditioningAverage ,
comfyanonymous's avatar
comfyanonymous committed
1376
1377
    "ConditioningCombine": ConditioningCombine,
    "ConditioningSetArea": ConditioningSetArea,
Jacob Segal's avatar
Jacob Segal committed
1378
    "ConditioningSetMask": ConditioningSetMask,
comfyanonymous's avatar
comfyanonymous committed
1379
    "KSamplerAdvanced": KSamplerAdvanced,
1380
    "SetLatentNoiseMask": SetLatentNoiseMask,
comfyanonymous's avatar
comfyanonymous committed
1381
    "LatentComposite": LatentComposite,
comfyanonymous's avatar
comfyanonymous committed
1382
    "LatentRotate": LatentRotate,
comfyanonymous's avatar
comfyanonymous committed
1383
    "LatentFlip": LatentFlip,
comfyanonymous's avatar
comfyanonymous committed
1384
    "LatentCrop": LatentCrop,
1385
    "LoraLoader": LoraLoader,
1386
    "CLIPLoader": CLIPLoader,
1387
    "CLIPVisionEncode": CLIPVisionEncode,
1388
    "StyleModelApply": StyleModelApply,
1389
    "unCLIPConditioning": unCLIPConditioning,
comfyanonymous's avatar
comfyanonymous committed
1390
1391
    "ControlNetApply": ControlNetApply,
    "ControlNetLoader": ControlNetLoader,
1392
    "DiffControlNetLoader": DiffControlNetLoader,
comfyanonymous's avatar
comfyanonymous committed
1393
1394
    "StyleModelLoader": StyleModelLoader,
    "CLIPVisionLoader": CLIPVisionLoader,
1395
    "VAEDecodeTiled": VAEDecodeTiled,
comfyanonymous's avatar
comfyanonymous committed
1396
    "VAEEncodeTiled": VAEEncodeTiled,
1397
    "TomePatchModel": TomePatchModel,
1398
    "unCLIPCheckpointLoader": unCLIPCheckpointLoader,
1399
1400
1401
    "GLIGENLoader": GLIGENLoader,
    "GLIGENTextBoxApply": GLIGENTextBoxApply,

1402
    "CheckpointLoader": CheckpointLoader,
sALTaccount's avatar
sALTaccount committed
1403
    "DiffusersLoader": DiffusersLoader,
Dr.Lt.Data's avatar
Dr.Lt.Data committed
1404
1405
1406

    "LoadLatent": LoadLatent,
    "SaveLatent": SaveLatent
comfyanonymous's avatar
comfyanonymous committed
1407
1408
}

City's avatar
City committed
1409
1410
1411
1412
1413
NODE_DISPLAY_NAME_MAPPINGS = {
    # Sampling
    "KSampler": "KSampler",
    "KSamplerAdvanced": "KSampler (Advanced)",
    # Loaders
comfyanonymous's avatar
Rename.  
comfyanonymous committed
1414
1415
    "CheckpointLoader": "Load Checkpoint (With Config)",
    "CheckpointLoaderSimple": "Load Checkpoint",
City's avatar
City committed
1416
1417
1418
1419
1420
1421
1422
1423
1424
1425
1426
1427
1428
1429
    "VAELoader": "Load VAE",
    "LoraLoader": "Load LoRA",
    "CLIPLoader": "Load CLIP",
    "ControlNetLoader": "Load ControlNet Model",
    "DiffControlNetLoader": "Load ControlNet Model (diff)",
    "StyleModelLoader": "Load Style Model",
    "CLIPVisionLoader": "Load CLIP Vision",
    "UpscaleModelLoader": "Load Upscale Model",
    # Conditioning
    "CLIPVisionEncode": "CLIP Vision Encode",
    "StyleModelApply": "Apply Style Model",
    "CLIPTextEncode": "CLIP Text Encode (Prompt)",
    "CLIPSetLastLayer": "CLIP Set Last Layer",
    "ConditioningCombine": "Conditioning (Combine)",
FizzleDorf's avatar
FizzleDorf committed
1430
    "ConditioningAverage ": "Conditioning (Average)",
City's avatar
City committed
1431
    "ConditioningSetArea": "Conditioning (Set Area)",
Jacob Segal's avatar
Jacob Segal committed
1432
    "ConditioningSetMask": "Conditioning (Set Mask)",
City's avatar
City committed
1433
1434
1435
1436
1437
1438
1439
1440
1441
1442
1443
    "ControlNetApply": "Apply ControlNet",
    # Latent
    "VAEEncodeForInpaint": "VAE Encode (for Inpainting)",
    "SetLatentNoiseMask": "Set Latent Noise Mask",
    "VAEDecode": "VAE Decode",
    "VAEEncode": "VAE Encode",
    "LatentRotate": "Rotate Latent",
    "LatentFlip": "Flip Latent",
    "LatentCrop": "Crop Latent",
    "EmptyLatentImage": "Empty Latent Image",
    "LatentUpscale": "Upscale Latent",
comfyanonymous's avatar
comfyanonymous committed
1444
    "LatentUpscaleBy": "Upscale Latent By",
City's avatar
City committed
1445
    "LatentComposite": "Latent Composite",
1446
1447
    "LatentFromBatch" : "Latent From Batch",
    "RepeatLatentBatch": "Repeat Latent Batch",
City's avatar
City committed
1448
1449
1450
1451
1452
1453
1454
1455
1456
1457
1458
1459
1460
1461
    # Image
    "SaveImage": "Save Image",
    "PreviewImage": "Preview Image",
    "LoadImage": "Load Image",
    "LoadImageMask": "Load Image (as Mask)",
    "ImageScale": "Upscale Image",
    "ImageUpscaleWithModel": "Upscale Image (using Model)",
    "ImageInvert": "Invert Image",
    "ImagePadForOutpaint": "Pad Image for Outpainting",
    # _for_testing
    "VAEDecodeTiled": "VAE Decode (Tiled)",
    "VAEEncodeTiled": "VAE Encode (Tiled)",
}

1462
1463
1464
1465
1466
1467
1468
1469
1470
1471
1472
1473
1474
1475
1476
def load_custom_node(module_path):
    module_name = os.path.basename(module_path)
    if os.path.isfile(module_path):
        sp = os.path.splitext(module_path)
        module_name = sp[0]
    try:
        if os.path.isfile(module_path):
            module_spec = importlib.util.spec_from_file_location(module_name, module_path)
        else:
            module_spec = importlib.util.spec_from_file_location(module_name, os.path.join(module_path, "__init__.py"))
        module = importlib.util.module_from_spec(module_spec)
        sys.modules[module_name] = module
        module_spec.loader.exec_module(module)
        if hasattr(module, "NODE_CLASS_MAPPINGS") and getattr(module, "NODE_CLASS_MAPPINGS") is not None:
            NODE_CLASS_MAPPINGS.update(module.NODE_CLASS_MAPPINGS)
1477
1478
            if hasattr(module, "NODE_DISPLAY_NAME_MAPPINGS") and getattr(module, "NODE_DISPLAY_NAME_MAPPINGS") is not None:
                NODE_DISPLAY_NAME_MAPPINGS.update(module.NODE_DISPLAY_NAME_MAPPINGS)
1479
            return True
1480
1481
        else:
            print(f"Skip {module_path} module for custom nodes due to the lack of NODE_CLASS_MAPPINGS.")
1482
            return False
1483
1484
1485
    except Exception as e:
        print(traceback.format_exc())
        print(f"Cannot import {module_path} module for custom nodes:", e)
1486
        return False
1487

Hacker 17082006's avatar
Hacker 17082006 committed
1488
def load_custom_nodes():
1489
    node_paths = folder_paths.get_folder_paths("custom_nodes")
1490
    node_import_times = []
1491
1492
1493
1494
1495
1496
1497
1498
    for custom_node_path in node_paths:
        possible_modules = os.listdir(custom_node_path)
        if "__pycache__" in possible_modules:
            possible_modules.remove("__pycache__")

        for possible_module in possible_modules:
            module_path = os.path.join(custom_node_path, possible_module)
            if os.path.isfile(module_path) and os.path.splitext(module_path)[1] != ".py": continue
1499
            if module_path.endswith(".disabled"): continue
1500
            time_before = time.perf_counter()
1501
            success = load_custom_node(module_path)
1502
            node_import_times.append((time.perf_counter() - time_before, module_path, success))
1503

1504
    if len(node_import_times) > 0:
comfyanonymous's avatar
comfyanonymous committed
1505
        print("\nImport times for custom nodes:")
1506
        for n in sorted(node_import_times):
1507
1508
1509
1510
1511
            if n[2]:
                import_message = ""
            else:
                import_message = " (IMPORT FAILED)"
            print("{:6.1f} seconds{}:".format(n[0], import_message), n[1])
1512
        print()
1513

1514
def init_custom_nodes():
1515
    load_custom_node(os.path.join(os.path.join(os.path.dirname(os.path.realpath(__file__)), "comfy_extras"), "nodes_hypernetwork.py"))
1516
1517
    load_custom_node(os.path.join(os.path.join(os.path.dirname(os.path.realpath(__file__)), "comfy_extras"), "nodes_upscale_model.py"))
    load_custom_node(os.path.join(os.path.join(os.path.dirname(os.path.realpath(__file__)), "comfy_extras"), "nodes_post_processing.py"))
1518
    load_custom_node(os.path.join(os.path.join(os.path.dirname(os.path.realpath(__file__)), "comfy_extras"), "nodes_mask.py"))
1519
    load_custom_node(os.path.join(os.path.join(os.path.dirname(os.path.realpath(__file__)), "comfy_extras"), "nodes_rebatch.py"))
1520
    load_custom_nodes()