transforms.py 79.3 KB
Newer Older
1
import math
vfdev's avatar
vfdev committed
2
import numbers
3
import random
vfdev's avatar
vfdev committed
4
import warnings
vfdev's avatar
vfdev committed
5
from collections.abc import Sequence
6
from typing import Tuple, List, Optional
vfdev's avatar
vfdev committed
7
8
9
10

import torch
from torch import Tensor

11
12
13
14
15
try:
    import accimage
except ImportError:
    accimage = None

16
from ..utils import _log_api_usage_once
17
from . import functional as F
18
from .functional import InterpolationMode, _interpolation_modes_from_int
19

20

21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
__all__ = [
    "Compose",
    "ToTensor",
    "PILToTensor",
    "ConvertImageDtype",
    "ToPILImage",
    "Normalize",
    "Resize",
    "Scale",
    "CenterCrop",
    "Pad",
    "Lambda",
    "RandomApply",
    "RandomChoice",
    "RandomOrder",
    "RandomCrop",
    "RandomHorizontalFlip",
    "RandomVerticalFlip",
    "RandomResizedCrop",
    "RandomSizedCrop",
    "FiveCrop",
    "TenCrop",
    "LinearTransformation",
    "ColorJitter",
    "RandomRotation",
    "RandomAffine",
    "Grayscale",
    "RandomGrayscale",
    "RandomPerspective",
    "RandomErasing",
    "GaussianBlur",
    "InterpolationMode",
    "RandomInvert",
    "RandomPosterize",
    "RandomSolarize",
    "RandomAdjustSharpness",
    "RandomAutocontrast",
    "RandomEqualize",
]
60

61

62
class Compose:
63
64
    """Composes several transforms together. This transform does not support torchscript.
    Please, see the note below.
65
66
67
68
69
70
71

    Args:
        transforms (list of ``Transform`` objects): list of transforms to compose.

    Example:
        >>> transforms.Compose([
        >>>     transforms.CenterCrop(10),
72
73
        >>>     transforms.PILToTensor(),
        >>>     transforms.ConvertImageDtype(torch.float),
74
        >>> ])
75
76
77
78
79
80
81
82
83
84
85
86
87

    .. note::
        In order to script the transformations, please use ``torch.nn.Sequential`` as below.

        >>> transforms = torch.nn.Sequential(
        >>>     transforms.CenterCrop(10),
        >>>     transforms.Normalize((0.485, 0.456, 0.406), (0.229, 0.224, 0.225)),
        >>> )
        >>> scripted_transforms = torch.jit.script(transforms)

        Make sure to use only scriptable transformations, i.e. that work with ``torch.Tensor``, does not require
        `lambda` functions or ``PIL.Image``.

88
89
90
    """

    def __init__(self, transforms):
91
92
        if not torch.jit.is_scripting() and not torch.jit.is_tracing():
            _log_api_usage_once(self)
93
94
95
96
97
98
99
        self.transforms = transforms

    def __call__(self, img):
        for t in self.transforms:
            img = t(img)
        return img

100
    def __repr__(self):
101
        format_string = self.__class__.__name__ + "("
102
        for t in self.transforms:
103
            format_string += "\n"
104
            format_string += f"    {t}"
105
        format_string += "\n)"
106
107
        return format_string

108

109
class ToTensor:
110
    """Convert a ``PIL Image`` or ``numpy.ndarray`` to tensor. This transform does not support torchscript.
111
112

    Converts a PIL Image or numpy.ndarray (H x W x C) in the range
surgan12's avatar
surgan12 committed
113
114
115
116
117
    [0, 255] to a torch.FloatTensor of shape (C x H x W) in the range [0.0, 1.0]
    if the PIL Image belongs to one of the modes (L, LA, P, I, F, RGB, YCbCr, RGBA, CMYK, 1)
    or if the numpy.ndarray has dtype = np.uint8

    In the other cases, tensors are returned without scaling.
118
119
120
121
122

    .. note::
        Because the input image is scaled to [0.0, 1.0], this transformation should not be used when
        transforming target image masks. See the `references`_ for implementing the transforms for image masks.

123
    .. _references: https://github.com/pytorch/vision/tree/main/references/segmentation
124
125
    """

126
127
128
    def __init__(self) -> None:
        _log_api_usage_once(self)

129
130
131
132
133
134
135
136
137
138
    def __call__(self, pic):
        """
        Args:
            pic (PIL Image or numpy.ndarray): Image to be converted to tensor.

        Returns:
            Tensor: Converted image.
        """
        return F.to_tensor(pic)

139
    def __repr__(self):
140
        return self.__class__.__name__ + "()"
141

142

143
class PILToTensor:
144
    """Convert a ``PIL Image`` to a tensor of the same type. This transform does not support torchscript.
145

vfdev's avatar
vfdev committed
146
    Converts a PIL Image (H x W x C) to a Tensor of shape (C x H x W).
147
148
    """

149
150
151
    def __init__(self) -> None:
        _log_api_usage_once(self)

152
153
    def __call__(self, pic):
        """
154
155
156
157
        .. note::

            A deep copy of the underlying array is performed.

158
159
160
161
162
163
164
165
166
        Args:
            pic (PIL Image): Image to be converted to tensor.

        Returns:
            Tensor: Converted image.
        """
        return F.pil_to_tensor(pic)

    def __repr__(self):
167
        return self.__class__.__name__ + "()"
168
169


170
class ConvertImageDtype(torch.nn.Module):
171
    """Convert a tensor image to the given ``dtype`` and scale the values accordingly
172
    This function does not support PIL Image.
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189

    Args:
        dtype (torch.dtype): Desired data type of the output

    .. note::

        When converting from a smaller to a larger integer ``dtype`` the maximum values are **not** mapped exactly.
        If converted back and forth, this mismatch has no effect.

    Raises:
        RuntimeError: When trying to cast :class:`torch.float32` to :class:`torch.int32` or :class:`torch.int64` as
            well as for trying to cast :class:`torch.float64` to :class:`torch.int64`. These conversions might lead to
            overflow errors since the floating point ``dtype`` cannot store consecutive integers over the whole range
            of the integer ``dtype``.
    """

    def __init__(self, dtype: torch.dtype) -> None:
190
        super().__init__()
191
        _log_api_usage_once(self)
192
193
        self.dtype = dtype

vfdev's avatar
vfdev committed
194
    def forward(self, image):
195
196
197
        return F.convert_image_dtype(image, self.dtype)


198
class ToPILImage:
199
    """Convert a tensor or an ndarray to PIL Image. This transform does not support torchscript.
200
201
202
203
204
205
206

    Converts a torch.*Tensor of shape C x H x W or a numpy ndarray of shape
    H x W x C to a PIL Image while preserving the value range.

    Args:
        mode (`PIL.Image mode`_): color space and pixel depth of input data (optional).
            If ``mode`` is ``None`` (default) there are some assumptions made about the input data:
vfdev's avatar
vfdev committed
207
208
209
210
211
            - If the input has 4 channels, the ``mode`` is assumed to be ``RGBA``.
            - If the input has 3 channels, the ``mode`` is assumed to be ``RGB``.
            - If the input has 2 channels, the ``mode`` is assumed to be ``LA``.
            - If the input has 1 channel, the ``mode`` is determined by the data type (i.e ``int``, ``float``,
            ``short``).
212

csukuangfj's avatar
csukuangfj committed
213
    .. _PIL.Image mode: https://pillow.readthedocs.io/en/latest/handbook/concepts.html#concept-modes
214
    """
215

216
    def __init__(self, mode=None):
217
        _log_api_usage_once(self)
218
219
220
221
222
223
224
225
226
227
228
229
230
        self.mode = mode

    def __call__(self, pic):
        """
        Args:
            pic (Tensor or numpy.ndarray): Image to be converted to PIL Image.

        Returns:
            PIL Image: Image converted to PIL Image.

        """
        return F.to_pil_image(pic, self.mode)

231
    def __repr__(self):
232
        format_string = self.__class__.__name__ + "("
233
        if self.mode is not None:
234
            format_string += f"mode={self.mode}"
235
        format_string += ")"
236
        return format_string
237

238

239
class Normalize(torch.nn.Module):
Fang Gao's avatar
Fang Gao committed
240
    """Normalize a tensor image with mean and standard deviation.
241
    This transform does not support PIL Image.
242
243
244
    Given mean: ``(mean[1],...,mean[n])`` and std: ``(std[1],..,std[n])`` for ``n``
    channels, this transform will normalize each channel of the input
    ``torch.*Tensor`` i.e.,
abdjava's avatar
abdjava committed
245
    ``output[channel] = (input[channel] - mean[channel]) / std[channel]``
246

247
    .. note::
248
        This transform acts out of place, i.e., it does not mutate the input tensor.
249

250
251
252
    Args:
        mean (sequence): Sequence of means for each channel.
        std (sequence): Sequence of standard deviations for each channel.
253
254
        inplace(bool,optional): Bool to make this operation in-place.

255
256
    """

surgan12's avatar
surgan12 committed
257
    def __init__(self, mean, std, inplace=False):
258
        super().__init__()
259
        _log_api_usage_once(self)
260
261
        self.mean = mean
        self.std = std
surgan12's avatar
surgan12 committed
262
        self.inplace = inplace
263

264
    def forward(self, tensor: Tensor) -> Tensor:
265
266
        """
        Args:
vfdev's avatar
vfdev committed
267
            tensor (Tensor): Tensor image to be normalized.
268
269
270
271

        Returns:
            Tensor: Normalized Tensor image.
        """
surgan12's avatar
surgan12 committed
272
        return F.normalize(tensor, self.mean, self.std, self.inplace)
273

274
    def __repr__(self):
275
        return self.__class__.__name__ + f"(mean={self.mean}, std={self.std})"
276

277

vfdev's avatar
vfdev committed
278
279
class Resize(torch.nn.Module):
    """Resize the input image to the given size.
280
    If the image is torch Tensor, it is expected
vfdev's avatar
vfdev committed
281
    to have [..., H, W] shape, where ... means an arbitrary number of leading dimensions
282

283
284
285
286
    .. warning::
        The output image might be different depending on its type: when downsampling, the interpolation of PIL images
        and tensors is slightly different, because PIL applies antialiasing. This may lead to significant differences
        in the performance of a network. Therefore, it is preferable to train and serve a model with the same input
287
288
        types. See also below the ``antialias`` parameter, which can help making the output of PIL images and tensors
        closer.
289

290
291
292
293
294
    Args:
        size (sequence or int): Desired output size. If size is a sequence like
            (h, w), output size will be matched to this. If size is an int,
            smaller edge of the image will be matched to this number.
            i.e, if height > width, then image will be rescaled to
vfdev's avatar
vfdev committed
295
            (size * height / width, size).
296
297
298

            .. note::
                In torchscript mode size as single int is not supported, use a sequence of length 1: ``[size, ]``.
299
300
301
302
        interpolation (InterpolationMode): Desired interpolation enum defined by
            :class:`torchvision.transforms.InterpolationMode`. Default is ``InterpolationMode.BILINEAR``.
            If input is Tensor, only ``InterpolationMode.NEAREST``, ``InterpolationMode.BILINEAR`` and
            ``InterpolationMode.BICUBIC`` are supported.
303
            For backward compatibility integer values (e.g. ``PIL.Image.NEAREST``) are still acceptable.
304
305
306
307
        max_size (int, optional): The maximum allowed for the longer edge of
            the resized image: if the longer edge of the image is greater
            than ``max_size`` after being resized according to ``size``, then
            the image is resized again so that the longer edge is equal to
308
            ``max_size``. As a result, ``size`` might be overruled, i.e the
309
310
311
            smaller edge may be shorter than ``size``. This is only supported
            if ``size`` is an int (or a sequence of length 1 in torchscript
            mode).
312
        antialias (bool, optional): antialias flag. If ``img`` is PIL Image, the flag is ignored and anti-alias
313
314
315
            is always used. If ``img`` is Tensor, the flag is False by default and can be set to True for
            ``InterpolationMode.BILINEAR`` only mode. This can help making the output for PIL images and tensors
            closer.
316
317
318

            .. warning::
                There is no autodiff support for ``antialias=True`` option with input ``img`` as Tensor.
319

320
321
    """

322
    def __init__(self, size, interpolation=InterpolationMode.BILINEAR, max_size=None, antialias=None):
vfdev's avatar
vfdev committed
323
        super().__init__()
324
        _log_api_usage_once(self)
325
        if not isinstance(size, (int, Sequence)):
326
            raise TypeError(f"Size should be int or sequence. Got {type(size)}")
327
328
329
        if isinstance(size, Sequence) and len(size) not in (1, 2):
            raise ValueError("If size is a sequence, it should have 1 or 2 values")
        self.size = size
330
        self.max_size = max_size
331
332
333
334

        # Backward compatibility with integer value
        if isinstance(interpolation, int):
            warnings.warn(
335
336
                "Argument interpolation should be of type InterpolationMode instead of int. "
                "Please, use InterpolationMode enum."
337
338
339
            )
            interpolation = _interpolation_modes_from_int(interpolation)

340
        self.interpolation = interpolation
341
        self.antialias = antialias
342

vfdev's avatar
vfdev committed
343
    def forward(self, img):
344
345
        """
        Args:
vfdev's avatar
vfdev committed
346
            img (PIL Image or Tensor): Image to be scaled.
347
348

        Returns:
vfdev's avatar
vfdev committed
349
            PIL Image or Tensor: Rescaled image.
350
        """
351
        return F.resize(img, self.size, self.interpolation, self.max_size, self.antialias)
352

353
    def __repr__(self):
354
355
        detail = f"(size={self.size}, interpolation={self.interpolation.value}, max_size={self.max_size}, antialias={self.antialias})"
        return self.__class__.__name__ + detail
356

357
358
359
360
361

class Scale(Resize):
    """
    Note: This transform is deprecated in favor of Resize.
    """
362

363
    def __init__(self, *args, **kwargs):
364
365
        warnings.warn("The use of the transforms.Scale transform is deprecated, please use transforms.Resize instead.")
        super().__init__(*args, **kwargs)
366
        _log_api_usage_once(self)
367
368


vfdev's avatar
vfdev committed
369
370
class CenterCrop(torch.nn.Module):
    """Crops the given image at the center.
371
    If the image is torch Tensor, it is expected
372
373
    to have [..., H, W] shape, where ... means an arbitrary number of leading dimensions.
    If image size is smaller than output size along any edge, image is padded with 0 and then center cropped.
374
375
376
377

    Args:
        size (sequence or int): Desired output size of the crop. If size is an
            int instead of sequence like (h, w), a square crop (size, size) is
378
            made. If provided a sequence of length 1, it will be interpreted as (size[0], size[0]).
379
380
381
    """

    def __init__(self, size):
vfdev's avatar
vfdev committed
382
        super().__init__()
383
        _log_api_usage_once(self)
384
        self.size = _setup_size(size, error_msg="Please provide only two dimensions (h, w) for size.")
385

vfdev's avatar
vfdev committed
386
    def forward(self, img):
387
388
        """
        Args:
vfdev's avatar
vfdev committed
389
            img (PIL Image or Tensor): Image to be cropped.
390
391

        Returns:
vfdev's avatar
vfdev committed
392
            PIL Image or Tensor: Cropped image.
393
394
395
        """
        return F.center_crop(img, self.size)

396
    def __repr__(self):
397
        return self.__class__.__name__ + f"(size={self.size})"
398

399

400
401
class Pad(torch.nn.Module):
    """Pad the given image on all sides with the given "pad" value.
402
    If the image is torch Tensor, it is expected
403
404
405
    to have [..., H, W] shape, where ... means at most 2 leading dimensions for mode reflect and symmetric,
    at most 3 leading dimensions for mode edge,
    and an arbitrary number of leading dimensions for mode constant
406
407

    Args:
408
409
410
        padding (int or sequence): Padding on each border. If a single int is provided this
            is used to pad all borders. If sequence of length 2 is provided this is the padding
            on left/right and top/bottom respectively. If a sequence of length 4 is provided
411
            this is the padding for the left, top, right and bottom borders respectively.
412
413
414
415

            .. note::
                In torchscript mode padding as single int is not supported, use a sequence of
                length 1: ``[padding, ]``.
416
        fill (number or str or tuple): Pixel fill value for constant fill. Default is 0. If a tuple of
417
            length 3, it is used to fill R, G, B channels respectively.
418
419
420
            This value is only used when the padding_mode is constant.
            Only number is supported for torch Tensor.
            Only int or str or tuple value is supported for PIL Image.
421
        padding_mode (str): Type of padding. Should be: constant, edge, reflect or symmetric.
422
            Default is constant.
423
424
425

            - constant: pads with a constant value, this value is specified with fill

426
427
            - edge: pads with the last value at the edge of the image.
              If input a 5D torch Tensor, the last 3 dimensions will be padded instead of the last 2
428

429
430
431
            - reflect: pads with reflection of image without repeating the last value on the edge.
              For example, padding [1, 2, 3, 4] with 2 elements on both sides in reflect mode
              will result in [3, 2, 1, 2, 3, 4, 3, 2]
432

433
434
435
            - symmetric: pads with reflection of image repeating the last value on the edge.
              For example, padding [1, 2, 3, 4] with 2 elements on both sides in symmetric mode
              will result in [2, 1, 1, 2, 3, 4, 4, 3]
436
437
    """

438
439
    def __init__(self, padding, fill=0, padding_mode="constant"):
        super().__init__()
440
        _log_api_usage_once(self)
441
442
443
444
445
446
447
448
449
450
        if not isinstance(padding, (numbers.Number, tuple, list)):
            raise TypeError("Got inappropriate padding arg")

        if not isinstance(fill, (numbers.Number, str, tuple)):
            raise TypeError("Got inappropriate fill arg")

        if padding_mode not in ["constant", "edge", "reflect", "symmetric"]:
            raise ValueError("Padding mode should be either constant, edge, reflect or symmetric")

        if isinstance(padding, Sequence) and len(padding) not in [1, 2, 4]:
451
            raise ValueError(
452
                f"Padding must be an int or a 1, 2, or 4 element tuple, not a {len(padding)} element tuple"
453
            )
454
455
456

        self.padding = padding
        self.fill = fill
457
        self.padding_mode = padding_mode
458

459
    def forward(self, img):
460
461
        """
        Args:
462
            img (PIL Image or Tensor): Image to be padded.
463
464

        Returns:
465
            PIL Image or Tensor: Padded image.
466
        """
467
        return F.pad(img, self.padding, self.fill, self.padding_mode)
468

469
    def __repr__(self):
470
        return self.__class__.__name__ + f"(padding={self.padding}, fill={self.fill}, padding_mode={self.padding_mode})"
471

472

473
class Lambda:
474
    """Apply a user-defined lambda as a transform. This transform does not support torchscript.
475
476
477
478
479
480

    Args:
        lambd (function): Lambda/function to be used for transform.
    """

    def __init__(self, lambd):
481
        _log_api_usage_once(self)
482
        if not callable(lambd):
483
            raise TypeError(f"Argument lambd should be callable, got {repr(type(lambd).__name__)}")
484
485
486
487
488
        self.lambd = lambd

    def __call__(self, img):
        return self.lambd(img)

489
    def __repr__(self):
490
        return self.__class__.__name__ + "()"
491

492

493
class RandomTransforms:
494
495
496
    """Base class for a list of transformations with randomness

    Args:
497
        transforms (sequence): list of transformations
498
499
500
    """

    def __init__(self, transforms):
501
        _log_api_usage_once(self)
502
503
        if not isinstance(transforms, Sequence):
            raise TypeError("Argument transforms should be a sequence")
504
505
506
507
508
509
        self.transforms = transforms

    def __call__(self, *args, **kwargs):
        raise NotImplementedError()

    def __repr__(self):
510
        format_string = self.__class__.__name__ + "("
511
        for t in self.transforms:
512
            format_string += "\n"
513
            format_string += f"    {t}"
514
        format_string += "\n)"
515
516
517
        return format_string


518
class RandomApply(torch.nn.Module):
519
    """Apply randomly a list of transformations with a given probability.
520
521
522
523
524
525
526
527
528
529
530
531

    .. note::
        In order to script the transformation, please use ``torch.nn.ModuleList`` as input instead of list/tuple of
        transforms as shown below:

        >>> transforms = transforms.RandomApply(torch.nn.ModuleList([
        >>>     transforms.ColorJitter(),
        >>> ]), p=0.3)
        >>> scripted_transforms = torch.jit.script(transforms)

        Make sure to use only scriptable transformations, i.e. that work with ``torch.Tensor``, does not require
        `lambda` functions or ``PIL.Image``.
532
533

    Args:
534
        transforms (sequence or torch.nn.Module): list of transformations
535
536
537
538
        p (float): probability
    """

    def __init__(self, transforms, p=0.5):
539
        super().__init__()
540
        _log_api_usage_once(self)
541
        self.transforms = transforms
542
543
        self.p = p

544
545
    def forward(self, img):
        if self.p < torch.rand(1):
546
547
548
549
550
551
            return img
        for t in self.transforms:
            img = t(img)
        return img

    def __repr__(self):
552
        format_string = self.__class__.__name__ + "("
553
        format_string += f"\n    p={self.p}"
554
        for t in self.transforms:
555
            format_string += "\n"
556
            format_string += f"    {t}"
557
        format_string += "\n)"
558
559
560
561
        return format_string


class RandomOrder(RandomTransforms):
562
563
    """Apply a list of transformations in a random order. This transform does not support torchscript."""

564
565
566
567
568
569
570
571
572
    def __call__(self, img):
        order = list(range(len(self.transforms)))
        random.shuffle(order)
        for i in order:
            img = self.transforms[i](img)
        return img


class RandomChoice(RandomTransforms):
573
574
    """Apply single transformation randomly picked from a list. This transform does not support torchscript."""

575
576
577
    def __init__(self, transforms, p=None):
        super().__init__(transforms)
        if p is not None and not isinstance(p, Sequence):
578
            raise TypeError("Argument p should be a sequence")
579
580
581
582
583
584
585
586
        self.p = p

    def __call__(self, *args):
        t = random.choices(self.transforms, weights=self.p)[0]
        return t(*args)

    def __repr__(self):
        format_string = super().__repr__()
587
        format_string += f"(p={self.p})"
588
        return format_string
589
590


vfdev's avatar
vfdev committed
591
592
class RandomCrop(torch.nn.Module):
    """Crop the given image at a random location.
593
    If the image is torch Tensor, it is expected
594
595
    to have [..., H, W] shape, where ... means an arbitrary number of leading dimensions,
    but if non-constant padding is used, the input is expected to have at most 2 leading dimensions
596
597
598
599

    Args:
        size (sequence or int): Desired output size of the crop. If size is an
            int instead of sequence like (h, w), a square crop (size, size) is
600
            made. If provided a sequence of length 1, it will be interpreted as (size[0], size[0]).
601
        padding (int or sequence, optional): Optional padding on each border
vfdev's avatar
vfdev committed
602
            of the image. Default is None. If a single int is provided this
603
604
            is used to pad all borders. If sequence of length 2 is provided this is the padding
            on left/right and top/bottom respectively. If a sequence of length 4 is provided
vfdev's avatar
vfdev committed
605
            this is the padding for the left, top, right and bottom borders respectively.
606
607
608
609

            .. note::
                In torchscript mode padding as single int is not supported, use a sequence of
                length 1: ``[padding, ]``.
610
        pad_if_needed (boolean): It will pad the image if smaller than the
ekka's avatar
ekka committed
611
            desired size to avoid raising an exception. Since cropping is done
612
            after padding, the padding seems to be done at a random offset.
613
        fill (number or str or tuple): Pixel fill value for constant fill. Default is 0. If a tuple of
614
            length 3, it is used to fill R, G, B channels respectively.
615
616
617
            This value is only used when the padding_mode is constant.
            Only number is supported for torch Tensor.
            Only int or str or tuple value is supported for PIL Image.
618
619
        padding_mode (str): Type of padding. Should be: constant, edge, reflect or symmetric.
            Default is constant.
620

621
            - constant: pads with a constant value, this value is specified with fill
622

623
624
            - edge: pads with the last value at the edge of the image.
              If input a 5D torch Tensor, the last 3 dimensions will be padded instead of the last 2
625

626
627
628
            - reflect: pads with reflection of image without repeating the last value on the edge.
              For example, padding [1, 2, 3, 4] with 2 elements on both sides in reflect mode
              will result in [3, 2, 1, 2, 3, 4, 3, 2]
629

630
631
632
            - symmetric: pads with reflection of image repeating the last value on the edge.
              For example, padding [1, 2, 3, 4] with 2 elements on both sides in symmetric mode
              will result in [2, 1, 1, 2, 3, 4, 4, 3]
633
634
635
    """

    @staticmethod
vfdev's avatar
vfdev committed
636
    def get_params(img: Tensor, output_size: Tuple[int, int]) -> Tuple[int, int, int, int]:
637
638
639
        """Get parameters for ``crop`` for a random crop.

        Args:
vfdev's avatar
vfdev committed
640
            img (PIL Image or Tensor): Image to be cropped.
641
642
643
644
645
            output_size (tuple): Expected output size of the crop.

        Returns:
            tuple: params (i, j, h, w) to be passed to ``crop`` for random crop.
        """
646
        w, h = F.get_image_size(img)
647
        th, tw = output_size
vfdev's avatar
vfdev committed
648
649

        if h + 1 < th or w + 1 < tw:
650
            raise ValueError(f"Required crop size {(th, tw)} is larger then input image size {(h, w)}")
vfdev's avatar
vfdev committed
651

652
653
654
        if w == tw and h == th:
            return 0, 0, h, w

655
656
        i = torch.randint(0, h - th + 1, size=(1,)).item()
        j = torch.randint(0, w - tw + 1, size=(1,)).item()
657
658
        return i, j, th, tw

vfdev's avatar
vfdev committed
659
660
    def __init__(self, size, padding=None, pad_if_needed=False, fill=0, padding_mode="constant"):
        super().__init__()
661
        _log_api_usage_once(self)
vfdev's avatar
vfdev committed
662

663
        self.size = tuple(_setup_size(size, error_msg="Please provide only two dimensions (h, w) for size."))
664

vfdev's avatar
vfdev committed
665
666
667
668
669
670
        self.padding = padding
        self.pad_if_needed = pad_if_needed
        self.fill = fill
        self.padding_mode = padding_mode

    def forward(self, img):
671
672
        """
        Args:
vfdev's avatar
vfdev committed
673
            img (PIL Image or Tensor): Image to be cropped.
674
675

        Returns:
vfdev's avatar
vfdev committed
676
            PIL Image or Tensor: Cropped image.
677
        """
678
679
        if self.padding is not None:
            img = F.pad(img, self.padding, self.fill, self.padding_mode)
680

681
        width, height = F.get_image_size(img)
682
        # pad the width if needed
vfdev's avatar
vfdev committed
683
684
685
        if self.pad_if_needed and width < self.size[1]:
            padding = [self.size[1] - width, 0]
            img = F.pad(img, padding, self.fill, self.padding_mode)
686
        # pad the height if needed
vfdev's avatar
vfdev committed
687
688
689
        if self.pad_if_needed and height < self.size[0]:
            padding = [0, self.size[0] - height]
            img = F.pad(img, padding, self.fill, self.padding_mode)
690

691
692
693
694
        i, j, h, w = self.get_params(img, self.size)

        return F.crop(img, i, j, h, w)

695
    def __repr__(self):
696
        return self.__class__.__name__ + f"(size={self.size}, padding={self.padding})"
697

698

699
700
class RandomHorizontalFlip(torch.nn.Module):
    """Horizontally flip the given image randomly with a given probability.
701
    If the image is torch Tensor, it is expected
702
703
    to have [..., H, W] shape, where ... means an arbitrary number of leading
    dimensions
704
705
706
707
708
709

    Args:
        p (float): probability of the image being flipped. Default value is 0.5
    """

    def __init__(self, p=0.5):
710
        super().__init__()
711
        _log_api_usage_once(self)
712
        self.p = p
713

714
    def forward(self, img):
715
716
        """
        Args:
717
            img (PIL Image or Tensor): Image to be flipped.
718
719

        Returns:
720
            PIL Image or Tensor: Randomly flipped image.
721
        """
722
        if torch.rand(1) < self.p:
723
724
725
            return F.hflip(img)
        return img

726
    def __repr__(self):
727
        return self.__class__.__name__ + f"(p={self.p})"
728

729

730
class RandomVerticalFlip(torch.nn.Module):
vfdev's avatar
vfdev committed
731
    """Vertically flip the given image randomly with a given probability.
732
    If the image is torch Tensor, it is expected
733
734
    to have [..., H, W] shape, where ... means an arbitrary number of leading
    dimensions
735
736
737
738
739
740

    Args:
        p (float): probability of the image being flipped. Default value is 0.5
    """

    def __init__(self, p=0.5):
741
        super().__init__()
742
        _log_api_usage_once(self)
743
        self.p = p
744

745
    def forward(self, img):
746
747
        """
        Args:
748
            img (PIL Image or Tensor): Image to be flipped.
749
750

        Returns:
751
            PIL Image or Tensor: Randomly flipped image.
752
        """
753
        if torch.rand(1) < self.p:
754
755
756
            return F.vflip(img)
        return img

757
    def __repr__(self):
758
        return self.__class__.__name__ + f"(p={self.p})"
759

760

761
762
class RandomPerspective(torch.nn.Module):
    """Performs a random perspective transformation of the given image with a given probability.
763
    If the image is torch Tensor, it is expected
764
    to have [..., H, W] shape, where ... means an arbitrary number of leading dimensions.
765
766

    Args:
767
768
769
        distortion_scale (float): argument to control the degree of distortion and ranges from 0 to 1.
            Default is 0.5.
        p (float): probability of the image being transformed. Default is 0.5.
770
771
772
        interpolation (InterpolationMode): Desired interpolation enum defined by
            :class:`torchvision.transforms.InterpolationMode`. Default is ``InterpolationMode.BILINEAR``.
            If input is Tensor, only ``InterpolationMode.NEAREST``, ``InterpolationMode.BILINEAR`` are supported.
773
            For backward compatibility integer values (e.g. ``PIL.Image.NEAREST``) are still acceptable.
774
775
        fill (sequence or number): Pixel fill value for the area outside the transformed
            image. Default is ``0``. If given a number, the value is used for all bands respectively.
776
777
    """

778
    def __init__(self, distortion_scale=0.5, p=0.5, interpolation=InterpolationMode.BILINEAR, fill=0):
779
        super().__init__()
780
        _log_api_usage_once(self)
781
        self.p = p
782
783
784
785

        # Backward compatibility with integer value
        if isinstance(interpolation, int):
            warnings.warn(
786
787
                "Argument interpolation should be of type InterpolationMode instead of int. "
                "Please, use InterpolationMode enum."
788
789
790
            )
            interpolation = _interpolation_modes_from_int(interpolation)

791
792
        self.interpolation = interpolation
        self.distortion_scale = distortion_scale
793
794
795
796
797
798

        if fill is None:
            fill = 0
        elif not isinstance(fill, (Sequence, numbers.Number)):
            raise TypeError("Fill should be either a sequence or a number.")

799
        self.fill = fill
800

801
    def forward(self, img):
802
803
        """
        Args:
804
            img (PIL Image or Tensor): Image to be Perspectively transformed.
805
806

        Returns:
807
            PIL Image or Tensor: Randomly transformed image.
808
        """
809
810
811
812

        fill = self.fill
        if isinstance(img, Tensor):
            if isinstance(fill, (int, float)):
813
                fill = [float(fill)] * F.get_image_num_channels(img)
814
815
816
            else:
                fill = [float(f) for f in fill]

817
        if torch.rand(1) < self.p:
818
            width, height = F.get_image_size(img)
819
            startpoints, endpoints = self.get_params(width, height, self.distortion_scale)
820
            return F.perspective(img, startpoints, endpoints, self.interpolation, fill)
821
822
823
        return img

    @staticmethod
824
    def get_params(width: int, height: int, distortion_scale: float) -> Tuple[List[List[int]], List[List[int]]]:
825
826
827
        """Get parameters for ``perspective`` for a random perspective transform.

        Args:
828
829
830
            width (int): width of the image.
            height (int): height of the image.
            distortion_scale (float): argument to control the degree of distortion and ranges from 0 to 1.
831
832

        Returns:
833
            List containing [top-left, top-right, bottom-right, bottom-left] of the original image,
834
835
            List containing [top-left, top-right, bottom-right, bottom-left] of the transformed image.
        """
836
837
838
        half_height = height // 2
        half_width = width // 2
        topleft = [
839
840
            int(torch.randint(0, int(distortion_scale * half_width) + 1, size=(1,)).item()),
            int(torch.randint(0, int(distortion_scale * half_height) + 1, size=(1,)).item()),
841
842
        ]
        topright = [
843
844
            int(torch.randint(width - int(distortion_scale * half_width) - 1, width, size=(1,)).item()),
            int(torch.randint(0, int(distortion_scale * half_height) + 1, size=(1,)).item()),
845
846
        ]
        botright = [
847
848
            int(torch.randint(width - int(distortion_scale * half_width) - 1, width, size=(1,)).item()),
            int(torch.randint(height - int(distortion_scale * half_height) - 1, height, size=(1,)).item()),
849
850
        ]
        botleft = [
851
852
            int(torch.randint(0, int(distortion_scale * half_width) + 1, size=(1,)).item()),
            int(torch.randint(height - int(distortion_scale * half_height) - 1, height, size=(1,)).item()),
853
854
        ]
        startpoints = [[0, 0], [width - 1, 0], [width - 1, height - 1], [0, height - 1]]
855
856
857
858
        endpoints = [topleft, topright, botright, botleft]
        return startpoints, endpoints

    def __repr__(self):
859
        return self.__class__.__name__ + f"(p={self.p})"
860
861


862
class RandomResizedCrop(torch.nn.Module):
863
864
    """Crop a random portion of image and resize it to a given size.

865
    If the image is torch Tensor, it is expected
866
    to have [..., H, W] shape, where ... means an arbitrary number of leading dimensions
867

868
869
870
    A crop of the original image is made: the crop has a random area (H * W)
    and a random aspect ratio. This crop is finally resized to the given
    size. This is popularly used to train the Inception networks.
871
872

    Args:
873
        size (int or sequence): expected output size of the crop, for each edge. If size is an
874
            int instead of sequence like (h, w), a square output size ``(size, size)`` is
875
            made. If provided a sequence of length 1, it will be interpreted as (size[0], size[0]).
876
877
878

            .. note::
                In torchscript mode size as single int is not supported, use a sequence of length 1: ``[size, ]``.
Nicolas Hug's avatar
Nicolas Hug committed
879
880
        scale (tuple of float): Specifies the lower and upper bounds for the random area of the crop,
            before resizing. The scale is defined with respect to the area of the original image.
881
882
        ratio (tuple of float): lower and upper bounds for the random aspect ratio of the crop, before
            resizing.
883
884
885
886
        interpolation (InterpolationMode): Desired interpolation enum defined by
            :class:`torchvision.transforms.InterpolationMode`. Default is ``InterpolationMode.BILINEAR``.
            If input is Tensor, only ``InterpolationMode.NEAREST``, ``InterpolationMode.BILINEAR`` and
            ``InterpolationMode.BICUBIC`` are supported.
887
888
            For backward compatibility integer values (e.g. ``PIL.Image.NEAREST``) are still acceptable.

889
890
    """

891
    def __init__(self, size, scale=(0.08, 1.0), ratio=(3.0 / 4.0, 4.0 / 3.0), interpolation=InterpolationMode.BILINEAR):
892
        super().__init__()
893
        _log_api_usage_once(self)
894
        self.size = _setup_size(size, error_msg="Please provide only two dimensions (h, w) for size.")
895

896
        if not isinstance(scale, Sequence):
897
            raise TypeError("Scale should be a sequence")
898
        if not isinstance(ratio, Sequence):
899
            raise TypeError("Ratio should be a sequence")
900
        if (scale[0] > scale[1]) or (ratio[0] > ratio[1]):
901
            warnings.warn("Scale and ratio should be of kind (min, max)")
902

903
904
905
        # Backward compatibility with integer value
        if isinstance(interpolation, int):
            warnings.warn(
906
907
                "Argument interpolation should be of type InterpolationMode instead of int. "
                "Please, use InterpolationMode enum."
908
909
910
            )
            interpolation = _interpolation_modes_from_int(interpolation)

911
        self.interpolation = interpolation
912
913
        self.scale = scale
        self.ratio = ratio
914
915

    @staticmethod
916
    def get_params(img: Tensor, scale: List[float], ratio: List[float]) -> Tuple[int, int, int, int]:
917
918
919
        """Get parameters for ``crop`` for a random sized crop.

        Args:
920
            img (PIL Image or Tensor): Input image.
921
922
            scale (list): range of scale of the origin size cropped
            ratio (list): range of aspect ratio of the origin aspect ratio cropped
923
924
925

        Returns:
            tuple: params (i, j, h, w) to be passed to ``crop`` for a random
926
            sized crop.
927
        """
928
        width, height = F.get_image_size(img)
Zhicheng Yan's avatar
Zhicheng Yan committed
929
        area = height * width
930

931
        log_ratio = torch.log(torch.tensor(ratio))
932
        for _ in range(10):
933
            target_area = area * torch.empty(1).uniform_(scale[0], scale[1]).item()
934
            aspect_ratio = torch.exp(torch.empty(1).uniform_(log_ratio[0], log_ratio[1])).item()
935
936
937
938

            w = int(round(math.sqrt(target_area * aspect_ratio)))
            h = int(round(math.sqrt(target_area / aspect_ratio)))

Zhicheng Yan's avatar
Zhicheng Yan committed
939
            if 0 < w <= width and 0 < h <= height:
940
941
                i = torch.randint(0, height - h + 1, size=(1,)).item()
                j = torch.randint(0, width - w + 1, size=(1,)).item()
942
943
                return i, j, h, w

944
        # Fallback to central crop
Zhicheng Yan's avatar
Zhicheng Yan committed
945
        in_ratio = float(width) / float(height)
946
        if in_ratio < min(ratio):
Zhicheng Yan's avatar
Zhicheng Yan committed
947
            w = width
948
            h = int(round(w / min(ratio)))
949
        elif in_ratio > max(ratio):
Zhicheng Yan's avatar
Zhicheng Yan committed
950
            h = height
951
            w = int(round(h * max(ratio)))
952
        else:  # whole image
Zhicheng Yan's avatar
Zhicheng Yan committed
953
954
955
956
            w = width
            h = height
        i = (height - h) // 2
        j = (width - w) // 2
957
        return i, j, h, w
958

959
    def forward(self, img):
960
961
        """
        Args:
962
            img (PIL Image or Tensor): Image to be cropped and resized.
963
964

        Returns:
965
            PIL Image or Tensor: Randomly cropped and resized image.
966
        """
967
        i, j, h, w = self.get_params(img, self.scale, self.ratio)
968
969
        return F.resized_crop(img, i, j, h, w, self.size, self.interpolation)

970
    def __repr__(self):
971
        interpolate_str = self.interpolation.value
972
973
974
975
        format_string = self.__class__.__name__ + f"(size={self.size}"
        format_string += f", scale={tuple(round(s, 4) for s in self.scale)}"
        format_string += f", ratio={tuple(round(r, 4) for r in self.ratio)}"
        format_string += f", interpolation={interpolate_str})"
976
        return format_string
977

978
979
980
981
982

class RandomSizedCrop(RandomResizedCrop):
    """
    Note: This transform is deprecated in favor of RandomResizedCrop.
    """
983

984
    def __init__(self, *args, **kwargs):
985
986
987
988
        warnings.warn(
            "The use of the transforms.RandomSizedCrop transform is deprecated, "
            + "please use transforms.RandomResizedCrop instead."
        )
989
        super().__init__(*args, **kwargs)
990
        _log_api_usage_once(self)
991
992


vfdev's avatar
vfdev committed
993
994
class FiveCrop(torch.nn.Module):
    """Crop the given image into four corners and the central crop.
995
    If the image is torch Tensor, it is expected
vfdev's avatar
vfdev committed
996
997
    to have [..., H, W] shape, where ... means an arbitrary number of leading
    dimensions
998
999
1000
1001
1002
1003
1004
1005
1006

    .. Note::
         This transform returns a tuple of images and there may be a mismatch in the number of
         inputs and targets your Dataset returns. See below for an example of how to deal with
         this.

    Args:
         size (sequence or int): Desired output size of the crop. If size is an ``int``
            instead of sequence like (h, w), a square crop of size (size, size) is made.
1007
            If provided a sequence of length 1, it will be interpreted as (size[0], size[0]).
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021

    Example:
         >>> transform = Compose([
         >>>    FiveCrop(size), # this is a list of PIL Images
         >>>    Lambda(lambda crops: torch.stack([ToTensor()(crop) for crop in crops])) # returns a 4D tensor
         >>> ])
         >>> #In your test loop you can do the following:
         >>> input, target = batch # input is a 5d tensor, target is 2d
         >>> bs, ncrops, c, h, w = input.size()
         >>> result = model(input.view(-1, c, h, w)) # fuse batch size and ncrops
         >>> result_avg = result.view(bs, ncrops, -1).mean(1) # avg over crops
    """

    def __init__(self, size):
vfdev's avatar
vfdev committed
1022
        super().__init__()
1023
        _log_api_usage_once(self)
1024
        self.size = _setup_size(size, error_msg="Please provide only two dimensions (h, w) for size.")
1025

vfdev's avatar
vfdev committed
1026
1027
1028
1029
1030
1031
1032
1033
    def forward(self, img):
        """
        Args:
            img (PIL Image or Tensor): Image to be cropped.

        Returns:
            tuple of 5 images. Image can be PIL Image or Tensor
        """
1034
1035
        return F.five_crop(img, self.size)

1036
    def __repr__(self):
1037
        return self.__class__.__name__ + f"(size={self.size})"
1038

1039

vfdev's avatar
vfdev committed
1040
1041
1042
class TenCrop(torch.nn.Module):
    """Crop the given image into four corners and the central crop plus the flipped version of
    these (horizontal flipping is used by default).
1043
    If the image is torch Tensor, it is expected
vfdev's avatar
vfdev committed
1044
1045
    to have [..., H, W] shape, where ... means an arbitrary number of leading
    dimensions
1046
1047
1048
1049
1050
1051
1052
1053
1054

    .. Note::
         This transform returns a tuple of images and there may be a mismatch in the number of
         inputs and targets your Dataset returns. See below for an example of how to deal with
         this.

    Args:
        size (sequence or int): Desired output size of the crop. If size is an
            int instead of sequence like (h, w), a square crop (size, size) is
1055
            made. If provided a sequence of length 1, it will be interpreted as (size[0], size[0]).
1056
        vertical_flip (bool): Use vertical flipping instead of horizontal
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070

    Example:
         >>> transform = Compose([
         >>>    TenCrop(size), # this is a list of PIL Images
         >>>    Lambda(lambda crops: torch.stack([ToTensor()(crop) for crop in crops])) # returns a 4D tensor
         >>> ])
         >>> #In your test loop you can do the following:
         >>> input, target = batch # input is a 5d tensor, target is 2d
         >>> bs, ncrops, c, h, w = input.size()
         >>> result = model(input.view(-1, c, h, w)) # fuse batch size and ncrops
         >>> result_avg = result.view(bs, ncrops, -1).mean(1) # avg over crops
    """

    def __init__(self, size, vertical_flip=False):
vfdev's avatar
vfdev committed
1071
        super().__init__()
1072
        _log_api_usage_once(self)
1073
        self.size = _setup_size(size, error_msg="Please provide only two dimensions (h, w) for size.")
1074
1075
        self.vertical_flip = vertical_flip

vfdev's avatar
vfdev committed
1076
1077
1078
1079
1080
1081
1082
1083
    def forward(self, img):
        """
        Args:
            img (PIL Image or Tensor): Image to be cropped.

        Returns:
            tuple of 10 images. Image can be PIL Image or Tensor
        """
1084
1085
        return F.ten_crop(img, self.size, self.vertical_flip)

1086
    def __repr__(self):
1087
        return self.__class__.__name__ + f"(size={self.size}, vertical_flip={self.vertical_flip})"
1088

1089

1090
class LinearTransformation(torch.nn.Module):
ekka's avatar
ekka committed
1091
    """Transform a tensor image with a square transformation matrix and a mean_vector computed
1092
    offline.
1093
    This transform does not support PIL Image.
ekka's avatar
ekka committed
1094
1095
1096
    Given transformation_matrix and mean_vector, will flatten the torch.*Tensor and
    subtract mean_vector from it which is then followed by computing the dot
    product with the transformation matrix and then reshaping the tensor to its
1097
    original shape.
1098

1099
    Applications:
1100
        whitening transformation: Suppose X is a column vector zero-centered data.
1101
1102
1103
        Then compute the data covariance matrix [D x D] with torch.mm(X.t(), X),
        perform SVD on this matrix and pass it as transformation_matrix.

1104
1105
    Args:
        transformation_matrix (Tensor): tensor [D x D], D = C x H x W
ekka's avatar
ekka committed
1106
        mean_vector (Tensor): tensor [D], D = C x H x W
1107
1108
    """

ekka's avatar
ekka committed
1109
    def __init__(self, transformation_matrix, mean_vector):
1110
        super().__init__()
1111
        _log_api_usage_once(self)
1112
        if transformation_matrix.size(0) != transformation_matrix.size(1):
1113
1114
            raise ValueError(
                "transformation_matrix should be square. Got "
1115
                f"{tuple(transformation_matrix.size())} rectangular matrix."
1116
            )
ekka's avatar
ekka committed
1117
1118

        if mean_vector.size(0) != transformation_matrix.size(0):
1119
            raise ValueError(
1120
1121
                f"mean_vector should have the same length {mean_vector.size(0)}"
                f" as any one of the dimensions of the transformation_matrix [{tuple(transformation_matrix.size())}]"
1122
            )
ekka's avatar
ekka committed
1123

1124
        if transformation_matrix.device != mean_vector.device:
1125
            raise ValueError(
1126
                f"Input tensors should be on the same device. Got {transformation_matrix.device} and {mean_vector.device}"
1127
            )
1128

1129
        self.transformation_matrix = transformation_matrix
ekka's avatar
ekka committed
1130
        self.mean_vector = mean_vector
1131

1132
    def forward(self, tensor: Tensor) -> Tensor:
1133
1134
        """
        Args:
vfdev's avatar
vfdev committed
1135
            tensor (Tensor): Tensor image to be whitened.
1136
1137
1138
1139

        Returns:
            Tensor: Transformed image.
        """
1140
1141
1142
        shape = tensor.shape
        n = shape[-3] * shape[-2] * shape[-1]
        if n != self.transformation_matrix.shape[0]:
1143
1144
            raise ValueError(
                "Input tensor and transformation matrix have incompatible shape."
1145
1146
                + f"[{shape[-3]} x {shape[-2]} x {shape[-1]}] != "
                + f"{self.transformation_matrix.shape[0]}"
1147
            )
1148
1149

        if tensor.device.type != self.mean_vector.device.type:
1150
1151
            raise ValueError(
                "Input tensor should be on the same device as transformation matrix and mean vector. "
1152
                f"Got {tensor.device} vs {self.mean_vector.device}"
1153
            )
1154
1155

        flat_tensor = tensor.view(-1, n) - self.mean_vector
1156
        transformed_tensor = torch.mm(flat_tensor, self.transformation_matrix)
1157
        tensor = transformed_tensor.view(shape)
1158
1159
        return tensor

1160
    def __repr__(self):
1161
1162
1163
        format_string = self.__class__.__name__ + "(transformation_matrix="
        format_string += str(self.transformation_matrix.tolist()) + ")"
        format_string += ", (mean_vector=" + str(self.mean_vector.tolist()) + ")"
1164
1165
        return format_string

1166

1167
class ColorJitter(torch.nn.Module):
1168
    """Randomly change the brightness, contrast, saturation and hue of an image.
1169
    If the image is torch Tensor, it is expected
1170
1171
    to have [..., 1 or 3, H, W] shape, where ... means an arbitrary number of leading dimensions.
    If img is PIL Image, mode "1", "I", "F" and modes with transparency (alpha channel) are not supported.
1172
1173

    Args:
yaox12's avatar
yaox12 committed
1174
1175
1176
1177
1178
1179
1180
1181
1182
1183
1184
1185
        brightness (float or tuple of float (min, max)): How much to jitter brightness.
            brightness_factor is chosen uniformly from [max(0, 1 - brightness), 1 + brightness]
            or the given [min, max]. Should be non negative numbers.
        contrast (float or tuple of float (min, max)): How much to jitter contrast.
            contrast_factor is chosen uniformly from [max(0, 1 - contrast), 1 + contrast]
            or the given [min, max]. Should be non negative numbers.
        saturation (float or tuple of float (min, max)): How much to jitter saturation.
            saturation_factor is chosen uniformly from [max(0, 1 - saturation), 1 + saturation]
            or the given [min, max]. Should be non negative numbers.
        hue (float or tuple of float (min, max)): How much to jitter hue.
            hue_factor is chosen uniformly from [-hue, hue] or the given [min, max].
            Should have 0<= hue <= 0.5 or -0.5 <= min <= max <= 0.5.
1186
    """
1187

1188
    def __init__(self, brightness=0, contrast=0, saturation=0, hue=0):
1189
        super().__init__()
1190
        _log_api_usage_once(self)
1191
1192
1193
1194
        self.brightness = self._check_input(brightness, "brightness")
        self.contrast = self._check_input(contrast, "contrast")
        self.saturation = self._check_input(saturation, "saturation")
        self.hue = self._check_input(hue, "hue", center=0, bound=(-0.5, 0.5), clip_first_on_zero=False)
yaox12's avatar
yaox12 committed
1195

1196
    @torch.jit.unused
1197
    def _check_input(self, value, name, center=1, bound=(0, float("inf")), clip_first_on_zero=True):
yaox12's avatar
yaox12 committed
1198
1199
        if isinstance(value, numbers.Number):
            if value < 0:
1200
                raise ValueError(f"If {name} is a single number, it must be non negative.")
1201
            value = [center - float(value), center + float(value)]
yaox12's avatar
yaox12 committed
1202
            if clip_first_on_zero:
1203
                value[0] = max(value[0], 0.0)
yaox12's avatar
yaox12 committed
1204
1205
        elif isinstance(value, (tuple, list)) and len(value) == 2:
            if not bound[0] <= value[0] <= value[1] <= bound[1]:
1206
                raise ValueError(f"{name} values should be between {bound}")
yaox12's avatar
yaox12 committed
1207
        else:
1208
            raise TypeError(f"{name} should be a single number or a list/tuple with length 2.")
yaox12's avatar
yaox12 committed
1209
1210
1211
1212
1213
1214

        # if value is 0 or (1., 1.) for brightness/contrast/saturation
        # or (0., 0.) for hue, do nothing
        if value[0] == value[1] == center:
            value = None
        return value
1215
1216

    @staticmethod
1217
1218
1219
1220
1221
1222
    def get_params(
        brightness: Optional[List[float]],
        contrast: Optional[List[float]],
        saturation: Optional[List[float]],
        hue: Optional[List[float]],
    ) -> Tuple[Tensor, Optional[float], Optional[float], Optional[float], Optional[float]]:
1223
        """Get the parameters for the randomized transform to be applied on image.
1224

1225
1226
1227
1228
1229
1230
1231
1232
1233
        Args:
            brightness (tuple of float (min, max), optional): The range from which the brightness_factor is chosen
                uniformly. Pass None to turn off the transformation.
            contrast (tuple of float (min, max), optional): The range from which the contrast_factor is chosen
                uniformly. Pass None to turn off the transformation.
            saturation (tuple of float (min, max), optional): The range from which the saturation_factor is chosen
                uniformly. Pass None to turn off the transformation.
            hue (tuple of float (min, max), optional): The range from which the hue_factor is chosen uniformly.
                Pass None to turn off the transformation.
1234
1235

        Returns:
1236
1237
            tuple: The parameters used to apply the randomized transform
            along with their random order.
1238
        """
1239
        fn_idx = torch.randperm(4)
1240

1241
1242
1243
1244
        b = None if brightness is None else float(torch.empty(1).uniform_(brightness[0], brightness[1]))
        c = None if contrast is None else float(torch.empty(1).uniform_(contrast[0], contrast[1]))
        s = None if saturation is None else float(torch.empty(1).uniform_(saturation[0], saturation[1]))
        h = None if hue is None else float(torch.empty(1).uniform_(hue[0], hue[1]))
1245

1246
        return fn_idx, b, c, s, h
1247

1248
    def forward(self, img):
1249
1250
        """
        Args:
1251
            img (PIL Image or Tensor): Input image.
1252
1253

        Returns:
1254
1255
            PIL Image or Tensor: Color jittered image.
        """
1256
1257
1258
        fn_idx, brightness_factor, contrast_factor, saturation_factor, hue_factor = self.get_params(
            self.brightness, self.contrast, self.saturation, self.hue
        )
1259

1260
        for fn_id in fn_idx:
1261
            if fn_id == 0 and brightness_factor is not None:
1262
                img = F.adjust_brightness(img, brightness_factor)
1263
            elif fn_id == 1 and contrast_factor is not None:
1264
                img = F.adjust_contrast(img, contrast_factor)
1265
            elif fn_id == 2 and saturation_factor is not None:
1266
                img = F.adjust_saturation(img, saturation_factor)
1267
            elif fn_id == 3 and hue_factor is not None:
1268
1269
1270
                img = F.adjust_hue(img, hue_factor)

        return img
1271

1272
    def __repr__(self):
1273
        format_string = self.__class__.__name__ + "("
1274
1275
1276
1277
        format_string += f"brightness={self.brightness}"
        format_string += f", contrast={self.contrast}"
        format_string += f", saturation={self.saturation}"
        format_string += f", hue={self.hue})"
1278
        return format_string
1279

1280

1281
class RandomRotation(torch.nn.Module):
1282
    """Rotate the image by angle.
1283
    If the image is torch Tensor, it is expected
1284
    to have [..., H, W] shape, where ... means an arbitrary number of leading dimensions.
1285
1286

    Args:
1287
        degrees (sequence or number): Range of degrees to select from.
1288
1289
            If degrees is a number instead of sequence like (min, max), the range of degrees
            will be (-degrees, +degrees).
1290
1291
1292
        interpolation (InterpolationMode): Desired interpolation enum defined by
            :class:`torchvision.transforms.InterpolationMode`. Default is ``InterpolationMode.NEAREST``.
            If input is Tensor, only ``InterpolationMode.NEAREST``, ``InterpolationMode.BILINEAR`` are supported.
1293
            For backward compatibility integer values (e.g. ``PIL.Image.NEAREST``) are still acceptable.
1294
1295
1296
1297
        expand (bool, optional): Optional expansion flag.
            If true, expands the output to make it large enough to hold the entire rotated image.
            If false or omitted, make the output image the same size as the input image.
            Note that the expand flag assumes rotation around the center and no translation.
1298
        center (sequence, optional): Optional center of rotation, (x, y). Origin is the upper left corner.
1299
            Default is the center of the image.
1300
1301
        fill (sequence or number): Pixel fill value for the area outside the rotated
            image. Default is ``0``. If given a number, the value is used for all bands respectively.
1302
        resample (int, optional): deprecated argument and will be removed since v0.10.0.
1303
            Please use the ``interpolation`` parameter instead.
1304
1305
1306

    .. _filters: https://pillow.readthedocs.io/en/latest/handbook/concepts.html#filters

1307
1308
    """

1309
    def __init__(
1310
        self, degrees, interpolation=InterpolationMode.NEAREST, expand=False, center=None, fill=0, resample=None
1311
    ):
1312
        super().__init__()
1313
        _log_api_usage_once(self)
1314
1315
1316
1317
1318
1319
1320
1321
1322
        if resample is not None:
            warnings.warn(
                "Argument resample is deprecated and will be removed since v0.10.0. Please, use interpolation instead"
            )
            interpolation = _interpolation_modes_from_int(resample)

        # Backward compatibility with integer value
        if isinstance(interpolation, int):
            warnings.warn(
1323
1324
                "Argument interpolation should be of type InterpolationMode instead of int. "
                "Please, use InterpolationMode enum."
1325
1326
1327
            )
            interpolation = _interpolation_modes_from_int(interpolation)

1328
        self.degrees = _setup_angle(degrees, name="degrees", req_sizes=(2,))
1329
1330

        if center is not None:
1331
            _check_sequence_input(center, "center", req_sizes=(2,))
1332
1333

        self.center = center
1334

1335
        self.resample = self.interpolation = interpolation
1336
        self.expand = expand
1337
1338
1339
1340
1341
1342

        if fill is None:
            fill = 0
        elif not isinstance(fill, (Sequence, numbers.Number)):
            raise TypeError("Fill should be either a sequence or a number.")

1343
        self.fill = fill
1344
1345

    @staticmethod
1346
    def get_params(degrees: List[float]) -> float:
1347
1348
1349
        """Get parameters for ``rotate`` for a random rotation.

        Returns:
1350
            float: angle parameter to be passed to ``rotate`` for random rotation.
1351
        """
1352
        angle = float(torch.empty(1).uniform_(float(degrees[0]), float(degrees[1])).item())
1353
1354
        return angle

1355
    def forward(self, img):
1356
        """
1357
        Args:
1358
            img (PIL Image or Tensor): Image to be rotated.
1359
1360

        Returns:
1361
            PIL Image or Tensor: Rotated image.
1362
        """
1363
1364
1365
        fill = self.fill
        if isinstance(img, Tensor):
            if isinstance(fill, (int, float)):
1366
                fill = [float(fill)] * F.get_image_num_channels(img)
1367
1368
            else:
                fill = [float(f) for f in fill]
1369
        angle = self.get_params(self.degrees)
1370
1371

        return F.rotate(img, angle, self.resample, self.expand, self.center, fill)
1372

1373
    def __repr__(self):
1374
        interpolate_str = self.interpolation.value
1375
1376
1377
        format_string = self.__class__.__name__ + f"(degrees={self.degrees}"
        format_string += f", interpolation={interpolate_str}"
        format_string += f", expand={self.expand}"
1378
        if self.center is not None:
1379
            format_string += f", center={self.center}"
1380
        if self.fill is not None:
1381
            format_string += f", fill={self.fill}"
1382
        format_string += ")"
1383
        return format_string
1384

1385

1386
1387
class RandomAffine(torch.nn.Module):
    """Random affine transformation of the image keeping center invariant.
1388
    If the image is torch Tensor, it is expected
1389
    to have [..., H, W] shape, where ... means an arbitrary number of leading dimensions.
1390
1391

    Args:
1392
        degrees (sequence or number): Range of degrees to select from.
1393
            If degrees is a number instead of sequence like (min, max), the range of degrees
1394
            will be (-degrees, +degrees). Set to 0 to deactivate rotations.
1395
1396
1397
1398
1399
1400
        translate (tuple, optional): tuple of maximum absolute fraction for horizontal
            and vertical translations. For example translate=(a, b), then horizontal shift
            is randomly sampled in the range -img_width * a < dx < img_width * a and vertical shift is
            randomly sampled in the range -img_height * b < dy < img_height * b. Will not translate by default.
        scale (tuple, optional): scaling factor interval, e.g (a, b), then scale is
            randomly sampled from the range a <= scale <= b. Will keep original scale by default.
1401
        shear (sequence or number, optional): Range of degrees to select from.
ptrblck's avatar
ptrblck committed
1402
            If shear is a number, a shear parallel to the x axis in the range (-shear, +shear)
1403
1404
            will be applied. Else if shear is a sequence of 2 values a shear parallel to the x axis in the
            range (shear[0], shear[1]) will be applied. Else if shear is a sequence of 4 values,
ptrblck's avatar
ptrblck committed
1405
            a x-axis shear in (shear[0], shear[1]) and y-axis shear in (shear[2], shear[3]) will be applied.
1406
            Will not apply shear by default.
1407
1408
1409
        interpolation (InterpolationMode): Desired interpolation enum defined by
            :class:`torchvision.transforms.InterpolationMode`. Default is ``InterpolationMode.NEAREST``.
            If input is Tensor, only ``InterpolationMode.NEAREST``, ``InterpolationMode.BILINEAR`` are supported.
1410
            For backward compatibility integer values (e.g. ``PIL.Image.NEAREST``) are still acceptable.
1411
1412
        fill (sequence or number): Pixel fill value for the area outside the transformed
            image. Default is ``0``. If given a number, the value is used for all bands respectively.
1413
        fillcolor (sequence or number, optional): deprecated argument and will be removed since v0.10.0.
1414
            Please use the ``fill`` parameter instead.
1415
        resample (int, optional): deprecated argument and will be removed since v0.10.0.
1416
            Please use the ``interpolation`` parameter instead.
1417
1418
        center (sequence, optional): Optional center of rotation, (x, y). Origin is the upper left corner.
            Default is the center of the image.
1419
1420
1421

    .. _filters: https://pillow.readthedocs.io/en/latest/handbook/concepts.html#filters

1422
1423
    """

1424
    def __init__(
1425
1426
1427
1428
1429
1430
1431
1432
1433
        self,
        degrees,
        translate=None,
        scale=None,
        shear=None,
        interpolation=InterpolationMode.NEAREST,
        fill=0,
        fillcolor=None,
        resample=None,
1434
        center=None,
1435
    ):
1436
        super().__init__()
1437
        _log_api_usage_once(self)
1438
1439
1440
1441
1442
1443
1444
1445
1446
        if resample is not None:
            warnings.warn(
                "Argument resample is deprecated and will be removed since v0.10.0. Please, use interpolation instead"
            )
            interpolation = _interpolation_modes_from_int(resample)

        # Backward compatibility with integer value
        if isinstance(interpolation, int):
            warnings.warn(
1447
1448
                "Argument interpolation should be of type InterpolationMode instead of int. "
                "Please, use InterpolationMode enum."
1449
1450
1451
1452
1453
1454
1455
1456
1457
            )
            interpolation = _interpolation_modes_from_int(interpolation)

        if fillcolor is not None:
            warnings.warn(
                "Argument fillcolor is deprecated and will be removed since v0.10.0. Please, use fill instead"
            )
            fill = fillcolor

1458
        self.degrees = _setup_angle(degrees, name="degrees", req_sizes=(2,))
1459
1460

        if translate is not None:
1461
            _check_sequence_input(translate, "translate", req_sizes=(2,))
1462
1463
1464
1465
1466
1467
            for t in translate:
                if not (0.0 <= t <= 1.0):
                    raise ValueError("translation values should be between 0 and 1")
        self.translate = translate

        if scale is not None:
1468
            _check_sequence_input(scale, "scale", req_sizes=(2,))
1469
1470
1471
1472
1473
1474
            for s in scale:
                if s <= 0:
                    raise ValueError("scale values should be positive")
        self.scale = scale

        if shear is not None:
1475
            self.shear = _setup_angle(shear, name="shear", req_sizes=(2, 4))
1476
1477
1478
        else:
            self.shear = shear

1479
        self.resample = self.interpolation = interpolation
1480
1481
1482
1483
1484
1485

        if fill is None:
            fill = 0
        elif not isinstance(fill, (Sequence, numbers.Number)):
            raise TypeError("Fill should be either a sequence or a number.")

1486
        self.fillcolor = self.fill = fill
1487

1488
1489
1490
1491
1492
        if center is not None:
            _check_sequence_input(center, "center", req_sizes=(2,))

        self.center = center

1493
    @staticmethod
1494
    def get_params(
1495
1496
1497
1498
1499
        degrees: List[float],
        translate: Optional[List[float]],
        scale_ranges: Optional[List[float]],
        shears: Optional[List[float]],
        img_size: List[int],
1500
    ) -> Tuple[float, Tuple[int, int], float, Tuple[float, float]]:
1501
1502
1503
        """Get parameters for affine transformation

        Returns:
1504
            params to be passed to the affine transformation
1505
        """
1506
        angle = float(torch.empty(1).uniform_(float(degrees[0]), float(degrees[1])).item())
1507
        if translate is not None:
1508
1509
1510
1511
1512
            max_dx = float(translate[0] * img_size[0])
            max_dy = float(translate[1] * img_size[1])
            tx = int(round(torch.empty(1).uniform_(-max_dx, max_dx).item()))
            ty = int(round(torch.empty(1).uniform_(-max_dy, max_dy).item()))
            translations = (tx, ty)
1513
1514
1515
1516
        else:
            translations = (0, 0)

        if scale_ranges is not None:
1517
            scale = float(torch.empty(1).uniform_(scale_ranges[0], scale_ranges[1]).item())
1518
1519
1520
        else:
            scale = 1.0

1521
        shear_x = shear_y = 0.0
1522
        if shears is not None:
1523
1524
1525
1526
1527
            shear_x = float(torch.empty(1).uniform_(shears[0], shears[1]).item())
            if len(shears) == 4:
                shear_y = float(torch.empty(1).uniform_(shears[2], shears[3]).item())

        shear = (shear_x, shear_y)
1528
1529
1530

        return angle, translations, scale, shear

1531
    def forward(self, img):
1532
        """
1533
            img (PIL Image or Tensor): Image to be transformed.
1534
1535

        Returns:
1536
            PIL Image or Tensor: Affine transformed image.
1537
        """
1538
1539
1540
        fill = self.fill
        if isinstance(img, Tensor):
            if isinstance(fill, (int, float)):
1541
                fill = [float(fill)] * F.get_image_num_channels(img)
1542
1543
            else:
                fill = [float(f) for f in fill]
1544

1545
        img_size = F.get_image_size(img)
1546
1547

        ret = self.get_params(self.degrees, self.translate, self.scale, self.shear, img_size)
1548

1549
        return F.affine(img, *ret, interpolation=self.interpolation, fill=fill, center=self.center)
1550
1551

    def __repr__(self):
1552
        s = "{name}(degrees={degrees}"
1553
        if self.translate is not None:
1554
            s += ", translate={translate}"
1555
        if self.scale is not None:
1556
            s += ", scale={scale}"
1557
        if self.shear is not None:
1558
            s += ", shear={shear}"
1559
        if self.interpolation != InterpolationMode.NEAREST:
1560
            s += ", interpolation={interpolation}"
1561
        if self.fill != 0:
1562
            s += ", fill={fill}"
1563
1564
        if self.center is not None:
            s += ", center={center}"
1565
        s += ")"
1566
        d = dict(self.__dict__)
1567
        d["interpolation"] = self.interpolation.value
1568
1569
1570
        return s.format(name=self.__class__.__name__, **d)


1571
class Grayscale(torch.nn.Module):
1572
    """Convert image to grayscale.
1573
1574
    If the image is torch Tensor, it is expected
    to have [..., 3, H, W] shape, where ... means an arbitrary number of leading dimensions
1575

1576
1577
1578
1579
    Args:
        num_output_channels (int): (1 or 3) number of channels desired for output image

    Returns:
1580
        PIL Image: Grayscale version of the input.
1581
1582
1583

        - If ``num_output_channels == 1`` : returned image is single channel
        - If ``num_output_channels == 3`` : returned image is 3 channel with r == g == b
1584
1585
1586
1587

    """

    def __init__(self, num_output_channels=1):
1588
        super().__init__()
1589
        _log_api_usage_once(self)
1590
1591
        self.num_output_channels = num_output_channels

vfdev's avatar
vfdev committed
1592
    def forward(self, img):
1593
1594
        """
        Args:
1595
            img (PIL Image or Tensor): Image to be converted to grayscale.
1596
1597

        Returns:
1598
            PIL Image or Tensor: Grayscaled image.
1599
        """
1600
        return F.rgb_to_grayscale(img, num_output_channels=self.num_output_channels)
1601

1602
    def __repr__(self):
1603
        return self.__class__.__name__ + f"(num_output_channels={self.num_output_channels})"
1604

1605

1606
class RandomGrayscale(torch.nn.Module):
1607
    """Randomly convert image to grayscale with a probability of p (default 0.1).
1608
1609
    If the image is torch Tensor, it is expected
    to have [..., 3, H, W] shape, where ... means an arbitrary number of leading dimensions
1610

1611
1612
1613
1614
    Args:
        p (float): probability that image should be converted to grayscale.

    Returns:
1615
        PIL Image or Tensor: Grayscale version of the input image with probability p and unchanged
1616
1617
1618
        with probability (1-p).
        - If input image is 1 channel: grayscale version is 1 channel
        - If input image is 3 channel: grayscale version is 3 channel with r == g == b
1619
1620
1621
1622

    """

    def __init__(self, p=0.1):
1623
        super().__init__()
1624
        _log_api_usage_once(self)
1625
1626
        self.p = p

vfdev's avatar
vfdev committed
1627
    def forward(self, img):
1628
1629
        """
        Args:
1630
            img (PIL Image or Tensor): Image to be converted to grayscale.
1631
1632

        Returns:
1633
            PIL Image or Tensor: Randomly grayscaled image.
1634
        """
1635
        num_output_channels = F.get_image_num_channels(img)
1636
1637
        if torch.rand(1) < self.p:
            return F.rgb_to_grayscale(img, num_output_channels=num_output_channels)
1638
        return img
1639
1640

    def __repr__(self):
1641
        return self.__class__.__name__ + f"(p={self.p})"
1642
1643


1644
class RandomErasing(torch.nn.Module):
1645
    """Randomly selects a rectangle region in an torch Tensor image and erases its pixels.
1646
    This transform does not support PIL Image.
vfdev's avatar
vfdev committed
1647
    'Random Erasing Data Augmentation' by Zhong et al. See https://arxiv.org/abs/1708.04896
1648

1649
1650
1651
1652
1653
1654
1655
1656
    Args:
         p: probability that the random erasing operation will be performed.
         scale: range of proportion of erased area against input image.
         ratio: range of aspect ratio of erased area.
         value: erasing value. Default is 0. If a single int, it is used to
            erase all pixels. If a tuple of length 3, it is used to erase
            R, G, B channels respectively.
            If a str of 'random', erasing each pixel with random values.
Zhun Zhong's avatar
Zhun Zhong committed
1657
         inplace: boolean to make this transform inplace. Default set to False.
1658

1659
1660
    Returns:
        Erased Image.
1661

vfdev's avatar
vfdev committed
1662
    Example:
1663
        >>> transform = transforms.Compose([
1664
        >>>   transforms.RandomHorizontalFlip(),
1665
1666
        >>>   transforms.PILToTensor(),
        >>>   transforms.ConvertImageDtype(torch.float),
1667
1668
        >>>   transforms.Normalize((0.485, 0.456, 0.406), (0.229, 0.224, 0.225)),
        >>>   transforms.RandomErasing(),
1669
1670
1671
        >>> ])
    """

Zhun Zhong's avatar
Zhun Zhong committed
1672
    def __init__(self, p=0.5, scale=(0.02, 0.33), ratio=(0.3, 3.3), value=0, inplace=False):
1673
        super().__init__()
1674
        _log_api_usage_once(self)
1675
1676
1677
1678
1679
1680
1681
1682
        if not isinstance(value, (numbers.Number, str, tuple, list)):
            raise TypeError("Argument value should be either a number or str or a sequence")
        if isinstance(value, str) and value != "random":
            raise ValueError("If value is str, it should be 'random'")
        if not isinstance(scale, (tuple, list)):
            raise TypeError("Scale should be a sequence")
        if not isinstance(ratio, (tuple, list)):
            raise TypeError("Ratio should be a sequence")
1683
        if (scale[0] > scale[1]) or (ratio[0] > ratio[1]):
1684
            warnings.warn("Scale and ratio should be of kind (min, max)")
1685
        if scale[0] < 0 or scale[1] > 1:
1686
            raise ValueError("Scale should be between 0 and 1")
1687
        if p < 0 or p > 1:
1688
            raise ValueError("Random erasing probability should be between 0 and 1")
1689
1690
1691
1692
1693

        self.p = p
        self.scale = scale
        self.ratio = ratio
        self.value = value
1694
        self.inplace = inplace
1695
1696

    @staticmethod
1697
    def get_params(
1698
        img: Tensor, scale: Tuple[float, float], ratio: Tuple[float, float], value: Optional[List[float]] = None
1699
    ) -> Tuple[int, int, int, int, Tensor]:
1700
1701
1702
        """Get parameters for ``erase`` for a random erasing.

        Args:
vfdev's avatar
vfdev committed
1703
            img (Tensor): Tensor image to be erased.
1704
1705
            scale (sequence): range of proportion of erased area against input image.
            ratio (sequence): range of aspect ratio of erased area.
1706
1707
1708
            value (list, optional): erasing value. If None, it is interpreted as "random"
                (erasing each pixel with random values). If ``len(value)`` is 1, it is interpreted as a number,
                i.e. ``value[0]``.
1709
1710
1711
1712

        Returns:
            tuple: params (i, j, h, w, v) to be passed to ``erase`` for random erasing.
        """
vfdev's avatar
vfdev committed
1713
        img_c, img_h, img_w = img.shape[-3], img.shape[-2], img.shape[-1]
1714
        area = img_h * img_w
1715

1716
        log_ratio = torch.log(torch.tensor(ratio))
1717
        for _ in range(10):
1718
            erase_area = area * torch.empty(1).uniform_(scale[0], scale[1]).item()
1719
            aspect_ratio = torch.exp(torch.empty(1).uniform_(log_ratio[0], log_ratio[1])).item()
1720
1721
1722

            h = int(round(math.sqrt(erase_area * aspect_ratio)))
            w = int(round(math.sqrt(erase_area / aspect_ratio)))
1723
1724
1725
1726
1727
1728
1729
            if not (h < img_h and w < img_w):
                continue

            if value is None:
                v = torch.empty([img_c, h, w], dtype=torch.float32).normal_()
            else:
                v = torch.tensor(value)[:, None, None]
1730

1731
1732
            i = torch.randint(0, img_h - h + 1, size=(1,)).item()
            j = torch.randint(0, img_w - w + 1, size=(1,)).item()
1733
            return i, j, h, w, v
1734

Zhun Zhong's avatar
Zhun Zhong committed
1735
1736
1737
        # Return original image
        return 0, 0, img_h, img_w, img

1738
    def forward(self, img):
1739
1740
        """
        Args:
vfdev's avatar
vfdev committed
1741
            img (Tensor): Tensor image to be erased.
1742
1743
1744
1745

        Returns:
            img (Tensor): Erased Tensor image.
        """
1746
1747
1748
1749
        if torch.rand(1) < self.p:

            # cast self.value to script acceptable type
            if isinstance(self.value, (int, float)):
1750
1751
1752
                value = [
                    self.value,
                ]
1753
1754
1755
1756
1757
1758
1759
1760
1761
1762
            elif isinstance(self.value, str):
                value = None
            elif isinstance(self.value, tuple):
                value = list(self.value)
            else:
                value = self.value

            if value is not None and not (len(value) in (1, img.shape[-3])):
                raise ValueError(
                    "If value is a sequence, it should have either a single value or "
1763
                    f"{img.shape[-3]} (number of input channels)"
1764
1765
1766
                )

            x, y, h, w, v = self.get_params(img, scale=self.scale, ratio=self.ratio, value=value)
1767
            return F.erase(img, x, y, h, w, v, self.inplace)
1768
        return img
1769

1770
    def __repr__(self):
1771
1772
1773
1774
1775
        s = f"(p={self.p}, "
        s += f"scale={self.scale}, "
        s += f"ratio={self.ratio}, "
        s += f"value={self.value}, "
        s += f"inplace={self.inplace})"
1776
1777
        return self.__class__.__name__ + s

1778

1779
1780
class GaussianBlur(torch.nn.Module):
    """Blurs image with randomly chosen Gaussian blur.
1781
1782
    If the image is torch Tensor, it is expected
    to have [..., C, H, W] shape, where ... means an arbitrary number of leading dimensions.
1783
1784
1785
1786
1787
1788
1789
1790
1791
1792
1793
1794
1795
1796
1797

    Args:
        kernel_size (int or sequence): Size of the Gaussian kernel.
        sigma (float or tuple of float (min, max)): Standard deviation to be used for
            creating kernel to perform blurring. If float, sigma is fixed. If it is tuple
            of float (min, max), sigma is chosen uniformly at random to lie in the
            given range.

    Returns:
        PIL Image or Tensor: Gaussian blurred version of the input image.

    """

    def __init__(self, kernel_size, sigma=(0.1, 2.0)):
        super().__init__()
1798
        _log_api_usage_once(self)
1799
1800
1801
1802
1803
1804
1805
1806
1807
1808
        self.kernel_size = _setup_size(kernel_size, "Kernel size should be a tuple/list of two integers")
        for ks in self.kernel_size:
            if ks <= 0 or ks % 2 == 0:
                raise ValueError("Kernel size value should be an odd and positive number.")

        if isinstance(sigma, numbers.Number):
            if sigma <= 0:
                raise ValueError("If sigma is a single number, it must be positive.")
            sigma = (sigma, sigma)
        elif isinstance(sigma, Sequence) and len(sigma) == 2:
1809
            if not 0.0 < sigma[0] <= sigma[1]:
1810
1811
1812
1813
1814
1815
1816
1817
                raise ValueError("sigma values should be positive and of the form (min, max).")
        else:
            raise ValueError("sigma should be a single number or a list/tuple with length 2.")

        self.sigma = sigma

    @staticmethod
    def get_params(sigma_min: float, sigma_max: float) -> float:
vfdev's avatar
vfdev committed
1818
        """Choose sigma for random gaussian blurring.
1819
1820
1821
1822
1823
1824
1825
1826
1827
1828
1829
1830
1831

        Args:
            sigma_min (float): Minimum standard deviation that can be chosen for blurring kernel.
            sigma_max (float): Maximum standard deviation that can be chosen for blurring kernel.

        Returns:
            float: Standard deviation to be passed to calculate kernel for gaussian blurring.
        """
        return torch.empty(1).uniform_(sigma_min, sigma_max).item()

    def forward(self, img: Tensor) -> Tensor:
        """
        Args:
vfdev's avatar
vfdev committed
1832
            img (PIL Image or Tensor): image to be blurred.
1833
1834
1835
1836
1837
1838
1839
1840

        Returns:
            PIL Image or Tensor: Gaussian blurred image
        """
        sigma = self.get_params(self.sigma[0], self.sigma[1])
        return F.gaussian_blur(img, self.kernel_size, [sigma, sigma])

    def __repr__(self):
1841
1842
        s = f"(kernel_size={self.kernel_size}, "
        s += f"sigma={self.sigma})"
1843
1844
1845
        return self.__class__.__name__ + s


1846
1847
1848
1849
1850
1851
1852
1853
1854
1855
1856
1857
1858
1859
1860
1861
def _setup_size(size, error_msg):
    if isinstance(size, numbers.Number):
        return int(size), int(size)

    if isinstance(size, Sequence) and len(size) == 1:
        return size[0], size[0]

    if len(size) != 2:
        raise ValueError(error_msg)

    return size


def _check_sequence_input(x, name, req_sizes):
    msg = req_sizes[0] if len(req_sizes) < 2 else " or ".join([str(s) for s in req_sizes])
    if not isinstance(x, Sequence):
1862
        raise TypeError(f"{name} should be a sequence of length {msg}.")
1863
    if len(x) not in req_sizes:
1864
        raise ValueError(f"{name} should be sequence of length {msg}.")
1865
1866


1867
def _setup_angle(x, name, req_sizes=(2,)):
1868
1869
    if isinstance(x, numbers.Number):
        if x < 0:
1870
            raise ValueError(f"If {name} is a single number, it must be positive.")
1871
1872
1873
1874
1875
        x = [-x, x]
    else:
        _check_sequence_input(x, name, req_sizes)

    return [float(d) for d in x]
1876
1877
1878
1879


class RandomInvert(torch.nn.Module):
    """Inverts the colors of the given image randomly with a given probability.
1880
1881
1882
    If img is a Tensor, it is expected to be in [..., 1 or 3, H, W] format,
    where ... means it can have an arbitrary number of leading dimensions.
    If img is PIL Image, it is expected to be in mode "L" or "RGB".
1883
1884
1885
1886
1887
1888
1889

    Args:
        p (float): probability of the image being color inverted. Default value is 0.5
    """

    def __init__(self, p=0.5):
        super().__init__()
1890
        _log_api_usage_once(self)
1891
1892
1893
1894
1895
1896
1897
1898
1899
1900
1901
1902
1903
1904
1905
        self.p = p

    def forward(self, img):
        """
        Args:
            img (PIL Image or Tensor): Image to be inverted.

        Returns:
            PIL Image or Tensor: Randomly color inverted image.
        """
        if torch.rand(1).item() < self.p:
            return F.invert(img)
        return img

    def __repr__(self):
1906
        return self.__class__.__name__ + f"(p={self.p})"
1907
1908
1909
1910


class RandomPosterize(torch.nn.Module):
    """Posterize the image randomly with a given probability by reducing the
1911
1912
1913
    number of bits for each color channel. If the image is torch Tensor, it should be of type torch.uint8,
    and it is expected to have [..., 1 or 3, H, W] shape, where ... means an arbitrary number of leading dimensions.
    If img is PIL Image, it is expected to be in mode "L" or "RGB".
1914
1915
1916
1917
1918
1919
1920
1921

    Args:
        bits (int): number of bits to keep for each channel (0-8)
        p (float): probability of the image being color inverted. Default value is 0.5
    """

    def __init__(self, bits, p=0.5):
        super().__init__()
1922
        _log_api_usage_once(self)
1923
1924
1925
1926
1927
1928
1929
1930
1931
1932
1933
1934
1935
1936
1937
1938
        self.bits = bits
        self.p = p

    def forward(self, img):
        """
        Args:
            img (PIL Image or Tensor): Image to be posterized.

        Returns:
            PIL Image or Tensor: Randomly posterized image.
        """
        if torch.rand(1).item() < self.p:
            return F.posterize(img, self.bits)
        return img

    def __repr__(self):
1939
        return self.__class__.__name__ + f"(bits={self.bits},p={self.p})"
1940
1941
1942
1943


class RandomSolarize(torch.nn.Module):
    """Solarize the image randomly with a given probability by inverting all pixel
1944
1945
1946
    values above a threshold. If img is a Tensor, it is expected to be in [..., 1 or 3, H, W] format,
    where ... means it can have an arbitrary number of leading dimensions.
    If img is PIL Image, it is expected to be in mode "L" or "RGB".
1947
1948
1949
1950
1951
1952
1953
1954

    Args:
        threshold (float): all pixels equal or above this value are inverted.
        p (float): probability of the image being color inverted. Default value is 0.5
    """

    def __init__(self, threshold, p=0.5):
        super().__init__()
1955
        _log_api_usage_once(self)
1956
1957
1958
1959
1960
1961
1962
1963
1964
1965
1966
1967
1968
1969
1970
1971
        self.threshold = threshold
        self.p = p

    def forward(self, img):
        """
        Args:
            img (PIL Image or Tensor): Image to be solarized.

        Returns:
            PIL Image or Tensor: Randomly solarized image.
        """
        if torch.rand(1).item() < self.p:
            return F.solarize(img, self.threshold)
        return img

    def __repr__(self):
1972
        return self.__class__.__name__ + f"(threshold={self.threshold},p={self.p})"
1973
1974
1975


class RandomAdjustSharpness(torch.nn.Module):
1976
1977
    """Adjust the sharpness of the image randomly with a given probability. If the image is torch Tensor,
    it is expected to have [..., 1 or 3, H, W] shape, where ... means an arbitrary number of leading dimensions.
1978
1979
1980
1981
1982
1983
1984
1985
1986
1987

    Args:
        sharpness_factor (float):  How much to adjust the sharpness. Can be
            any non negative number. 0 gives a blurred image, 1 gives the
            original image while 2 increases the sharpness by a factor of 2.
        p (float): probability of the image being color inverted. Default value is 0.5
    """

    def __init__(self, sharpness_factor, p=0.5):
        super().__init__()
1988
        _log_api_usage_once(self)
1989
1990
1991
1992
1993
1994
1995
1996
1997
1998
1999
2000
2001
2002
2003
2004
        self.sharpness_factor = sharpness_factor
        self.p = p

    def forward(self, img):
        """
        Args:
            img (PIL Image or Tensor): Image to be sharpened.

        Returns:
            PIL Image or Tensor: Randomly sharpened image.
        """
        if torch.rand(1).item() < self.p:
            return F.adjust_sharpness(img, self.sharpness_factor)
        return img

    def __repr__(self):
2005
        return self.__class__.__name__ + f"(sharpness_factor={self.sharpness_factor},p={self.p})"
2006
2007
2008
2009


class RandomAutocontrast(torch.nn.Module):
    """Autocontrast the pixels of the given image randomly with a given probability.
2010
2011
2012
    If the image is torch Tensor, it is expected
    to have [..., 1 or 3, H, W] shape, where ... means an arbitrary number of leading dimensions.
    If img is PIL Image, it is expected to be in mode "L" or "RGB".
2013
2014
2015
2016
2017
2018
2019

    Args:
        p (float): probability of the image being autocontrasted. Default value is 0.5
    """

    def __init__(self, p=0.5):
        super().__init__()
2020
        _log_api_usage_once(self)
2021
2022
2023
2024
2025
2026
2027
2028
2029
2030
2031
2032
2033
2034
2035
        self.p = p

    def forward(self, img):
        """
        Args:
            img (PIL Image or Tensor): Image to be autocontrasted.

        Returns:
            PIL Image or Tensor: Randomly autocontrasted image.
        """
        if torch.rand(1).item() < self.p:
            return F.autocontrast(img)
        return img

    def __repr__(self):
2036
        return self.__class__.__name__ + f"(p={self.p})"
2037
2038
2039
2040


class RandomEqualize(torch.nn.Module):
    """Equalize the histogram of the given image randomly with a given probability.
2041
2042
2043
    If the image is torch Tensor, it is expected
    to have [..., 1 or 3, H, W] shape, where ... means an arbitrary number of leading dimensions.
    If img is PIL Image, it is expected to be in mode "P", "L" or "RGB".
2044
2045
2046
2047
2048
2049
2050

    Args:
        p (float): probability of the image being equalized. Default value is 0.5
    """

    def __init__(self, p=0.5):
        super().__init__()
2051
        _log_api_usage_once(self)
2052
2053
2054
2055
2056
2057
2058
2059
2060
2061
2062
2063
2064
2065
2066
        self.p = p

    def forward(self, img):
        """
        Args:
            img (PIL Image or Tensor): Image to be equalized.

        Returns:
            PIL Image or Tensor: Randomly equalized image.
        """
        if torch.rand(1).item() < self.p:
            return F.equalize(img)
        return img

    def __repr__(self):
2067
        return self.__class__.__name__ + f"(p={self.p})"