transforms.py 60.6 KB
Newer Older
1
import math
vfdev's avatar
vfdev committed
2
import numbers
3
import random
vfdev's avatar
vfdev committed
4
import warnings
vfdev's avatar
vfdev committed
5
from collections.abc import Sequence
6
from typing import Tuple, List, Optional
vfdev's avatar
vfdev committed
7
8

import torch
9
from PIL import Image
vfdev's avatar
vfdev committed
10
11
from torch import Tensor

12
13
14
15
16
17
18
try:
    import accimage
except ImportError:
    accimage = None

from . import functional as F

Tongzhou Wang's avatar
Tongzhou Wang committed
19

20
21
22
23
__all__ = ["Compose", "ToTensor", "PILToTensor", "ConvertImageDtype", "ToPILImage", "Normalize", "Resize", "Scale",
           "CenterCrop", "Pad", "Lambda", "RandomApply", "RandomChoice", "RandomOrder", "RandomCrop",
           "RandomHorizontalFlip", "RandomVerticalFlip", "RandomResizedCrop", "RandomSizedCrop", "FiveCrop", "TenCrop",
           "LinearTransformation", "ColorJitter", "RandomRotation", "RandomAffine", "Grayscale", "RandomGrayscale",
24
           "RandomPerspective", "RandomErasing"]
25

26
27
28
29
30
_pil_interpolation_to_str = {
    Image.NEAREST: 'PIL.Image.NEAREST',
    Image.BILINEAR: 'PIL.Image.BILINEAR',
    Image.BICUBIC: 'PIL.Image.BICUBIC',
    Image.LANCZOS: 'PIL.Image.LANCZOS',
surgan12's avatar
surgan12 committed
31
32
    Image.HAMMING: 'PIL.Image.HAMMING',
    Image.BOX: 'PIL.Image.BOX',
33
34
}

35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56

class Compose(object):
    """Composes several transforms together.

    Args:
        transforms (list of ``Transform`` objects): list of transforms to compose.

    Example:
        >>> transforms.Compose([
        >>>     transforms.CenterCrop(10),
        >>>     transforms.ToTensor(),
        >>> ])
    """

    def __init__(self, transforms):
        self.transforms = transforms

    def __call__(self, img):
        for t in self.transforms:
            img = t(img)
        return img

57
58
59
60
61
62
63
64
    def __repr__(self):
        format_string = self.__class__.__name__ + '('
        for t in self.transforms:
            format_string += '\n'
            format_string += '    {0}'.format(t)
        format_string += '\n)'
        return format_string

65
66
67
68
69

class ToTensor(object):
    """Convert a ``PIL Image`` or ``numpy.ndarray`` to tensor.

    Converts a PIL Image or numpy.ndarray (H x W x C) in the range
surgan12's avatar
surgan12 committed
70
71
72
73
74
    [0, 255] to a torch.FloatTensor of shape (C x H x W) in the range [0.0, 1.0]
    if the PIL Image belongs to one of the modes (L, LA, P, I, F, RGB, YCbCr, RGBA, CMYK, 1)
    or if the numpy.ndarray has dtype = np.uint8

    In the other cases, tensors are returned without scaling.
75
76
77
78
79
80

    .. note::
        Because the input image is scaled to [0.0, 1.0], this transformation should not be used when
        transforming target image masks. See the `references`_ for implementing the transforms for image masks.

    .. _references: https://github.com/pytorch/vision/tree/master/references/segmentation
81
82
83
84
85
86
87
88
89
90
91
92
    """

    def __call__(self, pic):
        """
        Args:
            pic (PIL Image or numpy.ndarray): Image to be converted to tensor.

        Returns:
            Tensor: Converted image.
        """
        return F.to_tensor(pic)

93
94
95
    def __repr__(self):
        return self.__class__.__name__ + '()'

96

97
98
99
class PILToTensor(object):
    """Convert a ``PIL Image`` to a tensor of the same type.

vfdev's avatar
vfdev committed
100
    Converts a PIL Image (H x W x C) to a Tensor of shape (C x H x W).
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
    """

    def __call__(self, pic):
        """
        Args:
            pic (PIL Image): Image to be converted to tensor.

        Returns:
            Tensor: Converted image.
        """
        return F.pil_to_tensor(pic)

    def __repr__(self):
        return self.__class__.__name__ + '()'


117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
class ConvertImageDtype(object):
    """Convert a tensor image to the given ``dtype`` and scale the values accordingly

    Args:
        dtype (torch.dtype): Desired data type of the output

    .. note::

        When converting from a smaller to a larger integer ``dtype`` the maximum values are **not** mapped exactly.
        If converted back and forth, this mismatch has no effect.

    Raises:
        RuntimeError: When trying to cast :class:`torch.float32` to :class:`torch.int32` or :class:`torch.int64` as
            well as for trying to cast :class:`torch.float64` to :class:`torch.int64`. These conversions might lead to
            overflow errors since the floating point ``dtype`` cannot store consecutive integers over the whole range
            of the integer ``dtype``.
    """

    def __init__(self, dtype: torch.dtype) -> None:
        self.dtype = dtype

    def __call__(self, image: torch.Tensor) -> torch.Tensor:
        return F.convert_image_dtype(image, self.dtype)


142
143
144
145
146
147
148
149
150
class ToPILImage(object):
    """Convert a tensor or an ndarray to PIL Image.

    Converts a torch.*Tensor of shape C x H x W or a numpy ndarray of shape
    H x W x C to a PIL Image while preserving the value range.

    Args:
        mode (`PIL.Image mode`_): color space and pixel depth of input data (optional).
            If ``mode`` is ``None`` (default) there are some assumptions made about the input data:
surgan12's avatar
surgan12 committed
151
152
153
154
             - If the input has 4 channels, the ``mode`` is assumed to be ``RGBA``.
             - If the input has 3 channels, the ``mode`` is assumed to be ``RGB``.
             - If the input has 2 channels, the ``mode`` is assumed to be ``LA``.
             - If the input has 1 channel, the ``mode`` is determined by the data type (i.e ``int``, ``float``,
155
               ``short``).
156

csukuangfj's avatar
csukuangfj committed
157
    .. _PIL.Image mode: https://pillow.readthedocs.io/en/latest/handbook/concepts.html#concept-modes
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
    """
    def __init__(self, mode=None):
        self.mode = mode

    def __call__(self, pic):
        """
        Args:
            pic (Tensor or numpy.ndarray): Image to be converted to PIL Image.

        Returns:
            PIL Image: Image converted to PIL Image.

        """
        return F.to_pil_image(pic, self.mode)

173
    def __repr__(self):
174
175
176
177
178
        format_string = self.__class__.__name__ + '('
        if self.mode is not None:
            format_string += 'mode={0}'.format(self.mode)
        format_string += ')'
        return format_string
179

180
181

class Normalize(object):
Fang Gao's avatar
Fang Gao committed
182
    """Normalize a tensor image with mean and standard deviation.
183
184
185
    Given mean: ``(mean[1],...,mean[n])`` and std: ``(std[1],..,std[n])`` for ``n``
    channels, this transform will normalize each channel of the input
    ``torch.*Tensor`` i.e.,
abdjava's avatar
abdjava committed
186
    ``output[channel] = (input[channel] - mean[channel]) / std[channel]``
187

188
    .. note::
189
        This transform acts out of place, i.e., it does not mutate the input tensor.
190

191
192
193
    Args:
        mean (sequence): Sequence of means for each channel.
        std (sequence): Sequence of standard deviations for each channel.
194
195
        inplace(bool,optional): Bool to make this operation in-place.

196
197
    """

surgan12's avatar
surgan12 committed
198
    def __init__(self, mean, std, inplace=False):
199
200
        self.mean = mean
        self.std = std
surgan12's avatar
surgan12 committed
201
        self.inplace = inplace
202
203
204
205
206
207
208
209
210

    def __call__(self, tensor):
        """
        Args:
            tensor (Tensor): Tensor image of size (C, H, W) to be normalized.

        Returns:
            Tensor: Normalized Tensor image.
        """
surgan12's avatar
surgan12 committed
211
        return F.normalize(tensor, self.mean, self.std, self.inplace)
212

213
214
215
    def __repr__(self):
        return self.__class__.__name__ + '(mean={0}, std={1})'.format(self.mean, self.std)

216

vfdev's avatar
vfdev committed
217
218
219
220
class Resize(torch.nn.Module):
    """Resize the input image to the given size.
    The image can be a PIL Image or a torch Tensor, in which case it is expected
    to have [..., H, W] shape, where ... means an arbitrary number of leading dimensions
221
222
223
224
225
226

    Args:
        size (sequence or int): Desired output size. If size is a sequence like
            (h, w), output size will be matched to this. If size is an int,
            smaller edge of the image will be matched to this number.
            i.e, if height > width, then image will be rescaled to
vfdev's avatar
vfdev committed
227
228
229
            (size * height / width, size).
            In torchscript mode padding as single int is not supported, use a tuple or
            list of length 1: ``[size, ]``.
vfdev's avatar
vfdev committed
230
231
232
        interpolation (int, optional): Desired interpolation enum defined by `filters`_.
            Default is ``PIL.Image.BILINEAR``. If input is Tensor, only ``PIL.Image.NEAREST``, ``PIL.Image.BILINEAR``
            and ``PIL.Image.BICUBIC`` are supported.
233
234
235
    """

    def __init__(self, size, interpolation=Image.BILINEAR):
vfdev's avatar
vfdev committed
236
237
238
239
240
        super().__init__()
        if not isinstance(size, (int, Sequence)):
            raise TypeError("Size should be int or sequence. Got {}".format(type(size)))
        if isinstance(size, Sequence) and len(size) not in (1, 2):
            raise ValueError("If size is a sequence, it should have 1 or 2 values")
241
242
243
        self.size = size
        self.interpolation = interpolation

vfdev's avatar
vfdev committed
244
    def forward(self, img):
245
246
        """
        Args:
vfdev's avatar
vfdev committed
247
            img (PIL Image or Tensor): Image to be scaled.
248
249

        Returns:
vfdev's avatar
vfdev committed
250
            PIL Image or Tensor: Rescaled image.
251
252
253
        """
        return F.resize(img, self.size, self.interpolation)

254
    def __repr__(self):
255
256
        interpolate_str = _pil_interpolation_to_str[self.interpolation]
        return self.__class__.__name__ + '(size={0}, interpolation={1})'.format(self.size, interpolate_str)
257

258
259
260
261
262
263
264
265
266
267
268

class Scale(Resize):
    """
    Note: This transform is deprecated in favor of Resize.
    """
    def __init__(self, *args, **kwargs):
        warnings.warn("The use of the transforms.Scale transform is deprecated, " +
                      "please use transforms.Resize instead.")
        super(Scale, self).__init__(*args, **kwargs)


vfdev's avatar
vfdev committed
269
270
271
272
class CenterCrop(torch.nn.Module):
    """Crops the given image at the center.
    The image can be a PIL Image or a torch Tensor, in which case it is expected
    to have [..., H, W] shape, where ... means an arbitrary number of leading dimensions
273
274
275
276

    Args:
        size (sequence or int): Desired output size of the crop. If size is an
            int instead of sequence like (h, w), a square crop (size, size) is
vfdev's avatar
vfdev committed
277
            made. If provided a tuple or list of length 1, it will be interpreted as (size[0], size[0]).
278
279
280
    """

    def __init__(self, size):
vfdev's avatar
vfdev committed
281
        super().__init__()
282
283
        if isinstance(size, numbers.Number):
            self.size = (int(size), int(size))
vfdev's avatar
vfdev committed
284
285
        elif isinstance(size, Sequence) and len(size) == 1:
            self.size = (size[0], size[0])
286
        else:
vfdev's avatar
vfdev committed
287
288
289
            if len(size) != 2:
                raise ValueError("Please provide only two dimensions (h, w) for size.")

290
291
            self.size = size

vfdev's avatar
vfdev committed
292
    def forward(self, img):
293
294
        """
        Args:
vfdev's avatar
vfdev committed
295
            img (PIL Image or Tensor): Image to be cropped.
296
297

        Returns:
vfdev's avatar
vfdev committed
298
            PIL Image or Tensor: Cropped image.
299
300
301
        """
        return F.center_crop(img, self.size)

302
303
304
    def __repr__(self):
        return self.__class__.__name__ + '(size={0})'.format(self.size)

305

306
307
308
309
class Pad(torch.nn.Module):
    """Pad the given image on all sides with the given "pad" value.
    The image can be a PIL Image or a torch Tensor, in which case it is expected
    to have [..., H, W] shape, where ... means an arbitrary number of leading dimensions
310
311

    Args:
312
        padding (int or tuple or list): Padding on each border. If a single int is provided this
313
314
            is used to pad all borders. If tuple of length 2 is provided this is the padding
            on left/right and top/bottom respectively. If a tuple of length 4 is provided
315
316
317
            this is the padding for the left, top, right and bottom borders respectively.
            In torchscript mode padding as single int is not supported, use a tuple or
            list of length 1: ``[padding, ]``.
318
        fill (int or tuple): Pixel fill value for constant fill. Default is 0. If a tuple of
319
            length 3, it is used to fill R, G, B channels respectively.
320
            This value is only used when the padding_mode is constant
321
        padding_mode (str): Type of padding. Should be: constant, edge, reflect or symmetric.
vfdev's avatar
vfdev committed
322
            Default is constant. Mode symmetric is not yet supported for Tensor inputs.
323
324
325
326
327
328
329
330

            - constant: pads with a constant value, this value is specified with fill

            - edge: pads with the last value at the edge of the image

            - reflect: pads with reflection of image without repeating the last value on the edge

                For example, padding [1, 2, 3, 4] with 2 elements on both sides in reflect mode
331
                will result in [3, 2, 1, 2, 3, 4, 3, 2]
332
333
334
335

            - symmetric: pads with reflection of image repeating the last value on the edge

                For example, padding [1, 2, 3, 4] with 2 elements on both sides in symmetric mode
336
                will result in [2, 1, 1, 2, 3, 4, 4, 3]
337
338
    """

339
340
341
342
343
344
345
346
347
348
349
350
351
    def __init__(self, padding, fill=0, padding_mode="constant"):
        super().__init__()
        if not isinstance(padding, (numbers.Number, tuple, list)):
            raise TypeError("Got inappropriate padding arg")

        if not isinstance(fill, (numbers.Number, str, tuple)):
            raise TypeError("Got inappropriate fill arg")

        if padding_mode not in ["constant", "edge", "reflect", "symmetric"]:
            raise ValueError("Padding mode should be either constant, edge, reflect or symmetric")

        if isinstance(padding, Sequence) and len(padding) not in [1, 2, 4]:
            raise ValueError("Padding must be an int or a 1, 2, or 4 element tuple, not a " +
352
353
354
355
                             "{} element tuple".format(len(padding)))

        self.padding = padding
        self.fill = fill
356
        self.padding_mode = padding_mode
357

358
    def forward(self, img):
359
360
        """
        Args:
361
            img (PIL Image or Tensor): Image to be padded.
362
363

        Returns:
364
            PIL Image or Tensor: Padded image.
365
        """
366
        return F.pad(img, self.padding, self.fill, self.padding_mode)
367

368
    def __repr__(self):
369
370
        return self.__class__.__name__ + '(padding={0}, fill={1}, padding_mode={2})'.\
            format(self.padding, self.fill, self.padding_mode)
371

372
373
374
375
376
377
378
379
380

class Lambda(object):
    """Apply a user-defined lambda as a transform.

    Args:
        lambd (function): Lambda/function to be used for transform.
    """

    def __init__(self, lambd):
381
        assert callable(lambd), repr(type(lambd).__name__) + " object is not callable"
382
383
384
385
386
        self.lambd = lambd

    def __call__(self, img):
        return self.lambd(img)

387
388
389
    def __repr__(self):
        return self.__class__.__name__ + '()'

390

391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
class RandomTransforms(object):
    """Base class for a list of transformations with randomness

    Args:
        transforms (list or tuple): list of transformations
    """

    def __init__(self, transforms):
        assert isinstance(transforms, (list, tuple))
        self.transforms = transforms

    def __call__(self, *args, **kwargs):
        raise NotImplementedError()

    def __repr__(self):
        format_string = self.__class__.__name__ + '('
        for t in self.transforms:
            format_string += '\n'
            format_string += '    {0}'.format(t)
        format_string += '\n)'
        return format_string


class RandomApply(RandomTransforms):
    """Apply randomly a list of transformations with a given probability

    Args:
        transforms (list or tuple): list of transformations
        p (float): probability
    """

    def __init__(self, transforms, p=0.5):
        super(RandomApply, self).__init__(transforms)
        self.p = p

    def __call__(self, img):
        if self.p < random.random():
            return img
        for t in self.transforms:
            img = t(img)
        return img

    def __repr__(self):
        format_string = self.__class__.__name__ + '('
        format_string += '\n    p={}'.format(self.p)
        for t in self.transforms:
            format_string += '\n'
            format_string += '    {0}'.format(t)
        format_string += '\n)'
        return format_string


class RandomOrder(RandomTransforms):
    """Apply a list of transformations in a random order
    """
    def __call__(self, img):
        order = list(range(len(self.transforms)))
        random.shuffle(order)
        for i in order:
            img = self.transforms[i](img)
        return img


class RandomChoice(RandomTransforms):
    """Apply single transformation randomly picked from a list
    """
    def __call__(self, img):
        t = random.choice(self.transforms)
        return t(img)


vfdev's avatar
vfdev committed
462
463
464
465
466
class RandomCrop(torch.nn.Module):
    """Crop the given image at a random location.
    The image can be a PIL Image or a Tensor, in which case it is expected
    to have [..., H, W] shape, where ... means an arbitrary number of leading
    dimensions
467
468
469
470

    Args:
        size (sequence or int): Desired output size of the crop. If size is an
            int instead of sequence like (h, w), a square crop (size, size) is
vfdev's avatar
vfdev committed
471
            made. If provided a tuple or list of length 1, it will be interpreted as (size[0], size[0]).
472
        padding (int or sequence, optional): Optional padding on each border
vfdev's avatar
vfdev committed
473
474
475
476
477
478
            of the image. Default is None. If a single int is provided this
            is used to pad all borders. If tuple of length 2 is provided this is the padding
            on left/right and top/bottom respectively. If a tuple of length 4 is provided
            this is the padding for the left, top, right and bottom borders respectively.
            In torchscript mode padding as single int is not supported, use a tuple or
            list of length 1: ``[padding, ]``.
479
        pad_if_needed (boolean): It will pad the image if smaller than the
ekka's avatar
ekka committed
480
            desired size to avoid raising an exception. Since cropping is done
481
            after padding, the padding seems to be done at a random offset.
vfdev's avatar
vfdev committed
482
        fill (int or tuple): Pixel fill value for constant fill. Default is 0. If a tuple of
483
484
            length 3, it is used to fill R, G, B channels respectively.
            This value is only used when the padding_mode is constant
vfdev's avatar
vfdev committed
485
        padding_mode (str): Type of padding. Should be: constant, edge, reflect or symmetric. Default is constant.
vfdev's avatar
vfdev committed
486
            Mode symmetric is not yet supported for Tensor inputs.
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501

             - constant: pads with a constant value, this value is specified with fill

             - edge: pads with the last value on the edge of the image

             - reflect: pads with reflection of image (without repeating the last value on the edge)

                padding [1, 2, 3, 4] with 2 elements on both sides in reflect mode
                will result in [3, 2, 1, 2, 3, 4, 3, 2]

             - symmetric: pads with reflection of image (repeating the last value on the edge)

                padding [1, 2, 3, 4] with 2 elements on both sides in symmetric mode
                will result in [2, 1, 1, 2, 3, 4, 4, 3]

502
503
504
    """

    @staticmethod
vfdev's avatar
vfdev committed
505
    def get_params(img: Tensor, output_size: Tuple[int, int]) -> Tuple[int, int, int, int]:
506
507
508
        """Get parameters for ``crop`` for a random crop.

        Args:
vfdev's avatar
vfdev committed
509
            img (PIL Image or Tensor): Image to be cropped.
510
511
512
513
514
            output_size (tuple): Expected output size of the crop.

        Returns:
            tuple: params (i, j, h, w) to be passed to ``crop`` for random crop.
        """
vfdev's avatar
vfdev committed
515
        w, h = F._get_image_size(img)
516
517
518
519
        th, tw = output_size
        if w == tw and h == th:
            return 0, 0, h, w

520
521
        i = torch.randint(0, h - th + 1, size=(1, )).item()
        j = torch.randint(0, w - tw + 1, size=(1, )).item()
522
523
        return i, j, th, tw

vfdev's avatar
vfdev committed
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
    def __init__(self, size, padding=None, pad_if_needed=False, fill=0, padding_mode="constant"):
        super().__init__()
        if isinstance(size, numbers.Number):
            self.size = (int(size), int(size))
        elif isinstance(size, Sequence) and len(size) == 1:
            self.size = (size[0], size[0])
        else:
            if len(size) != 2:
                raise ValueError("Please provide only two dimensions (h, w) for size.")

            # cast to tuple for torchscript
            self.size = tuple(size)
        self.padding = padding
        self.pad_if_needed = pad_if_needed
        self.fill = fill
        self.padding_mode = padding_mode

    def forward(self, img):
542
543
        """
        Args:
vfdev's avatar
vfdev committed
544
            img (PIL Image or Tensor): Image to be cropped.
545
546

        Returns:
vfdev's avatar
vfdev committed
547
            PIL Image or Tensor: Cropped image.
548
        """
549
550
        if self.padding is not None:
            img = F.pad(img, self.padding, self.fill, self.padding_mode)
551

vfdev's avatar
vfdev committed
552
        width, height = F._get_image_size(img)
553
        # pad the width if needed
vfdev's avatar
vfdev committed
554
555
556
        if self.pad_if_needed and width < self.size[1]:
            padding = [self.size[1] - width, 0]
            img = F.pad(img, padding, self.fill, self.padding_mode)
557
        # pad the height if needed
vfdev's avatar
vfdev committed
558
559
560
        if self.pad_if_needed and height < self.size[0]:
            padding = [0, self.size[0] - height]
            img = F.pad(img, padding, self.fill, self.padding_mode)
561

562
563
564
565
        i, j, h, w = self.get_params(img, self.size)

        return F.crop(img, i, j, h, w)

566
    def __repr__(self):
vfdev's avatar
vfdev committed
567
        return self.__class__.__name__ + "(size={0}, padding={1})".format(self.size, self.padding)
568

569

570
571
572
573
574
class RandomHorizontalFlip(torch.nn.Module):
    """Horizontally flip the given image randomly with a given probability.
    The image can be a PIL Image or a torch Tensor, in which case it is expected
    to have [..., H, W] shape, where ... means an arbitrary number of leading
    dimensions
575
576
577
578
579
580

    Args:
        p (float): probability of the image being flipped. Default value is 0.5
    """

    def __init__(self, p=0.5):
581
        super().__init__()
582
        self.p = p
583

584
    def forward(self, img):
585
586
        """
        Args:
587
            img (PIL Image or Tensor): Image to be flipped.
588
589

        Returns:
590
            PIL Image or Tensor: Randomly flipped image.
591
        """
592
        if torch.rand(1) < self.p:
593
594
595
            return F.hflip(img)
        return img

596
    def __repr__(self):
597
        return self.__class__.__name__ + '(p={})'.format(self.p)
598

599

600
class RandomVerticalFlip(torch.nn.Module):
vfdev's avatar
vfdev committed
601
    """Vertically flip the given image randomly with a given probability.
602
603
604
    The image can be a PIL Image or a torch Tensor, in which case it is expected
    to have [..., H, W] shape, where ... means an arbitrary number of leading
    dimensions
605
606
607
608
609
610

    Args:
        p (float): probability of the image being flipped. Default value is 0.5
    """

    def __init__(self, p=0.5):
611
        super().__init__()
612
        self.p = p
613

614
    def forward(self, img):
615
616
        """
        Args:
617
            img (PIL Image or Tensor): Image to be flipped.
618
619

        Returns:
620
            PIL Image or Tensor: Randomly flipped image.
621
        """
622
        if torch.rand(1) < self.p:
623
624
625
            return F.vflip(img)
        return img

626
    def __repr__(self):
627
        return self.__class__.__name__ + '(p={})'.format(self.p)
628

629

630
631
632
633
class RandomPerspective(torch.nn.Module):
    """Performs a random perspective transformation of the given image with a given probability.
    The image can be a PIL Image or a Tensor, in which case it is expected
    to have [..., H, W] shape, where ... means an arbitrary number of leading dimensions.
634
635

    Args:
636
637
638
639
640
641
642
643
644
        distortion_scale (float): argument to control the degree of distortion and ranges from 0 to 1.
            Default is 0.5.
        p (float): probability of the image being transformed. Default is 0.5.
        interpolation (int): Interpolation type. If input is Tensor, only ``PIL.Image.NEAREST`` and
            ``PIL.Image.BILINEAR`` are supported. Default, ``PIL.Image.BILINEAR`` for PIL images and Tensors.
        fill (n-tuple or int or float): Pixel fill value for area outside the rotated
            image. If int or float, the value is used for all bands respectively. Default is 0.
            This option is only available for ``pillow>=5.0.0``. This option is not supported for Tensor
            input. Fill value for the area outside the transform in the output image is always 0.
645
646
647

    """

648
649
    def __init__(self, distortion_scale=0.5, p=0.5, interpolation=Image.BILINEAR, fill=0):
        super().__init__()
650
651
652
        self.p = p
        self.interpolation = interpolation
        self.distortion_scale = distortion_scale
653
        self.fill = fill
654

655
    def forward(self, img):
656
657
        """
        Args:
658
            img (PIL Image or Tensor): Image to be Perspectively transformed.
659
660

        Returns:
661
            PIL Image or Tensor: Randomly transformed image.
662
        """
663
664
        if torch.rand(1) < self.p:
            width, height = F._get_image_size(img)
665
            startpoints, endpoints = self.get_params(width, height, self.distortion_scale)
666
            return F.perspective(img, startpoints, endpoints, self.interpolation, self.fill)
667
668
669
        return img

    @staticmethod
670
    def get_params(width: int, height: int, distortion_scale: float) -> Tuple[List[List[int]], List[List[int]]]:
671
672
673
        """Get parameters for ``perspective`` for a random perspective transform.

        Args:
674
675
676
            width (int): width of the image.
            height (int): height of the image.
            distortion_scale (float): argument to control the degree of distortion and ranges from 0 to 1.
677
678

        Returns:
679
            List containing [top-left, top-right, bottom-right, bottom-left] of the original image,
680
681
            List containing [top-left, top-right, bottom-right, bottom-left] of the transformed image.
        """
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
        half_height = height // 2
        half_width = width // 2
        topleft = [
            int(torch.randint(0, int(distortion_scale * half_width) + 1, size=(1, )).item()),
            int(torch.randint(0, int(distortion_scale * half_height) + 1, size=(1, )).item())
        ]
        topright = [
            int(torch.randint(width - int(distortion_scale * half_width) - 1, width, size=(1, )).item()),
            int(torch.randint(0, int(distortion_scale * half_height) + 1, size=(1, )).item())
        ]
        botright = [
            int(torch.randint(width - int(distortion_scale * half_width) - 1, width, size=(1, )).item()),
            int(torch.randint(height - int(distortion_scale * half_height) - 1, height, size=(1, )).item())
        ]
        botleft = [
            int(torch.randint(0, int(distortion_scale * half_width) + 1, size=(1, )).item()),
            int(torch.randint(height - int(distortion_scale * half_height) - 1, height, size=(1, )).item())
        ]
        startpoints = [[0, 0], [width - 1, 0], [width - 1, height - 1], [0, height - 1]]
701
702
703
704
705
706
707
        endpoints = [topleft, topright, botright, botleft]
        return startpoints, endpoints

    def __repr__(self):
        return self.__class__.__name__ + '(p={})'.format(self.p)


708
709
710
711
class RandomResizedCrop(torch.nn.Module):
    """Crop the given image to random size and aspect ratio.
    The image can be a PIL Image or a Tensor, in which case it is expected
    to have [..., H, W] shape, where ... means an arbitrary number of leading dimensions
712

713
714
    A crop of random size (default: of 0.08 to 1.0) of the original size and a random
    aspect ratio (default: of 3/4 to 4/3) of the original aspect ratio is made. This crop
715
716
717
718
    is finally resized to given size.
    This is popularly used to train the Inception networks.

    Args:
719
720
721
722
723
        size (int or sequence): expected output size of each edge. If size is an
            int instead of sequence like (h, w), a square output size ``(size, size)`` is
            made. If provided a tuple or list of length 1, it will be interpreted as (size[0], size[0]).
        scale (tuple of float): range of size of the origin size cropped
        ratio (tuple of float): range of aspect ratio of the origin aspect ratio cropped.
vfdev's avatar
vfdev committed
724
725
726
        interpolation (int): Desired interpolation enum defined by `filters`_.
            Default is ``PIL.Image.BILINEAR``. If input is Tensor, only ``PIL.Image.NEAREST``, ``PIL.Image.BILINEAR``
            and ``PIL.Image.BICUBIC`` are supported.
727
728
    """

729
    def __init__(self, size, scale=(0.08, 1.0), ratio=(3. / 4., 4. / 3.), interpolation=Image.BILINEAR):
730
731
732
733
734
        super().__init__()
        if isinstance(size, numbers.Number):
            self.size = (int(size), int(size))
        elif isinstance(size, Sequence) and len(size) == 1:
            self.size = (size[0], size[0])
735
        else:
736
737
738
739
            if len(size) != 2:
                raise ValueError("Please provide only two dimensions (h, w) for size.")
            self.size = size

740
        if not isinstance(scale, Sequence):
741
            raise TypeError("Scale should be a sequence")
742
        if not isinstance(ratio, Sequence):
743
            raise TypeError("Ratio should be a sequence")
744
        if (scale[0] > scale[1]) or (ratio[0] > ratio[1]):
745
            warnings.warn("Scale and ratio should be of kind (min, max)")
746

747
        self.interpolation = interpolation
748
749
        self.scale = scale
        self.ratio = ratio
750
751

    @staticmethod
752
    def get_params(
753
            img: Tensor, scale: List[float], ratio: List[float]
754
    ) -> Tuple[int, int, int, int]:
755
756
757
        """Get parameters for ``crop`` for a random sized crop.

        Args:
758
            img (PIL Image or Tensor): Input image.
759
760
            scale (list): range of scale of the origin size cropped
            ratio (list): range of aspect ratio of the origin aspect ratio cropped
761
762
763
764
765

        Returns:
            tuple: params (i, j, h, w) to be passed to ``crop`` for a random
                sized crop.
        """
vfdev's avatar
vfdev committed
766
        width, height = F._get_image_size(img)
Zhicheng Yan's avatar
Zhicheng Yan committed
767
        area = height * width
768

769
        for _ in range(10):
770
            target_area = area * torch.empty(1).uniform_(scale[0], scale[1]).item()
771
772
773
774
            log_ratio = torch.log(torch.tensor(ratio))
            aspect_ratio = torch.exp(
                torch.empty(1).uniform_(log_ratio[0], log_ratio[1])
            ).item()
775
776
777
778

            w = int(round(math.sqrt(target_area * aspect_ratio)))
            h = int(round(math.sqrt(target_area / aspect_ratio)))

Zhicheng Yan's avatar
Zhicheng Yan committed
779
            if 0 < w <= width and 0 < h <= height:
780
781
                i = torch.randint(0, height - h + 1, size=(1,)).item()
                j = torch.randint(0, width - w + 1, size=(1,)).item()
782
783
                return i, j, h, w

784
        # Fallback to central crop
Zhicheng Yan's avatar
Zhicheng Yan committed
785
        in_ratio = float(width) / float(height)
786
        if in_ratio < min(ratio):
Zhicheng Yan's avatar
Zhicheng Yan committed
787
            w = width
788
            h = int(round(w / min(ratio)))
789
        elif in_ratio > max(ratio):
Zhicheng Yan's avatar
Zhicheng Yan committed
790
            h = height
791
            w = int(round(h * max(ratio)))
792
        else:  # whole image
Zhicheng Yan's avatar
Zhicheng Yan committed
793
794
795
796
            w = width
            h = height
        i = (height - h) // 2
        j = (width - w) // 2
797
        return i, j, h, w
798

799
    def forward(self, img):
800
801
        """
        Args:
802
            img (PIL Image or Tensor): Image to be cropped and resized.
803
804

        Returns:
805
            PIL Image or Tensor: Randomly cropped and resized image.
806
        """
807
        i, j, h, w = self.get_params(img, self.scale, self.ratio)
808
809
        return F.resized_crop(img, i, j, h, w, self.size, self.interpolation)

810
    def __repr__(self):
811
812
        interpolate_str = _pil_interpolation_to_str[self.interpolation]
        format_string = self.__class__.__name__ + '(size={0}'.format(self.size)
813
814
        format_string += ', scale={0}'.format(tuple(round(s, 4) for s in self.scale))
        format_string += ', ratio={0}'.format(tuple(round(r, 4) for r in self.ratio))
815
816
        format_string += ', interpolation={0})'.format(interpolate_str)
        return format_string
817

818
819
820
821
822
823
824
825
826
827
828

class RandomSizedCrop(RandomResizedCrop):
    """
    Note: This transform is deprecated in favor of RandomResizedCrop.
    """
    def __init__(self, *args, **kwargs):
        warnings.warn("The use of the transforms.RandomSizedCrop transform is deprecated, " +
                      "please use transforms.RandomResizedCrop instead.")
        super(RandomSizedCrop, self).__init__(*args, **kwargs)


vfdev's avatar
vfdev committed
829
830
831
832
833
class FiveCrop(torch.nn.Module):
    """Crop the given image into four corners and the central crop.
    The image can be a PIL Image or a Tensor, in which case it is expected
    to have [..., H, W] shape, where ... means an arbitrary number of leading
    dimensions
834
835
836
837
838
839
840
841
842

    .. Note::
         This transform returns a tuple of images and there may be a mismatch in the number of
         inputs and targets your Dataset returns. See below for an example of how to deal with
         this.

    Args:
         size (sequence or int): Desired output size of the crop. If size is an ``int``
            instead of sequence like (h, w), a square crop of size (size, size) is made.
vfdev's avatar
vfdev committed
843
            If provided a tuple or list of length 1, it will be interpreted as (size[0], size[0]).
844
845
846
847
848
849
850
851
852
853
854
855
856
857

    Example:
         >>> transform = Compose([
         >>>    FiveCrop(size), # this is a list of PIL Images
         >>>    Lambda(lambda crops: torch.stack([ToTensor()(crop) for crop in crops])) # returns a 4D tensor
         >>> ])
         >>> #In your test loop you can do the following:
         >>> input, target = batch # input is a 5d tensor, target is 2d
         >>> bs, ncrops, c, h, w = input.size()
         >>> result = model(input.view(-1, c, h, w)) # fuse batch size and ncrops
         >>> result_avg = result.view(bs, ncrops, -1).mean(1) # avg over crops
    """

    def __init__(self, size):
vfdev's avatar
vfdev committed
858
        super().__init__()
859
860
        if isinstance(size, numbers.Number):
            self.size = (int(size), int(size))
vfdev's avatar
vfdev committed
861
862
        elif isinstance(size, Sequence) and len(size) == 1:
            self.size = (size[0], size[0])
863
        else:
vfdev's avatar
vfdev committed
864
865
866
            if len(size) != 2:
                raise ValueError("Please provide only two dimensions (h, w) for size.")

867
868
            self.size = size

vfdev's avatar
vfdev committed
869
870
871
872
873
874
875
876
    def forward(self, img):
        """
        Args:
            img (PIL Image or Tensor): Image to be cropped.

        Returns:
            tuple of 5 images. Image can be PIL Image or Tensor
        """
877
878
        return F.five_crop(img, self.size)

879
880
881
    def __repr__(self):
        return self.__class__.__name__ + '(size={0})'.format(self.size)

882

vfdev's avatar
vfdev committed
883
884
885
886
887
888
class TenCrop(torch.nn.Module):
    """Crop the given image into four corners and the central crop plus the flipped version of
    these (horizontal flipping is used by default).
    The image can be a PIL Image or a Tensor, in which case it is expected
    to have [..., H, W] shape, where ... means an arbitrary number of leading
    dimensions
889
890
891
892
893
894
895
896
897

    .. Note::
         This transform returns a tuple of images and there may be a mismatch in the number of
         inputs and targets your Dataset returns. See below for an example of how to deal with
         this.

    Args:
        size (sequence or int): Desired output size of the crop. If size is an
            int instead of sequence like (h, w), a square crop (size, size) is
vfdev's avatar
vfdev committed
898
            made. If provided a tuple or list of length 1, it will be interpreted as (size[0], size[0]).
899
        vertical_flip (bool): Use vertical flipping instead of horizontal
900
901
902
903
904
905
906
907
908
909
910
911
912
913

    Example:
         >>> transform = Compose([
         >>>    TenCrop(size), # this is a list of PIL Images
         >>>    Lambda(lambda crops: torch.stack([ToTensor()(crop) for crop in crops])) # returns a 4D tensor
         >>> ])
         >>> #In your test loop you can do the following:
         >>> input, target = batch # input is a 5d tensor, target is 2d
         >>> bs, ncrops, c, h, w = input.size()
         >>> result = model(input.view(-1, c, h, w)) # fuse batch size and ncrops
         >>> result_avg = result.view(bs, ncrops, -1).mean(1) # avg over crops
    """

    def __init__(self, size, vertical_flip=False):
vfdev's avatar
vfdev committed
914
        super().__init__()
915
916
        if isinstance(size, numbers.Number):
            self.size = (int(size), int(size))
vfdev's avatar
vfdev committed
917
918
        elif isinstance(size, Sequence) and len(size) == 1:
            self.size = (size[0], size[0])
919
        else:
vfdev's avatar
vfdev committed
920
921
922
            if len(size) != 2:
                raise ValueError("Please provide only two dimensions (h, w) for size.")

923
924
925
            self.size = size
        self.vertical_flip = vertical_flip

vfdev's avatar
vfdev committed
926
927
928
929
930
931
932
933
    def forward(self, img):
        """
        Args:
            img (PIL Image or Tensor): Image to be cropped.

        Returns:
            tuple of 10 images. Image can be PIL Image or Tensor
        """
934
935
        return F.ten_crop(img, self.size, self.vertical_flip)

936
    def __repr__(self):
937
        return self.__class__.__name__ + '(size={0}, vertical_flip={1})'.format(self.size, self.vertical_flip)
938

939

940
class LinearTransformation(object):
ekka's avatar
ekka committed
941
    """Transform a tensor image with a square transformation matrix and a mean_vector computed
942
    offline.
ekka's avatar
ekka committed
943
944
945
    Given transformation_matrix and mean_vector, will flatten the torch.*Tensor and
    subtract mean_vector from it which is then followed by computing the dot
    product with the transformation matrix and then reshaping the tensor to its
946
    original shape.
947

948
    Applications:
949
        whitening transformation: Suppose X is a column vector zero-centered data.
950
951
952
        Then compute the data covariance matrix [D x D] with torch.mm(X.t(), X),
        perform SVD on this matrix and pass it as transformation_matrix.

953
954
    Args:
        transformation_matrix (Tensor): tensor [D x D], D = C x H x W
ekka's avatar
ekka committed
955
        mean_vector (Tensor): tensor [D], D = C x H x W
956
957
    """

ekka's avatar
ekka committed
958
    def __init__(self, transformation_matrix, mean_vector):
959
960
961
        if transformation_matrix.size(0) != transformation_matrix.size(1):
            raise ValueError("transformation_matrix should be square. Got " +
                             "[{} x {}] rectangular matrix.".format(*transformation_matrix.size()))
ekka's avatar
ekka committed
962
963
964

        if mean_vector.size(0) != transformation_matrix.size(0):
            raise ValueError("mean_vector should have the same length {}".format(mean_vector.size(0)) +
Francisco Massa's avatar
Francisco Massa committed
965
966
                             " as any one of the dimensions of the transformation_matrix [{}]"
                             .format(tuple(transformation_matrix.size())))
ekka's avatar
ekka committed
967

968
        self.transformation_matrix = transformation_matrix
ekka's avatar
ekka committed
969
        self.mean_vector = mean_vector
970
971
972
973
974
975
976
977
978
979
980
981
982

    def __call__(self, tensor):
        """
        Args:
            tensor (Tensor): Tensor image of size (C, H, W) to be whitened.

        Returns:
            Tensor: Transformed image.
        """
        if tensor.size(0) * tensor.size(1) * tensor.size(2) != self.transformation_matrix.size(0):
            raise ValueError("tensor and transformation matrix have incompatible shape." +
                             "[{} x {} x {}] != ".format(*tensor.size()) +
                             "{}".format(self.transformation_matrix.size(0)))
ekka's avatar
ekka committed
983
        flat_tensor = tensor.view(1, -1) - self.mean_vector
984
985
986
987
        transformed_tensor = torch.mm(flat_tensor, self.transformation_matrix)
        tensor = transformed_tensor.view(tensor.size())
        return tensor

988
    def __repr__(self):
ekka's avatar
ekka committed
989
990
991
        format_string = self.__class__.__name__ + '(transformation_matrix='
        format_string += (str(self.transformation_matrix.tolist()) + ')')
        format_string += (", (mean_vector=" + str(self.mean_vector.tolist()) + ')')
992
993
        return format_string

994

995
class ColorJitter(torch.nn.Module):
996
997
998
    """Randomly change the brightness, contrast and saturation of an image.

    Args:
yaox12's avatar
yaox12 committed
999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
        brightness (float or tuple of float (min, max)): How much to jitter brightness.
            brightness_factor is chosen uniformly from [max(0, 1 - brightness), 1 + brightness]
            or the given [min, max]. Should be non negative numbers.
        contrast (float or tuple of float (min, max)): How much to jitter contrast.
            contrast_factor is chosen uniformly from [max(0, 1 - contrast), 1 + contrast]
            or the given [min, max]. Should be non negative numbers.
        saturation (float or tuple of float (min, max)): How much to jitter saturation.
            saturation_factor is chosen uniformly from [max(0, 1 - saturation), 1 + saturation]
            or the given [min, max]. Should be non negative numbers.
        hue (float or tuple of float (min, max)): How much to jitter hue.
            hue_factor is chosen uniformly from [-hue, hue] or the given [min, max].
            Should have 0<= hue <= 0.5 or -0.5 <= min <= max <= 0.5.
1011
    """
1012

1013
    def __init__(self, brightness=0, contrast=0, saturation=0, hue=0):
1014
        super().__init__()
yaox12's avatar
yaox12 committed
1015
1016
1017
1018
1019
1020
        self.brightness = self._check_input(brightness, 'brightness')
        self.contrast = self._check_input(contrast, 'contrast')
        self.saturation = self._check_input(saturation, 'saturation')
        self.hue = self._check_input(hue, 'hue', center=0, bound=(-0.5, 0.5),
                                     clip_first_on_zero=False)

1021
    @torch.jit.unused
yaox12's avatar
yaox12 committed
1022
1023
1024
1025
    def _check_input(self, value, name, center=1, bound=(0, float('inf')), clip_first_on_zero=True):
        if isinstance(value, numbers.Number):
            if value < 0:
                raise ValueError("If {} is a single number, it must be non negative.".format(name))
1026
            value = [center - float(value), center + float(value)]
yaox12's avatar
yaox12 committed
1027
            if clip_first_on_zero:
1028
                value[0] = max(value[0], 0.0)
yaox12's avatar
yaox12 committed
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
        elif isinstance(value, (tuple, list)) and len(value) == 2:
            if not bound[0] <= value[0] <= value[1] <= bound[1]:
                raise ValueError("{} values should be between {}".format(name, bound))
        else:
            raise TypeError("{} should be a single number or a list/tuple with lenght 2.".format(name))

        # if value is 0 or (1., 1.) for brightness/contrast/saturation
        # or (0., 0.) for hue, do nothing
        if value[0] == value[1] == center:
            value = None
        return value
1040
1041

    @staticmethod
1042
    @torch.jit.unused
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
    def get_params(brightness, contrast, saturation, hue):
        """Get a randomized transform to be applied on image.

        Arguments are same as that of __init__.

        Returns:
            Transform which randomly adjusts brightness, contrast and
            saturation in a random order.
        """
        transforms = []
yaox12's avatar
yaox12 committed
1053
1054
1055

        if brightness is not None:
            brightness_factor = random.uniform(brightness[0], brightness[1])
1056
1057
            transforms.append(Lambda(lambda img: F.adjust_brightness(img, brightness_factor)))

yaox12's avatar
yaox12 committed
1058
1059
        if contrast is not None:
            contrast_factor = random.uniform(contrast[0], contrast[1])
1060
1061
            transforms.append(Lambda(lambda img: F.adjust_contrast(img, contrast_factor)))

yaox12's avatar
yaox12 committed
1062
1063
        if saturation is not None:
            saturation_factor = random.uniform(saturation[0], saturation[1])
1064
1065
            transforms.append(Lambda(lambda img: F.adjust_saturation(img, saturation_factor)))

yaox12's avatar
yaox12 committed
1066
1067
        if hue is not None:
            hue_factor = random.uniform(hue[0], hue[1])
1068
1069
            transforms.append(Lambda(lambda img: F.adjust_hue(img, hue_factor)))

vfdev's avatar
vfdev committed
1070
        random.shuffle(transforms)
1071
1072
1073
1074
        transform = Compose(transforms)

        return transform

1075
    def forward(self, img):
1076
1077
        """
        Args:
1078
            img (PIL Image or Tensor): Input image.
1079
1080

        Returns:
1081
1082
1083
1084
1085
1086
1087
1088
1089
1090
1091
1092
1093
1094
1095
1096
1097
1098
1099
1100
1101
1102
1103
1104
1105
            PIL Image or Tensor: Color jittered image.
        """
        fn_idx = torch.randperm(4)
        for fn_id in fn_idx:
            if fn_id == 0 and self.brightness is not None:
                brightness = self.brightness
                brightness_factor = torch.tensor(1.0).uniform_(brightness[0], brightness[1]).item()
                img = F.adjust_brightness(img, brightness_factor)

            if fn_id == 1 and self.contrast is not None:
                contrast = self.contrast
                contrast_factor = torch.tensor(1.0).uniform_(contrast[0], contrast[1]).item()
                img = F.adjust_contrast(img, contrast_factor)

            if fn_id == 2 and self.saturation is not None:
                saturation = self.saturation
                saturation_factor = torch.tensor(1.0).uniform_(saturation[0], saturation[1]).item()
                img = F.adjust_saturation(img, saturation_factor)

            if fn_id == 3 and self.hue is not None:
                hue = self.hue
                hue_factor = torch.tensor(1.0).uniform_(hue[0], hue[1]).item()
                img = F.adjust_hue(img, hue_factor)

        return img
1106

1107
    def __repr__(self):
1108
1109
1110
1111
1112
1113
        format_string = self.__class__.__name__ + '('
        format_string += 'brightness={0}'.format(self.brightness)
        format_string += ', contrast={0}'.format(self.contrast)
        format_string += ', saturation={0}'.format(self.saturation)
        format_string += ', hue={0})'.format(self.hue)
        return format_string
1114

1115

1116
class RandomRotation(torch.nn.Module):
1117
    """Rotate the image by angle.
1118
1119
    The image can be a PIL Image or a Tensor, in which case it is expected
    to have [..., H, W] shape, where ... means an arbitrary number of leading dimensions.
1120
1121
1122
1123
1124

    Args:
        degrees (sequence or float or int): Range of degrees to select from.
            If degrees is a number instead of sequence like (min, max), the range of degrees
            will be (-degrees, +degrees).
1125
        resample (int, optional): An optional resampling filter. See `filters`_ for more information.
1126
            If omitted, or if the image has mode "1" or "P", it is set to PIL.Image.NEAREST.
1127
            If input is Tensor, only ``PIL.Image.NEAREST`` and ``PIL.Image.BILINEAR`` are supported.
1128
1129
1130
1131
        expand (bool, optional): Optional expansion flag.
            If true, expands the output to make it large enough to hold the entire rotated image.
            If false or omitted, make the output image the same size as the input image.
            Note that the expand flag assumes rotation around the center and no translation.
1132
        center (list or tuple, optional): Optional center of rotation, (x, y). Origin is the upper left corner.
1133
            Default is the center of the image.
Philip Meier's avatar
Philip Meier committed
1134
1135
        fill (n-tuple or int or float): Pixel fill value for area outside the rotated
            image. If int or float, the value is used for all bands respectively.
1136
1137
1138
            Defaults to 0 for all bands. This option is only available for Pillow>=5.2.0.
            This option is not supported for Tensor input. Fill value for the area outside the transform in the output
            image is always 0.
1139
1140
1141

    .. _filters: https://pillow.readthedocs.io/en/latest/handbook/concepts.html#filters

1142
1143
    """

Philip Meier's avatar
Philip Meier committed
1144
    def __init__(self, degrees, resample=False, expand=False, center=None, fill=None):
1145
        super().__init__()
1146
1147
1148
        if isinstance(degrees, numbers.Number):
            if degrees < 0:
                raise ValueError("If degrees is a single number, it must be positive.")
1149
            degrees = [-degrees, degrees]
1150
        else:
1151
1152
            if not isinstance(degrees, Sequence):
                raise TypeError("degrees should be a sequence of length 2.")
1153
1154
            if len(degrees) != 2:
                raise ValueError("If degrees is a sequence, it must be of len 2.")
1155
1156
1157
1158
1159
1160
1161
1162
1163
1164

        self.degrees = [float(d) for d in degrees]

        if center is not None:
            if not isinstance(center, Sequence):
                raise TypeError("center should be a sequence of length 2.")
            if len(center) != 2:
                raise ValueError("center should be a sequence of length 2.")

        self.center = center
1165
1166
1167

        self.resample = resample
        self.expand = expand
1168
        self.fill = fill
1169
1170

    @staticmethod
1171
    def get_params(degrees: List[float]) -> float:
1172
1173
1174
        """Get parameters for ``rotate`` for a random rotation.

        Returns:
1175
            float: angle parameter to be passed to ``rotate`` for random rotation.
1176
        """
1177
        angle = float(torch.empty(1).uniform_(float(degrees[0]), float(degrees[1])).item())
1178
1179
        return angle

1180
    def forward(self, img):
1181
        """
1182
        Args:
1183
            img (PIL Image or Tensor): Image to be rotated.
1184
1185

        Returns:
1186
            PIL Image or Tensor: Rotated image.
1187
1188
        """
        angle = self.get_params(self.degrees)
1189
        return F.rotate(img, angle, self.resample, self.expand, self.center, self.fill)
1190

1191
    def __repr__(self):
1192
1193
1194
1195
1196
        format_string = self.__class__.__name__ + '(degrees={0}'.format(self.degrees)
        format_string += ', resample={0}'.format(self.resample)
        format_string += ', expand={0}'.format(self.expand)
        if self.center is not None:
            format_string += ', center={0}'.format(self.center)
1197
1198
        if self.fill is not None:
            format_string += ', fill={0}'.format(self.fill)
1199
1200
        format_string += ')'
        return format_string
1201

1202

1203
1204
1205
1206
class RandomAffine(torch.nn.Module):
    """Random affine transformation of the image keeping center invariant.
    The image can be a PIL Image or a Tensor, in which case it is expected
    to have [..., H, W] shape, where ... means an arbitrary number of leading dimensions.
1207
1208
1209
1210

    Args:
        degrees (sequence or float or int): Range of degrees to select from.
            If degrees is a number instead of sequence like (min, max), the range of degrees
1211
            will be (-degrees, +degrees). Set to 0 to deactivate rotations.
1212
1213
1214
1215
1216
1217
1218
        translate (tuple, optional): tuple of maximum absolute fraction for horizontal
            and vertical translations. For example translate=(a, b), then horizontal shift
            is randomly sampled in the range -img_width * a < dx < img_width * a and vertical shift is
            randomly sampled in the range -img_height * b < dy < img_height * b. Will not translate by default.
        scale (tuple, optional): scaling factor interval, e.g (a, b), then scale is
            randomly sampled from the range a <= scale <= b. Will keep original scale by default.
        shear (sequence or float or int, optional): Range of degrees to select from.
ptrblck's avatar
ptrblck committed
1219
            If shear is a number, a shear parallel to the x axis in the range (-shear, +shear)
1220
            will be applied. Else if shear is a tuple or list of 2 values a shear parallel to the x axis in the
ptrblck's avatar
ptrblck committed
1221
1222
            range (shear[0], shear[1]) will be applied. Else if shear is a tuple or list of 4 values,
            a x-axis shear in (shear[0], shear[1]) and y-axis shear in (shear[2], shear[3]) will be applied.
1223
1224
1225
1226
1227
1228
1229
            Will not apply shear by default.
        resample (int, optional): An optional resampling filter. See `filters`_ for more information.
            If omitted, or if the image has mode "1" or "P", it is set to ``PIL.Image.NEAREST``.
            If input is Tensor, only ``PIL.Image.NEAREST`` and ``PIL.Image.BILINEAR`` are supported.
        fillcolor (tuple or int): Optional fill color (Tuple for RGB Image and int for grayscale) for the area
            outside the transform in the output image (Pillow>=5.0.0). This option is not supported for Tensor
            input. Fill value for the area outside the transform in the output image is always 0.
1230
1231
1232

    .. _filters: https://pillow.readthedocs.io/en/latest/handbook/concepts.html#filters

1233
1234
    """

1235
1236
    def __init__(self, degrees, translate=None, scale=None, shear=None, resample=0, fillcolor=0):
        super().__init__()
1237
1238
1239
        if isinstance(degrees, numbers.Number):
            if degrees < 0:
                raise ValueError("If degrees is a single number, it must be positive.")
1240
            degrees = [-degrees, degrees]
1241
        else:
1242
1243
1244
1245
1246
1247
            if not isinstance(degrees, Sequence):
                raise TypeError("degrees should be a sequence of length 2.")
            if len(degrees) != 2:
                raise ValueError("degrees should be sequence of length 2.")

        self.degrees = [float(d) for d in degrees]
1248
1249

        if translate is not None:
1250
1251
1252
1253
            if not isinstance(translate, Sequence):
                raise TypeError("translate should be a sequence of length 2.")
            if len(translate) != 2:
                raise ValueError("translate should be sequence of length 2.")
1254
1255
1256
1257
1258
1259
            for t in translate:
                if not (0.0 <= t <= 1.0):
                    raise ValueError("translation values should be between 0 and 1")
        self.translate = translate

        if scale is not None:
1260
1261
1262
1263
1264
            if not isinstance(scale, Sequence):
                raise TypeError("scale should be a sequence of length 2.")
            if len(scale) != 2:
                raise ValueError("scale should be sequence of length 2.")

1265
1266
1267
1268
1269
1270
1271
1272
1273
            for s in scale:
                if s <= 0:
                    raise ValueError("scale values should be positive")
        self.scale = scale

        if shear is not None:
            if isinstance(shear, numbers.Number):
                if shear < 0:
                    raise ValueError("If shear is a single number, it must be positive.")
1274
                shear = [-shear, shear]
1275
            else:
1276
1277
1278
1279
1280
1281
                if not isinstance(shear, Sequence):
                    raise TypeError("shear should be a sequence of length 2 or 4.")
                if len(shear) not in (2, 4):
                    raise ValueError("shear should be sequence of length 2 or 4.")

            self.shear = [float(s) for s in shear]
1282
1283
1284
1285
1286
1287
1288
        else:
            self.shear = shear

        self.resample = resample
        self.fillcolor = fillcolor

    @staticmethod
1289
1290
1291
1292
1293
1294
1295
    def get_params(
            degrees: List[float],
            translate: Optional[List[float]],
            scale_ranges: Optional[List[float]],
            shears: Optional[List[float]],
            img_size: List[int]
    ) -> Tuple[float, Tuple[int, int], float, Tuple[float, float]]:
1296
1297
1298
        """Get parameters for affine transformation

        Returns:
1299
            params to be passed to the affine transformation
1300
        """
1301
        angle = float(torch.empty(1).uniform_(float(degrees[0]), float(degrees[1])).item())
1302
        if translate is not None:
1303
1304
1305
1306
1307
            max_dx = float(translate[0] * img_size[0])
            max_dy = float(translate[1] * img_size[1])
            tx = int(round(torch.empty(1).uniform_(-max_dx, max_dx).item()))
            ty = int(round(torch.empty(1).uniform_(-max_dy, max_dy).item()))
            translations = (tx, ty)
1308
1309
1310
1311
        else:
            translations = (0, 0)

        if scale_ranges is not None:
1312
            scale = float(torch.empty(1).uniform_(scale_ranges[0], scale_ranges[1]).item())
1313
1314
1315
        else:
            scale = 1.0

1316
        shear_x = shear_y = 0.0
1317
        if shears is not None:
1318
1319
1320
1321
1322
            shear_x = float(torch.empty(1).uniform_(shears[0], shears[1]).item())
            if len(shears) == 4:
                shear_y = float(torch.empty(1).uniform_(shears[2], shears[3]).item())

        shear = (shear_x, shear_y)
1323
1324
1325

        return angle, translations, scale, shear

1326
    def forward(self, img):
1327
        """
1328
            img (PIL Image or Tensor): Image to be transformed.
1329
1330

        Returns:
1331
            PIL Image or Tensor: Affine transformed image.
1332
        """
1333
1334
1335
1336

        img_size = F._get_image_size(img)

        ret = self.get_params(self.degrees, self.translate, self.scale, self.shear, img_size)
1337
1338
1339
1340
1341
1342
1343
1344
1345
1346
1347
1348
1349
1350
1351
1352
1353
1354
1355
1356
        return F.affine(img, *ret, resample=self.resample, fillcolor=self.fillcolor)

    def __repr__(self):
        s = '{name}(degrees={degrees}'
        if self.translate is not None:
            s += ', translate={translate}'
        if self.scale is not None:
            s += ', scale={scale}'
        if self.shear is not None:
            s += ', shear={shear}'
        if self.resample > 0:
            s += ', resample={resample}'
        if self.fillcolor != 0:
            s += ', fillcolor={fillcolor}'
        s += ')'
        d = dict(self.__dict__)
        d['resample'] = _pil_interpolation_to_str[d['resample']]
        return s.format(name=self.__class__.__name__, **d)


1357
1358
class Grayscale(object):
    """Convert image to grayscale.
1359

1360
1361
1362
1363
    Args:
        num_output_channels (int): (1 or 3) number of channels desired for output image

    Returns:
1364
        PIL Image: Grayscale version of the input.
1365
1366
         - If ``num_output_channels == 1`` : returned image is single channel
         - If ``num_output_channels == 3`` : returned image is 3 channel with r == g == b
1367
1368
1369
1370
1371
1372
1373
1374
1375
1376
1377
1378
1379
1380
1381
1382

    """

    def __init__(self, num_output_channels=1):
        self.num_output_channels = num_output_channels

    def __call__(self, img):
        """
        Args:
            img (PIL Image): Image to be converted to grayscale.

        Returns:
            PIL Image: Randomly grayscaled image.
        """
        return F.to_grayscale(img, num_output_channels=self.num_output_channels)

1383
    def __repr__(self):
1384
        return self.__class__.__name__ + '(num_output_channels={0})'.format(self.num_output_channels)
1385

1386
1387
1388

class RandomGrayscale(object):
    """Randomly convert image to grayscale with a probability of p (default 0.1).
1389

1390
1391
1392
1393
    Args:
        p (float): probability that image should be converted to grayscale.

    Returns:
1394
1395
1396
1397
        PIL Image: Grayscale version of the input image with probability p and unchanged
        with probability (1-p).
        - If input image is 1 channel: grayscale version is 1 channel
        - If input image is 3 channel: grayscale version is 3 channel with r == g == b
1398
1399
1400
1401
1402
1403
1404
1405
1406
1407
1408
1409
1410
1411
1412
1413
1414
1415

    """

    def __init__(self, p=0.1):
        self.p = p

    def __call__(self, img):
        """
        Args:
            img (PIL Image): Image to be converted to grayscale.

        Returns:
            PIL Image: Randomly grayscaled image.
        """
        num_output_channels = 1 if img.mode == 'L' else 3
        if random.random() < self.p:
            return F.to_grayscale(img, num_output_channels=num_output_channels)
        return img
1416
1417

    def __repr__(self):
1418
        return self.__class__.__name__ + '(p={0})'.format(self.p)
1419
1420


1421
class RandomErasing(torch.nn.Module):
1422
    """ Randomly selects a rectangle region in an image and erases its pixels.
1423
1424
    'Random Erasing Data Augmentation' by Zhong et al. See https://arxiv.org/pdf/1708.04896.pdf

1425
1426
1427
1428
1429
1430
1431
1432
    Args:
         p: probability that the random erasing operation will be performed.
         scale: range of proportion of erased area against input image.
         ratio: range of aspect ratio of erased area.
         value: erasing value. Default is 0. If a single int, it is used to
            erase all pixels. If a tuple of length 3, it is used to erase
            R, G, B channels respectively.
            If a str of 'random', erasing each pixel with random values.
Zhun Zhong's avatar
Zhun Zhong committed
1433
         inplace: boolean to make this transform inplace. Default set to False.
1434

1435
1436
    Returns:
        Erased Image.
1437

1438
1439
    # Examples:
        >>> transform = transforms.Compose([
1440
1441
1442
1443
        >>>   transforms.RandomHorizontalFlip(),
        >>>   transforms.ToTensor(),
        >>>   transforms.Normalize((0.485, 0.456, 0.406), (0.229, 0.224, 0.225)),
        >>>   transforms.RandomErasing(),
1444
1445
1446
        >>> ])
    """

Zhun Zhong's avatar
Zhun Zhong committed
1447
    def __init__(self, p=0.5, scale=(0.02, 0.33), ratio=(0.3, 3.3), value=0, inplace=False):
1448
1449
1450
1451
1452
1453
1454
1455
1456
        super().__init__()
        if not isinstance(value, (numbers.Number, str, tuple, list)):
            raise TypeError("Argument value should be either a number or str or a sequence")
        if isinstance(value, str) and value != "random":
            raise ValueError("If value is str, it should be 'random'")
        if not isinstance(scale, (tuple, list)):
            raise TypeError("Scale should be a sequence")
        if not isinstance(ratio, (tuple, list)):
            raise TypeError("Ratio should be a sequence")
1457
        if (scale[0] > scale[1]) or (ratio[0] > ratio[1]):
1458
            warnings.warn("Scale and ratio should be of kind (min, max)")
1459
        if scale[0] < 0 or scale[1] > 1:
1460
            raise ValueError("Scale should be between 0 and 1")
1461
        if p < 0 or p > 1:
1462
            raise ValueError("Random erasing probability should be between 0 and 1")
1463
1464
1465
1466
1467

        self.p = p
        self.scale = scale
        self.ratio = ratio
        self.value = value
1468
        self.inplace = inplace
1469
1470

    @staticmethod
1471
1472
1473
    def get_params(
            img: Tensor, scale: Tuple[float, float], ratio: Tuple[float, float], value: Optional[List[float]] = None
    ) -> Tuple[int, int, int, int, Tensor]:
1474
1475
1476
1477
        """Get parameters for ``erase`` for a random erasing.

        Args:
            img (Tensor): Tensor image of size (C, H, W) to be erased.
1478
1479
1480
1481
1482
            scale (tuple or list): range of proportion of erased area against input image.
            ratio (tuple or list): range of aspect ratio of erased area.
            value (list, optional): erasing value. If None, it is interpreted as "random"
                (erasing each pixel with random values). If ``len(value)`` is 1, it is interpreted as a number,
                i.e. ``value[0]``.
1483
1484
1485
1486

        Returns:
            tuple: params (i, j, h, w, v) to be passed to ``erase`` for random erasing.
        """
Zhun Zhong's avatar
Zhun Zhong committed
1487
        img_c, img_h, img_w = img.shape
1488
        area = img_h * img_w
1489

1490
        for _ in range(10):
1491
1492
            erase_area = area * torch.empty(1).uniform_(scale[0], scale[1]).item()
            aspect_ratio = torch.empty(1).uniform_(ratio[0], ratio[1]).item()
1493
1494
1495

            h = int(round(math.sqrt(erase_area * aspect_ratio)))
            w = int(round(math.sqrt(erase_area / aspect_ratio)))
1496
1497
1498
1499
1500
1501
1502
            if not (h < img_h and w < img_w):
                continue

            if value is None:
                v = torch.empty([img_c, h, w], dtype=torch.float32).normal_()
            else:
                v = torch.tensor(value)[:, None, None]
1503

1504
1505
            i = torch.randint(0, img_h - h + 1, size=(1, )).item()
            j = torch.randint(0, img_w - w + 1, size=(1, )).item()
1506
            return i, j, h, w, v
1507

Zhun Zhong's avatar
Zhun Zhong committed
1508
1509
1510
        # Return original image
        return 0, 0, img_h, img_w, img

1511
    def forward(self, img):
1512
1513
1514
1515
1516
1517
1518
        """
        Args:
            img (Tensor): Tensor image of size (C, H, W) to be erased.

        Returns:
            img (Tensor): Erased Tensor image.
        """
1519
1520
1521
1522
1523
1524
1525
1526
1527
1528
1529
1530
1531
1532
1533
1534
1535
1536
1537
        if torch.rand(1) < self.p:

            # cast self.value to script acceptable type
            if isinstance(self.value, (int, float)):
                value = [self.value, ]
            elif isinstance(self.value, str):
                value = None
            elif isinstance(self.value, tuple):
                value = list(self.value)
            else:
                value = self.value

            if value is not None and not (len(value) in (1, img.shape[-3])):
                raise ValueError(
                    "If value is a sequence, it should have either a single value or "
                    "{} (number of input channels)".format(img.shape[-3])
                )

            x, y, h, w, v = self.get_params(img, scale=self.scale, ratio=self.ratio, value=value)
1538
            return F.erase(img, x, y, h, w, v, self.inplace)
1539
        return img