transforms.py 76.6 KB
Newer Older
1
import math
vfdev's avatar
vfdev committed
2
import numbers
3
import random
vfdev's avatar
vfdev committed
4
import warnings
vfdev's avatar
vfdev committed
5
from collections.abc import Sequence
6
from typing import Tuple, List, Optional
vfdev's avatar
vfdev committed
7
8
9
10

import torch
from torch import Tensor

11
12
13
14
15
16
try:
    import accimage
except ImportError:
    accimage = None

from . import functional as F
17
from .functional import InterpolationMode, _interpolation_modes_from_int
18

19

20
21
22
23
__all__ = ["Compose", "ToTensor", "PILToTensor", "ConvertImageDtype", "ToPILImage", "Normalize", "Resize", "Scale",
           "CenterCrop", "Pad", "Lambda", "RandomApply", "RandomChoice", "RandomOrder", "RandomCrop",
           "RandomHorizontalFlip", "RandomVerticalFlip", "RandomResizedCrop", "RandomSizedCrop", "FiveCrop", "TenCrop",
           "LinearTransformation", "ColorJitter", "RandomRotation", "RandomAffine", "Grayscale", "RandomGrayscale",
24
25
           "RandomPerspective", "RandomErasing", "GaussianBlur", "InterpolationMode", "RandomInvert", "RandomPosterize",
           "RandomSolarize", "RandomAdjustSharpness", "RandomAutocontrast", "RandomEqualize"]
26

27

28
class Compose:
29
30
    """Composes several transforms together. This transform does not support torchscript.
    Please, see the note below.
31
32
33
34
35
36
37
38
39

    Args:
        transforms (list of ``Transform`` objects): list of transforms to compose.

    Example:
        >>> transforms.Compose([
        >>>     transforms.CenterCrop(10),
        >>>     transforms.ToTensor(),
        >>> ])
40
41
42
43
44
45
46
47
48
49
50
51
52

    .. note::
        In order to script the transformations, please use ``torch.nn.Sequential`` as below.

        >>> transforms = torch.nn.Sequential(
        >>>     transforms.CenterCrop(10),
        >>>     transforms.Normalize((0.485, 0.456, 0.406), (0.229, 0.224, 0.225)),
        >>> )
        >>> scripted_transforms = torch.jit.script(transforms)

        Make sure to use only scriptable transformations, i.e. that work with ``torch.Tensor``, does not require
        `lambda` functions or ``PIL.Image``.

53
54
55
56
57
58
59
60
61
62
    """

    def __init__(self, transforms):
        self.transforms = transforms

    def __call__(self, img):
        for t in self.transforms:
            img = t(img)
        return img

63
64
65
66
67
68
69
70
    def __repr__(self):
        format_string = self.__class__.__name__ + '('
        for t in self.transforms:
            format_string += '\n'
            format_string += '    {0}'.format(t)
        format_string += '\n)'
        return format_string

71

72
class ToTensor:
73
    """Convert a ``PIL Image`` or ``numpy.ndarray`` to tensor. This transform does not support torchscript.
74
75

    Converts a PIL Image or numpy.ndarray (H x W x C) in the range
surgan12's avatar
surgan12 committed
76
77
78
79
80
    [0, 255] to a torch.FloatTensor of shape (C x H x W) in the range [0.0, 1.0]
    if the PIL Image belongs to one of the modes (L, LA, P, I, F, RGB, YCbCr, RGBA, CMYK, 1)
    or if the numpy.ndarray has dtype = np.uint8

    In the other cases, tensors are returned without scaling.
81
82
83
84
85
86

    .. note::
        Because the input image is scaled to [0.0, 1.0], this transformation should not be used when
        transforming target image masks. See the `references`_ for implementing the transforms for image masks.

    .. _references: https://github.com/pytorch/vision/tree/master/references/segmentation
87
88
89
90
91
92
93
94
95
96
97
98
    """

    def __call__(self, pic):
        """
        Args:
            pic (PIL Image or numpy.ndarray): Image to be converted to tensor.

        Returns:
            Tensor: Converted image.
        """
        return F.to_tensor(pic)

99
100
101
    def __repr__(self):
        return self.__class__.__name__ + '()'

102

103
class PILToTensor:
104
    """Convert a ``PIL Image`` to a tensor of the same type. This transform does not support torchscript.
105

vfdev's avatar
vfdev committed
106
    Converts a PIL Image (H x W x C) to a Tensor of shape (C x H x W).
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
    """

    def __call__(self, pic):
        """
        Args:
            pic (PIL Image): Image to be converted to tensor.

        Returns:
            Tensor: Converted image.
        """
        return F.pil_to_tensor(pic)

    def __repr__(self):
        return self.__class__.__name__ + '()'


123
class ConvertImageDtype(torch.nn.Module):
124
    """Convert a tensor image to the given ``dtype`` and scale the values accordingly
125
    This function does not support PIL Image.
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142

    Args:
        dtype (torch.dtype): Desired data type of the output

    .. note::

        When converting from a smaller to a larger integer ``dtype`` the maximum values are **not** mapped exactly.
        If converted back and forth, this mismatch has no effect.

    Raises:
        RuntimeError: When trying to cast :class:`torch.float32` to :class:`torch.int32` or :class:`torch.int64` as
            well as for trying to cast :class:`torch.float64` to :class:`torch.int64`. These conversions might lead to
            overflow errors since the floating point ``dtype`` cannot store consecutive integers over the whole range
            of the integer ``dtype``.
    """

    def __init__(self, dtype: torch.dtype) -> None:
143
        super().__init__()
144
145
        self.dtype = dtype

vfdev's avatar
vfdev committed
146
    def forward(self, image):
147
148
149
        return F.convert_image_dtype(image, self.dtype)


150
class ToPILImage:
151
    """Convert a tensor or an ndarray to PIL Image. This transform does not support torchscript.
152
153
154
155
156
157
158

    Converts a torch.*Tensor of shape C x H x W or a numpy ndarray of shape
    H x W x C to a PIL Image while preserving the value range.

    Args:
        mode (`PIL.Image mode`_): color space and pixel depth of input data (optional).
            If ``mode`` is ``None`` (default) there are some assumptions made about the input data:
vfdev's avatar
vfdev committed
159
160
161
162
163
            - If the input has 4 channels, the ``mode`` is assumed to be ``RGBA``.
            - If the input has 3 channels, the ``mode`` is assumed to be ``RGB``.
            - If the input has 2 channels, the ``mode`` is assumed to be ``LA``.
            - If the input has 1 channel, the ``mode`` is determined by the data type (i.e ``int``, ``float``,
            ``short``).
164

csukuangfj's avatar
csukuangfj committed
165
    .. _PIL.Image mode: https://pillow.readthedocs.io/en/latest/handbook/concepts.html#concept-modes
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
    """
    def __init__(self, mode=None):
        self.mode = mode

    def __call__(self, pic):
        """
        Args:
            pic (Tensor or numpy.ndarray): Image to be converted to PIL Image.

        Returns:
            PIL Image: Image converted to PIL Image.

        """
        return F.to_pil_image(pic, self.mode)

181
    def __repr__(self):
182
183
184
185
186
        format_string = self.__class__.__name__ + '('
        if self.mode is not None:
            format_string += 'mode={0}'.format(self.mode)
        format_string += ')'
        return format_string
187

188

189
class Normalize(torch.nn.Module):
Fang Gao's avatar
Fang Gao committed
190
    """Normalize a tensor image with mean and standard deviation.
191
    This transform does not support PIL Image.
192
193
194
    Given mean: ``(mean[1],...,mean[n])`` and std: ``(std[1],..,std[n])`` for ``n``
    channels, this transform will normalize each channel of the input
    ``torch.*Tensor`` i.e.,
abdjava's avatar
abdjava committed
195
    ``output[channel] = (input[channel] - mean[channel]) / std[channel]``
196

197
    .. note::
198
        This transform acts out of place, i.e., it does not mutate the input tensor.
199

200
201
202
    Args:
        mean (sequence): Sequence of means for each channel.
        std (sequence): Sequence of standard deviations for each channel.
203
204
        inplace(bool,optional): Bool to make this operation in-place.

205
206
    """

surgan12's avatar
surgan12 committed
207
    def __init__(self, mean, std, inplace=False):
208
        super().__init__()
209
210
        self.mean = mean
        self.std = std
surgan12's avatar
surgan12 committed
211
        self.inplace = inplace
212

213
    def forward(self, tensor: Tensor) -> Tensor:
214
215
        """
        Args:
vfdev's avatar
vfdev committed
216
            tensor (Tensor): Tensor image to be normalized.
217
218
219
220

        Returns:
            Tensor: Normalized Tensor image.
        """
surgan12's avatar
surgan12 committed
221
        return F.normalize(tensor, self.mean, self.std, self.inplace)
222

223
224
225
    def __repr__(self):
        return self.__class__.__name__ + '(mean={0}, std={1})'.format(self.mean, self.std)

226

vfdev's avatar
vfdev committed
227
228
class Resize(torch.nn.Module):
    """Resize the input image to the given size.
229
    If the image is torch Tensor, it is expected
vfdev's avatar
vfdev committed
230
    to have [..., H, W] shape, where ... means an arbitrary number of leading dimensions
231
232
233
234
235
236

    Args:
        size (sequence or int): Desired output size. If size is a sequence like
            (h, w), output size will be matched to this. If size is an int,
            smaller edge of the image will be matched to this number.
            i.e, if height > width, then image will be rescaled to
vfdev's avatar
vfdev committed
237
            (size * height / width, size).
238
            In torchscript mode size as single int is not supported, use a sequence of length 1: ``[size, ]``.
239
240
241
242
        interpolation (InterpolationMode): Desired interpolation enum defined by
            :class:`torchvision.transforms.InterpolationMode`. Default is ``InterpolationMode.BILINEAR``.
            If input is Tensor, only ``InterpolationMode.NEAREST``, ``InterpolationMode.BILINEAR`` and
            ``InterpolationMode.BICUBIC`` are supported.
243
            For backward compatibility integer values (e.g. ``PIL.Image.NEAREST``) are still acceptable.
244
245
246
247
248
249
250
251
        max_size (int, optional): The maximum allowed for the longer edge of
            the resized image: if the longer edge of the image is greater
            than ``max_size`` after being resized according to ``size``, then
            the image is resized again so that the longer edge is equal to
            ``max_size``. As a result, ```size` might be overruled, i.e the
            smaller edge may be shorter than ``size``. This is only supported
            if ``size`` is an int (or a sequence of length 1 in torchscript
            mode).
252

253
254
    """

255
    def __init__(self, size, interpolation=InterpolationMode.BILINEAR, max_size=None):
vfdev's avatar
vfdev committed
256
        super().__init__()
257
258
259
260
261
        if not isinstance(size, (int, Sequence)):
            raise TypeError("Size should be int or sequence. Got {}".format(type(size)))
        if isinstance(size, Sequence) and len(size) not in (1, 2):
            raise ValueError("If size is a sequence, it should have 1 or 2 values")
        self.size = size
262
        self.max_size = max_size
263
264
265
266

        # Backward compatibility with integer value
        if isinstance(interpolation, int):
            warnings.warn(
267
268
                "Argument interpolation should be of type InterpolationMode instead of int. "
                "Please, use InterpolationMode enum."
269
270
271
            )
            interpolation = _interpolation_modes_from_int(interpolation)

272
273
        self.interpolation = interpolation

vfdev's avatar
vfdev committed
274
    def forward(self, img):
275
276
        """
        Args:
vfdev's avatar
vfdev committed
277
            img (PIL Image or Tensor): Image to be scaled.
278
279

        Returns:
vfdev's avatar
vfdev committed
280
            PIL Image or Tensor: Rescaled image.
281
        """
282
        return F.resize(img, self.size, self.interpolation, self.max_size)
283

284
    def __repr__(self):
285
        interpolate_str = self.interpolation.value
286
287
        return self.__class__.__name__ + '(size={0}, interpolation={1}, max_size={2})'.format(
            self.size, interpolate_str, self.max_size)
288

289
290
291
292
293
294
295
296
297
298
299

class Scale(Resize):
    """
    Note: This transform is deprecated in favor of Resize.
    """
    def __init__(self, *args, **kwargs):
        warnings.warn("The use of the transforms.Scale transform is deprecated, " +
                      "please use transforms.Resize instead.")
        super(Scale, self).__init__(*args, **kwargs)


vfdev's avatar
vfdev committed
300
301
class CenterCrop(torch.nn.Module):
    """Crops the given image at the center.
302
    If the image is torch Tensor, it is expected
303
304
    to have [..., H, W] shape, where ... means an arbitrary number of leading dimensions.
    If image size is smaller than output size along any edge, image is padded with 0 and then center cropped.
305
306
307
308

    Args:
        size (sequence or int): Desired output size of the crop. If size is an
            int instead of sequence like (h, w), a square crop (size, size) is
309
            made. If provided a sequence of length 1, it will be interpreted as (size[0], size[0]).
310
311
312
    """

    def __init__(self, size):
vfdev's avatar
vfdev committed
313
        super().__init__()
314
        self.size = _setup_size(size, error_msg="Please provide only two dimensions (h, w) for size.")
315

vfdev's avatar
vfdev committed
316
    def forward(self, img):
317
318
        """
        Args:
vfdev's avatar
vfdev committed
319
            img (PIL Image or Tensor): Image to be cropped.
320
321

        Returns:
vfdev's avatar
vfdev committed
322
            PIL Image or Tensor: Cropped image.
323
324
325
        """
        return F.center_crop(img, self.size)

326
327
328
    def __repr__(self):
        return self.__class__.__name__ + '(size={0})'.format(self.size)

329

330
331
class Pad(torch.nn.Module):
    """Pad the given image on all sides with the given "pad" value.
332
    If the image is torch Tensor, it is expected
333
334
335
    to have [..., H, W] shape, where ... means at most 2 leading dimensions for mode reflect and symmetric,
    at most 3 leading dimensions for mode edge,
    and an arbitrary number of leading dimensions for mode constant
336
337

    Args:
338
339
340
        padding (int or sequence): Padding on each border. If a single int is provided this
            is used to pad all borders. If sequence of length 2 is provided this is the padding
            on left/right and top/bottom respectively. If a sequence of length 4 is provided
341
            this is the padding for the left, top, right and bottom borders respectively.
342
343
            In torchscript mode padding as single int is not supported, use a sequence of length 1: ``[padding, ]``.
        fill (number or str or tuple): Pixel fill value for constant fill. Default is 0. If a tuple of
344
            length 3, it is used to fill R, G, B channels respectively.
345
346
347
            This value is only used when the padding_mode is constant.
            Only number is supported for torch Tensor.
            Only int or str or tuple value is supported for PIL Image.
348
        padding_mode (str): Type of padding. Should be: constant, edge, reflect or symmetric.
349
            Default is constant.
350
351
352

            - constant: pads with a constant value, this value is specified with fill

353
354
            - edge: pads with the last value at the edge of the image,
                    if input a 5D torch Tensor, the last 3 dimensions will be padded instead of the last 2
355
356
357
358

            - reflect: pads with reflection of image without repeating the last value on the edge

                For example, padding [1, 2, 3, 4] with 2 elements on both sides in reflect mode
359
                will result in [3, 2, 1, 2, 3, 4, 3, 2]
360
361
362
363

            - symmetric: pads with reflection of image repeating the last value on the edge

                For example, padding [1, 2, 3, 4] with 2 elements on both sides in symmetric mode
364
                will result in [2, 1, 1, 2, 3, 4, 4, 3]
365
366
    """

367
368
369
370
371
372
373
374
375
376
377
378
379
    def __init__(self, padding, fill=0, padding_mode="constant"):
        super().__init__()
        if not isinstance(padding, (numbers.Number, tuple, list)):
            raise TypeError("Got inappropriate padding arg")

        if not isinstance(fill, (numbers.Number, str, tuple)):
            raise TypeError("Got inappropriate fill arg")

        if padding_mode not in ["constant", "edge", "reflect", "symmetric"]:
            raise ValueError("Padding mode should be either constant, edge, reflect or symmetric")

        if isinstance(padding, Sequence) and len(padding) not in [1, 2, 4]:
            raise ValueError("Padding must be an int or a 1, 2, or 4 element tuple, not a " +
380
381
382
383
                             "{} element tuple".format(len(padding)))

        self.padding = padding
        self.fill = fill
384
        self.padding_mode = padding_mode
385

386
    def forward(self, img):
387
388
        """
        Args:
389
            img (PIL Image or Tensor): Image to be padded.
390
391

        Returns:
392
            PIL Image or Tensor: Padded image.
393
        """
394
        return F.pad(img, self.padding, self.fill, self.padding_mode)
395

396
    def __repr__(self):
397
398
        return self.__class__.__name__ + '(padding={0}, fill={1}, padding_mode={2})'.\
            format(self.padding, self.fill, self.padding_mode)
399

400

401
class Lambda:
402
    """Apply a user-defined lambda as a transform. This transform does not support torchscript.
403
404
405
406
407
408

    Args:
        lambd (function): Lambda/function to be used for transform.
    """

    def __init__(self, lambd):
409
410
        if not callable(lambd):
            raise TypeError("Argument lambd should be callable, got {}".format(repr(type(lambd).__name__)))
411
412
413
414
415
        self.lambd = lambd

    def __call__(self, img):
        return self.lambd(img)

416
417
418
    def __repr__(self):
        return self.__class__.__name__ + '()'

419

420
class RandomTransforms:
421
422
423
    """Base class for a list of transformations with randomness

    Args:
424
        transforms (sequence): list of transformations
425
426
427
    """

    def __init__(self, transforms):
428
429
        if not isinstance(transforms, Sequence):
            raise TypeError("Argument transforms should be a sequence")
430
431
432
433
434
435
436
437
438
439
440
441
442
443
        self.transforms = transforms

    def __call__(self, *args, **kwargs):
        raise NotImplementedError()

    def __repr__(self):
        format_string = self.__class__.__name__ + '('
        for t in self.transforms:
            format_string += '\n'
            format_string += '    {0}'.format(t)
        format_string += '\n)'
        return format_string


444
class RandomApply(torch.nn.Module):
445
    """Apply randomly a list of transformations with a given probability.
446
447
448
449
450
451
452
453
454
455
456
457

    .. note::
        In order to script the transformation, please use ``torch.nn.ModuleList`` as input instead of list/tuple of
        transforms as shown below:

        >>> transforms = transforms.RandomApply(torch.nn.ModuleList([
        >>>     transforms.ColorJitter(),
        >>> ]), p=0.3)
        >>> scripted_transforms = torch.jit.script(transforms)

        Make sure to use only scriptable transformations, i.e. that work with ``torch.Tensor``, does not require
        `lambda` functions or ``PIL.Image``.
458
459

    Args:
460
        transforms (sequence or torch.nn.Module): list of transformations
461
462
463
464
        p (float): probability
    """

    def __init__(self, transforms, p=0.5):
465
466
        super().__init__()
        self.transforms = transforms
467
468
        self.p = p

469
470
    def forward(self, img):
        if self.p < torch.rand(1):
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
            return img
        for t in self.transforms:
            img = t(img)
        return img

    def __repr__(self):
        format_string = self.__class__.__name__ + '('
        format_string += '\n    p={}'.format(self.p)
        for t in self.transforms:
            format_string += '\n'
            format_string += '    {0}'.format(t)
        format_string += '\n)'
        return format_string


class RandomOrder(RandomTransforms):
487
    """Apply a list of transformations in a random order. This transform does not support torchscript.
488
489
490
491
492
493
494
495
496
497
    """
    def __call__(self, img):
        order = list(range(len(self.transforms)))
        random.shuffle(order)
        for i in order:
            img = self.transforms[i](img)
        return img


class RandomChoice(RandomTransforms):
498
    """Apply single transformation randomly picked from a list. This transform does not support torchscript.
499
500
501
502
503
504
    """
    def __call__(self, img):
        t = random.choice(self.transforms)
        return t(img)


vfdev's avatar
vfdev committed
505
506
class RandomCrop(torch.nn.Module):
    """Crop the given image at a random location.
507
    If the image is torch Tensor, it is expected
508
509
    to have [..., H, W] shape, where ... means an arbitrary number of leading dimensions,
    but if non-constant padding is used, the input is expected to have at most 2 leading dimensions
510
511
512
513

    Args:
        size (sequence or int): Desired output size of the crop. If size is an
            int instead of sequence like (h, w), a square crop (size, size) is
514
            made. If provided a sequence of length 1, it will be interpreted as (size[0], size[0]).
515
        padding (int or sequence, optional): Optional padding on each border
vfdev's avatar
vfdev committed
516
            of the image. Default is None. If a single int is provided this
517
518
            is used to pad all borders. If sequence of length 2 is provided this is the padding
            on left/right and top/bottom respectively. If a sequence of length 4 is provided
vfdev's avatar
vfdev committed
519
            this is the padding for the left, top, right and bottom borders respectively.
520
            In torchscript mode padding as single int is not supported, use a sequence of length 1: ``[padding, ]``.
521
        pad_if_needed (boolean): It will pad the image if smaller than the
ekka's avatar
ekka committed
522
            desired size to avoid raising an exception. Since cropping is done
523
            after padding, the padding seems to be done at a random offset.
524
        fill (number or str or tuple): Pixel fill value for constant fill. Default is 0. If a tuple of
525
            length 3, it is used to fill R, G, B channels respectively.
526
527
528
            This value is only used when the padding_mode is constant.
            Only number is supported for torch Tensor.
            Only int or str or tuple value is supported for PIL Image.
vfdev's avatar
vfdev committed
529
        padding_mode (str): Type of padding. Should be: constant, edge, reflect or symmetric. Default is constant.
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544

             - constant: pads with a constant value, this value is specified with fill

             - edge: pads with the last value on the edge of the image

             - reflect: pads with reflection of image (without repeating the last value on the edge)

                padding [1, 2, 3, 4] with 2 elements on both sides in reflect mode
                will result in [3, 2, 1, 2, 3, 4, 3, 2]

             - symmetric: pads with reflection of image (repeating the last value on the edge)

                padding [1, 2, 3, 4] with 2 elements on both sides in symmetric mode
                will result in [2, 1, 1, 2, 3, 4, 4, 3]

545
546
547
    """

    @staticmethod
vfdev's avatar
vfdev committed
548
    def get_params(img: Tensor, output_size: Tuple[int, int]) -> Tuple[int, int, int, int]:
549
550
551
        """Get parameters for ``crop`` for a random crop.

        Args:
vfdev's avatar
vfdev committed
552
            img (PIL Image or Tensor): Image to be cropped.
553
554
555
556
557
            output_size (tuple): Expected output size of the crop.

        Returns:
            tuple: params (i, j, h, w) to be passed to ``crop`` for random crop.
        """
vfdev's avatar
vfdev committed
558
        w, h = F._get_image_size(img)
559
        th, tw = output_size
vfdev's avatar
vfdev committed
560
561
562
563
564
565

        if h + 1 < th or w + 1 < tw:
            raise ValueError(
                "Required crop size {} is larger then input image size {}".format((th, tw), (h, w))
            )

566
567
568
        if w == tw and h == th:
            return 0, 0, h, w

569
570
        i = torch.randint(0, h - th + 1, size=(1, )).item()
        j = torch.randint(0, w - tw + 1, size=(1, )).item()
571
572
        return i, j, th, tw

vfdev's avatar
vfdev committed
573
574
575
    def __init__(self, size, padding=None, pad_if_needed=False, fill=0, padding_mode="constant"):
        super().__init__()

576
577
578
579
        self.size = tuple(_setup_size(
            size, error_msg="Please provide only two dimensions (h, w) for size."
        ))

vfdev's avatar
vfdev committed
580
581
582
583
584
585
        self.padding = padding
        self.pad_if_needed = pad_if_needed
        self.fill = fill
        self.padding_mode = padding_mode

    def forward(self, img):
586
587
        """
        Args:
vfdev's avatar
vfdev committed
588
            img (PIL Image or Tensor): Image to be cropped.
589
590

        Returns:
vfdev's avatar
vfdev committed
591
            PIL Image or Tensor: Cropped image.
592
        """
593
594
        if self.padding is not None:
            img = F.pad(img, self.padding, self.fill, self.padding_mode)
595

vfdev's avatar
vfdev committed
596
        width, height = F._get_image_size(img)
597
        # pad the width if needed
vfdev's avatar
vfdev committed
598
599
600
        if self.pad_if_needed and width < self.size[1]:
            padding = [self.size[1] - width, 0]
            img = F.pad(img, padding, self.fill, self.padding_mode)
601
        # pad the height if needed
vfdev's avatar
vfdev committed
602
603
604
        if self.pad_if_needed and height < self.size[0]:
            padding = [0, self.size[0] - height]
            img = F.pad(img, padding, self.fill, self.padding_mode)
605

606
607
608
609
        i, j, h, w = self.get_params(img, self.size)

        return F.crop(img, i, j, h, w)

610
    def __repr__(self):
vfdev's avatar
vfdev committed
611
        return self.__class__.__name__ + "(size={0}, padding={1})".format(self.size, self.padding)
612

613

614
615
class RandomHorizontalFlip(torch.nn.Module):
    """Horizontally flip the given image randomly with a given probability.
616
    If the image is torch Tensor, it is expected
617
618
    to have [..., H, W] shape, where ... means an arbitrary number of leading
    dimensions
619
620
621
622
623
624

    Args:
        p (float): probability of the image being flipped. Default value is 0.5
    """

    def __init__(self, p=0.5):
625
        super().__init__()
626
        self.p = p
627

628
    def forward(self, img):
629
630
        """
        Args:
631
            img (PIL Image or Tensor): Image to be flipped.
632
633

        Returns:
634
            PIL Image or Tensor: Randomly flipped image.
635
        """
636
        if torch.rand(1) < self.p:
637
638
639
            return F.hflip(img)
        return img

640
    def __repr__(self):
641
        return self.__class__.__name__ + '(p={})'.format(self.p)
642

643

644
class RandomVerticalFlip(torch.nn.Module):
vfdev's avatar
vfdev committed
645
    """Vertically flip the given image randomly with a given probability.
646
    If the image is torch Tensor, it is expected
647
648
    to have [..., H, W] shape, where ... means an arbitrary number of leading
    dimensions
649
650
651
652
653
654

    Args:
        p (float): probability of the image being flipped. Default value is 0.5
    """

    def __init__(self, p=0.5):
655
        super().__init__()
656
        self.p = p
657

658
    def forward(self, img):
659
660
        """
        Args:
661
            img (PIL Image or Tensor): Image to be flipped.
662
663

        Returns:
664
            PIL Image or Tensor: Randomly flipped image.
665
        """
666
        if torch.rand(1) < self.p:
667
668
669
            return F.vflip(img)
        return img

670
    def __repr__(self):
671
        return self.__class__.__name__ + '(p={})'.format(self.p)
672

673

674
675
class RandomPerspective(torch.nn.Module):
    """Performs a random perspective transformation of the given image with a given probability.
676
    If the image is torch Tensor, it is expected
677
    to have [..., H, W] shape, where ... means an arbitrary number of leading dimensions.
678
679

    Args:
680
681
682
        distortion_scale (float): argument to control the degree of distortion and ranges from 0 to 1.
            Default is 0.5.
        p (float): probability of the image being transformed. Default is 0.5.
683
684
685
        interpolation (InterpolationMode): Desired interpolation enum defined by
            :class:`torchvision.transforms.InterpolationMode`. Default is ``InterpolationMode.BILINEAR``.
            If input is Tensor, only ``InterpolationMode.NEAREST``, ``InterpolationMode.BILINEAR`` are supported.
686
            For backward compatibility integer values (e.g. ``PIL.Image.NEAREST``) are still acceptable.
687
688
        fill (sequence or number): Pixel fill value for the area outside the transformed
            image. Default is ``0``. If given a number, the value is used for all bands respectively.
689
            If input is PIL Image, the options is only available for ``Pillow>=5.0.0``.
690
691
    """

692
    def __init__(self, distortion_scale=0.5, p=0.5, interpolation=InterpolationMode.BILINEAR, fill=0):
693
        super().__init__()
694
        self.p = p
695
696
697
698

        # Backward compatibility with integer value
        if isinstance(interpolation, int):
            warnings.warn(
699
700
                "Argument interpolation should be of type InterpolationMode instead of int. "
                "Please, use InterpolationMode enum."
701
702
703
            )
            interpolation = _interpolation_modes_from_int(interpolation)

704
705
        self.interpolation = interpolation
        self.distortion_scale = distortion_scale
706
707
708
709
710
711

        if fill is None:
            fill = 0
        elif not isinstance(fill, (Sequence, numbers.Number)):
            raise TypeError("Fill should be either a sequence or a number.")

712
        self.fill = fill
713

714
    def forward(self, img):
715
716
        """
        Args:
717
            img (PIL Image or Tensor): Image to be Perspectively transformed.
718
719

        Returns:
720
            PIL Image or Tensor: Randomly transformed image.
721
        """
722
723
724
725
726
727
728
729

        fill = self.fill
        if isinstance(img, Tensor):
            if isinstance(fill, (int, float)):
                fill = [float(fill)] * F._get_image_num_channels(img)
            else:
                fill = [float(f) for f in fill]

730
731
        if torch.rand(1) < self.p:
            width, height = F._get_image_size(img)
732
            startpoints, endpoints = self.get_params(width, height, self.distortion_scale)
733
            return F.perspective(img, startpoints, endpoints, self.interpolation, fill)
734
735
736
        return img

    @staticmethod
737
    def get_params(width: int, height: int, distortion_scale: float) -> Tuple[List[List[int]], List[List[int]]]:
738
739
740
        """Get parameters for ``perspective`` for a random perspective transform.

        Args:
741
742
743
            width (int): width of the image.
            height (int): height of the image.
            distortion_scale (float): argument to control the degree of distortion and ranges from 0 to 1.
744
745

        Returns:
746
            List containing [top-left, top-right, bottom-right, bottom-left] of the original image,
747
748
            List containing [top-left, top-right, bottom-right, bottom-left] of the transformed image.
        """
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
        half_height = height // 2
        half_width = width // 2
        topleft = [
            int(torch.randint(0, int(distortion_scale * half_width) + 1, size=(1, )).item()),
            int(torch.randint(0, int(distortion_scale * half_height) + 1, size=(1, )).item())
        ]
        topright = [
            int(torch.randint(width - int(distortion_scale * half_width) - 1, width, size=(1, )).item()),
            int(torch.randint(0, int(distortion_scale * half_height) + 1, size=(1, )).item())
        ]
        botright = [
            int(torch.randint(width - int(distortion_scale * half_width) - 1, width, size=(1, )).item()),
            int(torch.randint(height - int(distortion_scale * half_height) - 1, height, size=(1, )).item())
        ]
        botleft = [
            int(torch.randint(0, int(distortion_scale * half_width) + 1, size=(1, )).item()),
            int(torch.randint(height - int(distortion_scale * half_height) - 1, height, size=(1, )).item())
        ]
        startpoints = [[0, 0], [width - 1, 0], [width - 1, height - 1], [0, height - 1]]
768
769
770
771
772
773
774
        endpoints = [topleft, topright, botright, botleft]
        return startpoints, endpoints

    def __repr__(self):
        return self.__class__.__name__ + '(p={})'.format(self.p)


775
class RandomResizedCrop(torch.nn.Module):
776
777
    """Crop a random portion of image and resize it to a given size.

778
    If the image is torch Tensor, it is expected
779
    to have [..., H, W] shape, where ... means an arbitrary number of leading dimensions
780

781
782
783
    A crop of the original image is made: the crop has a random area (H * W)
    and a random aspect ratio. This crop is finally resized to the given
    size. This is popularly used to train the Inception networks.
784
785

    Args:
786
        size (int or sequence): expected output size of the crop, for each edge. If size is an
787
            int instead of sequence like (h, w), a square output size ``(size, size)`` is
788
789
            made. If provided a sequence of length 1, it will be interpreted as (size[0], size[0]).
            In torchscript mode size as single int is not supported, use a sequence of length 1: ``[size, ]``.
Nicolas Hug's avatar
Nicolas Hug committed
790
791
        scale (tuple of float): Specifies the lower and upper bounds for the random area of the crop,
            before resizing. The scale is defined with respect to the area of the original image.
792
793
        ratio (tuple of float): lower and upper bounds for the random aspect ratio of the crop, before
            resizing.
794
795
796
797
        interpolation (InterpolationMode): Desired interpolation enum defined by
            :class:`torchvision.transforms.InterpolationMode`. Default is ``InterpolationMode.BILINEAR``.
            If input is Tensor, only ``InterpolationMode.NEAREST``, ``InterpolationMode.BILINEAR`` and
            ``InterpolationMode.BICUBIC`` are supported.
798
799
            For backward compatibility integer values (e.g. ``PIL.Image.NEAREST``) are still acceptable.

800
801
    """

802
    def __init__(self, size, scale=(0.08, 1.0), ratio=(3. / 4., 4. / 3.), interpolation=InterpolationMode.BILINEAR):
803
        super().__init__()
804
        self.size = _setup_size(size, error_msg="Please provide only two dimensions (h, w) for size.")
805

806
        if not isinstance(scale, Sequence):
807
            raise TypeError("Scale should be a sequence")
808
        if not isinstance(ratio, Sequence):
809
            raise TypeError("Ratio should be a sequence")
810
        if (scale[0] > scale[1]) or (ratio[0] > ratio[1]):
811
            warnings.warn("Scale and ratio should be of kind (min, max)")
812

813
814
815
        # Backward compatibility with integer value
        if isinstance(interpolation, int):
            warnings.warn(
816
817
                "Argument interpolation should be of type InterpolationMode instead of int. "
                "Please, use InterpolationMode enum."
818
819
820
            )
            interpolation = _interpolation_modes_from_int(interpolation)

821
        self.interpolation = interpolation
822
823
        self.scale = scale
        self.ratio = ratio
824
825

    @staticmethod
826
    def get_params(
827
            img: Tensor, scale: List[float], ratio: List[float]
828
    ) -> Tuple[int, int, int, int]:
829
830
831
        """Get parameters for ``crop`` for a random sized crop.

        Args:
832
            img (PIL Image or Tensor): Input image.
833
834
            scale (list): range of scale of the origin size cropped
            ratio (list): range of aspect ratio of the origin aspect ratio cropped
835
836
837
838
839

        Returns:
            tuple: params (i, j, h, w) to be passed to ``crop`` for a random
                sized crop.
        """
vfdev's avatar
vfdev committed
840
        width, height = F._get_image_size(img)
Zhicheng Yan's avatar
Zhicheng Yan committed
841
        area = height * width
842

843
        log_ratio = torch.log(torch.tensor(ratio))
844
        for _ in range(10):
845
            target_area = area * torch.empty(1).uniform_(scale[0], scale[1]).item()
846
847
848
            aspect_ratio = torch.exp(
                torch.empty(1).uniform_(log_ratio[0], log_ratio[1])
            ).item()
849
850
851
852

            w = int(round(math.sqrt(target_area * aspect_ratio)))
            h = int(round(math.sqrt(target_area / aspect_ratio)))

Zhicheng Yan's avatar
Zhicheng Yan committed
853
            if 0 < w <= width and 0 < h <= height:
854
855
                i = torch.randint(0, height - h + 1, size=(1,)).item()
                j = torch.randint(0, width - w + 1, size=(1,)).item()
856
857
                return i, j, h, w

858
        # Fallback to central crop
Zhicheng Yan's avatar
Zhicheng Yan committed
859
        in_ratio = float(width) / float(height)
860
        if in_ratio < min(ratio):
Zhicheng Yan's avatar
Zhicheng Yan committed
861
            w = width
862
            h = int(round(w / min(ratio)))
863
        elif in_ratio > max(ratio):
Zhicheng Yan's avatar
Zhicheng Yan committed
864
            h = height
865
            w = int(round(h * max(ratio)))
866
        else:  # whole image
Zhicheng Yan's avatar
Zhicheng Yan committed
867
868
869
870
            w = width
            h = height
        i = (height - h) // 2
        j = (width - w) // 2
871
        return i, j, h, w
872

873
    def forward(self, img):
874
875
        """
        Args:
876
            img (PIL Image or Tensor): Image to be cropped and resized.
877
878

        Returns:
879
            PIL Image or Tensor: Randomly cropped and resized image.
880
        """
881
        i, j, h, w = self.get_params(img, self.scale, self.ratio)
882
883
        return F.resized_crop(img, i, j, h, w, self.size, self.interpolation)

884
    def __repr__(self):
885
        interpolate_str = self.interpolation.value
886
        format_string = self.__class__.__name__ + '(size={0}'.format(self.size)
887
888
        format_string += ', scale={0}'.format(tuple(round(s, 4) for s in self.scale))
        format_string += ', ratio={0}'.format(tuple(round(r, 4) for r in self.ratio))
889
890
        format_string += ', interpolation={0})'.format(interpolate_str)
        return format_string
891

892
893
894
895
896
897
898
899
900
901
902

class RandomSizedCrop(RandomResizedCrop):
    """
    Note: This transform is deprecated in favor of RandomResizedCrop.
    """
    def __init__(self, *args, **kwargs):
        warnings.warn("The use of the transforms.RandomSizedCrop transform is deprecated, " +
                      "please use transforms.RandomResizedCrop instead.")
        super(RandomSizedCrop, self).__init__(*args, **kwargs)


vfdev's avatar
vfdev committed
903
904
class FiveCrop(torch.nn.Module):
    """Crop the given image into four corners and the central crop.
905
    If the image is torch Tensor, it is expected
vfdev's avatar
vfdev committed
906
907
    to have [..., H, W] shape, where ... means an arbitrary number of leading
    dimensions
908
909
910
911
912
913
914
915
916

    .. Note::
         This transform returns a tuple of images and there may be a mismatch in the number of
         inputs and targets your Dataset returns. See below for an example of how to deal with
         this.

    Args:
         size (sequence or int): Desired output size of the crop. If size is an ``int``
            instead of sequence like (h, w), a square crop of size (size, size) is made.
917
            If provided a sequence of length 1, it will be interpreted as (size[0], size[0]).
918
919
920
921
922
923
924
925
926
927
928
929
930
931

    Example:
         >>> transform = Compose([
         >>>    FiveCrop(size), # this is a list of PIL Images
         >>>    Lambda(lambda crops: torch.stack([ToTensor()(crop) for crop in crops])) # returns a 4D tensor
         >>> ])
         >>> #In your test loop you can do the following:
         >>> input, target = batch # input is a 5d tensor, target is 2d
         >>> bs, ncrops, c, h, w = input.size()
         >>> result = model(input.view(-1, c, h, w)) # fuse batch size and ncrops
         >>> result_avg = result.view(bs, ncrops, -1).mean(1) # avg over crops
    """

    def __init__(self, size):
vfdev's avatar
vfdev committed
932
        super().__init__()
933
        self.size = _setup_size(size, error_msg="Please provide only two dimensions (h, w) for size.")
934

vfdev's avatar
vfdev committed
935
936
937
938
939
940
941
942
    def forward(self, img):
        """
        Args:
            img (PIL Image or Tensor): Image to be cropped.

        Returns:
            tuple of 5 images. Image can be PIL Image or Tensor
        """
943
944
        return F.five_crop(img, self.size)

945
946
947
    def __repr__(self):
        return self.__class__.__name__ + '(size={0})'.format(self.size)

948

vfdev's avatar
vfdev committed
949
950
951
class TenCrop(torch.nn.Module):
    """Crop the given image into four corners and the central crop plus the flipped version of
    these (horizontal flipping is used by default).
952
    If the image is torch Tensor, it is expected
vfdev's avatar
vfdev committed
953
954
    to have [..., H, W] shape, where ... means an arbitrary number of leading
    dimensions
955
956
957
958
959
960
961
962
963

    .. Note::
         This transform returns a tuple of images and there may be a mismatch in the number of
         inputs and targets your Dataset returns. See below for an example of how to deal with
         this.

    Args:
        size (sequence or int): Desired output size of the crop. If size is an
            int instead of sequence like (h, w), a square crop (size, size) is
964
            made. If provided a sequence of length 1, it will be interpreted as (size[0], size[0]).
965
        vertical_flip (bool): Use vertical flipping instead of horizontal
966
967
968
969
970
971
972
973
974
975
976
977
978
979

    Example:
         >>> transform = Compose([
         >>>    TenCrop(size), # this is a list of PIL Images
         >>>    Lambda(lambda crops: torch.stack([ToTensor()(crop) for crop in crops])) # returns a 4D tensor
         >>> ])
         >>> #In your test loop you can do the following:
         >>> input, target = batch # input is a 5d tensor, target is 2d
         >>> bs, ncrops, c, h, w = input.size()
         >>> result = model(input.view(-1, c, h, w)) # fuse batch size and ncrops
         >>> result_avg = result.view(bs, ncrops, -1).mean(1) # avg over crops
    """

    def __init__(self, size, vertical_flip=False):
vfdev's avatar
vfdev committed
980
        super().__init__()
981
        self.size = _setup_size(size, error_msg="Please provide only two dimensions (h, w) for size.")
982
983
        self.vertical_flip = vertical_flip

vfdev's avatar
vfdev committed
984
985
986
987
988
989
990
991
    def forward(self, img):
        """
        Args:
            img (PIL Image or Tensor): Image to be cropped.

        Returns:
            tuple of 10 images. Image can be PIL Image or Tensor
        """
992
993
        return F.ten_crop(img, self.size, self.vertical_flip)

994
    def __repr__(self):
995
        return self.__class__.__name__ + '(size={0}, vertical_flip={1})'.format(self.size, self.vertical_flip)
996

997

998
class LinearTransformation(torch.nn.Module):
ekka's avatar
ekka committed
999
    """Transform a tensor image with a square transformation matrix and a mean_vector computed
1000
    offline.
1001
    This transform does not support PIL Image.
ekka's avatar
ekka committed
1002
1003
1004
    Given transformation_matrix and mean_vector, will flatten the torch.*Tensor and
    subtract mean_vector from it which is then followed by computing the dot
    product with the transformation matrix and then reshaping the tensor to its
1005
    original shape.
1006

1007
    Applications:
1008
        whitening transformation: Suppose X is a column vector zero-centered data.
1009
1010
1011
        Then compute the data covariance matrix [D x D] with torch.mm(X.t(), X),
        perform SVD on this matrix and pass it as transformation_matrix.

1012
1013
    Args:
        transformation_matrix (Tensor): tensor [D x D], D = C x H x W
ekka's avatar
ekka committed
1014
        mean_vector (Tensor): tensor [D], D = C x H x W
1015
1016
    """

ekka's avatar
ekka committed
1017
    def __init__(self, transformation_matrix, mean_vector):
1018
        super().__init__()
1019
1020
1021
        if transformation_matrix.size(0) != transformation_matrix.size(1):
            raise ValueError("transformation_matrix should be square. Got " +
                             "[{} x {}] rectangular matrix.".format(*transformation_matrix.size()))
ekka's avatar
ekka committed
1022
1023
1024

        if mean_vector.size(0) != transformation_matrix.size(0):
            raise ValueError("mean_vector should have the same length {}".format(mean_vector.size(0)) +
Francisco Massa's avatar
Francisco Massa committed
1025
1026
                             " as any one of the dimensions of the transformation_matrix [{}]"
                             .format(tuple(transformation_matrix.size())))
ekka's avatar
ekka committed
1027

1028
1029
1030
1031
        if transformation_matrix.device != mean_vector.device:
            raise ValueError("Input tensors should be on the same device. Got {} and {}"
                             .format(transformation_matrix.device, mean_vector.device))

1032
        self.transformation_matrix = transformation_matrix
ekka's avatar
ekka committed
1033
        self.mean_vector = mean_vector
1034

1035
    def forward(self, tensor: Tensor) -> Tensor:
1036
1037
        """
        Args:
vfdev's avatar
vfdev committed
1038
            tensor (Tensor): Tensor image to be whitened.
1039
1040
1041
1042

        Returns:
            Tensor: Transformed image.
        """
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
        shape = tensor.shape
        n = shape[-3] * shape[-2] * shape[-1]
        if n != self.transformation_matrix.shape[0]:
            raise ValueError("Input tensor and transformation matrix have incompatible shape." +
                             "[{} x {} x {}] != ".format(shape[-3], shape[-2], shape[-1]) +
                             "{}".format(self.transformation_matrix.shape[0]))

        if tensor.device.type != self.mean_vector.device.type:
            raise ValueError("Input tensor should be on the same device as transformation matrix and mean vector. "
                             "Got {} vs {}".format(tensor.device, self.mean_vector.device))

        flat_tensor = tensor.view(-1, n) - self.mean_vector
1055
        transformed_tensor = torch.mm(flat_tensor, self.transformation_matrix)
1056
        tensor = transformed_tensor.view(shape)
1057
1058
        return tensor

1059
    def __repr__(self):
ekka's avatar
ekka committed
1060
1061
1062
        format_string = self.__class__.__name__ + '(transformation_matrix='
        format_string += (str(self.transformation_matrix.tolist()) + ')')
        format_string += (", (mean_vector=" + str(self.mean_vector.tolist()) + ')')
1063
1064
        return format_string

1065

1066
class ColorJitter(torch.nn.Module):
1067
    """Randomly change the brightness, contrast, saturation and hue of an image.
1068
    If the image is torch Tensor, it is expected
1069
1070
    to have [..., 3, H, W] shape, where ... means an arbitrary number of leading dimensions.
    If img is PIL Image, mode "1", "L", "I", "F" and modes with transparency (alpha channel) are not supported.
1071
1072

    Args:
yaox12's avatar
yaox12 committed
1073
1074
1075
1076
1077
1078
1079
1080
1081
1082
1083
1084
        brightness (float or tuple of float (min, max)): How much to jitter brightness.
            brightness_factor is chosen uniformly from [max(0, 1 - brightness), 1 + brightness]
            or the given [min, max]. Should be non negative numbers.
        contrast (float or tuple of float (min, max)): How much to jitter contrast.
            contrast_factor is chosen uniformly from [max(0, 1 - contrast), 1 + contrast]
            or the given [min, max]. Should be non negative numbers.
        saturation (float or tuple of float (min, max)): How much to jitter saturation.
            saturation_factor is chosen uniformly from [max(0, 1 - saturation), 1 + saturation]
            or the given [min, max]. Should be non negative numbers.
        hue (float or tuple of float (min, max)): How much to jitter hue.
            hue_factor is chosen uniformly from [-hue, hue] or the given [min, max].
            Should have 0<= hue <= 0.5 or -0.5 <= min <= max <= 0.5.
1085
    """
1086

1087
    def __init__(self, brightness=0, contrast=0, saturation=0, hue=0):
1088
        super().__init__()
yaox12's avatar
yaox12 committed
1089
1090
1091
1092
1093
1094
        self.brightness = self._check_input(brightness, 'brightness')
        self.contrast = self._check_input(contrast, 'contrast')
        self.saturation = self._check_input(saturation, 'saturation')
        self.hue = self._check_input(hue, 'hue', center=0, bound=(-0.5, 0.5),
                                     clip_first_on_zero=False)

1095
    @torch.jit.unused
yaox12's avatar
yaox12 committed
1096
1097
1098
1099
    def _check_input(self, value, name, center=1, bound=(0, float('inf')), clip_first_on_zero=True):
        if isinstance(value, numbers.Number):
            if value < 0:
                raise ValueError("If {} is a single number, it must be non negative.".format(name))
1100
            value = [center - float(value), center + float(value)]
yaox12's avatar
yaox12 committed
1101
            if clip_first_on_zero:
1102
                value[0] = max(value[0], 0.0)
yaox12's avatar
yaox12 committed
1103
1104
1105
1106
1107
1108
1109
1110
1111
1112
1113
        elif isinstance(value, (tuple, list)) and len(value) == 2:
            if not bound[0] <= value[0] <= value[1] <= bound[1]:
                raise ValueError("{} values should be between {}".format(name, bound))
        else:
            raise TypeError("{} should be a single number or a list/tuple with lenght 2.".format(name))

        # if value is 0 or (1., 1.) for brightness/contrast/saturation
        # or (0., 0.) for hue, do nothing
        if value[0] == value[1] == center:
            value = None
        return value
1114
1115

    @staticmethod
1116
1117
1118
1119
1120
1121
    def get_params(brightness: Optional[List[float]],
                   contrast: Optional[List[float]],
                   saturation: Optional[List[float]],
                   hue: Optional[List[float]]
                   ) -> Tuple[Tensor, Optional[float], Optional[float], Optional[float], Optional[float]]:
        """Get the parameters for the randomized transform to be applied on image.
1122

1123
1124
1125
1126
1127
1128
1129
1130
1131
        Args:
            brightness (tuple of float (min, max), optional): The range from which the brightness_factor is chosen
                uniformly. Pass None to turn off the transformation.
            contrast (tuple of float (min, max), optional): The range from which the contrast_factor is chosen
                uniformly. Pass None to turn off the transformation.
            saturation (tuple of float (min, max), optional): The range from which the saturation_factor is chosen
                uniformly. Pass None to turn off the transformation.
            hue (tuple of float (min, max), optional): The range from which the hue_factor is chosen uniformly.
                Pass None to turn off the transformation.
1132
1133

        Returns:
1134
1135
            tuple: The parameters used to apply the randomized transform
            along with their random order.
1136
        """
1137
        fn_idx = torch.randperm(4)
1138

1139
1140
1141
1142
        b = None if brightness is None else float(torch.empty(1).uniform_(brightness[0], brightness[1]))
        c = None if contrast is None else float(torch.empty(1).uniform_(contrast[0], contrast[1]))
        s = None if saturation is None else float(torch.empty(1).uniform_(saturation[0], saturation[1]))
        h = None if hue is None else float(torch.empty(1).uniform_(hue[0], hue[1]))
1143

1144
        return fn_idx, b, c, s, h
1145

1146
    def forward(self, img):
1147
1148
        """
        Args:
1149
            img (PIL Image or Tensor): Input image.
1150
1151

        Returns:
1152
1153
            PIL Image or Tensor: Color jittered image.
        """
1154
1155
1156
        fn_idx, brightness_factor, contrast_factor, saturation_factor, hue_factor = \
            self.get_params(self.brightness, self.contrast, self.saturation, self.hue)

1157
        for fn_id in fn_idx:
1158
            if fn_id == 0 and brightness_factor is not None:
1159
                img = F.adjust_brightness(img, brightness_factor)
1160
            elif fn_id == 1 and contrast_factor is not None:
1161
                img = F.adjust_contrast(img, contrast_factor)
1162
            elif fn_id == 2 and saturation_factor is not None:
1163
                img = F.adjust_saturation(img, saturation_factor)
1164
            elif fn_id == 3 and hue_factor is not None:
1165
1166
1167
                img = F.adjust_hue(img, hue_factor)

        return img
1168

1169
    def __repr__(self):
1170
1171
1172
1173
1174
1175
        format_string = self.__class__.__name__ + '('
        format_string += 'brightness={0}'.format(self.brightness)
        format_string += ', contrast={0}'.format(self.contrast)
        format_string += ', saturation={0}'.format(self.saturation)
        format_string += ', hue={0})'.format(self.hue)
        return format_string
1176

1177

1178
class RandomRotation(torch.nn.Module):
1179
    """Rotate the image by angle.
1180
    If the image is torch Tensor, it is expected
1181
    to have [..., H, W] shape, where ... means an arbitrary number of leading dimensions.
1182
1183

    Args:
1184
        degrees (sequence or number): Range of degrees to select from.
1185
1186
            If degrees is a number instead of sequence like (min, max), the range of degrees
            will be (-degrees, +degrees).
1187
1188
1189
        interpolation (InterpolationMode): Desired interpolation enum defined by
            :class:`torchvision.transforms.InterpolationMode`. Default is ``InterpolationMode.NEAREST``.
            If input is Tensor, only ``InterpolationMode.NEAREST``, ``InterpolationMode.BILINEAR`` are supported.
1190
            For backward compatibility integer values (e.g. ``PIL.Image.NEAREST``) are still acceptable.
1191
1192
1193
1194
        expand (bool, optional): Optional expansion flag.
            If true, expands the output to make it large enough to hold the entire rotated image.
            If false or omitted, make the output image the same size as the input image.
            Note that the expand flag assumes rotation around the center and no translation.
1195
        center (sequence, optional): Optional center of rotation, (x, y). Origin is the upper left corner.
1196
            Default is the center of the image.
1197
1198
        fill (sequence or number): Pixel fill value for the area outside the rotated
            image. Default is ``0``. If given a number, the value is used for all bands respectively.
1199
            If input is PIL Image, the options is only available for ``Pillow>=5.2.0``.
1200
        resample (int, optional): deprecated argument and will be removed since v0.10.0.
1201
            Please use the ``interpolation`` parameter instead.
1202
1203
1204

    .. _filters: https://pillow.readthedocs.io/en/latest/handbook/concepts.html#filters

1205
1206
    """

1207
    def __init__(
1208
        self, degrees, interpolation=InterpolationMode.NEAREST, expand=False, center=None, fill=0, resample=None
1209
    ):
1210
        super().__init__()
1211
1212
1213
1214
1215
1216
1217
1218
1219
        if resample is not None:
            warnings.warn(
                "Argument resample is deprecated and will be removed since v0.10.0. Please, use interpolation instead"
            )
            interpolation = _interpolation_modes_from_int(resample)

        # Backward compatibility with integer value
        if isinstance(interpolation, int):
            warnings.warn(
1220
1221
                "Argument interpolation should be of type InterpolationMode instead of int. "
                "Please, use InterpolationMode enum."
1222
1223
1224
            )
            interpolation = _interpolation_modes_from_int(interpolation)

1225
        self.degrees = _setup_angle(degrees, name="degrees", req_sizes=(2, ))
1226
1227

        if center is not None:
1228
            _check_sequence_input(center, "center", req_sizes=(2, ))
1229
1230

        self.center = center
1231

1232
        self.resample = self.interpolation = interpolation
1233
        self.expand = expand
1234
1235
1236
1237
1238
1239

        if fill is None:
            fill = 0
        elif not isinstance(fill, (Sequence, numbers.Number)):
            raise TypeError("Fill should be either a sequence or a number.")

1240
        self.fill = fill
1241
1242

    @staticmethod
1243
    def get_params(degrees: List[float]) -> float:
1244
1245
1246
        """Get parameters for ``rotate`` for a random rotation.

        Returns:
1247
            float: angle parameter to be passed to ``rotate`` for random rotation.
1248
        """
1249
        angle = float(torch.empty(1).uniform_(float(degrees[0]), float(degrees[1])).item())
1250
1251
        return angle

1252
    def forward(self, img):
1253
        """
1254
        Args:
1255
            img (PIL Image or Tensor): Image to be rotated.
1256
1257

        Returns:
1258
            PIL Image or Tensor: Rotated image.
1259
        """
1260
1261
1262
1263
1264
1265
        fill = self.fill
        if isinstance(img, Tensor):
            if isinstance(fill, (int, float)):
                fill = [float(fill)] * F._get_image_num_channels(img)
            else:
                fill = [float(f) for f in fill]
1266
        angle = self.get_params(self.degrees)
1267
1268

        return F.rotate(img, angle, self.resample, self.expand, self.center, fill)
1269

1270
    def __repr__(self):
1271
        interpolate_str = self.interpolation.value
1272
        format_string = self.__class__.__name__ + '(degrees={0}'.format(self.degrees)
1273
        format_string += ', interpolation={0}'.format(interpolate_str)
1274
1275
1276
        format_string += ', expand={0}'.format(self.expand)
        if self.center is not None:
            format_string += ', center={0}'.format(self.center)
1277
1278
        if self.fill is not None:
            format_string += ', fill={0}'.format(self.fill)
1279
1280
        format_string += ')'
        return format_string
1281

1282

1283
1284
class RandomAffine(torch.nn.Module):
    """Random affine transformation of the image keeping center invariant.
1285
    If the image is torch Tensor, it is expected
1286
    to have [..., H, W] shape, where ... means an arbitrary number of leading dimensions.
1287
1288

    Args:
1289
        degrees (sequence or number): Range of degrees to select from.
1290
            If degrees is a number instead of sequence like (min, max), the range of degrees
1291
            will be (-degrees, +degrees). Set to 0 to deactivate rotations.
1292
1293
1294
1295
1296
1297
        translate (tuple, optional): tuple of maximum absolute fraction for horizontal
            and vertical translations. For example translate=(a, b), then horizontal shift
            is randomly sampled in the range -img_width * a < dx < img_width * a and vertical shift is
            randomly sampled in the range -img_height * b < dy < img_height * b. Will not translate by default.
        scale (tuple, optional): scaling factor interval, e.g (a, b), then scale is
            randomly sampled from the range a <= scale <= b. Will keep original scale by default.
1298
        shear (sequence or number, optional): Range of degrees to select from.
ptrblck's avatar
ptrblck committed
1299
            If shear is a number, a shear parallel to the x axis in the range (-shear, +shear)
1300
1301
            will be applied. Else if shear is a sequence of 2 values a shear parallel to the x axis in the
            range (shear[0], shear[1]) will be applied. Else if shear is a sequence of 4 values,
ptrblck's avatar
ptrblck committed
1302
            a x-axis shear in (shear[0], shear[1]) and y-axis shear in (shear[2], shear[3]) will be applied.
1303
            Will not apply shear by default.
1304
1305
1306
        interpolation (InterpolationMode): Desired interpolation enum defined by
            :class:`torchvision.transforms.InterpolationMode`. Default is ``InterpolationMode.NEAREST``.
            If input is Tensor, only ``InterpolationMode.NEAREST``, ``InterpolationMode.BILINEAR`` are supported.
1307
            For backward compatibility integer values (e.g. ``PIL.Image.NEAREST``) are still acceptable.
1308
1309
        fill (sequence or number): Pixel fill value for the area outside the transformed
            image. Default is ``0``. If given a number, the value is used for all bands respectively.
1310
            If input is PIL Image, the options is only available for ``Pillow>=5.0.0``.
1311
        fillcolor (sequence or number, optional): deprecated argument and will be removed since v0.10.0.
1312
            Please use the ``fill`` parameter instead.
1313
        resample (int, optional): deprecated argument and will be removed since v0.10.0.
1314
            Please use the ``interpolation`` parameter instead.
1315
1316
1317

    .. _filters: https://pillow.readthedocs.io/en/latest/handbook/concepts.html#filters

1318
1319
    """

1320
    def __init__(
1321
        self, degrees, translate=None, scale=None, shear=None, interpolation=InterpolationMode.NEAREST, fill=0,
1322
1323
        fillcolor=None, resample=None
    ):
1324
        super().__init__()
1325
1326
1327
1328
1329
1330
1331
1332
1333
        if resample is not None:
            warnings.warn(
                "Argument resample is deprecated and will be removed since v0.10.0. Please, use interpolation instead"
            )
            interpolation = _interpolation_modes_from_int(resample)

        # Backward compatibility with integer value
        if isinstance(interpolation, int):
            warnings.warn(
1334
1335
                "Argument interpolation should be of type InterpolationMode instead of int. "
                "Please, use InterpolationMode enum."
1336
1337
1338
1339
1340
1341
1342
1343
1344
            )
            interpolation = _interpolation_modes_from_int(interpolation)

        if fillcolor is not None:
            warnings.warn(
                "Argument fillcolor is deprecated and will be removed since v0.10.0. Please, use fill instead"
            )
            fill = fillcolor

1345
        self.degrees = _setup_angle(degrees, name="degrees", req_sizes=(2, ))
1346
1347

        if translate is not None:
1348
            _check_sequence_input(translate, "translate", req_sizes=(2, ))
1349
1350
1351
1352
1353
1354
            for t in translate:
                if not (0.0 <= t <= 1.0):
                    raise ValueError("translation values should be between 0 and 1")
        self.translate = translate

        if scale is not None:
1355
            _check_sequence_input(scale, "scale", req_sizes=(2, ))
1356
1357
1358
1359
1360
1361
            for s in scale:
                if s <= 0:
                    raise ValueError("scale values should be positive")
        self.scale = scale

        if shear is not None:
1362
            self.shear = _setup_angle(shear, name="shear", req_sizes=(2, 4))
1363
1364
1365
        else:
            self.shear = shear

1366
        self.resample = self.interpolation = interpolation
1367
1368
1369
1370
1371
1372

        if fill is None:
            fill = 0
        elif not isinstance(fill, (Sequence, numbers.Number)):
            raise TypeError("Fill should be either a sequence or a number.")

1373
        self.fillcolor = self.fill = fill
1374
1375

    @staticmethod
1376
1377
1378
1379
1380
1381
1382
    def get_params(
            degrees: List[float],
            translate: Optional[List[float]],
            scale_ranges: Optional[List[float]],
            shears: Optional[List[float]],
            img_size: List[int]
    ) -> Tuple[float, Tuple[int, int], float, Tuple[float, float]]:
1383
1384
1385
        """Get parameters for affine transformation

        Returns:
1386
            params to be passed to the affine transformation
1387
        """
1388
        angle = float(torch.empty(1).uniform_(float(degrees[0]), float(degrees[1])).item())
1389
        if translate is not None:
1390
1391
1392
1393
1394
            max_dx = float(translate[0] * img_size[0])
            max_dy = float(translate[1] * img_size[1])
            tx = int(round(torch.empty(1).uniform_(-max_dx, max_dx).item()))
            ty = int(round(torch.empty(1).uniform_(-max_dy, max_dy).item()))
            translations = (tx, ty)
1395
1396
1397
1398
        else:
            translations = (0, 0)

        if scale_ranges is not None:
1399
            scale = float(torch.empty(1).uniform_(scale_ranges[0], scale_ranges[1]).item())
1400
1401
1402
        else:
            scale = 1.0

1403
        shear_x = shear_y = 0.0
1404
        if shears is not None:
1405
1406
1407
1408
1409
            shear_x = float(torch.empty(1).uniform_(shears[0], shears[1]).item())
            if len(shears) == 4:
                shear_y = float(torch.empty(1).uniform_(shears[2], shears[3]).item())

        shear = (shear_x, shear_y)
1410
1411
1412

        return angle, translations, scale, shear

1413
    def forward(self, img):
1414
        """
1415
            img (PIL Image or Tensor): Image to be transformed.
1416
1417

        Returns:
1418
            PIL Image or Tensor: Affine transformed image.
1419
        """
1420
1421
1422
1423
1424
1425
        fill = self.fill
        if isinstance(img, Tensor):
            if isinstance(fill, (int, float)):
                fill = [float(fill)] * F._get_image_num_channels(img)
            else:
                fill = [float(f) for f in fill]
1426
1427
1428
1429

        img_size = F._get_image_size(img)

        ret = self.get_params(self.degrees, self.translate, self.scale, self.shear, img_size)
1430
1431

        return F.affine(img, *ret, interpolation=self.interpolation, fill=fill)
1432
1433
1434
1435
1436
1437
1438
1439
1440

    def __repr__(self):
        s = '{name}(degrees={degrees}'
        if self.translate is not None:
            s += ', translate={translate}'
        if self.scale is not None:
            s += ', scale={scale}'
        if self.shear is not None:
            s += ', shear={shear}'
1441
        if self.interpolation != InterpolationMode.NEAREST:
1442
1443
1444
            s += ', interpolation={interpolation}'
        if self.fill != 0:
            s += ', fill={fill}'
1445
1446
        s += ')'
        d = dict(self.__dict__)
1447
        d['interpolation'] = self.interpolation.value
1448
1449
1450
        return s.format(name=self.__class__.__name__, **d)


1451
class Grayscale(torch.nn.Module):
1452
    """Convert image to grayscale.
1453
1454
    If the image is torch Tensor, it is expected
    to have [..., 3, H, W] shape, where ... means an arbitrary number of leading dimensions
1455

1456
1457
1458
1459
    Args:
        num_output_channels (int): (1 or 3) number of channels desired for output image

    Returns:
1460
        PIL Image: Grayscale version of the input.
1461
1462
         - If ``num_output_channels == 1`` : returned image is single channel
         - If ``num_output_channels == 3`` : returned image is 3 channel with r == g == b
1463
1464
1465
1466

    """

    def __init__(self, num_output_channels=1):
1467
        super().__init__()
1468
1469
        self.num_output_channels = num_output_channels

vfdev's avatar
vfdev committed
1470
    def forward(self, img):
1471
1472
        """
        Args:
1473
            img (PIL Image or Tensor): Image to be converted to grayscale.
1474
1475

        Returns:
1476
            PIL Image or Tensor: Grayscaled image.
1477
        """
1478
        return F.rgb_to_grayscale(img, num_output_channels=self.num_output_channels)
1479

1480
    def __repr__(self):
1481
        return self.__class__.__name__ + '(num_output_channels={0})'.format(self.num_output_channels)
1482

1483

1484
class RandomGrayscale(torch.nn.Module):
1485
    """Randomly convert image to grayscale with a probability of p (default 0.1).
1486
1487
    If the image is torch Tensor, it is expected
    to have [..., 3, H, W] shape, where ... means an arbitrary number of leading dimensions
1488

1489
1490
1491
1492
    Args:
        p (float): probability that image should be converted to grayscale.

    Returns:
1493
        PIL Image or Tensor: Grayscale version of the input image with probability p and unchanged
1494
1495
1496
        with probability (1-p).
        - If input image is 1 channel: grayscale version is 1 channel
        - If input image is 3 channel: grayscale version is 3 channel with r == g == b
1497
1498
1499
1500

    """

    def __init__(self, p=0.1):
1501
        super().__init__()
1502
1503
        self.p = p

vfdev's avatar
vfdev committed
1504
    def forward(self, img):
1505
1506
        """
        Args:
1507
            img (PIL Image or Tensor): Image to be converted to grayscale.
1508
1509

        Returns:
1510
            PIL Image or Tensor: Randomly grayscaled image.
1511
        """
1512
1513
1514
        num_output_channels = F._get_image_num_channels(img)
        if torch.rand(1) < self.p:
            return F.rgb_to_grayscale(img, num_output_channels=num_output_channels)
1515
        return img
1516
1517

    def __repr__(self):
1518
        return self.__class__.__name__ + '(p={0})'.format(self.p)
1519
1520


1521
class RandomErasing(torch.nn.Module):
1522
1523
    """ Randomly selects a rectangle region in an torch Tensor image and erases its pixels.
    This transform does not support PIL Image.
vfdev's avatar
vfdev committed
1524
    'Random Erasing Data Augmentation' by Zhong et al. See https://arxiv.org/abs/1708.04896
1525

1526
1527
1528
1529
1530
1531
1532
1533
    Args:
         p: probability that the random erasing operation will be performed.
         scale: range of proportion of erased area against input image.
         ratio: range of aspect ratio of erased area.
         value: erasing value. Default is 0. If a single int, it is used to
            erase all pixels. If a tuple of length 3, it is used to erase
            R, G, B channels respectively.
            If a str of 'random', erasing each pixel with random values.
Zhun Zhong's avatar
Zhun Zhong committed
1534
         inplace: boolean to make this transform inplace. Default set to False.
1535

1536
1537
    Returns:
        Erased Image.
1538

vfdev's avatar
vfdev committed
1539
    Example:
1540
        >>> transform = transforms.Compose([
1541
1542
1543
1544
        >>>   transforms.RandomHorizontalFlip(),
        >>>   transforms.ToTensor(),
        >>>   transforms.Normalize((0.485, 0.456, 0.406), (0.229, 0.224, 0.225)),
        >>>   transforms.RandomErasing(),
1545
1546
1547
        >>> ])
    """

Zhun Zhong's avatar
Zhun Zhong committed
1548
    def __init__(self, p=0.5, scale=(0.02, 0.33), ratio=(0.3, 3.3), value=0, inplace=False):
1549
1550
1551
1552
1553
1554
1555
1556
1557
        super().__init__()
        if not isinstance(value, (numbers.Number, str, tuple, list)):
            raise TypeError("Argument value should be either a number or str or a sequence")
        if isinstance(value, str) and value != "random":
            raise ValueError("If value is str, it should be 'random'")
        if not isinstance(scale, (tuple, list)):
            raise TypeError("Scale should be a sequence")
        if not isinstance(ratio, (tuple, list)):
            raise TypeError("Ratio should be a sequence")
1558
        if (scale[0] > scale[1]) or (ratio[0] > ratio[1]):
1559
            warnings.warn("Scale and ratio should be of kind (min, max)")
1560
        if scale[0] < 0 or scale[1] > 1:
1561
            raise ValueError("Scale should be between 0 and 1")
1562
        if p < 0 or p > 1:
1563
            raise ValueError("Random erasing probability should be between 0 and 1")
1564
1565
1566
1567
1568

        self.p = p
        self.scale = scale
        self.ratio = ratio
        self.value = value
1569
        self.inplace = inplace
1570
1571

    @staticmethod
1572
1573
1574
    def get_params(
            img: Tensor, scale: Tuple[float, float], ratio: Tuple[float, float], value: Optional[List[float]] = None
    ) -> Tuple[int, int, int, int, Tensor]:
1575
1576
1577
        """Get parameters for ``erase`` for a random erasing.

        Args:
vfdev's avatar
vfdev committed
1578
            img (Tensor): Tensor image to be erased.
1579
1580
            scale (sequence): range of proportion of erased area against input image.
            ratio (sequence): range of aspect ratio of erased area.
1581
1582
1583
            value (list, optional): erasing value. If None, it is interpreted as "random"
                (erasing each pixel with random values). If ``len(value)`` is 1, it is interpreted as a number,
                i.e. ``value[0]``.
1584
1585
1586
1587

        Returns:
            tuple: params (i, j, h, w, v) to be passed to ``erase`` for random erasing.
        """
vfdev's avatar
vfdev committed
1588
        img_c, img_h, img_w = img.shape[-3], img.shape[-2], img.shape[-1]
1589
        area = img_h * img_w
1590

1591
        log_ratio = torch.log(torch.tensor(ratio))
1592
        for _ in range(10):
1593
            erase_area = area * torch.empty(1).uniform_(scale[0], scale[1]).item()
1594
1595
1596
            aspect_ratio = torch.exp(
                torch.empty(1).uniform_(log_ratio[0], log_ratio[1])
            ).item()
1597
1598
1599

            h = int(round(math.sqrt(erase_area * aspect_ratio)))
            w = int(round(math.sqrt(erase_area / aspect_ratio)))
1600
1601
1602
1603
1604
1605
1606
            if not (h < img_h and w < img_w):
                continue

            if value is None:
                v = torch.empty([img_c, h, w], dtype=torch.float32).normal_()
            else:
                v = torch.tensor(value)[:, None, None]
1607

1608
1609
            i = torch.randint(0, img_h - h + 1, size=(1, )).item()
            j = torch.randint(0, img_w - w + 1, size=(1, )).item()
1610
            return i, j, h, w, v
1611

Zhun Zhong's avatar
Zhun Zhong committed
1612
1613
1614
        # Return original image
        return 0, 0, img_h, img_w, img

1615
    def forward(self, img):
1616
1617
        """
        Args:
vfdev's avatar
vfdev committed
1618
            img (Tensor): Tensor image to be erased.
1619
1620
1621
1622

        Returns:
            img (Tensor): Erased Tensor image.
        """
1623
1624
1625
1626
1627
1628
1629
1630
1631
1632
1633
1634
1635
1636
1637
1638
1639
1640
1641
        if torch.rand(1) < self.p:

            # cast self.value to script acceptable type
            if isinstance(self.value, (int, float)):
                value = [self.value, ]
            elif isinstance(self.value, str):
                value = None
            elif isinstance(self.value, tuple):
                value = list(self.value)
            else:
                value = self.value

            if value is not None and not (len(value) in (1, img.shape[-3])):
                raise ValueError(
                    "If value is a sequence, it should have either a single value or "
                    "{} (number of input channels)".format(img.shape[-3])
                )

            x, y, h, w, v = self.get_params(img, scale=self.scale, ratio=self.ratio, value=value)
1642
            return F.erase(img, x, y, h, w, v, self.inplace)
1643
        return img
1644

1645
1646
1647
1648
1649
1650
1651
1652
    def __repr__(self):
        s = '(p={}, '.format(self.p)
        s += 'scale={}, '.format(self.scale)
        s += 'ratio={}, '.format(self.ratio)
        s += 'value={}, '.format(self.value)
        s += 'inplace={})'.format(self.inplace)
        return self.__class__.__name__ + s

1653

1654
1655
class GaussianBlur(torch.nn.Module):
    """Blurs image with randomly chosen Gaussian blur.
1656
1657
    If the image is torch Tensor, it is expected
    to have [..., C, H, W] shape, where ... means an arbitrary number of leading dimensions.
1658
1659
1660
1661
1662
1663
1664
1665
1666
1667
1668
1669
1670
1671
1672
1673
1674
1675
1676
1677
1678
1679
1680
1681
1682
1683
1684
1685
1686
1687
1688
1689
1690
1691

    Args:
        kernel_size (int or sequence): Size of the Gaussian kernel.
        sigma (float or tuple of float (min, max)): Standard deviation to be used for
            creating kernel to perform blurring. If float, sigma is fixed. If it is tuple
            of float (min, max), sigma is chosen uniformly at random to lie in the
            given range.

    Returns:
        PIL Image or Tensor: Gaussian blurred version of the input image.

    """

    def __init__(self, kernel_size, sigma=(0.1, 2.0)):
        super().__init__()
        self.kernel_size = _setup_size(kernel_size, "Kernel size should be a tuple/list of two integers")
        for ks in self.kernel_size:
            if ks <= 0 or ks % 2 == 0:
                raise ValueError("Kernel size value should be an odd and positive number.")

        if isinstance(sigma, numbers.Number):
            if sigma <= 0:
                raise ValueError("If sigma is a single number, it must be positive.")
            sigma = (sigma, sigma)
        elif isinstance(sigma, Sequence) and len(sigma) == 2:
            if not 0. < sigma[0] <= sigma[1]:
                raise ValueError("sigma values should be positive and of the form (min, max).")
        else:
            raise ValueError("sigma should be a single number or a list/tuple with length 2.")

        self.sigma = sigma

    @staticmethod
    def get_params(sigma_min: float, sigma_max: float) -> float:
vfdev's avatar
vfdev committed
1692
        """Choose sigma for random gaussian blurring.
1693
1694
1695
1696
1697
1698
1699
1700
1701
1702
1703
1704
1705

        Args:
            sigma_min (float): Minimum standard deviation that can be chosen for blurring kernel.
            sigma_max (float): Maximum standard deviation that can be chosen for blurring kernel.

        Returns:
            float: Standard deviation to be passed to calculate kernel for gaussian blurring.
        """
        return torch.empty(1).uniform_(sigma_min, sigma_max).item()

    def forward(self, img: Tensor) -> Tensor:
        """
        Args:
vfdev's avatar
vfdev committed
1706
            img (PIL Image or Tensor): image to be blurred.
1707
1708
1709
1710
1711
1712
1713
1714
1715
1716
1717
1718
1719

        Returns:
            PIL Image or Tensor: Gaussian blurred image
        """
        sigma = self.get_params(self.sigma[0], self.sigma[1])
        return F.gaussian_blur(img, self.kernel_size, [sigma, sigma])

    def __repr__(self):
        s = '(kernel_size={}, '.format(self.kernel_size)
        s += 'sigma={})'.format(self.sigma)
        return self.__class__.__name__ + s


1720
1721
1722
1723
1724
1725
1726
1727
1728
1729
1730
1731
1732
1733
1734
1735
1736
1737
1738
1739
1740
1741
1742
1743
1744
1745
1746
1747
1748
1749
def _setup_size(size, error_msg):
    if isinstance(size, numbers.Number):
        return int(size), int(size)

    if isinstance(size, Sequence) and len(size) == 1:
        return size[0], size[0]

    if len(size) != 2:
        raise ValueError(error_msg)

    return size


def _check_sequence_input(x, name, req_sizes):
    msg = req_sizes[0] if len(req_sizes) < 2 else " or ".join([str(s) for s in req_sizes])
    if not isinstance(x, Sequence):
        raise TypeError("{} should be a sequence of length {}.".format(name, msg))
    if len(x) not in req_sizes:
        raise ValueError("{} should be sequence of length {}.".format(name, msg))


def _setup_angle(x, name, req_sizes=(2, )):
    if isinstance(x, numbers.Number):
        if x < 0:
            raise ValueError("If {} is a single number, it must be positive.".format(name))
        x = [-x, x]
    else:
        _check_sequence_input(x, name, req_sizes)

    return [float(d) for d in x]
1750
1751
1752
1753


class RandomInvert(torch.nn.Module):
    """Inverts the colors of the given image randomly with a given probability.
1754
1755
1756
    If img is a Tensor, it is expected to be in [..., 1 or 3, H, W] format,
    where ... means it can have an arbitrary number of leading dimensions.
    If img is PIL Image, it is expected to be in mode "L" or "RGB".
1757
1758
1759
1760
1761
1762
1763
1764
1765
1766
1767
1768
1769
1770
1771
1772
1773
1774
1775
1776
1777
1778
1779
1780
1781
1782
1783

    Args:
        p (float): probability of the image being color inverted. Default value is 0.5
    """

    def __init__(self, p=0.5):
        super().__init__()
        self.p = p

    def forward(self, img):
        """
        Args:
            img (PIL Image or Tensor): Image to be inverted.

        Returns:
            PIL Image or Tensor: Randomly color inverted image.
        """
        if torch.rand(1).item() < self.p:
            return F.invert(img)
        return img

    def __repr__(self):
        return self.__class__.__name__ + '(p={})'.format(self.p)


class RandomPosterize(torch.nn.Module):
    """Posterize the image randomly with a given probability by reducing the
1784
1785
1786
    number of bits for each color channel. If the image is torch Tensor, it should be of type torch.uint8,
    and it is expected to have [..., 1 or 3, H, W] shape, where ... means an arbitrary number of leading dimensions.
    If img is PIL Image, it is expected to be in mode "L" or "RGB".
1787
1788
1789
1790
1791
1792
1793
1794
1795
1796
1797
1798
1799
1800
1801
1802
1803
1804
1805
1806
1807
1808
1809
1810
1811
1812
1813
1814
1815

    Args:
        bits (int): number of bits to keep for each channel (0-8)
        p (float): probability of the image being color inverted. Default value is 0.5
    """

    def __init__(self, bits, p=0.5):
        super().__init__()
        self.bits = bits
        self.p = p

    def forward(self, img):
        """
        Args:
            img (PIL Image or Tensor): Image to be posterized.

        Returns:
            PIL Image or Tensor: Randomly posterized image.
        """
        if torch.rand(1).item() < self.p:
            return F.posterize(img, self.bits)
        return img

    def __repr__(self):
        return self.__class__.__name__ + '(bits={},p={})'.format(self.bits, self.p)


class RandomSolarize(torch.nn.Module):
    """Solarize the image randomly with a given probability by inverting all pixel
1816
1817
1818
    values above a threshold. If img is a Tensor, it is expected to be in [..., 1 or 3, H, W] format,
    where ... means it can have an arbitrary number of leading dimensions.
    If img is PIL Image, it is expected to be in mode "L" or "RGB".
1819
1820
1821
1822
1823
1824
1825
1826
1827
1828
1829
1830
1831
1832
1833
1834
1835
1836
1837
1838
1839
1840
1841
1842
1843
1844
1845
1846

    Args:
        threshold (float): all pixels equal or above this value are inverted.
        p (float): probability of the image being color inverted. Default value is 0.5
    """

    def __init__(self, threshold, p=0.5):
        super().__init__()
        self.threshold = threshold
        self.p = p

    def forward(self, img):
        """
        Args:
            img (PIL Image or Tensor): Image to be solarized.

        Returns:
            PIL Image or Tensor: Randomly solarized image.
        """
        if torch.rand(1).item() < self.p:
            return F.solarize(img, self.threshold)
        return img

    def __repr__(self):
        return self.__class__.__name__ + '(threshold={},p={})'.format(self.threshold, self.p)


class RandomAdjustSharpness(torch.nn.Module):
1847
1848
    """Adjust the sharpness of the image randomly with a given probability. If the image is torch Tensor,
    it is expected to have [..., 1 or 3, H, W] shape, where ... means an arbitrary number of leading dimensions.
1849
1850
1851
1852
1853
1854
1855
1856
1857
1858
1859
1860
1861
1862
1863
1864
1865
1866
1867
1868
1869
1870
1871
1872
1873
1874
1875
1876
1877
1878
1879

    Args:
        sharpness_factor (float):  How much to adjust the sharpness. Can be
            any non negative number. 0 gives a blurred image, 1 gives the
            original image while 2 increases the sharpness by a factor of 2.
        p (float): probability of the image being color inverted. Default value is 0.5
    """

    def __init__(self, sharpness_factor, p=0.5):
        super().__init__()
        self.sharpness_factor = sharpness_factor
        self.p = p

    def forward(self, img):
        """
        Args:
            img (PIL Image or Tensor): Image to be sharpened.

        Returns:
            PIL Image or Tensor: Randomly sharpened image.
        """
        if torch.rand(1).item() < self.p:
            return F.adjust_sharpness(img, self.sharpness_factor)
        return img

    def __repr__(self):
        return self.__class__.__name__ + '(sharpness_factor={},p={})'.format(self.sharpness_factor, self.p)


class RandomAutocontrast(torch.nn.Module):
    """Autocontrast the pixels of the given image randomly with a given probability.
1880
1881
1882
    If the image is torch Tensor, it is expected
    to have [..., 1 or 3, H, W] shape, where ... means an arbitrary number of leading dimensions.
    If img is PIL Image, it is expected to be in mode "L" or "RGB".
1883
1884
1885
1886
1887
1888
1889
1890
1891
1892
1893
1894
1895
1896
1897
1898
1899
1900
1901
1902
1903
1904
1905
1906
1907
1908
1909

    Args:
        p (float): probability of the image being autocontrasted. Default value is 0.5
    """

    def __init__(self, p=0.5):
        super().__init__()
        self.p = p

    def forward(self, img):
        """
        Args:
            img (PIL Image or Tensor): Image to be autocontrasted.

        Returns:
            PIL Image or Tensor: Randomly autocontrasted image.
        """
        if torch.rand(1).item() < self.p:
            return F.autocontrast(img)
        return img

    def __repr__(self):
        return self.__class__.__name__ + '(p={})'.format(self.p)


class RandomEqualize(torch.nn.Module):
    """Equalize the histogram of the given image randomly with a given probability.
1910
1911
1912
    If the image is torch Tensor, it is expected
    to have [..., 1 or 3, H, W] shape, where ... means an arbitrary number of leading dimensions.
    If img is PIL Image, it is expected to be in mode "P", "L" or "RGB".
1913
1914
1915
1916
1917
1918
1919
1920
1921
1922
1923
1924
1925
1926
1927
1928
1929
1930
1931
1932
1933
1934
1935

    Args:
        p (float): probability of the image being equalized. Default value is 0.5
    """

    def __init__(self, p=0.5):
        super().__init__()
        self.p = p

    def forward(self, img):
        """
        Args:
            img (PIL Image or Tensor): Image to be equalized.

        Returns:
            PIL Image or Tensor: Randomly equalized image.
        """
        if torch.rand(1).item() < self.p:
            return F.equalize(img)
        return img

    def __repr__(self):
        return self.__class__.__name__ + '(p={})'.format(self.p)