transforms.py 58.8 KB
Newer Older
1
import math
vfdev's avatar
vfdev committed
2
import numbers
3
import random
vfdev's avatar
vfdev committed
4
import warnings
vfdev's avatar
vfdev committed
5
from collections.abc import Sequence
6
from typing import Tuple, List, Optional
vfdev's avatar
vfdev committed
7
8

import torch
9
from PIL import Image
vfdev's avatar
vfdev committed
10
11
from torch import Tensor

12
13
14
15
16
17
18
try:
    import accimage
except ImportError:
    accimage = None

from . import functional as F

Tongzhou Wang's avatar
Tongzhou Wang committed
19

20
21
22
23
__all__ = ["Compose", "ToTensor", "PILToTensor", "ConvertImageDtype", "ToPILImage", "Normalize", "Resize", "Scale",
           "CenterCrop", "Pad", "Lambda", "RandomApply", "RandomChoice", "RandomOrder", "RandomCrop",
           "RandomHorizontalFlip", "RandomVerticalFlip", "RandomResizedCrop", "RandomSizedCrop", "FiveCrop", "TenCrop",
           "LinearTransformation", "ColorJitter", "RandomRotation", "RandomAffine", "Grayscale", "RandomGrayscale",
24
           "RandomPerspective", "RandomErasing"]
25

26
27
28
29
30
_pil_interpolation_to_str = {
    Image.NEAREST: 'PIL.Image.NEAREST',
    Image.BILINEAR: 'PIL.Image.BILINEAR',
    Image.BICUBIC: 'PIL.Image.BICUBIC',
    Image.LANCZOS: 'PIL.Image.LANCZOS',
surgan12's avatar
surgan12 committed
31
32
    Image.HAMMING: 'PIL.Image.HAMMING',
    Image.BOX: 'PIL.Image.BOX',
33
34
}

35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56

class Compose(object):
    """Composes several transforms together.

    Args:
        transforms (list of ``Transform`` objects): list of transforms to compose.

    Example:
        >>> transforms.Compose([
        >>>     transforms.CenterCrop(10),
        >>>     transforms.ToTensor(),
        >>> ])
    """

    def __init__(self, transforms):
        self.transforms = transforms

    def __call__(self, img):
        for t in self.transforms:
            img = t(img)
        return img

57
58
59
60
61
62
63
64
    def __repr__(self):
        format_string = self.__class__.__name__ + '('
        for t in self.transforms:
            format_string += '\n'
            format_string += '    {0}'.format(t)
        format_string += '\n)'
        return format_string

65
66
67
68
69

class ToTensor(object):
    """Convert a ``PIL Image`` or ``numpy.ndarray`` to tensor.

    Converts a PIL Image or numpy.ndarray (H x W x C) in the range
surgan12's avatar
surgan12 committed
70
71
72
73
74
    [0, 255] to a torch.FloatTensor of shape (C x H x W) in the range [0.0, 1.0]
    if the PIL Image belongs to one of the modes (L, LA, P, I, F, RGB, YCbCr, RGBA, CMYK, 1)
    or if the numpy.ndarray has dtype = np.uint8

    In the other cases, tensors are returned without scaling.
75
76
77
78
79
80

    .. note::
        Because the input image is scaled to [0.0, 1.0], this transformation should not be used when
        transforming target image masks. See the `references`_ for implementing the transforms for image masks.

    .. _references: https://github.com/pytorch/vision/tree/master/references/segmentation
81
82
83
84
85
86
87
88
89
90
91
92
    """

    def __call__(self, pic):
        """
        Args:
            pic (PIL Image or numpy.ndarray): Image to be converted to tensor.

        Returns:
            Tensor: Converted image.
        """
        return F.to_tensor(pic)

93
94
95
    def __repr__(self):
        return self.__class__.__name__ + '()'

96

97
98
99
class PILToTensor(object):
    """Convert a ``PIL Image`` to a tensor of the same type.

vfdev's avatar
vfdev committed
100
    Converts a PIL Image (H x W x C) to a Tensor of shape (C x H x W).
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
    """

    def __call__(self, pic):
        """
        Args:
            pic (PIL Image): Image to be converted to tensor.

        Returns:
            Tensor: Converted image.
        """
        return F.pil_to_tensor(pic)

    def __repr__(self):
        return self.__class__.__name__ + '()'


117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
class ConvertImageDtype(object):
    """Convert a tensor image to the given ``dtype`` and scale the values accordingly

    Args:
        dtype (torch.dtype): Desired data type of the output

    .. note::

        When converting from a smaller to a larger integer ``dtype`` the maximum values are **not** mapped exactly.
        If converted back and forth, this mismatch has no effect.

    Raises:
        RuntimeError: When trying to cast :class:`torch.float32` to :class:`torch.int32` or :class:`torch.int64` as
            well as for trying to cast :class:`torch.float64` to :class:`torch.int64`. These conversions might lead to
            overflow errors since the floating point ``dtype`` cannot store consecutive integers over the whole range
            of the integer ``dtype``.
    """

    def __init__(self, dtype: torch.dtype) -> None:
        self.dtype = dtype

    def __call__(self, image: torch.Tensor) -> torch.Tensor:
        return F.convert_image_dtype(image, self.dtype)


142
143
144
145
146
147
148
149
150
class ToPILImage(object):
    """Convert a tensor or an ndarray to PIL Image.

    Converts a torch.*Tensor of shape C x H x W or a numpy ndarray of shape
    H x W x C to a PIL Image while preserving the value range.

    Args:
        mode (`PIL.Image mode`_): color space and pixel depth of input data (optional).
            If ``mode`` is ``None`` (default) there are some assumptions made about the input data:
surgan12's avatar
surgan12 committed
151
152
153
154
             - If the input has 4 channels, the ``mode`` is assumed to be ``RGBA``.
             - If the input has 3 channels, the ``mode`` is assumed to be ``RGB``.
             - If the input has 2 channels, the ``mode`` is assumed to be ``LA``.
             - If the input has 1 channel, the ``mode`` is determined by the data type (i.e ``int``, ``float``,
155
               ``short``).
156

csukuangfj's avatar
csukuangfj committed
157
    .. _PIL.Image mode: https://pillow.readthedocs.io/en/latest/handbook/concepts.html#concept-modes
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
    """
    def __init__(self, mode=None):
        self.mode = mode

    def __call__(self, pic):
        """
        Args:
            pic (Tensor or numpy.ndarray): Image to be converted to PIL Image.

        Returns:
            PIL Image: Image converted to PIL Image.

        """
        return F.to_pil_image(pic, self.mode)

173
    def __repr__(self):
174
175
176
177
178
        format_string = self.__class__.__name__ + '('
        if self.mode is not None:
            format_string += 'mode={0}'.format(self.mode)
        format_string += ')'
        return format_string
179

180
181

class Normalize(object):
Fang Gao's avatar
Fang Gao committed
182
    """Normalize a tensor image with mean and standard deviation.
183
184
185
    Given mean: ``(mean[1],...,mean[n])`` and std: ``(std[1],..,std[n])`` for ``n``
    channels, this transform will normalize each channel of the input
    ``torch.*Tensor`` i.e.,
abdjava's avatar
abdjava committed
186
    ``output[channel] = (input[channel] - mean[channel]) / std[channel]``
187

188
    .. note::
189
        This transform acts out of place, i.e., it does not mutate the input tensor.
190

191
192
193
    Args:
        mean (sequence): Sequence of means for each channel.
        std (sequence): Sequence of standard deviations for each channel.
194
195
        inplace(bool,optional): Bool to make this operation in-place.

196
197
    """

surgan12's avatar
surgan12 committed
198
    def __init__(self, mean, std, inplace=False):
199
200
        self.mean = mean
        self.std = std
surgan12's avatar
surgan12 committed
201
        self.inplace = inplace
202
203
204
205
206
207
208
209
210

    def __call__(self, tensor):
        """
        Args:
            tensor (Tensor): Tensor image of size (C, H, W) to be normalized.

        Returns:
            Tensor: Normalized Tensor image.
        """
surgan12's avatar
surgan12 committed
211
        return F.normalize(tensor, self.mean, self.std, self.inplace)
212

213
214
215
    def __repr__(self):
        return self.__class__.__name__ + '(mean={0}, std={1})'.format(self.mean, self.std)

216

vfdev's avatar
vfdev committed
217
218
219
220
class Resize(torch.nn.Module):
    """Resize the input image to the given size.
    The image can be a PIL Image or a torch Tensor, in which case it is expected
    to have [..., H, W] shape, where ... means an arbitrary number of leading dimensions
221
222
223
224
225
226

    Args:
        size (sequence or int): Desired output size. If size is a sequence like
            (h, w), output size will be matched to this. If size is an int,
            smaller edge of the image will be matched to this number.
            i.e, if height > width, then image will be rescaled to
vfdev's avatar
vfdev committed
227
228
229
            (size * height / width, size).
            In torchscript mode padding as single int is not supported, use a tuple or
            list of length 1: ``[size, ]``.
vfdev's avatar
vfdev committed
230
231
232
        interpolation (int, optional): Desired interpolation enum defined by `filters`_.
            Default is ``PIL.Image.BILINEAR``. If input is Tensor, only ``PIL.Image.NEAREST``, ``PIL.Image.BILINEAR``
            and ``PIL.Image.BICUBIC`` are supported.
233
234
235
    """

    def __init__(self, size, interpolation=Image.BILINEAR):
vfdev's avatar
vfdev committed
236
        super().__init__()
237
        self.size = _setup_size(size, error_msg="If size is a sequence, it should have 2 values")
238
239
        self.interpolation = interpolation

vfdev's avatar
vfdev committed
240
    def forward(self, img):
241
242
        """
        Args:
vfdev's avatar
vfdev committed
243
            img (PIL Image or Tensor): Image to be scaled.
244
245

        Returns:
vfdev's avatar
vfdev committed
246
            PIL Image or Tensor: Rescaled image.
247
248
249
        """
        return F.resize(img, self.size, self.interpolation)

250
    def __repr__(self):
251
252
        interpolate_str = _pil_interpolation_to_str[self.interpolation]
        return self.__class__.__name__ + '(size={0}, interpolation={1})'.format(self.size, interpolate_str)
253

254
255
256
257
258
259
260
261
262
263
264

class Scale(Resize):
    """
    Note: This transform is deprecated in favor of Resize.
    """
    def __init__(self, *args, **kwargs):
        warnings.warn("The use of the transforms.Scale transform is deprecated, " +
                      "please use transforms.Resize instead.")
        super(Scale, self).__init__(*args, **kwargs)


vfdev's avatar
vfdev committed
265
266
267
268
class CenterCrop(torch.nn.Module):
    """Crops the given image at the center.
    The image can be a PIL Image or a torch Tensor, in which case it is expected
    to have [..., H, W] shape, where ... means an arbitrary number of leading dimensions
269
270
271
272

    Args:
        size (sequence or int): Desired output size of the crop. If size is an
            int instead of sequence like (h, w), a square crop (size, size) is
vfdev's avatar
vfdev committed
273
            made. If provided a tuple or list of length 1, it will be interpreted as (size[0], size[0]).
274
275
276
    """

    def __init__(self, size):
vfdev's avatar
vfdev committed
277
        super().__init__()
278
        self.size = _setup_size(size, error_msg="Please provide only two dimensions (h, w) for size.")
279

vfdev's avatar
vfdev committed
280
    def forward(self, img):
281
282
        """
        Args:
vfdev's avatar
vfdev committed
283
            img (PIL Image or Tensor): Image to be cropped.
284
285

        Returns:
vfdev's avatar
vfdev committed
286
            PIL Image or Tensor: Cropped image.
287
288
289
        """
        return F.center_crop(img, self.size)

290
291
292
    def __repr__(self):
        return self.__class__.__name__ + '(size={0})'.format(self.size)

293

294
295
296
297
class Pad(torch.nn.Module):
    """Pad the given image on all sides with the given "pad" value.
    The image can be a PIL Image or a torch Tensor, in which case it is expected
    to have [..., H, W] shape, where ... means an arbitrary number of leading dimensions
298
299

    Args:
300
        padding (int or tuple or list): Padding on each border. If a single int is provided this
301
302
            is used to pad all borders. If tuple of length 2 is provided this is the padding
            on left/right and top/bottom respectively. If a tuple of length 4 is provided
303
304
305
            this is the padding for the left, top, right and bottom borders respectively.
            In torchscript mode padding as single int is not supported, use a tuple or
            list of length 1: ``[padding, ]``.
306
        fill (int or tuple): Pixel fill value for constant fill. Default is 0. If a tuple of
307
            length 3, it is used to fill R, G, B channels respectively.
308
            This value is only used when the padding_mode is constant
309
        padding_mode (str): Type of padding. Should be: constant, edge, reflect or symmetric.
vfdev's avatar
vfdev committed
310
            Default is constant. Mode symmetric is not yet supported for Tensor inputs.
311
312
313
314
315
316
317
318

            - constant: pads with a constant value, this value is specified with fill

            - edge: pads with the last value at the edge of the image

            - reflect: pads with reflection of image without repeating the last value on the edge

                For example, padding [1, 2, 3, 4] with 2 elements on both sides in reflect mode
319
                will result in [3, 2, 1, 2, 3, 4, 3, 2]
320
321
322
323

            - symmetric: pads with reflection of image repeating the last value on the edge

                For example, padding [1, 2, 3, 4] with 2 elements on both sides in symmetric mode
324
                will result in [2, 1, 1, 2, 3, 4, 4, 3]
325
326
    """

327
328
329
330
331
332
333
334
335
336
337
338
339
    def __init__(self, padding, fill=0, padding_mode="constant"):
        super().__init__()
        if not isinstance(padding, (numbers.Number, tuple, list)):
            raise TypeError("Got inappropriate padding arg")

        if not isinstance(fill, (numbers.Number, str, tuple)):
            raise TypeError("Got inappropriate fill arg")

        if padding_mode not in ["constant", "edge", "reflect", "symmetric"]:
            raise ValueError("Padding mode should be either constant, edge, reflect or symmetric")

        if isinstance(padding, Sequence) and len(padding) not in [1, 2, 4]:
            raise ValueError("Padding must be an int or a 1, 2, or 4 element tuple, not a " +
340
341
342
343
                             "{} element tuple".format(len(padding)))

        self.padding = padding
        self.fill = fill
344
        self.padding_mode = padding_mode
345

346
    def forward(self, img):
347
348
        """
        Args:
349
            img (PIL Image or Tensor): Image to be padded.
350
351

        Returns:
352
            PIL Image or Tensor: Padded image.
353
        """
354
        return F.pad(img, self.padding, self.fill, self.padding_mode)
355

356
    def __repr__(self):
357
358
        return self.__class__.__name__ + '(padding={0}, fill={1}, padding_mode={2})'.\
            format(self.padding, self.fill, self.padding_mode)
359

360
361
362
363
364
365
366
367
368

class Lambda(object):
    """Apply a user-defined lambda as a transform.

    Args:
        lambd (function): Lambda/function to be used for transform.
    """

    def __init__(self, lambd):
369
        assert callable(lambd), repr(type(lambd).__name__) + " object is not callable"
370
371
372
373
374
        self.lambd = lambd

    def __call__(self, img):
        return self.lambd(img)

375
376
377
    def __repr__(self):
        return self.__class__.__name__ + '()'

378

379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
class RandomTransforms(object):
    """Base class for a list of transformations with randomness

    Args:
        transforms (list or tuple): list of transformations
    """

    def __init__(self, transforms):
        assert isinstance(transforms, (list, tuple))
        self.transforms = transforms

    def __call__(self, *args, **kwargs):
        raise NotImplementedError()

    def __repr__(self):
        format_string = self.__class__.__name__ + '('
        for t in self.transforms:
            format_string += '\n'
            format_string += '    {0}'.format(t)
        format_string += '\n)'
        return format_string


class RandomApply(RandomTransforms):
    """Apply randomly a list of transformations with a given probability

    Args:
        transforms (list or tuple): list of transformations
        p (float): probability
    """

    def __init__(self, transforms, p=0.5):
        super(RandomApply, self).__init__(transforms)
        self.p = p

    def __call__(self, img):
        if self.p < random.random():
            return img
        for t in self.transforms:
            img = t(img)
        return img

    def __repr__(self):
        format_string = self.__class__.__name__ + '('
        format_string += '\n    p={}'.format(self.p)
        for t in self.transforms:
            format_string += '\n'
            format_string += '    {0}'.format(t)
        format_string += '\n)'
        return format_string


class RandomOrder(RandomTransforms):
    """Apply a list of transformations in a random order
    """
    def __call__(self, img):
        order = list(range(len(self.transforms)))
        random.shuffle(order)
        for i in order:
            img = self.transforms[i](img)
        return img


class RandomChoice(RandomTransforms):
    """Apply single transformation randomly picked from a list
    """
    def __call__(self, img):
        t = random.choice(self.transforms)
        return t(img)


vfdev's avatar
vfdev committed
450
451
452
453
454
class RandomCrop(torch.nn.Module):
    """Crop the given image at a random location.
    The image can be a PIL Image or a Tensor, in which case it is expected
    to have [..., H, W] shape, where ... means an arbitrary number of leading
    dimensions
455
456
457
458

    Args:
        size (sequence or int): Desired output size of the crop. If size is an
            int instead of sequence like (h, w), a square crop (size, size) is
vfdev's avatar
vfdev committed
459
            made. If provided a tuple or list of length 1, it will be interpreted as (size[0], size[0]).
460
        padding (int or sequence, optional): Optional padding on each border
vfdev's avatar
vfdev committed
461
462
463
464
465
466
            of the image. Default is None. If a single int is provided this
            is used to pad all borders. If tuple of length 2 is provided this is the padding
            on left/right and top/bottom respectively. If a tuple of length 4 is provided
            this is the padding for the left, top, right and bottom borders respectively.
            In torchscript mode padding as single int is not supported, use a tuple or
            list of length 1: ``[padding, ]``.
467
        pad_if_needed (boolean): It will pad the image if smaller than the
ekka's avatar
ekka committed
468
            desired size to avoid raising an exception. Since cropping is done
469
            after padding, the padding seems to be done at a random offset.
vfdev's avatar
vfdev committed
470
        fill (int or tuple): Pixel fill value for constant fill. Default is 0. If a tuple of
471
472
            length 3, it is used to fill R, G, B channels respectively.
            This value is only used when the padding_mode is constant
vfdev's avatar
vfdev committed
473
        padding_mode (str): Type of padding. Should be: constant, edge, reflect or symmetric. Default is constant.
vfdev's avatar
vfdev committed
474
            Mode symmetric is not yet supported for Tensor inputs.
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489

             - constant: pads with a constant value, this value is specified with fill

             - edge: pads with the last value on the edge of the image

             - reflect: pads with reflection of image (without repeating the last value on the edge)

                padding [1, 2, 3, 4] with 2 elements on both sides in reflect mode
                will result in [3, 2, 1, 2, 3, 4, 3, 2]

             - symmetric: pads with reflection of image (repeating the last value on the edge)

                padding [1, 2, 3, 4] with 2 elements on both sides in symmetric mode
                will result in [2, 1, 1, 2, 3, 4, 4, 3]

490
491
492
    """

    @staticmethod
vfdev's avatar
vfdev committed
493
    def get_params(img: Tensor, output_size: Tuple[int, int]) -> Tuple[int, int, int, int]:
494
495
496
        """Get parameters for ``crop`` for a random crop.

        Args:
vfdev's avatar
vfdev committed
497
            img (PIL Image or Tensor): Image to be cropped.
498
499
500
501
502
            output_size (tuple): Expected output size of the crop.

        Returns:
            tuple: params (i, j, h, w) to be passed to ``crop`` for random crop.
        """
vfdev's avatar
vfdev committed
503
        w, h = F._get_image_size(img)
504
505
506
507
        th, tw = output_size
        if w == tw and h == th:
            return 0, 0, h, w

508
509
        i = torch.randint(0, h - th + 1, size=(1, )).item()
        j = torch.randint(0, w - tw + 1, size=(1, )).item()
510
511
        return i, j, th, tw

vfdev's avatar
vfdev committed
512
513
514
    def __init__(self, size, padding=None, pad_if_needed=False, fill=0, padding_mode="constant"):
        super().__init__()

515
516
517
518
        self.size = tuple(_setup_size(
            size, error_msg="Please provide only two dimensions (h, w) for size."
        ))

vfdev's avatar
vfdev committed
519
520
521
522
523
524
        self.padding = padding
        self.pad_if_needed = pad_if_needed
        self.fill = fill
        self.padding_mode = padding_mode

    def forward(self, img):
525
526
        """
        Args:
vfdev's avatar
vfdev committed
527
            img (PIL Image or Tensor): Image to be cropped.
528
529

        Returns:
vfdev's avatar
vfdev committed
530
            PIL Image or Tensor: Cropped image.
531
        """
532
533
        if self.padding is not None:
            img = F.pad(img, self.padding, self.fill, self.padding_mode)
534

vfdev's avatar
vfdev committed
535
        width, height = F._get_image_size(img)
536
        # pad the width if needed
vfdev's avatar
vfdev committed
537
538
539
        if self.pad_if_needed and width < self.size[1]:
            padding = [self.size[1] - width, 0]
            img = F.pad(img, padding, self.fill, self.padding_mode)
540
        # pad the height if needed
vfdev's avatar
vfdev committed
541
542
543
        if self.pad_if_needed and height < self.size[0]:
            padding = [0, self.size[0] - height]
            img = F.pad(img, padding, self.fill, self.padding_mode)
544

545
546
547
548
        i, j, h, w = self.get_params(img, self.size)

        return F.crop(img, i, j, h, w)

549
    def __repr__(self):
vfdev's avatar
vfdev committed
550
        return self.__class__.__name__ + "(size={0}, padding={1})".format(self.size, self.padding)
551

552

553
554
555
556
557
class RandomHorizontalFlip(torch.nn.Module):
    """Horizontally flip the given image randomly with a given probability.
    The image can be a PIL Image or a torch Tensor, in which case it is expected
    to have [..., H, W] shape, where ... means an arbitrary number of leading
    dimensions
558
559
560
561
562
563

    Args:
        p (float): probability of the image being flipped. Default value is 0.5
    """

    def __init__(self, p=0.5):
564
        super().__init__()
565
        self.p = p
566

567
    def forward(self, img):
568
569
        """
        Args:
570
            img (PIL Image or Tensor): Image to be flipped.
571
572

        Returns:
573
            PIL Image or Tensor: Randomly flipped image.
574
        """
575
        if torch.rand(1) < self.p:
576
577
578
            return F.hflip(img)
        return img

579
    def __repr__(self):
580
        return self.__class__.__name__ + '(p={})'.format(self.p)
581

582

583
class RandomVerticalFlip(torch.nn.Module):
vfdev's avatar
vfdev committed
584
    """Vertically flip the given image randomly with a given probability.
585
586
587
    The image can be a PIL Image or a torch Tensor, in which case it is expected
    to have [..., H, W] shape, where ... means an arbitrary number of leading
    dimensions
588
589
590
591
592
593

    Args:
        p (float): probability of the image being flipped. Default value is 0.5
    """

    def __init__(self, p=0.5):
594
        super().__init__()
595
        self.p = p
596

597
    def forward(self, img):
598
599
        """
        Args:
600
            img (PIL Image or Tensor): Image to be flipped.
601
602

        Returns:
603
            PIL Image or Tensor: Randomly flipped image.
604
        """
605
        if torch.rand(1) < self.p:
606
607
608
            return F.vflip(img)
        return img

609
    def __repr__(self):
610
        return self.__class__.__name__ + '(p={})'.format(self.p)
611

612

613
614
615
616
class RandomPerspective(torch.nn.Module):
    """Performs a random perspective transformation of the given image with a given probability.
    The image can be a PIL Image or a Tensor, in which case it is expected
    to have [..., H, W] shape, where ... means an arbitrary number of leading dimensions.
617
618

    Args:
619
620
621
622
623
624
625
626
627
        distortion_scale (float): argument to control the degree of distortion and ranges from 0 to 1.
            Default is 0.5.
        p (float): probability of the image being transformed. Default is 0.5.
        interpolation (int): Interpolation type. If input is Tensor, only ``PIL.Image.NEAREST`` and
            ``PIL.Image.BILINEAR`` are supported. Default, ``PIL.Image.BILINEAR`` for PIL images and Tensors.
        fill (n-tuple or int or float): Pixel fill value for area outside the rotated
            image. If int or float, the value is used for all bands respectively. Default is 0.
            This option is only available for ``pillow>=5.0.0``. This option is not supported for Tensor
            input. Fill value for the area outside the transform in the output image is always 0.
628
629
630

    """

631
632
    def __init__(self, distortion_scale=0.5, p=0.5, interpolation=Image.BILINEAR, fill=0):
        super().__init__()
633
634
635
        self.p = p
        self.interpolation = interpolation
        self.distortion_scale = distortion_scale
636
        self.fill = fill
637

638
    def forward(self, img):
639
640
        """
        Args:
641
            img (PIL Image or Tensor): Image to be Perspectively transformed.
642
643

        Returns:
644
            PIL Image or Tensor: Randomly transformed image.
645
        """
646
647
        if torch.rand(1) < self.p:
            width, height = F._get_image_size(img)
648
            startpoints, endpoints = self.get_params(width, height, self.distortion_scale)
649
            return F.perspective(img, startpoints, endpoints, self.interpolation, self.fill)
650
651
652
        return img

    @staticmethod
653
    def get_params(width: int, height: int, distortion_scale: float) -> Tuple[List[List[int]], List[List[int]]]:
654
655
656
        """Get parameters for ``perspective`` for a random perspective transform.

        Args:
657
658
659
            width (int): width of the image.
            height (int): height of the image.
            distortion_scale (float): argument to control the degree of distortion and ranges from 0 to 1.
660
661

        Returns:
662
            List containing [top-left, top-right, bottom-right, bottom-left] of the original image,
663
664
            List containing [top-left, top-right, bottom-right, bottom-left] of the transformed image.
        """
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
        half_height = height // 2
        half_width = width // 2
        topleft = [
            int(torch.randint(0, int(distortion_scale * half_width) + 1, size=(1, )).item()),
            int(torch.randint(0, int(distortion_scale * half_height) + 1, size=(1, )).item())
        ]
        topright = [
            int(torch.randint(width - int(distortion_scale * half_width) - 1, width, size=(1, )).item()),
            int(torch.randint(0, int(distortion_scale * half_height) + 1, size=(1, )).item())
        ]
        botright = [
            int(torch.randint(width - int(distortion_scale * half_width) - 1, width, size=(1, )).item()),
            int(torch.randint(height - int(distortion_scale * half_height) - 1, height, size=(1, )).item())
        ]
        botleft = [
            int(torch.randint(0, int(distortion_scale * half_width) + 1, size=(1, )).item()),
            int(torch.randint(height - int(distortion_scale * half_height) - 1, height, size=(1, )).item())
        ]
        startpoints = [[0, 0], [width - 1, 0], [width - 1, height - 1], [0, height - 1]]
684
685
686
687
688
689
690
        endpoints = [topleft, topright, botright, botleft]
        return startpoints, endpoints

    def __repr__(self):
        return self.__class__.__name__ + '(p={})'.format(self.p)


691
692
693
694
class RandomResizedCrop(torch.nn.Module):
    """Crop the given image to random size and aspect ratio.
    The image can be a PIL Image or a Tensor, in which case it is expected
    to have [..., H, W] shape, where ... means an arbitrary number of leading dimensions
695

696
697
    A crop of random size (default: of 0.08 to 1.0) of the original size and a random
    aspect ratio (default: of 3/4 to 4/3) of the original aspect ratio is made. This crop
698
699
700
701
    is finally resized to given size.
    This is popularly used to train the Inception networks.

    Args:
702
703
704
705
706
        size (int or sequence): expected output size of each edge. If size is an
            int instead of sequence like (h, w), a square output size ``(size, size)`` is
            made. If provided a tuple or list of length 1, it will be interpreted as (size[0], size[0]).
        scale (tuple of float): range of size of the origin size cropped
        ratio (tuple of float): range of aspect ratio of the origin aspect ratio cropped.
vfdev's avatar
vfdev committed
707
708
709
        interpolation (int): Desired interpolation enum defined by `filters`_.
            Default is ``PIL.Image.BILINEAR``. If input is Tensor, only ``PIL.Image.NEAREST``, ``PIL.Image.BILINEAR``
            and ``PIL.Image.BICUBIC`` are supported.
710
711
    """

712
    def __init__(self, size, scale=(0.08, 1.0), ratio=(3. / 4., 4. / 3.), interpolation=Image.BILINEAR):
713
        super().__init__()
714
        self.size = _setup_size(size, error_msg="Please provide only two dimensions (h, w) for size.")
715

716
        if not isinstance(scale, Sequence):
717
            raise TypeError("Scale should be a sequence")
718
        if not isinstance(ratio, Sequence):
719
            raise TypeError("Ratio should be a sequence")
720
        if (scale[0] > scale[1]) or (ratio[0] > ratio[1]):
721
            warnings.warn("Scale and ratio should be of kind (min, max)")
722

723
        self.interpolation = interpolation
724
725
        self.scale = scale
        self.ratio = ratio
726
727

    @staticmethod
728
    def get_params(
729
            img: Tensor, scale: List[float], ratio: List[float]
730
    ) -> Tuple[int, int, int, int]:
731
732
733
        """Get parameters for ``crop`` for a random sized crop.

        Args:
734
            img (PIL Image or Tensor): Input image.
735
736
            scale (list): range of scale of the origin size cropped
            ratio (list): range of aspect ratio of the origin aspect ratio cropped
737
738
739
740
741

        Returns:
            tuple: params (i, j, h, w) to be passed to ``crop`` for a random
                sized crop.
        """
vfdev's avatar
vfdev committed
742
        width, height = F._get_image_size(img)
Zhicheng Yan's avatar
Zhicheng Yan committed
743
        area = height * width
744

745
        for _ in range(10):
746
            target_area = area * torch.empty(1).uniform_(scale[0], scale[1]).item()
747
748
749
750
            log_ratio = torch.log(torch.tensor(ratio))
            aspect_ratio = torch.exp(
                torch.empty(1).uniform_(log_ratio[0], log_ratio[1])
            ).item()
751
752
753
754

            w = int(round(math.sqrt(target_area * aspect_ratio)))
            h = int(round(math.sqrt(target_area / aspect_ratio)))

Zhicheng Yan's avatar
Zhicheng Yan committed
755
            if 0 < w <= width and 0 < h <= height:
756
757
                i = torch.randint(0, height - h + 1, size=(1,)).item()
                j = torch.randint(0, width - w + 1, size=(1,)).item()
758
759
                return i, j, h, w

760
        # Fallback to central crop
Zhicheng Yan's avatar
Zhicheng Yan committed
761
        in_ratio = float(width) / float(height)
762
        if in_ratio < min(ratio):
Zhicheng Yan's avatar
Zhicheng Yan committed
763
            w = width
764
            h = int(round(w / min(ratio)))
765
        elif in_ratio > max(ratio):
Zhicheng Yan's avatar
Zhicheng Yan committed
766
            h = height
767
            w = int(round(h * max(ratio)))
768
        else:  # whole image
Zhicheng Yan's avatar
Zhicheng Yan committed
769
770
771
772
            w = width
            h = height
        i = (height - h) // 2
        j = (width - w) // 2
773
        return i, j, h, w
774

775
    def forward(self, img):
776
777
        """
        Args:
778
            img (PIL Image or Tensor): Image to be cropped and resized.
779
780

        Returns:
781
            PIL Image or Tensor: Randomly cropped and resized image.
782
        """
783
        i, j, h, w = self.get_params(img, self.scale, self.ratio)
784
785
        return F.resized_crop(img, i, j, h, w, self.size, self.interpolation)

786
    def __repr__(self):
787
788
        interpolate_str = _pil_interpolation_to_str[self.interpolation]
        format_string = self.__class__.__name__ + '(size={0}'.format(self.size)
789
790
        format_string += ', scale={0}'.format(tuple(round(s, 4) for s in self.scale))
        format_string += ', ratio={0}'.format(tuple(round(r, 4) for r in self.ratio))
791
792
        format_string += ', interpolation={0})'.format(interpolate_str)
        return format_string
793

794
795
796
797
798
799
800
801
802
803
804

class RandomSizedCrop(RandomResizedCrop):
    """
    Note: This transform is deprecated in favor of RandomResizedCrop.
    """
    def __init__(self, *args, **kwargs):
        warnings.warn("The use of the transforms.RandomSizedCrop transform is deprecated, " +
                      "please use transforms.RandomResizedCrop instead.")
        super(RandomSizedCrop, self).__init__(*args, **kwargs)


vfdev's avatar
vfdev committed
805
806
807
808
809
class FiveCrop(torch.nn.Module):
    """Crop the given image into four corners and the central crop.
    The image can be a PIL Image or a Tensor, in which case it is expected
    to have [..., H, W] shape, where ... means an arbitrary number of leading
    dimensions
810
811
812
813
814
815
816
817
818

    .. Note::
         This transform returns a tuple of images and there may be a mismatch in the number of
         inputs and targets your Dataset returns. See below for an example of how to deal with
         this.

    Args:
         size (sequence or int): Desired output size of the crop. If size is an ``int``
            instead of sequence like (h, w), a square crop of size (size, size) is made.
vfdev's avatar
vfdev committed
819
            If provided a tuple or list of length 1, it will be interpreted as (size[0], size[0]).
820
821
822
823
824
825
826
827
828
829
830
831
832
833

    Example:
         >>> transform = Compose([
         >>>    FiveCrop(size), # this is a list of PIL Images
         >>>    Lambda(lambda crops: torch.stack([ToTensor()(crop) for crop in crops])) # returns a 4D tensor
         >>> ])
         >>> #In your test loop you can do the following:
         >>> input, target = batch # input is a 5d tensor, target is 2d
         >>> bs, ncrops, c, h, w = input.size()
         >>> result = model(input.view(-1, c, h, w)) # fuse batch size and ncrops
         >>> result_avg = result.view(bs, ncrops, -1).mean(1) # avg over crops
    """

    def __init__(self, size):
vfdev's avatar
vfdev committed
834
        super().__init__()
835
        self.size = _setup_size(size, error_msg="Please provide only two dimensions (h, w) for size.")
836

vfdev's avatar
vfdev committed
837
838
839
840
841
842
843
844
    def forward(self, img):
        """
        Args:
            img (PIL Image or Tensor): Image to be cropped.

        Returns:
            tuple of 5 images. Image can be PIL Image or Tensor
        """
845
846
        return F.five_crop(img, self.size)

847
848
849
    def __repr__(self):
        return self.__class__.__name__ + '(size={0})'.format(self.size)

850

vfdev's avatar
vfdev committed
851
852
853
854
855
856
class TenCrop(torch.nn.Module):
    """Crop the given image into four corners and the central crop plus the flipped version of
    these (horizontal flipping is used by default).
    The image can be a PIL Image or a Tensor, in which case it is expected
    to have [..., H, W] shape, where ... means an arbitrary number of leading
    dimensions
857
858
859
860
861
862
863
864
865

    .. Note::
         This transform returns a tuple of images and there may be a mismatch in the number of
         inputs and targets your Dataset returns. See below for an example of how to deal with
         this.

    Args:
        size (sequence or int): Desired output size of the crop. If size is an
            int instead of sequence like (h, w), a square crop (size, size) is
vfdev's avatar
vfdev committed
866
            made. If provided a tuple or list of length 1, it will be interpreted as (size[0], size[0]).
867
        vertical_flip (bool): Use vertical flipping instead of horizontal
868
869
870
871
872
873
874
875
876
877
878
879
880
881

    Example:
         >>> transform = Compose([
         >>>    TenCrop(size), # this is a list of PIL Images
         >>>    Lambda(lambda crops: torch.stack([ToTensor()(crop) for crop in crops])) # returns a 4D tensor
         >>> ])
         >>> #In your test loop you can do the following:
         >>> input, target = batch # input is a 5d tensor, target is 2d
         >>> bs, ncrops, c, h, w = input.size()
         >>> result = model(input.view(-1, c, h, w)) # fuse batch size and ncrops
         >>> result_avg = result.view(bs, ncrops, -1).mean(1) # avg over crops
    """

    def __init__(self, size, vertical_flip=False):
vfdev's avatar
vfdev committed
882
        super().__init__()
883
        self.size = _setup_size(size, error_msg="Please provide only two dimensions (h, w) for size.")
884
885
        self.vertical_flip = vertical_flip

vfdev's avatar
vfdev committed
886
887
888
889
890
891
892
893
    def forward(self, img):
        """
        Args:
            img (PIL Image or Tensor): Image to be cropped.

        Returns:
            tuple of 10 images. Image can be PIL Image or Tensor
        """
894
895
        return F.ten_crop(img, self.size, self.vertical_flip)

896
    def __repr__(self):
897
        return self.__class__.__name__ + '(size={0}, vertical_flip={1})'.format(self.size, self.vertical_flip)
898

899

900
class LinearTransformation(object):
ekka's avatar
ekka committed
901
    """Transform a tensor image with a square transformation matrix and a mean_vector computed
902
    offline.
ekka's avatar
ekka committed
903
904
905
    Given transformation_matrix and mean_vector, will flatten the torch.*Tensor and
    subtract mean_vector from it which is then followed by computing the dot
    product with the transformation matrix and then reshaping the tensor to its
906
    original shape.
907

908
    Applications:
909
        whitening transformation: Suppose X is a column vector zero-centered data.
910
911
912
        Then compute the data covariance matrix [D x D] with torch.mm(X.t(), X),
        perform SVD on this matrix and pass it as transformation_matrix.

913
914
    Args:
        transformation_matrix (Tensor): tensor [D x D], D = C x H x W
ekka's avatar
ekka committed
915
        mean_vector (Tensor): tensor [D], D = C x H x W
916
917
    """

ekka's avatar
ekka committed
918
    def __init__(self, transformation_matrix, mean_vector):
919
920
921
        if transformation_matrix.size(0) != transformation_matrix.size(1):
            raise ValueError("transformation_matrix should be square. Got " +
                             "[{} x {}] rectangular matrix.".format(*transformation_matrix.size()))
ekka's avatar
ekka committed
922
923
924

        if mean_vector.size(0) != transformation_matrix.size(0):
            raise ValueError("mean_vector should have the same length {}".format(mean_vector.size(0)) +
Francisco Massa's avatar
Francisco Massa committed
925
926
                             " as any one of the dimensions of the transformation_matrix [{}]"
                             .format(tuple(transformation_matrix.size())))
ekka's avatar
ekka committed
927

928
        self.transformation_matrix = transformation_matrix
ekka's avatar
ekka committed
929
        self.mean_vector = mean_vector
930
931
932
933
934
935
936
937
938
939
940
941
942

    def __call__(self, tensor):
        """
        Args:
            tensor (Tensor): Tensor image of size (C, H, W) to be whitened.

        Returns:
            Tensor: Transformed image.
        """
        if tensor.size(0) * tensor.size(1) * tensor.size(2) != self.transformation_matrix.size(0):
            raise ValueError("tensor and transformation matrix have incompatible shape." +
                             "[{} x {} x {}] != ".format(*tensor.size()) +
                             "{}".format(self.transformation_matrix.size(0)))
ekka's avatar
ekka committed
943
        flat_tensor = tensor.view(1, -1) - self.mean_vector
944
945
946
947
        transformed_tensor = torch.mm(flat_tensor, self.transformation_matrix)
        tensor = transformed_tensor.view(tensor.size())
        return tensor

948
    def __repr__(self):
ekka's avatar
ekka committed
949
950
951
        format_string = self.__class__.__name__ + '(transformation_matrix='
        format_string += (str(self.transformation_matrix.tolist()) + ')')
        format_string += (", (mean_vector=" + str(self.mean_vector.tolist()) + ')')
952
953
        return format_string

954

955
class ColorJitter(torch.nn.Module):
956
957
958
    """Randomly change the brightness, contrast and saturation of an image.

    Args:
yaox12's avatar
yaox12 committed
959
960
961
962
963
964
965
966
967
968
969
970
        brightness (float or tuple of float (min, max)): How much to jitter brightness.
            brightness_factor is chosen uniformly from [max(0, 1 - brightness), 1 + brightness]
            or the given [min, max]. Should be non negative numbers.
        contrast (float or tuple of float (min, max)): How much to jitter contrast.
            contrast_factor is chosen uniformly from [max(0, 1 - contrast), 1 + contrast]
            or the given [min, max]. Should be non negative numbers.
        saturation (float or tuple of float (min, max)): How much to jitter saturation.
            saturation_factor is chosen uniformly from [max(0, 1 - saturation), 1 + saturation]
            or the given [min, max]. Should be non negative numbers.
        hue (float or tuple of float (min, max)): How much to jitter hue.
            hue_factor is chosen uniformly from [-hue, hue] or the given [min, max].
            Should have 0<= hue <= 0.5 or -0.5 <= min <= max <= 0.5.
971
    """
972

973
    def __init__(self, brightness=0, contrast=0, saturation=0, hue=0):
974
        super().__init__()
yaox12's avatar
yaox12 committed
975
976
977
978
979
980
        self.brightness = self._check_input(brightness, 'brightness')
        self.contrast = self._check_input(contrast, 'contrast')
        self.saturation = self._check_input(saturation, 'saturation')
        self.hue = self._check_input(hue, 'hue', center=0, bound=(-0.5, 0.5),
                                     clip_first_on_zero=False)

981
    @torch.jit.unused
yaox12's avatar
yaox12 committed
982
983
984
985
    def _check_input(self, value, name, center=1, bound=(0, float('inf')), clip_first_on_zero=True):
        if isinstance(value, numbers.Number):
            if value < 0:
                raise ValueError("If {} is a single number, it must be non negative.".format(name))
986
            value = [center - float(value), center + float(value)]
yaox12's avatar
yaox12 committed
987
            if clip_first_on_zero:
988
                value[0] = max(value[0], 0.0)
yaox12's avatar
yaox12 committed
989
990
991
992
993
994
995
996
997
998
999
        elif isinstance(value, (tuple, list)) and len(value) == 2:
            if not bound[0] <= value[0] <= value[1] <= bound[1]:
                raise ValueError("{} values should be between {}".format(name, bound))
        else:
            raise TypeError("{} should be a single number or a list/tuple with lenght 2.".format(name))

        # if value is 0 or (1., 1.) for brightness/contrast/saturation
        # or (0., 0.) for hue, do nothing
        if value[0] == value[1] == center:
            value = None
        return value
1000
1001

    @staticmethod
1002
    @torch.jit.unused
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
    def get_params(brightness, contrast, saturation, hue):
        """Get a randomized transform to be applied on image.

        Arguments are same as that of __init__.

        Returns:
            Transform which randomly adjusts brightness, contrast and
            saturation in a random order.
        """
        transforms = []
yaox12's avatar
yaox12 committed
1013
1014
1015

        if brightness is not None:
            brightness_factor = random.uniform(brightness[0], brightness[1])
1016
1017
            transforms.append(Lambda(lambda img: F.adjust_brightness(img, brightness_factor)))

yaox12's avatar
yaox12 committed
1018
1019
        if contrast is not None:
            contrast_factor = random.uniform(contrast[0], contrast[1])
1020
1021
            transforms.append(Lambda(lambda img: F.adjust_contrast(img, contrast_factor)))

yaox12's avatar
yaox12 committed
1022
1023
        if saturation is not None:
            saturation_factor = random.uniform(saturation[0], saturation[1])
1024
1025
            transforms.append(Lambda(lambda img: F.adjust_saturation(img, saturation_factor)))

yaox12's avatar
yaox12 committed
1026
1027
        if hue is not None:
            hue_factor = random.uniform(hue[0], hue[1])
1028
1029
            transforms.append(Lambda(lambda img: F.adjust_hue(img, hue_factor)))

vfdev's avatar
vfdev committed
1030
        random.shuffle(transforms)
1031
1032
1033
1034
        transform = Compose(transforms)

        return transform

1035
    def forward(self, img):
1036
1037
        """
        Args:
1038
            img (PIL Image or Tensor): Input image.
1039
1040

        Returns:
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
            PIL Image or Tensor: Color jittered image.
        """
        fn_idx = torch.randperm(4)
        for fn_id in fn_idx:
            if fn_id == 0 and self.brightness is not None:
                brightness = self.brightness
                brightness_factor = torch.tensor(1.0).uniform_(brightness[0], brightness[1]).item()
                img = F.adjust_brightness(img, brightness_factor)

            if fn_id == 1 and self.contrast is not None:
                contrast = self.contrast
                contrast_factor = torch.tensor(1.0).uniform_(contrast[0], contrast[1]).item()
                img = F.adjust_contrast(img, contrast_factor)

            if fn_id == 2 and self.saturation is not None:
                saturation = self.saturation
                saturation_factor = torch.tensor(1.0).uniform_(saturation[0], saturation[1]).item()
                img = F.adjust_saturation(img, saturation_factor)

            if fn_id == 3 and self.hue is not None:
                hue = self.hue
                hue_factor = torch.tensor(1.0).uniform_(hue[0], hue[1]).item()
                img = F.adjust_hue(img, hue_factor)

        return img
1066

1067
    def __repr__(self):
1068
1069
1070
1071
1072
1073
        format_string = self.__class__.__name__ + '('
        format_string += 'brightness={0}'.format(self.brightness)
        format_string += ', contrast={0}'.format(self.contrast)
        format_string += ', saturation={0}'.format(self.saturation)
        format_string += ', hue={0})'.format(self.hue)
        return format_string
1074

1075

1076
class RandomRotation(torch.nn.Module):
1077
    """Rotate the image by angle.
1078
1079
    The image can be a PIL Image or a Tensor, in which case it is expected
    to have [..., H, W] shape, where ... means an arbitrary number of leading dimensions.
1080
1081
1082
1083
1084

    Args:
        degrees (sequence or float or int): Range of degrees to select from.
            If degrees is a number instead of sequence like (min, max), the range of degrees
            will be (-degrees, +degrees).
1085
        resample (int, optional): An optional resampling filter. See `filters`_ for more information.
1086
            If omitted, or if the image has mode "1" or "P", it is set to PIL.Image.NEAREST.
1087
            If input is Tensor, only ``PIL.Image.NEAREST`` and ``PIL.Image.BILINEAR`` are supported.
1088
1089
1090
1091
        expand (bool, optional): Optional expansion flag.
            If true, expands the output to make it large enough to hold the entire rotated image.
            If false or omitted, make the output image the same size as the input image.
            Note that the expand flag assumes rotation around the center and no translation.
1092
        center (list or tuple, optional): Optional center of rotation, (x, y). Origin is the upper left corner.
1093
            Default is the center of the image.
Philip Meier's avatar
Philip Meier committed
1094
1095
        fill (n-tuple or int or float): Pixel fill value for area outside the rotated
            image. If int or float, the value is used for all bands respectively.
1096
1097
1098
            Defaults to 0 for all bands. This option is only available for Pillow>=5.2.0.
            This option is not supported for Tensor input. Fill value for the area outside the transform in the output
            image is always 0.
1099
1100
1101

    .. _filters: https://pillow.readthedocs.io/en/latest/handbook/concepts.html#filters

1102
1103
    """

Philip Meier's avatar
Philip Meier committed
1104
    def __init__(self, degrees, resample=False, expand=False, center=None, fill=None):
1105
        super().__init__()
1106
        self.degrees = _setup_angle(degrees, name="degrees", req_sizes=(2, ))
1107
1108

        if center is not None:
1109
            _check_sequence_input(center, "center", req_sizes=(2, ))
1110
1111

        self.center = center
1112
1113
1114

        self.resample = resample
        self.expand = expand
1115
        self.fill = fill
1116
1117

    @staticmethod
1118
    def get_params(degrees: List[float]) -> float:
1119
1120
1121
        """Get parameters for ``rotate`` for a random rotation.

        Returns:
1122
            float: angle parameter to be passed to ``rotate`` for random rotation.
1123
        """
1124
        angle = float(torch.empty(1).uniform_(float(degrees[0]), float(degrees[1])).item())
1125
1126
        return angle

1127
    def forward(self, img):
1128
        """
1129
        Args:
1130
            img (PIL Image or Tensor): Image to be rotated.
1131
1132

        Returns:
1133
            PIL Image or Tensor: Rotated image.
1134
1135
        """
        angle = self.get_params(self.degrees)
1136
        return F.rotate(img, angle, self.resample, self.expand, self.center, self.fill)
1137

1138
    def __repr__(self):
1139
1140
1141
1142
1143
        format_string = self.__class__.__name__ + '(degrees={0}'.format(self.degrees)
        format_string += ', resample={0}'.format(self.resample)
        format_string += ', expand={0}'.format(self.expand)
        if self.center is not None:
            format_string += ', center={0}'.format(self.center)
1144
1145
        if self.fill is not None:
            format_string += ', fill={0}'.format(self.fill)
1146
1147
        format_string += ')'
        return format_string
1148

1149

1150
1151
1152
1153
class RandomAffine(torch.nn.Module):
    """Random affine transformation of the image keeping center invariant.
    The image can be a PIL Image or a Tensor, in which case it is expected
    to have [..., H, W] shape, where ... means an arbitrary number of leading dimensions.
1154
1155
1156
1157

    Args:
        degrees (sequence or float or int): Range of degrees to select from.
            If degrees is a number instead of sequence like (min, max), the range of degrees
1158
            will be (-degrees, +degrees). Set to 0 to deactivate rotations.
1159
1160
1161
1162
1163
1164
1165
        translate (tuple, optional): tuple of maximum absolute fraction for horizontal
            and vertical translations. For example translate=(a, b), then horizontal shift
            is randomly sampled in the range -img_width * a < dx < img_width * a and vertical shift is
            randomly sampled in the range -img_height * b < dy < img_height * b. Will not translate by default.
        scale (tuple, optional): scaling factor interval, e.g (a, b), then scale is
            randomly sampled from the range a <= scale <= b. Will keep original scale by default.
        shear (sequence or float or int, optional): Range of degrees to select from.
ptrblck's avatar
ptrblck committed
1166
            If shear is a number, a shear parallel to the x axis in the range (-shear, +shear)
1167
            will be applied. Else if shear is a tuple or list of 2 values a shear parallel to the x axis in the
ptrblck's avatar
ptrblck committed
1168
1169
            range (shear[0], shear[1]) will be applied. Else if shear is a tuple or list of 4 values,
            a x-axis shear in (shear[0], shear[1]) and y-axis shear in (shear[2], shear[3]) will be applied.
1170
1171
1172
1173
1174
1175
1176
            Will not apply shear by default.
        resample (int, optional): An optional resampling filter. See `filters`_ for more information.
            If omitted, or if the image has mode "1" or "P", it is set to ``PIL.Image.NEAREST``.
            If input is Tensor, only ``PIL.Image.NEAREST`` and ``PIL.Image.BILINEAR`` are supported.
        fillcolor (tuple or int): Optional fill color (Tuple for RGB Image and int for grayscale) for the area
            outside the transform in the output image (Pillow>=5.0.0). This option is not supported for Tensor
            input. Fill value for the area outside the transform in the output image is always 0.
1177
1178
1179

    .. _filters: https://pillow.readthedocs.io/en/latest/handbook/concepts.html#filters

1180
1181
    """

1182
1183
    def __init__(self, degrees, translate=None, scale=None, shear=None, resample=0, fillcolor=0):
        super().__init__()
1184
        self.degrees = _setup_angle(degrees, name="degrees", req_sizes=(2, ))
1185
1186

        if translate is not None:
1187
            _check_sequence_input(translate, "translate", req_sizes=(2, ))
1188
1189
1190
1191
1192
1193
            for t in translate:
                if not (0.0 <= t <= 1.0):
                    raise ValueError("translation values should be between 0 and 1")
        self.translate = translate

        if scale is not None:
1194
            _check_sequence_input(scale, "scale", req_sizes=(2, ))
1195
1196
1197
1198
1199
1200
            for s in scale:
                if s <= 0:
                    raise ValueError("scale values should be positive")
        self.scale = scale

        if shear is not None:
1201
            self.shear = _setup_angle(shear, name="shear", req_sizes=(2, 4))
1202
1203
1204
1205
1206
1207
1208
        else:
            self.shear = shear

        self.resample = resample
        self.fillcolor = fillcolor

    @staticmethod
1209
1210
1211
1212
1213
1214
1215
    def get_params(
            degrees: List[float],
            translate: Optional[List[float]],
            scale_ranges: Optional[List[float]],
            shears: Optional[List[float]],
            img_size: List[int]
    ) -> Tuple[float, Tuple[int, int], float, Tuple[float, float]]:
1216
1217
1218
        """Get parameters for affine transformation

        Returns:
1219
            params to be passed to the affine transformation
1220
        """
1221
        angle = float(torch.empty(1).uniform_(float(degrees[0]), float(degrees[1])).item())
1222
        if translate is not None:
1223
1224
1225
1226
1227
            max_dx = float(translate[0] * img_size[0])
            max_dy = float(translate[1] * img_size[1])
            tx = int(round(torch.empty(1).uniform_(-max_dx, max_dx).item()))
            ty = int(round(torch.empty(1).uniform_(-max_dy, max_dy).item()))
            translations = (tx, ty)
1228
1229
1230
1231
        else:
            translations = (0, 0)

        if scale_ranges is not None:
1232
            scale = float(torch.empty(1).uniform_(scale_ranges[0], scale_ranges[1]).item())
1233
1234
1235
        else:
            scale = 1.0

1236
        shear_x = shear_y = 0.0
1237
        if shears is not None:
1238
1239
1240
1241
1242
            shear_x = float(torch.empty(1).uniform_(shears[0], shears[1]).item())
            if len(shears) == 4:
                shear_y = float(torch.empty(1).uniform_(shears[2], shears[3]).item())

        shear = (shear_x, shear_y)
1243
1244
1245

        return angle, translations, scale, shear

1246
    def forward(self, img):
1247
        """
1248
            img (PIL Image or Tensor): Image to be transformed.
1249
1250

        Returns:
1251
            PIL Image or Tensor: Affine transformed image.
1252
        """
1253
1254
1255
1256

        img_size = F._get_image_size(img)

        ret = self.get_params(self.degrees, self.translate, self.scale, self.shear, img_size)
1257
1258
1259
1260
1261
1262
1263
1264
1265
1266
1267
1268
1269
1270
1271
1272
1273
1274
1275
1276
        return F.affine(img, *ret, resample=self.resample, fillcolor=self.fillcolor)

    def __repr__(self):
        s = '{name}(degrees={degrees}'
        if self.translate is not None:
            s += ', translate={translate}'
        if self.scale is not None:
            s += ', scale={scale}'
        if self.shear is not None:
            s += ', shear={shear}'
        if self.resample > 0:
            s += ', resample={resample}'
        if self.fillcolor != 0:
            s += ', fillcolor={fillcolor}'
        s += ')'
        d = dict(self.__dict__)
        d['resample'] = _pil_interpolation_to_str[d['resample']]
        return s.format(name=self.__class__.__name__, **d)


1277
class Grayscale(torch.nn.Module):
1278
    """Convert image to grayscale.
1279
1280
1281
    The image can be a PIL Image or a Tensor, in which case it is expected
    to have [..., 3, H, W] shape, where ... means an arbitrary number of leading
    dimensions
1282

1283
1284
1285
1286
    Args:
        num_output_channels (int): (1 or 3) number of channels desired for output image

    Returns:
1287
        PIL Image: Grayscale version of the input.
1288
1289
         - If ``num_output_channels == 1`` : returned image is single channel
         - If ``num_output_channels == 3`` : returned image is 3 channel with r == g == b
1290
1291
1292
1293

    """

    def __init__(self, num_output_channels=1):
1294
        super().__init__()
1295
1296
        self.num_output_channels = num_output_channels

1297
    def forward(self, img: Tensor) -> Tensor:
1298
1299
        """
        Args:
1300
            img (PIL Image or Tensor): Image to be converted to grayscale.
1301
1302

        Returns:
1303
            PIL Image or Tensor: Grayscaled image.
1304
        """
1305
        return F.rgb_to_grayscale(img, num_output_channels=self.num_output_channels)
1306

1307
    def __repr__(self):
1308
        return self.__class__.__name__ + '(num_output_channels={0})'.format(self.num_output_channels)
1309

1310

1311
class RandomGrayscale(torch.nn.Module):
1312
    """Randomly convert image to grayscale with a probability of p (default 0.1).
1313
1314
1315
    The image can be a PIL Image or a Tensor, in which case it is expected
    to have [..., 3, H, W] shape, where ... means an arbitrary number of leading
    dimensions
1316

1317
1318
1319
1320
    Args:
        p (float): probability that image should be converted to grayscale.

    Returns:
1321
        PIL Image or Tensor: Grayscale version of the input image with probability p and unchanged
1322
1323
1324
        with probability (1-p).
        - If input image is 1 channel: grayscale version is 1 channel
        - If input image is 3 channel: grayscale version is 3 channel with r == g == b
1325
1326
1327
1328

    """

    def __init__(self, p=0.1):
1329
        super().__init__()
1330
1331
        self.p = p

1332
    def forward(self, img: Tensor) -> Tensor:
1333
1334
        """
        Args:
1335
            img (PIL Image or Tensor): Image to be converted to grayscale.
1336
1337

        Returns:
1338
            PIL Image or Tensor: Randomly grayscaled image.
1339
        """
1340
1341
1342
        num_output_channels = F._get_image_num_channels(img)
        if torch.rand(1) < self.p:
            return F.rgb_to_grayscale(img, num_output_channels=num_output_channels)
1343
        return img
1344
1345

    def __repr__(self):
1346
        return self.__class__.__name__ + '(p={0})'.format(self.p)
1347
1348


1349
class RandomErasing(torch.nn.Module):
1350
    """ Randomly selects a rectangle region in an image and erases its pixels.
1351
1352
    'Random Erasing Data Augmentation' by Zhong et al. See https://arxiv.org/pdf/1708.04896.pdf

1353
1354
1355
1356
1357
1358
1359
1360
    Args:
         p: probability that the random erasing operation will be performed.
         scale: range of proportion of erased area against input image.
         ratio: range of aspect ratio of erased area.
         value: erasing value. Default is 0. If a single int, it is used to
            erase all pixels. If a tuple of length 3, it is used to erase
            R, G, B channels respectively.
            If a str of 'random', erasing each pixel with random values.
Zhun Zhong's avatar
Zhun Zhong committed
1361
         inplace: boolean to make this transform inplace. Default set to False.
1362

1363
1364
    Returns:
        Erased Image.
1365

1366
1367
    # Examples:
        >>> transform = transforms.Compose([
1368
1369
1370
1371
        >>>   transforms.RandomHorizontalFlip(),
        >>>   transforms.ToTensor(),
        >>>   transforms.Normalize((0.485, 0.456, 0.406), (0.229, 0.224, 0.225)),
        >>>   transforms.RandomErasing(),
1372
1373
1374
        >>> ])
    """

Zhun Zhong's avatar
Zhun Zhong committed
1375
    def __init__(self, p=0.5, scale=(0.02, 0.33), ratio=(0.3, 3.3), value=0, inplace=False):
1376
1377
1378
1379
1380
1381
1382
1383
1384
        super().__init__()
        if not isinstance(value, (numbers.Number, str, tuple, list)):
            raise TypeError("Argument value should be either a number or str or a sequence")
        if isinstance(value, str) and value != "random":
            raise ValueError("If value is str, it should be 'random'")
        if not isinstance(scale, (tuple, list)):
            raise TypeError("Scale should be a sequence")
        if not isinstance(ratio, (tuple, list)):
            raise TypeError("Ratio should be a sequence")
1385
        if (scale[0] > scale[1]) or (ratio[0] > ratio[1]):
1386
            warnings.warn("Scale and ratio should be of kind (min, max)")
1387
        if scale[0] < 0 or scale[1] > 1:
1388
            raise ValueError("Scale should be between 0 and 1")
1389
        if p < 0 or p > 1:
1390
            raise ValueError("Random erasing probability should be between 0 and 1")
1391
1392
1393
1394
1395

        self.p = p
        self.scale = scale
        self.ratio = ratio
        self.value = value
1396
        self.inplace = inplace
1397
1398

    @staticmethod
1399
1400
1401
    def get_params(
            img: Tensor, scale: Tuple[float, float], ratio: Tuple[float, float], value: Optional[List[float]] = None
    ) -> Tuple[int, int, int, int, Tensor]:
1402
1403
1404
1405
        """Get parameters for ``erase`` for a random erasing.

        Args:
            img (Tensor): Tensor image of size (C, H, W) to be erased.
1406
1407
1408
1409
1410
            scale (tuple or list): range of proportion of erased area against input image.
            ratio (tuple or list): range of aspect ratio of erased area.
            value (list, optional): erasing value. If None, it is interpreted as "random"
                (erasing each pixel with random values). If ``len(value)`` is 1, it is interpreted as a number,
                i.e. ``value[0]``.
1411
1412
1413
1414

        Returns:
            tuple: params (i, j, h, w, v) to be passed to ``erase`` for random erasing.
        """
Zhun Zhong's avatar
Zhun Zhong committed
1415
        img_c, img_h, img_w = img.shape
1416
        area = img_h * img_w
1417

1418
        for _ in range(10):
1419
1420
            erase_area = area * torch.empty(1).uniform_(scale[0], scale[1]).item()
            aspect_ratio = torch.empty(1).uniform_(ratio[0], ratio[1]).item()
1421
1422
1423

            h = int(round(math.sqrt(erase_area * aspect_ratio)))
            w = int(round(math.sqrt(erase_area / aspect_ratio)))
1424
1425
1426
1427
1428
1429
1430
            if not (h < img_h and w < img_w):
                continue

            if value is None:
                v = torch.empty([img_c, h, w], dtype=torch.float32).normal_()
            else:
                v = torch.tensor(value)[:, None, None]
1431

1432
1433
            i = torch.randint(0, img_h - h + 1, size=(1, )).item()
            j = torch.randint(0, img_w - w + 1, size=(1, )).item()
1434
            return i, j, h, w, v
1435

Zhun Zhong's avatar
Zhun Zhong committed
1436
1437
1438
        # Return original image
        return 0, 0, img_h, img_w, img

1439
    def forward(self, img):
1440
1441
1442
1443
1444
1445
1446
        """
        Args:
            img (Tensor): Tensor image of size (C, H, W) to be erased.

        Returns:
            img (Tensor): Erased Tensor image.
        """
1447
1448
1449
1450
1451
1452
1453
1454
1455
1456
1457
1458
1459
1460
1461
1462
1463
1464
1465
        if torch.rand(1) < self.p:

            # cast self.value to script acceptable type
            if isinstance(self.value, (int, float)):
                value = [self.value, ]
            elif isinstance(self.value, str):
                value = None
            elif isinstance(self.value, tuple):
                value = list(self.value)
            else:
                value = self.value

            if value is not None and not (len(value) in (1, img.shape[-3])):
                raise ValueError(
                    "If value is a sequence, it should have either a single value or "
                    "{} (number of input channels)".format(img.shape[-3])
                )

            x, y, h, w, v = self.get_params(img, scale=self.scale, ratio=self.ratio, value=value)
1466
            return F.erase(img, x, y, h, w, v, self.inplace)
1467
        return img
1468
1469
1470
1471
1472
1473
1474
1475
1476
1477
1478
1479
1480
1481
1482
1483
1484
1485
1486
1487
1488
1489
1490
1491
1492
1493
1494
1495
1496
1497
1498
1499


def _setup_size(size, error_msg):
    if isinstance(size, numbers.Number):
        return int(size), int(size)

    if isinstance(size, Sequence) and len(size) == 1:
        return size[0], size[0]

    if len(size) != 2:
        raise ValueError(error_msg)

    return size


def _check_sequence_input(x, name, req_sizes):
    msg = req_sizes[0] if len(req_sizes) < 2 else " or ".join([str(s) for s in req_sizes])
    if not isinstance(x, Sequence):
        raise TypeError("{} should be a sequence of length {}.".format(name, msg))
    if len(x) not in req_sizes:
        raise ValueError("{} should be sequence of length {}.".format(name, msg))


def _setup_angle(x, name, req_sizes=(2, )):
    if isinstance(x, numbers.Number):
        if x < 0:
            raise ValueError("If {} is a single number, it must be positive.".format(name))
        x = [-x, x]
    else:
        _check_sequence_input(x, name, req_sizes)

    return [float(d) for d in x]