transforms.py 28.9 KB
Newer Older
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
from __future__ import division
import torch
import math
import random
from PIL import Image, ImageOps, ImageEnhance
try:
    import accimage
except ImportError:
    accimage = None
import numpy as np
import numbers
import types
import collections
import warnings

from . import functional as F

__all__ = ["Compose", "ToTensor", "ToPILImage", "Normalize", "Resize", "Scale", "CenterCrop", "Pad",
19
20
21
           "Lambda", "RandomApply", "RandomChoice", "RandomOrder", "RandomCrop", "RandomHorizontalFlip",
           "RandomVerticalFlip", "RandomResizedCrop", "RandomSizedCrop", "FiveCrop", "TenCrop", "LinearTransformation",
           "ColorJitter", "RandomRotation", "Grayscale", "RandomGrayscale"]
22

23
24
25
26
27
28
29
_pil_interpolation_to_str = {
    Image.NEAREST: 'PIL.Image.NEAREST',
    Image.BILINEAR: 'PIL.Image.BILINEAR',
    Image.BICUBIC: 'PIL.Image.BICUBIC',
    Image.LANCZOS: 'PIL.Image.LANCZOS',
}

30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51

class Compose(object):
    """Composes several transforms together.

    Args:
        transforms (list of ``Transform`` objects): list of transforms to compose.

    Example:
        >>> transforms.Compose([
        >>>     transforms.CenterCrop(10),
        >>>     transforms.ToTensor(),
        >>> ])
    """

    def __init__(self, transforms):
        self.transforms = transforms

    def __call__(self, img):
        for t in self.transforms:
            img = t(img)
        return img

52
53
54
55
56
57
58
59
    def __repr__(self):
        format_string = self.__class__.__name__ + '('
        for t in self.transforms:
            format_string += '\n'
            format_string += '    {0}'.format(t)
        format_string += '\n)'
        return format_string

60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77

class ToTensor(object):
    """Convert a ``PIL Image`` or ``numpy.ndarray`` to tensor.

    Converts a PIL Image or numpy.ndarray (H x W x C) in the range
    [0, 255] to a torch.FloatTensor of shape (C x H x W) in the range [0.0, 1.0].
    """

    def __call__(self, pic):
        """
        Args:
            pic (PIL Image or numpy.ndarray): Image to be converted to tensor.

        Returns:
            Tensor: Converted image.
        """
        return F.to_tensor(pic)

78
79
80
    def __repr__(self):
        return self.__class__.__name__ + '()'

81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111

class ToPILImage(object):
    """Convert a tensor or an ndarray to PIL Image.

    Converts a torch.*Tensor of shape C x H x W or a numpy ndarray of shape
    H x W x C to a PIL Image while preserving the value range.

    Args:
        mode (`PIL.Image mode`_): color space and pixel depth of input data (optional).
            If ``mode`` is ``None`` (default) there are some assumptions made about the input data:
            1. If the input has 3 channels, the ``mode`` is assumed to be ``RGB``.
            2. If the input has 4 channels, the ``mode`` is assumed to be ``RGBA``.
            3. If the input has 1 channel, the ``mode`` is determined by the data type (i,e,
            ``int``, ``float``, ``short``).

    .. _PIL.Image mode: http://pillow.readthedocs.io/en/3.4.x/handbook/concepts.html#modes
    """
    def __init__(self, mode=None):
        self.mode = mode

    def __call__(self, pic):
        """
        Args:
            pic (Tensor or numpy.ndarray): Image to be converted to PIL Image.

        Returns:
            PIL Image: Image converted to PIL Image.

        """
        return F.to_pil_image(pic, self.mode)

112
    def __repr__(self):
113
114
115
116
117
        format_string = self.__class__.__name__ + '('
        if self.mode is not None:
            format_string += 'mode={0}'.format(self.mode)
        format_string += ')'
        return format_string
118

119
120

class Normalize(object):
Fang Gao's avatar
Fang Gao committed
121
    """Normalize a tensor image with mean and standard deviation.
122
    Given mean: ``(M1,...,Mn)`` and std: ``(S1,..,Sn)`` for ``n`` channels, this transform
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
    will normalize each channel of the input ``torch.*Tensor`` i.e.
    ``input[channel] = (input[channel] - mean[channel]) / std[channel]``

    Args:
        mean (sequence): Sequence of means for each channel.
        std (sequence): Sequence of standard deviations for each channel.
    """

    def __init__(self, mean, std):
        self.mean = mean
        self.std = std

    def __call__(self, tensor):
        """
        Args:
            tensor (Tensor): Tensor image of size (C, H, W) to be normalized.

        Returns:
            Tensor: Normalized Tensor image.
        """
        return F.normalize(tensor, self.mean, self.std)

145
146
147
    def __repr__(self):
        return self.__class__.__name__ + '(mean={0}, std={1})'.format(self.mean, self.std)

148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176

class Resize(object):
    """Resize the input PIL Image to the given size.

    Args:
        size (sequence or int): Desired output size. If size is a sequence like
            (h, w), output size will be matched to this. If size is an int,
            smaller edge of the image will be matched to this number.
            i.e, if height > width, then image will be rescaled to
            (size * height / width, size)
        interpolation (int, optional): Desired interpolation. Default is
            ``PIL.Image.BILINEAR``
    """

    def __init__(self, size, interpolation=Image.BILINEAR):
        assert isinstance(size, int) or (isinstance(size, collections.Iterable) and len(size) == 2)
        self.size = size
        self.interpolation = interpolation

    def __call__(self, img):
        """
        Args:
            img (PIL Image): Image to be scaled.

        Returns:
            PIL Image: Rescaled image.
        """
        return F.resize(img, self.size, self.interpolation)

177
    def __repr__(self):
178
179
        interpolate_str = _pil_interpolation_to_str[self.interpolation]
        return self.__class__.__name__ + '(size={0}, interpolation={1})'.format(self.size, interpolate_str)
180

181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216

class Scale(Resize):
    """
    Note: This transform is deprecated in favor of Resize.
    """
    def __init__(self, *args, **kwargs):
        warnings.warn("The use of the transforms.Scale transform is deprecated, " +
                      "please use transforms.Resize instead.")
        super(Scale, self).__init__(*args, **kwargs)


class CenterCrop(object):
    """Crops the given PIL Image at the center.

    Args:
        size (sequence or int): Desired output size of the crop. If size is an
            int instead of sequence like (h, w), a square crop (size, size) is
            made.
    """

    def __init__(self, size):
        if isinstance(size, numbers.Number):
            self.size = (int(size), int(size))
        else:
            self.size = size

    def __call__(self, img):
        """
        Args:
            img (PIL Image): Image to be cropped.

        Returns:
            PIL Image: Cropped image.
        """
        return F.center_crop(img, self.size)

217
218
219
    def __repr__(self):
        return self.__class__.__name__ + '(size={0})'.format(self.size)

220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253

class Pad(object):
    """Pad the given PIL Image on all sides with the given "pad" value.

    Args:
        padding (int or tuple): Padding on each border. If a single int is provided this
            is used to pad all borders. If tuple of length 2 is provided this is the padding
            on left/right and top/bottom respectively. If a tuple of length 4 is provided
            this is the padding for the left, top, right and bottom borders
            respectively.
        fill: Pixel fill value. Default is 0. If a tuple of
            length 3, it is used to fill R, G, B channels respectively.
    """

    def __init__(self, padding, fill=0):
        assert isinstance(padding, (numbers.Number, tuple))
        assert isinstance(fill, (numbers.Number, str, tuple))
        if isinstance(padding, collections.Sequence) and len(padding) not in [2, 4]:
            raise ValueError("Padding must be an int or a 2, or 4 element tuple, not a " +
                             "{} element tuple".format(len(padding)))

        self.padding = padding
        self.fill = fill

    def __call__(self, img):
        """
        Args:
            img (PIL Image): Image to be padded.

        Returns:
            PIL Image: Padded image.
        """
        return F.pad(img, self.padding, self.fill)

254
    def __repr__(self):
255
        return self.__class__.__name__ + '(padding={0}, fill={1})'.format(self.padding, self.fill)
256

257
258
259
260
261
262
263
264
265
266
267
268
269
270
271

class Lambda(object):
    """Apply a user-defined lambda as a transform.

    Args:
        lambd (function): Lambda/function to be used for transform.
    """

    def __init__(self, lambd):
        assert isinstance(lambd, types.LambdaType)
        self.lambd = lambd

    def __call__(self, img):
        return self.lambd(img)

272
273
274
    def __repr__(self):
        return self.__class__.__name__ + '()'

275

276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
class RandomTransforms(object):
    """Base class for a list of transformations with randomness

    Args:
        transforms (list or tuple): list of transformations
    """

    def __init__(self, transforms):
        assert isinstance(transforms, (list, tuple))
        self.transforms = transforms

    def __call__(self, *args, **kwargs):
        raise NotImplementedError()

    def __repr__(self):
        format_string = self.__class__.__name__ + '('
        for t in self.transforms:
            format_string += '\n'
            format_string += '    {0}'.format(t)
        format_string += '\n)'
        return format_string


class RandomApply(RandomTransforms):
    """Apply randomly a list of transformations with a given probability

    Args:
        transforms (list or tuple): list of transformations
        p (float): probability
    """

    def __init__(self, transforms, p=0.5):
        super(RandomApply, self).__init__(transforms)
        self.p = p

    def __call__(self, img):
        if self.p < random.random():
            return img
        for t in self.transforms:
            img = t(img)
        return img

    def __repr__(self):
        format_string = self.__class__.__name__ + '('
        format_string += '\n    p={}'.format(self.p)
        for t in self.transforms:
            format_string += '\n'
            format_string += '    {0}'.format(t)
        format_string += '\n)'
        return format_string


class RandomOrder(RandomTransforms):
    """Apply a list of transformations in a random order
    """
    def __call__(self, img):
        order = list(range(len(self.transforms)))
        random.shuffle(order)
        for i in order:
            img = self.transforms[i](img)
        return img


class RandomChoice(RandomTransforms):
    """Apply single transformation randomly picked from a list
    """
    def __call__(self, img):
        t = random.choice(self.transforms)
        return t(img)


347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
class RandomCrop(object):
    """Crop the given PIL Image at a random location.

    Args:
        size (sequence or int): Desired output size of the crop. If size is an
            int instead of sequence like (h, w), a square crop (size, size) is
            made.
        padding (int or sequence, optional): Optional padding on each border
            of the image. Default is 0, i.e no padding. If a sequence of length
            4 is provided, it is used to pad left, top, right, bottom borders
            respectively.
    """

    def __init__(self, size, padding=0):
        if isinstance(size, numbers.Number):
            self.size = (int(size), int(size))
        else:
            self.size = size
        self.padding = padding

    @staticmethod
    def get_params(img, output_size):
        """Get parameters for ``crop`` for a random crop.

        Args:
            img (PIL Image): Image to be cropped.
            output_size (tuple): Expected output size of the crop.

        Returns:
            tuple: params (i, j, h, w) to be passed to ``crop`` for random crop.
        """
        w, h = img.size
        th, tw = output_size
        if w == tw and h == th:
            return 0, 0, h, w

        i = random.randint(0, h - th)
        j = random.randint(0, w - tw)
        return i, j, th, tw

    def __call__(self, img):
        """
        Args:
            img (PIL Image): Image to be cropped.

        Returns:
            PIL Image: Cropped image.
        """
        if self.padding > 0:
            img = F.pad(img, self.padding)

        i, j, h, w = self.get_params(img, self.size)

        return F.crop(img, i, j, h, w)

402
    def __repr__(self):
403
        return self.__class__.__name__ + '(size={0}, padding={1})'.format(self.size, self.padding)
404

405
406

class RandomHorizontalFlip(object):
407
408
409
410
411
412
413
414
    """Horizontally flip the given PIL Image randomly with a given probability.

    Args:
        p (float): probability of the image being flipped. Default value is 0.5
    """

    def __init__(self, p=0.5):
        self.p = p
415
416
417
418
419
420
421
422
423

    def __call__(self, img):
        """
        Args:
            img (PIL Image): Image to be flipped.

        Returns:
            PIL Image: Randomly flipped image.
        """
424
        if random.random() < self.p:
425
426
427
            return F.hflip(img)
        return img

428
    def __repr__(self):
429
        return self.__class__.__name__ + '(p={})'.format(self.p)
430

431
432

class RandomVerticalFlip(object):
433
434
435
436
437
438
439
440
    """Vertically flip the given PIL Image randomly with a given probability.

    Args:
        p (float): probability of the image being flipped. Default value is 0.5
    """

    def __init__(self, p=0.5):
        self.p = p
441
442
443
444
445
446
447
448
449

    def __call__(self, img):
        """
        Args:
            img (PIL Image): Image to be flipped.

        Returns:
            PIL Image: Randomly flipped image.
        """
450
        if random.random() < self.p:
451
452
453
            return F.vflip(img)
        return img

454
    def __repr__(self):
455
        return self.__class__.__name__ + '(p={})'.format(self.p)
456

457
458
459
460

class RandomResizedCrop(object):
    """Crop the given PIL Image to random size and aspect ratio.

461
462
    A crop of random size (default: of 0.08 to 1.0) of the original size and a random
    aspect ratio (default: of 3/4 to 4/3) of the original aspect ratio is made. This crop
463
464
465
466
467
    is finally resized to given size.
    This is popularly used to train the Inception networks.

    Args:
        size: expected output size of each edge
468
469
        scale: range of size of the origin size cropped
        ratio: range of aspect ratio of the origin aspect ratio cropped
470
471
472
        interpolation: Default: PIL.Image.BILINEAR
    """

473
    def __init__(self, size, scale=(0.08, 1.0), ratio=(3. / 4., 4. / 3.), interpolation=Image.BILINEAR):
474
475
        self.size = (size, size)
        self.interpolation = interpolation
476
477
        self.scale = scale
        self.ratio = ratio
478
479

    @staticmethod
480
    def get_params(img, scale, ratio):
481
482
483
484
        """Get parameters for ``crop`` for a random sized crop.

        Args:
            img (PIL Image): Image to be cropped.
485
486
            scale (tuple): range of size of the origin size cropped
            ratio (tuple): range of aspect ratio of the origin aspect ratio cropped
487
488
489
490
491
492
493

        Returns:
            tuple: params (i, j, h, w) to be passed to ``crop`` for a random
                sized crop.
        """
        for attempt in range(10):
            area = img.size[0] * img.size[1]
494
495
            target_area = random.uniform(*scale) * area
            aspect_ratio = random.uniform(*ratio)
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516

            w = int(round(math.sqrt(target_area * aspect_ratio)))
            h = int(round(math.sqrt(target_area / aspect_ratio)))

            if random.random() < 0.5:
                w, h = h, w

            if w <= img.size[0] and h <= img.size[1]:
                i = random.randint(0, img.size[1] - h)
                j = random.randint(0, img.size[0] - w)
                return i, j, h, w

        # Fallback
        w = min(img.size[0], img.size[1])
        i = (img.size[1] - w) // 2
        j = (img.size[0] - w) // 2
        return i, j, w, w

    def __call__(self, img):
        """
        Args:
517
            img (PIL Image): Image to be cropped and resized.
518
519

        Returns:
520
            PIL Image: Randomly cropped and resized image.
521
        """
522
        i, j, h, w = self.get_params(img, self.scale, self.ratio)
523
524
        return F.resized_crop(img, i, j, h, w, self.size, self.interpolation)

525
    def __repr__(self):
526
527
528
529
530
531
        interpolate_str = _pil_interpolation_to_str[self.interpolation]
        format_string = self.__class__.__name__ + '(size={0}'.format(self.size)
        format_string += ', scale={0}'.format(round(self.scale, 4))
        format_string += ', ratio={0}'.format(round(self.ratio, 4))
        format_string += ', interpolation={0})'.format(interpolate_str)
        return format_string
532

533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578

class RandomSizedCrop(RandomResizedCrop):
    """
    Note: This transform is deprecated in favor of RandomResizedCrop.
    """
    def __init__(self, *args, **kwargs):
        warnings.warn("The use of the transforms.RandomSizedCrop transform is deprecated, " +
                      "please use transforms.RandomResizedCrop instead.")
        super(RandomSizedCrop, self).__init__(*args, **kwargs)


class FiveCrop(object):
    """Crop the given PIL Image into four corners and the central crop

    .. Note::
         This transform returns a tuple of images and there may be a mismatch in the number of
         inputs and targets your Dataset returns. See below for an example of how to deal with
         this.

    Args:
         size (sequence or int): Desired output size of the crop. If size is an ``int``
            instead of sequence like (h, w), a square crop of size (size, size) is made.

    Example:
         >>> transform = Compose([
         >>>    FiveCrop(size), # this is a list of PIL Images
         >>>    Lambda(lambda crops: torch.stack([ToTensor()(crop) for crop in crops])) # returns a 4D tensor
         >>> ])
         >>> #In your test loop you can do the following:
         >>> input, target = batch # input is a 5d tensor, target is 2d
         >>> bs, ncrops, c, h, w = input.size()
         >>> result = model(input.view(-1, c, h, w)) # fuse batch size and ncrops
         >>> result_avg = result.view(bs, ncrops, -1).mean(1) # avg over crops
    """

    def __init__(self, size):
        self.size = size
        if isinstance(size, numbers.Number):
            self.size = (int(size), int(size))
        else:
            assert len(size) == 2, "Please provide only two dimensions (h, w) for size."
            self.size = size

    def __call__(self, img):
        return F.five_crop(img, self.size)

579
580
581
    def __repr__(self):
        return self.__class__.__name__ + '(size={0})'.format(self.size)

582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621

class TenCrop(object):
    """Crop the given PIL Image into four corners and the central crop plus the flipped version of
    these (horizontal flipping is used by default)

    .. Note::
         This transform returns a tuple of images and there may be a mismatch in the number of
         inputs and targets your Dataset returns. See below for an example of how to deal with
         this.

    Args:
        size (sequence or int): Desired output size of the crop. If size is an
            int instead of sequence like (h, w), a square crop (size, size) is
            made.
        vertical_flip(bool): Use vertical flipping instead of horizontal

    Example:
         >>> transform = Compose([
         >>>    TenCrop(size), # this is a list of PIL Images
         >>>    Lambda(lambda crops: torch.stack([ToTensor()(crop) for crop in crops])) # returns a 4D tensor
         >>> ])
         >>> #In your test loop you can do the following:
         >>> input, target = batch # input is a 5d tensor, target is 2d
         >>> bs, ncrops, c, h, w = input.size()
         >>> result = model(input.view(-1, c, h, w)) # fuse batch size and ncrops
         >>> result_avg = result.view(bs, ncrops, -1).mean(1) # avg over crops
    """

    def __init__(self, size, vertical_flip=False):
        self.size = size
        if isinstance(size, numbers.Number):
            self.size = (int(size), int(size))
        else:
            assert len(size) == 2, "Please provide only two dimensions (h, w) for size."
            self.size = size
        self.vertical_flip = vertical_flip

    def __call__(self, img):
        return F.ten_crop(img, self.size, self.vertical_flip)

622
    def __repr__(self):
623
        return self.__class__.__name__ + '(size={0}, vertical_flip={1})'.format(self.size, self.vertical_flip)
624

625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665

class LinearTransformation(object):
    """Transform a tensor image with a square transformation matrix computed
    offline.

    Given transformation_matrix, will flatten the torch.*Tensor, compute the dot
    product with the transformation matrix and reshape the tensor to its
    original shape.

    Applications:
    - whitening: zero-center the data, compute the data covariance matrix
                 [D x D] with np.dot(X.T, X), perform SVD on this matrix and
                 pass it as transformation_matrix.

    Args:
        transformation_matrix (Tensor): tensor [D x D], D = C x H x W
    """

    def __init__(self, transformation_matrix):
        if transformation_matrix.size(0) != transformation_matrix.size(1):
            raise ValueError("transformation_matrix should be square. Got " +
                             "[{} x {}] rectangular matrix.".format(*transformation_matrix.size()))
        self.transformation_matrix = transformation_matrix

    def __call__(self, tensor):
        """
        Args:
            tensor (Tensor): Tensor image of size (C, H, W) to be whitened.

        Returns:
            Tensor: Transformed image.
        """
        if tensor.size(0) * tensor.size(1) * tensor.size(2) != self.transformation_matrix.size(0):
            raise ValueError("tensor and transformation matrix have incompatible shape." +
                             "[{} x {} x {}] != ".format(*tensor.size()) +
                             "{}".format(self.transformation_matrix.size(0)))
        flat_tensor = tensor.view(1, -1)
        transformed_tensor = torch.mm(flat_tensor, self.transformation_matrix)
        tensor = transformed_tensor.view(tensor.size())
        return tensor

666
667
668
669
670
    def __repr__(self):
        format_string = self.__class__.__name__ + '('
        format_string += (str(self.transformation_matrix.numpy().tolist()) + ')')
        return format_string

671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733

class ColorJitter(object):
    """Randomly change the brightness, contrast and saturation of an image.

    Args:
        brightness (float): How much to jitter brightness. brightness_factor
            is chosen uniformly from [max(0, 1 - brightness), 1 + brightness].
        contrast (float): How much to jitter contrast. contrast_factor
            is chosen uniformly from [max(0, 1 - contrast), 1 + contrast].
        saturation (float): How much to jitter saturation. saturation_factor
            is chosen uniformly from [max(0, 1 - saturation), 1 + saturation].
        hue(float): How much to jitter hue. hue_factor is chosen uniformly from
            [-hue, hue]. Should be >=0 and <= 0.5.
    """
    def __init__(self, brightness=0, contrast=0, saturation=0, hue=0):
        self.brightness = brightness
        self.contrast = contrast
        self.saturation = saturation
        self.hue = hue

    @staticmethod
    def get_params(brightness, contrast, saturation, hue):
        """Get a randomized transform to be applied on image.

        Arguments are same as that of __init__.

        Returns:
            Transform which randomly adjusts brightness, contrast and
            saturation in a random order.
        """
        transforms = []
        if brightness > 0:
            brightness_factor = np.random.uniform(max(0, 1 - brightness), 1 + brightness)
            transforms.append(Lambda(lambda img: F.adjust_brightness(img, brightness_factor)))

        if contrast > 0:
            contrast_factor = np.random.uniform(max(0, 1 - contrast), 1 + contrast)
            transforms.append(Lambda(lambda img: F.adjust_contrast(img, contrast_factor)))

        if saturation > 0:
            saturation_factor = np.random.uniform(max(0, 1 - saturation), 1 + saturation)
            transforms.append(Lambda(lambda img: F.adjust_saturation(img, saturation_factor)))

        if hue > 0:
            hue_factor = np.random.uniform(-hue, hue)
            transforms.append(Lambda(lambda img: F.adjust_hue(img, hue_factor)))

        np.random.shuffle(transforms)
        transform = Compose(transforms)

        return transform

    def __call__(self, img):
        """
        Args:
            img (PIL Image): Input image.

        Returns:
            PIL Image: Color jittered image.
        """
        transform = self.get_params(self.brightness, self.contrast,
                                    self.saturation, self.hue)
        return transform(img)
734

735
    def __repr__(self):
736
737
738
739
740
741
        format_string = self.__class__.__name__ + '('
        format_string += 'brightness={0}'.format(self.brightness)
        format_string += ', contrast={0}'.format(self.contrast)
        format_string += ', saturation={0}'.format(self.saturation)
        format_string += ', hue={0})'.format(self.hue)
        return format_string
742

743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799

class RandomRotation(object):
    """Rotate the image by angle.

    Args:
        degrees (sequence or float or int): Range of degrees to select from.
            If degrees is a number instead of sequence like (min, max), the range of degrees
            will be (-degrees, +degrees).
        resample ({PIL.Image.NEAREST, PIL.Image.BILINEAR, PIL.Image.BICUBIC}, optional):
            An optional resampling filter.
            See http://pillow.readthedocs.io/en/3.4.x/handbook/concepts.html#filters
            If omitted, or if the image has mode "1" or "P", it is set to PIL.Image.NEAREST.
        expand (bool, optional): Optional expansion flag.
            If true, expands the output to make it large enough to hold the entire rotated image.
            If false or omitted, make the output image the same size as the input image.
            Note that the expand flag assumes rotation around the center and no translation.
        center (2-tuple, optional): Optional center of rotation.
            Origin is the upper left corner.
            Default is the center of the image.
    """

    def __init__(self, degrees, resample=False, expand=False, center=None):
        if isinstance(degrees, numbers.Number):
            if degrees < 0:
                raise ValueError("If degrees is a single number, it must be positive.")
            self.degrees = (-degrees, degrees)
        else:
            if len(degrees) != 2:
                raise ValueError("If degrees is a sequence, it must be of len 2.")
            self.degrees = degrees

        self.resample = resample
        self.expand = expand
        self.center = center

    @staticmethod
    def get_params(degrees):
        """Get parameters for ``rotate`` for a random rotation.

        Returns:
            sequence: params to be passed to ``rotate`` for random rotation.
        """
        angle = np.random.uniform(degrees[0], degrees[1])

        return angle

    def __call__(self, img):
        """
            img (PIL Image): Image to be rotated.

        Returns:
            PIL Image: Rotated image.
        """

        angle = self.get_params(self.degrees)

        return F.rotate(img, angle, self.resample, self.expand, self.center)
800

801
    def __repr__(self):
802
803
804
805
806
807
808
        format_string = self.__class__.__name__ + '(degrees={0}'.format(self.degrees)
        format_string += ', resample={0}'.format(self.resample)
        format_string += ', expand={0}'.format(self.expand)
        if self.center is not None:
            format_string += ', center={0}'.format(self.center)
        format_string += ')'
        return format_string
809

810
811
812

class Grayscale(object):
    """Convert image to grayscale.
813

814
815
816
817
    Args:
        num_output_channels (int): (1 or 3) number of channels desired for output image

    Returns:
818
819
820
        PIL Image: Grayscale version of the input.
        - If num_output_channels == 1 : returned image is single channel
        - If num_output_channels == 3 : returned image is 3 channel with r == g == b
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836

    """

    def __init__(self, num_output_channels=1):
        self.num_output_channels = num_output_channels

    def __call__(self, img):
        """
        Args:
            img (PIL Image): Image to be converted to grayscale.

        Returns:
            PIL Image: Randomly grayscaled image.
        """
        return F.to_grayscale(img, num_output_channels=self.num_output_channels)

837
    def __repr__(self):
838
        return self.__class__.__name__ + '(num_output_channels={0})'.format(self.num_output_channels)
839

840
841
842

class RandomGrayscale(object):
    """Randomly convert image to grayscale with a probability of p (default 0.1).
843

844
845
846
847
    Args:
        p (float): probability that image should be converted to grayscale.

    Returns:
848
849
850
851
        PIL Image: Grayscale version of the input image with probability p and unchanged
        with probability (1-p).
        - If input image is 1 channel: grayscale version is 1 channel
        - If input image is 3 channel: grayscale version is 3 channel with r == g == b
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869

    """

    def __init__(self, p=0.1):
        self.p = p

    def __call__(self, img):
        """
        Args:
            img (PIL Image): Image to be converted to grayscale.

        Returns:
            PIL Image: Randomly grayscaled image.
        """
        num_output_channels = 1 if img.mode == 'L' else 3
        if random.random() < self.p:
            return F.to_grayscale(img, num_output_channels=num_output_channels)
        return img
870
871

    def __repr__(self):
872
        return self.__class__.__name__ + '(p={0})'.format(self.p)