transforms.py 57.8 KB
Newer Older
1
import math
vfdev's avatar
vfdev committed
2
import numbers
3
import random
vfdev's avatar
vfdev committed
4
import warnings
vfdev's avatar
vfdev committed
5
from collections.abc import Sequence
6
from typing import Tuple, List, Optional
vfdev's avatar
vfdev committed
7
8
9

import numpy as np
import torch
10
from PIL import Image
vfdev's avatar
vfdev committed
11
12
from torch import Tensor

13
14
15
16
17
18
19
try:
    import accimage
except ImportError:
    accimage = None

from . import functional as F

Tongzhou Wang's avatar
Tongzhou Wang committed
20

21
22
23
24
__all__ = ["Compose", "ToTensor", "PILToTensor", "ConvertImageDtype", "ToPILImage", "Normalize", "Resize", "Scale",
           "CenterCrop", "Pad", "Lambda", "RandomApply", "RandomChoice", "RandomOrder", "RandomCrop",
           "RandomHorizontalFlip", "RandomVerticalFlip", "RandomResizedCrop", "RandomSizedCrop", "FiveCrop", "TenCrop",
           "LinearTransformation", "ColorJitter", "RandomRotation", "RandomAffine", "Grayscale", "RandomGrayscale",
25
           "RandomPerspective", "RandomErasing"]
26

27
28
29
30
31
_pil_interpolation_to_str = {
    Image.NEAREST: 'PIL.Image.NEAREST',
    Image.BILINEAR: 'PIL.Image.BILINEAR',
    Image.BICUBIC: 'PIL.Image.BICUBIC',
    Image.LANCZOS: 'PIL.Image.LANCZOS',
surgan12's avatar
surgan12 committed
32
33
    Image.HAMMING: 'PIL.Image.HAMMING',
    Image.BOX: 'PIL.Image.BOX',
34
35
}

36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57

class Compose(object):
    """Composes several transforms together.

    Args:
        transforms (list of ``Transform`` objects): list of transforms to compose.

    Example:
        >>> transforms.Compose([
        >>>     transforms.CenterCrop(10),
        >>>     transforms.ToTensor(),
        >>> ])
    """

    def __init__(self, transforms):
        self.transforms = transforms

    def __call__(self, img):
        for t in self.transforms:
            img = t(img)
        return img

58
59
60
61
62
63
64
65
    def __repr__(self):
        format_string = self.__class__.__name__ + '('
        for t in self.transforms:
            format_string += '\n'
            format_string += '    {0}'.format(t)
        format_string += '\n)'
        return format_string

66
67
68
69
70

class ToTensor(object):
    """Convert a ``PIL Image`` or ``numpy.ndarray`` to tensor.

    Converts a PIL Image or numpy.ndarray (H x W x C) in the range
surgan12's avatar
surgan12 committed
71
72
73
74
75
    [0, 255] to a torch.FloatTensor of shape (C x H x W) in the range [0.0, 1.0]
    if the PIL Image belongs to one of the modes (L, LA, P, I, F, RGB, YCbCr, RGBA, CMYK, 1)
    or if the numpy.ndarray has dtype = np.uint8

    In the other cases, tensors are returned without scaling.
76
77
78
79
80
81
82
83
84
85
86
87
    """

    def __call__(self, pic):
        """
        Args:
            pic (PIL Image or numpy.ndarray): Image to be converted to tensor.

        Returns:
            Tensor: Converted image.
        """
        return F.to_tensor(pic)

88
89
90
    def __repr__(self):
        return self.__class__.__name__ + '()'

91

92
93
94
class PILToTensor(object):
    """Convert a ``PIL Image`` to a tensor of the same type.

vfdev's avatar
vfdev committed
95
    Converts a PIL Image (H x W x C) to a Tensor of shape (C x H x W).
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
    """

    def __call__(self, pic):
        """
        Args:
            pic (PIL Image): Image to be converted to tensor.

        Returns:
            Tensor: Converted image.
        """
        return F.pil_to_tensor(pic)

    def __repr__(self):
        return self.__class__.__name__ + '()'


112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
class ConvertImageDtype(object):
    """Convert a tensor image to the given ``dtype`` and scale the values accordingly

    Args:
        dtype (torch.dtype): Desired data type of the output

    .. note::

        When converting from a smaller to a larger integer ``dtype`` the maximum values are **not** mapped exactly.
        If converted back and forth, this mismatch has no effect.

    Raises:
        RuntimeError: When trying to cast :class:`torch.float32` to :class:`torch.int32` or :class:`torch.int64` as
            well as for trying to cast :class:`torch.float64` to :class:`torch.int64`. These conversions might lead to
            overflow errors since the floating point ``dtype`` cannot store consecutive integers over the whole range
            of the integer ``dtype``.
    """

    def __init__(self, dtype: torch.dtype) -> None:
        self.dtype = dtype

    def __call__(self, image: torch.Tensor) -> torch.Tensor:
        return F.convert_image_dtype(image, self.dtype)


137
138
139
140
141
142
143
144
145
class ToPILImage(object):
    """Convert a tensor or an ndarray to PIL Image.

    Converts a torch.*Tensor of shape C x H x W or a numpy ndarray of shape
    H x W x C to a PIL Image while preserving the value range.

    Args:
        mode (`PIL.Image mode`_): color space and pixel depth of input data (optional).
            If ``mode`` is ``None`` (default) there are some assumptions made about the input data:
surgan12's avatar
surgan12 committed
146
147
148
149
             - If the input has 4 channels, the ``mode`` is assumed to be ``RGBA``.
             - If the input has 3 channels, the ``mode`` is assumed to be ``RGB``.
             - If the input has 2 channels, the ``mode`` is assumed to be ``LA``.
             - If the input has 1 channel, the ``mode`` is determined by the data type (i.e ``int``, ``float``,
150
               ``short``).
151

csukuangfj's avatar
csukuangfj committed
152
    .. _PIL.Image mode: https://pillow.readthedocs.io/en/latest/handbook/concepts.html#concept-modes
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
    """
    def __init__(self, mode=None):
        self.mode = mode

    def __call__(self, pic):
        """
        Args:
            pic (Tensor or numpy.ndarray): Image to be converted to PIL Image.

        Returns:
            PIL Image: Image converted to PIL Image.

        """
        return F.to_pil_image(pic, self.mode)

168
    def __repr__(self):
169
170
171
172
173
        format_string = self.__class__.__name__ + '('
        if self.mode is not None:
            format_string += 'mode={0}'.format(self.mode)
        format_string += ')'
        return format_string
174

175
176

class Normalize(object):
Fang Gao's avatar
Fang Gao committed
177
    """Normalize a tensor image with mean and standard deviation.
178
179
180
    Given mean: ``(mean[1],...,mean[n])`` and std: ``(std[1],..,std[n])`` for ``n``
    channels, this transform will normalize each channel of the input
    ``torch.*Tensor`` i.e.,
abdjava's avatar
abdjava committed
181
    ``output[channel] = (input[channel] - mean[channel]) / std[channel]``
182

183
    .. note::
184
        This transform acts out of place, i.e., it does not mutate the input tensor.
185

186
187
188
    Args:
        mean (sequence): Sequence of means for each channel.
        std (sequence): Sequence of standard deviations for each channel.
189
190
        inplace(bool,optional): Bool to make this operation in-place.

191
192
    """

surgan12's avatar
surgan12 committed
193
    def __init__(self, mean, std, inplace=False):
194
195
        self.mean = mean
        self.std = std
surgan12's avatar
surgan12 committed
196
        self.inplace = inplace
197
198
199
200
201
202
203
204
205

    def __call__(self, tensor):
        """
        Args:
            tensor (Tensor): Tensor image of size (C, H, W) to be normalized.

        Returns:
            Tensor: Normalized Tensor image.
        """
surgan12's avatar
surgan12 committed
206
        return F.normalize(tensor, self.mean, self.std, self.inplace)
207

208
209
210
    def __repr__(self):
        return self.__class__.__name__ + '(mean={0}, std={1})'.format(self.mean, self.std)

211

vfdev's avatar
vfdev committed
212
213
214
215
class Resize(torch.nn.Module):
    """Resize the input image to the given size.
    The image can be a PIL Image or a torch Tensor, in which case it is expected
    to have [..., H, W] shape, where ... means an arbitrary number of leading dimensions
216
217
218
219
220
221

    Args:
        size (sequence or int): Desired output size. If size is a sequence like
            (h, w), output size will be matched to this. If size is an int,
            smaller edge of the image will be matched to this number.
            i.e, if height > width, then image will be rescaled to
vfdev's avatar
vfdev committed
222
223
224
            (size * height / width, size).
            In torchscript mode padding as single int is not supported, use a tuple or
            list of length 1: ``[size, ]``.
vfdev's avatar
vfdev committed
225
226
227
        interpolation (int, optional): Desired interpolation enum defined by `filters`_.
            Default is ``PIL.Image.BILINEAR``. If input is Tensor, only ``PIL.Image.NEAREST``, ``PIL.Image.BILINEAR``
            and ``PIL.Image.BICUBIC`` are supported.
228
229
230
    """

    def __init__(self, size, interpolation=Image.BILINEAR):
vfdev's avatar
vfdev committed
231
232
233
234
235
        super().__init__()
        if not isinstance(size, (int, Sequence)):
            raise TypeError("Size should be int or sequence. Got {}".format(type(size)))
        if isinstance(size, Sequence) and len(size) not in (1, 2):
            raise ValueError("If size is a sequence, it should have 1 or 2 values")
236
237
238
        self.size = size
        self.interpolation = interpolation

vfdev's avatar
vfdev committed
239
    def forward(self, img):
240
241
        """
        Args:
vfdev's avatar
vfdev committed
242
            img (PIL Image or Tensor): Image to be scaled.
243
244

        Returns:
vfdev's avatar
vfdev committed
245
            PIL Image or Tensor: Rescaled image.
246
247
248
        """
        return F.resize(img, self.size, self.interpolation)

249
    def __repr__(self):
250
251
        interpolate_str = _pil_interpolation_to_str[self.interpolation]
        return self.__class__.__name__ + '(size={0}, interpolation={1})'.format(self.size, interpolate_str)
252

253
254
255
256
257
258
259
260
261
262
263

class Scale(Resize):
    """
    Note: This transform is deprecated in favor of Resize.
    """
    def __init__(self, *args, **kwargs):
        warnings.warn("The use of the transforms.Scale transform is deprecated, " +
                      "please use transforms.Resize instead.")
        super(Scale, self).__init__(*args, **kwargs)


vfdev's avatar
vfdev committed
264
265
266
267
class CenterCrop(torch.nn.Module):
    """Crops the given image at the center.
    The image can be a PIL Image or a torch Tensor, in which case it is expected
    to have [..., H, W] shape, where ... means an arbitrary number of leading dimensions
268
269
270
271

    Args:
        size (sequence or int): Desired output size of the crop. If size is an
            int instead of sequence like (h, w), a square crop (size, size) is
vfdev's avatar
vfdev committed
272
            made. If provided a tuple or list of length 1, it will be interpreted as (size[0], size[0]).
273
274
275
    """

    def __init__(self, size):
vfdev's avatar
vfdev committed
276
        super().__init__()
277
278
        if isinstance(size, numbers.Number):
            self.size = (int(size), int(size))
vfdev's avatar
vfdev committed
279
280
        elif isinstance(size, Sequence) and len(size) == 1:
            self.size = (size[0], size[0])
281
        else:
vfdev's avatar
vfdev committed
282
283
284
            if len(size) != 2:
                raise ValueError("Please provide only two dimensions (h, w) for size.")

285
286
            self.size = size

vfdev's avatar
vfdev committed
287
    def forward(self, img):
288
289
        """
        Args:
vfdev's avatar
vfdev committed
290
            img (PIL Image or Tensor): Image to be cropped.
291
292

        Returns:
vfdev's avatar
vfdev committed
293
            PIL Image or Tensor: Cropped image.
294
295
296
        """
        return F.center_crop(img, self.size)

297
298
299
    def __repr__(self):
        return self.__class__.__name__ + '(size={0})'.format(self.size)

300

301
302
303
304
class Pad(torch.nn.Module):
    """Pad the given image on all sides with the given "pad" value.
    The image can be a PIL Image or a torch Tensor, in which case it is expected
    to have [..., H, W] shape, where ... means an arbitrary number of leading dimensions
305
306

    Args:
307
        padding (int or tuple or list): Padding on each border. If a single int is provided this
308
309
            is used to pad all borders. If tuple of length 2 is provided this is the padding
            on left/right and top/bottom respectively. If a tuple of length 4 is provided
310
311
312
            this is the padding for the left, top, right and bottom borders respectively.
            In torchscript mode padding as single int is not supported, use a tuple or
            list of length 1: ``[padding, ]``.
313
        fill (int or tuple): Pixel fill value for constant fill. Default is 0. If a tuple of
314
            length 3, it is used to fill R, G, B channels respectively.
315
            This value is only used when the padding_mode is constant
316
        padding_mode (str): Type of padding. Should be: constant, edge, reflect or symmetric.
vfdev's avatar
vfdev committed
317
            Default is constant. Mode symmetric is not yet supported for Tensor inputs.
318
319
320
321
322
323
324
325

            - constant: pads with a constant value, this value is specified with fill

            - edge: pads with the last value at the edge of the image

            - reflect: pads with reflection of image without repeating the last value on the edge

                For example, padding [1, 2, 3, 4] with 2 elements on both sides in reflect mode
326
                will result in [3, 2, 1, 2, 3, 4, 3, 2]
327
328
329
330

            - symmetric: pads with reflection of image repeating the last value on the edge

                For example, padding [1, 2, 3, 4] with 2 elements on both sides in symmetric mode
331
                will result in [2, 1, 1, 2, 3, 4, 4, 3]
332
333
    """

334
335
336
337
338
339
340
341
342
343
344
345
346
    def __init__(self, padding, fill=0, padding_mode="constant"):
        super().__init__()
        if not isinstance(padding, (numbers.Number, tuple, list)):
            raise TypeError("Got inappropriate padding arg")

        if not isinstance(fill, (numbers.Number, str, tuple)):
            raise TypeError("Got inappropriate fill arg")

        if padding_mode not in ["constant", "edge", "reflect", "symmetric"]:
            raise ValueError("Padding mode should be either constant, edge, reflect or symmetric")

        if isinstance(padding, Sequence) and len(padding) not in [1, 2, 4]:
            raise ValueError("Padding must be an int or a 1, 2, or 4 element tuple, not a " +
347
348
349
350
                             "{} element tuple".format(len(padding)))

        self.padding = padding
        self.fill = fill
351
        self.padding_mode = padding_mode
352

353
    def forward(self, img):
354
355
        """
        Args:
356
            img (PIL Image or Tensor): Image to be padded.
357
358

        Returns:
359
            PIL Image or Tensor: Padded image.
360
        """
361
        return F.pad(img, self.padding, self.fill, self.padding_mode)
362

363
    def __repr__(self):
364
365
        return self.__class__.__name__ + '(padding={0}, fill={1}, padding_mode={2})'.\
            format(self.padding, self.fill, self.padding_mode)
366

367
368
369
370
371
372
373
374
375

class Lambda(object):
    """Apply a user-defined lambda as a transform.

    Args:
        lambd (function): Lambda/function to be used for transform.
    """

    def __init__(self, lambd):
376
        assert callable(lambd), repr(type(lambd).__name__) + " object is not callable"
377
378
379
380
381
        self.lambd = lambd

    def __call__(self, img):
        return self.lambd(img)

382
383
384
    def __repr__(self):
        return self.__class__.__name__ + '()'

385

386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
class RandomTransforms(object):
    """Base class for a list of transformations with randomness

    Args:
        transforms (list or tuple): list of transformations
    """

    def __init__(self, transforms):
        assert isinstance(transforms, (list, tuple))
        self.transforms = transforms

    def __call__(self, *args, **kwargs):
        raise NotImplementedError()

    def __repr__(self):
        format_string = self.__class__.__name__ + '('
        for t in self.transforms:
            format_string += '\n'
            format_string += '    {0}'.format(t)
        format_string += '\n)'
        return format_string


class RandomApply(RandomTransforms):
    """Apply randomly a list of transformations with a given probability

    Args:
        transforms (list or tuple): list of transformations
        p (float): probability
    """

    def __init__(self, transforms, p=0.5):
        super(RandomApply, self).__init__(transforms)
        self.p = p

    def __call__(self, img):
        if self.p < random.random():
            return img
        for t in self.transforms:
            img = t(img)
        return img

    def __repr__(self):
        format_string = self.__class__.__name__ + '('
        format_string += '\n    p={}'.format(self.p)
        for t in self.transforms:
            format_string += '\n'
            format_string += '    {0}'.format(t)
        format_string += '\n)'
        return format_string


class RandomOrder(RandomTransforms):
    """Apply a list of transformations in a random order
    """
    def __call__(self, img):
        order = list(range(len(self.transforms)))
        random.shuffle(order)
        for i in order:
            img = self.transforms[i](img)
        return img


class RandomChoice(RandomTransforms):
    """Apply single transformation randomly picked from a list
    """
    def __call__(self, img):
        t = random.choice(self.transforms)
        return t(img)


vfdev's avatar
vfdev committed
457
458
459
460
461
class RandomCrop(torch.nn.Module):
    """Crop the given image at a random location.
    The image can be a PIL Image or a Tensor, in which case it is expected
    to have [..., H, W] shape, where ... means an arbitrary number of leading
    dimensions
462
463
464
465

    Args:
        size (sequence or int): Desired output size of the crop. If size is an
            int instead of sequence like (h, w), a square crop (size, size) is
vfdev's avatar
vfdev committed
466
            made. If provided a tuple or list of length 1, it will be interpreted as (size[0], size[0]).
467
        padding (int or sequence, optional): Optional padding on each border
vfdev's avatar
vfdev committed
468
469
470
471
472
473
            of the image. Default is None. If a single int is provided this
            is used to pad all borders. If tuple of length 2 is provided this is the padding
            on left/right and top/bottom respectively. If a tuple of length 4 is provided
            this is the padding for the left, top, right and bottom borders respectively.
            In torchscript mode padding as single int is not supported, use a tuple or
            list of length 1: ``[padding, ]``.
474
        pad_if_needed (boolean): It will pad the image if smaller than the
ekka's avatar
ekka committed
475
            desired size to avoid raising an exception. Since cropping is done
476
            after padding, the padding seems to be done at a random offset.
vfdev's avatar
vfdev committed
477
        fill (int or tuple): Pixel fill value for constant fill. Default is 0. If a tuple of
478
479
            length 3, it is used to fill R, G, B channels respectively.
            This value is only used when the padding_mode is constant
vfdev's avatar
vfdev committed
480
        padding_mode (str): Type of padding. Should be: constant, edge, reflect or symmetric. Default is constant.
vfdev's avatar
vfdev committed
481
            Mode symmetric is not yet supported for Tensor inputs.
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496

             - constant: pads with a constant value, this value is specified with fill

             - edge: pads with the last value on the edge of the image

             - reflect: pads with reflection of image (without repeating the last value on the edge)

                padding [1, 2, 3, 4] with 2 elements on both sides in reflect mode
                will result in [3, 2, 1, 2, 3, 4, 3, 2]

             - symmetric: pads with reflection of image (repeating the last value on the edge)

                padding [1, 2, 3, 4] with 2 elements on both sides in symmetric mode
                will result in [2, 1, 1, 2, 3, 4, 4, 3]

497
498
499
    """

    @staticmethod
vfdev's avatar
vfdev committed
500
    def get_params(img: Tensor, output_size: Tuple[int, int]) -> Tuple[int, int, int, int]:
501
502
503
        """Get parameters for ``crop`` for a random crop.

        Args:
vfdev's avatar
vfdev committed
504
            img (PIL Image or Tensor): Image to be cropped.
505
506
507
508
509
            output_size (tuple): Expected output size of the crop.

        Returns:
            tuple: params (i, j, h, w) to be passed to ``crop`` for random crop.
        """
vfdev's avatar
vfdev committed
510
        w, h = F._get_image_size(img)
511
512
513
514
        th, tw = output_size
        if w == tw and h == th:
            return 0, 0, h, w

515
516
        i = torch.randint(0, h - th + 1, size=(1, )).item()
        j = torch.randint(0, w - tw + 1, size=(1, )).item()
517
518
        return i, j, th, tw

vfdev's avatar
vfdev committed
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
    def __init__(self, size, padding=None, pad_if_needed=False, fill=0, padding_mode="constant"):
        super().__init__()
        if isinstance(size, numbers.Number):
            self.size = (int(size), int(size))
        elif isinstance(size, Sequence) and len(size) == 1:
            self.size = (size[0], size[0])
        else:
            if len(size) != 2:
                raise ValueError("Please provide only two dimensions (h, w) for size.")

            # cast to tuple for torchscript
            self.size = tuple(size)
        self.padding = padding
        self.pad_if_needed = pad_if_needed
        self.fill = fill
        self.padding_mode = padding_mode

    def forward(self, img):
537
538
        """
        Args:
vfdev's avatar
vfdev committed
539
            img (PIL Image or Tensor): Image to be cropped.
540
541

        Returns:
vfdev's avatar
vfdev committed
542
            PIL Image or Tensor: Cropped image.
543
        """
544
545
        if self.padding is not None:
            img = F.pad(img, self.padding, self.fill, self.padding_mode)
546

vfdev's avatar
vfdev committed
547
        width, height = F._get_image_size(img)
548
        # pad the width if needed
vfdev's avatar
vfdev committed
549
550
551
        if self.pad_if_needed and width < self.size[1]:
            padding = [self.size[1] - width, 0]
            img = F.pad(img, padding, self.fill, self.padding_mode)
552
        # pad the height if needed
vfdev's avatar
vfdev committed
553
554
555
        if self.pad_if_needed and height < self.size[0]:
            padding = [0, self.size[0] - height]
            img = F.pad(img, padding, self.fill, self.padding_mode)
556

557
558
559
560
        i, j, h, w = self.get_params(img, self.size)

        return F.crop(img, i, j, h, w)

561
    def __repr__(self):
vfdev's avatar
vfdev committed
562
        return self.__class__.__name__ + "(size={0}, padding={1})".format(self.size, self.padding)
563

564

565
566
567
568
569
class RandomHorizontalFlip(torch.nn.Module):
    """Horizontally flip the given image randomly with a given probability.
    The image can be a PIL Image or a torch Tensor, in which case it is expected
    to have [..., H, W] shape, where ... means an arbitrary number of leading
    dimensions
570
571
572
573
574
575

    Args:
        p (float): probability of the image being flipped. Default value is 0.5
    """

    def __init__(self, p=0.5):
576
        super().__init__()
577
        self.p = p
578

579
    def forward(self, img):
580
581
        """
        Args:
582
            img (PIL Image or Tensor): Image to be flipped.
583
584

        Returns:
585
            PIL Image or Tensor: Randomly flipped image.
586
        """
587
        if torch.rand(1) < self.p:
588
589
590
            return F.hflip(img)
        return img

591
    def __repr__(self):
592
        return self.__class__.__name__ + '(p={})'.format(self.p)
593

594

595
class RandomVerticalFlip(torch.nn.Module):
vfdev's avatar
vfdev committed
596
    """Vertically flip the given image randomly with a given probability.
597
598
599
    The image can be a PIL Image or a torch Tensor, in which case it is expected
    to have [..., H, W] shape, where ... means an arbitrary number of leading
    dimensions
600
601
602
603
604
605

    Args:
        p (float): probability of the image being flipped. Default value is 0.5
    """

    def __init__(self, p=0.5):
606
        super().__init__()
607
        self.p = p
608

609
    def forward(self, img):
610
611
        """
        Args:
612
            img (PIL Image or Tensor): Image to be flipped.
613
614

        Returns:
615
            PIL Image or Tensor: Randomly flipped image.
616
        """
617
        if torch.rand(1) < self.p:
618
619
620
            return F.vflip(img)
        return img

621
    def __repr__(self):
622
        return self.__class__.__name__ + '(p={})'.format(self.p)
623

624

625
626
627
628
629
630
631
632
633
634
class RandomPerspective(object):
    """Performs Perspective transformation of the given PIL Image randomly with a given probability.

    Args:
        interpolation : Default- Image.BICUBIC

        p (float): probability of the image being perspectively transformed. Default value is 0.5

        distortion_scale(float): it controls the degree of distortion and ranges from 0 to 1. Default value is 0.5.

635
636
        fill (3-tuple or int): RGB pixel fill value for area outside the rotated image.
            If int, it is used for all channels respectively. Default value is 0.
637
638
    """

639
    def __init__(self, distortion_scale=0.5, p=0.5, interpolation=Image.BICUBIC, fill=0):
640
641
642
        self.p = p
        self.interpolation = interpolation
        self.distortion_scale = distortion_scale
643
        self.fill = fill
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658

    def __call__(self, img):
        """
        Args:
            img (PIL Image): Image to be Perspectively transformed.

        Returns:
            PIL Image: Random perspectivley transformed image.
        """
        if not F._is_pil_image(img):
            raise TypeError('img should be PIL Image. Got {}'.format(type(img)))

        if random.random() < self.p:
            width, height = img.size
            startpoints, endpoints = self.get_params(width, height, self.distortion_scale)
659
            return F.perspective(img, startpoints, endpoints, self.interpolation, self.fill)
660
661
662
663
664
665
666
667
668
669
670
        return img

    @staticmethod
    def get_params(width, height, distortion_scale):
        """Get parameters for ``perspective`` for a random perspective transform.

        Args:
            width : width of the image.
            height : height of the image.

        Returns:
671
            List containing [top-left, top-right, bottom-right, bottom-left] of the original image,
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
            List containing [top-left, top-right, bottom-right, bottom-left] of the transformed image.
        """
        half_height = int(height / 2)
        half_width = int(width / 2)
        topleft = (random.randint(0, int(distortion_scale * half_width)),
                   random.randint(0, int(distortion_scale * half_height)))
        topright = (random.randint(width - int(distortion_scale * half_width) - 1, width - 1),
                    random.randint(0, int(distortion_scale * half_height)))
        botright = (random.randint(width - int(distortion_scale * half_width) - 1, width - 1),
                    random.randint(height - int(distortion_scale * half_height) - 1, height - 1))
        botleft = (random.randint(0, int(distortion_scale * half_width)),
                   random.randint(height - int(distortion_scale * half_height) - 1, height - 1))
        startpoints = [(0, 0), (width - 1, 0), (width - 1, height - 1), (0, height - 1)]
        endpoints = [topleft, topright, botright, botleft]
        return startpoints, endpoints

    def __repr__(self):
        return self.__class__.__name__ + '(p={})'.format(self.p)


692
693
694
695
class RandomResizedCrop(torch.nn.Module):
    """Crop the given image to random size and aspect ratio.
    The image can be a PIL Image or a Tensor, in which case it is expected
    to have [..., H, W] shape, where ... means an arbitrary number of leading dimensions
696

697
698
    A crop of random size (default: of 0.08 to 1.0) of the original size and a random
    aspect ratio (default: of 3/4 to 4/3) of the original aspect ratio is made. This crop
699
700
701
702
    is finally resized to given size.
    This is popularly used to train the Inception networks.

    Args:
703
704
705
706
707
        size (int or sequence): expected output size of each edge. If size is an
            int instead of sequence like (h, w), a square output size ``(size, size)`` is
            made. If provided a tuple or list of length 1, it will be interpreted as (size[0], size[0]).
        scale (tuple of float): range of size of the origin size cropped
        ratio (tuple of float): range of aspect ratio of the origin aspect ratio cropped.
vfdev's avatar
vfdev committed
708
709
710
        interpolation (int): Desired interpolation enum defined by `filters`_.
            Default is ``PIL.Image.BILINEAR``. If input is Tensor, only ``PIL.Image.NEAREST``, ``PIL.Image.BILINEAR``
            and ``PIL.Image.BICUBIC`` are supported.
711
712
    """

713
    def __init__(self, size, scale=(0.08, 1.0), ratio=(3. / 4., 4. / 3.), interpolation=Image.BILINEAR):
714
715
716
717
718
        super().__init__()
        if isinstance(size, numbers.Number):
            self.size = (int(size), int(size))
        elif isinstance(size, Sequence) and len(size) == 1:
            self.size = (size[0], size[0])
719
        else:
720
721
722
723
724
725
726
727
            if len(size) != 2:
                raise ValueError("Please provide only two dimensions (h, w) for size.")
            self.size = size

        if not isinstance(scale, (tuple, list)):
            raise TypeError("Scale should be a sequence")
        if not isinstance(ratio, (tuple, list)):
            raise TypeError("Ratio should be a sequence")
728
        if (scale[0] > scale[1]) or (ratio[0] > ratio[1]):
729
            warnings.warn("Scale and ratio should be of kind (min, max)")
730

731
        self.interpolation = interpolation
732
733
        self.scale = scale
        self.ratio = ratio
734
735

    @staticmethod
736
737
738
    def get_params(
            img: Tensor, scale: Tuple[float, float], ratio: Tuple[float, float]
    ) -> Tuple[int, int, int, int]:
739
740
741
        """Get parameters for ``crop`` for a random sized crop.

        Args:
742
743
            img (PIL Image or Tensor): Input image.
            scale (tuple): range of scale of the origin size cropped
744
            ratio (tuple): range of aspect ratio of the origin aspect ratio cropped
745
746
747
748
749

        Returns:
            tuple: params (i, j, h, w) to be passed to ``crop`` for a random
                sized crop.
        """
vfdev's avatar
vfdev committed
750
        width, height = F._get_image_size(img)
Zhicheng Yan's avatar
Zhicheng Yan committed
751
        area = height * width
752

753
        for _ in range(10):
754
755
756
757
758
            target_area = area * torch.empty(1).uniform_(*scale).item()
            log_ratio = torch.log(torch.tensor(ratio))
            aspect_ratio = torch.exp(
                torch.empty(1).uniform_(log_ratio[0], log_ratio[1])
            ).item()
759
760
761
762

            w = int(round(math.sqrt(target_area * aspect_ratio)))
            h = int(round(math.sqrt(target_area / aspect_ratio)))

Zhicheng Yan's avatar
Zhicheng Yan committed
763
            if 0 < w <= width and 0 < h <= height:
764
765
                i = torch.randint(0, height - h + 1, size=(1,)).item()
                j = torch.randint(0, width - w + 1, size=(1,)).item()
766
767
                return i, j, h, w

768
        # Fallback to central crop
Zhicheng Yan's avatar
Zhicheng Yan committed
769
        in_ratio = float(width) / float(height)
770
        if in_ratio < min(ratio):
Zhicheng Yan's avatar
Zhicheng Yan committed
771
            w = width
772
            h = int(round(w / min(ratio)))
773
        elif in_ratio > max(ratio):
Zhicheng Yan's avatar
Zhicheng Yan committed
774
            h = height
775
            w = int(round(h * max(ratio)))
776
        else:  # whole image
Zhicheng Yan's avatar
Zhicheng Yan committed
777
778
779
780
            w = width
            h = height
        i = (height - h) // 2
        j = (width - w) // 2
781
        return i, j, h, w
782

783
    def forward(self, img):
784
785
        """
        Args:
786
            img (PIL Image or Tensor): Image to be cropped and resized.
787
788

        Returns:
789
            PIL Image or Tensor: Randomly cropped and resized image.
790
        """
791
        i, j, h, w = self.get_params(img, self.scale, self.ratio)
792
793
        return F.resized_crop(img, i, j, h, w, self.size, self.interpolation)

794
    def __repr__(self):
795
796
        interpolate_str = _pil_interpolation_to_str[self.interpolation]
        format_string = self.__class__.__name__ + '(size={0}'.format(self.size)
797
798
        format_string += ', scale={0}'.format(tuple(round(s, 4) for s in self.scale))
        format_string += ', ratio={0}'.format(tuple(round(r, 4) for r in self.ratio))
799
800
        format_string += ', interpolation={0})'.format(interpolate_str)
        return format_string
801

802
803
804
805
806
807
808
809
810
811
812

class RandomSizedCrop(RandomResizedCrop):
    """
    Note: This transform is deprecated in favor of RandomResizedCrop.
    """
    def __init__(self, *args, **kwargs):
        warnings.warn("The use of the transforms.RandomSizedCrop transform is deprecated, " +
                      "please use transforms.RandomResizedCrop instead.")
        super(RandomSizedCrop, self).__init__(*args, **kwargs)


vfdev's avatar
vfdev committed
813
814
815
816
817
class FiveCrop(torch.nn.Module):
    """Crop the given image into four corners and the central crop.
    The image can be a PIL Image or a Tensor, in which case it is expected
    to have [..., H, W] shape, where ... means an arbitrary number of leading
    dimensions
818
819
820
821
822
823
824
825
826

    .. Note::
         This transform returns a tuple of images and there may be a mismatch in the number of
         inputs and targets your Dataset returns. See below for an example of how to deal with
         this.

    Args:
         size (sequence or int): Desired output size of the crop. If size is an ``int``
            instead of sequence like (h, w), a square crop of size (size, size) is made.
vfdev's avatar
vfdev committed
827
            If provided a tuple or list of length 1, it will be interpreted as (size[0], size[0]).
828
829
830
831
832
833
834
835
836
837
838
839
840
841

    Example:
         >>> transform = Compose([
         >>>    FiveCrop(size), # this is a list of PIL Images
         >>>    Lambda(lambda crops: torch.stack([ToTensor()(crop) for crop in crops])) # returns a 4D tensor
         >>> ])
         >>> #In your test loop you can do the following:
         >>> input, target = batch # input is a 5d tensor, target is 2d
         >>> bs, ncrops, c, h, w = input.size()
         >>> result = model(input.view(-1, c, h, w)) # fuse batch size and ncrops
         >>> result_avg = result.view(bs, ncrops, -1).mean(1) # avg over crops
    """

    def __init__(self, size):
vfdev's avatar
vfdev committed
842
        super().__init__()
843
844
        if isinstance(size, numbers.Number):
            self.size = (int(size), int(size))
vfdev's avatar
vfdev committed
845
846
        elif isinstance(size, Sequence) and len(size) == 1:
            self.size = (size[0], size[0])
847
        else:
vfdev's avatar
vfdev committed
848
849
850
            if len(size) != 2:
                raise ValueError("Please provide only two dimensions (h, w) for size.")

851
852
            self.size = size

vfdev's avatar
vfdev committed
853
854
855
856
857
858
859
860
    def forward(self, img):
        """
        Args:
            img (PIL Image or Tensor): Image to be cropped.

        Returns:
            tuple of 5 images. Image can be PIL Image or Tensor
        """
861
862
        return F.five_crop(img, self.size)

863
864
865
    def __repr__(self):
        return self.__class__.__name__ + '(size={0})'.format(self.size)

866

vfdev's avatar
vfdev committed
867
868
869
870
871
872
class TenCrop(torch.nn.Module):
    """Crop the given image into four corners and the central crop plus the flipped version of
    these (horizontal flipping is used by default).
    The image can be a PIL Image or a Tensor, in which case it is expected
    to have [..., H, W] shape, where ... means an arbitrary number of leading
    dimensions
873
874
875
876
877
878
879
880
881

    .. Note::
         This transform returns a tuple of images and there may be a mismatch in the number of
         inputs and targets your Dataset returns. See below for an example of how to deal with
         this.

    Args:
        size (sequence or int): Desired output size of the crop. If size is an
            int instead of sequence like (h, w), a square crop (size, size) is
vfdev's avatar
vfdev committed
882
            made. If provided a tuple or list of length 1, it will be interpreted as (size[0], size[0]).
883
        vertical_flip (bool): Use vertical flipping instead of horizontal
884
885
886
887
888
889
890
891
892
893
894
895
896
897

    Example:
         >>> transform = Compose([
         >>>    TenCrop(size), # this is a list of PIL Images
         >>>    Lambda(lambda crops: torch.stack([ToTensor()(crop) for crop in crops])) # returns a 4D tensor
         >>> ])
         >>> #In your test loop you can do the following:
         >>> input, target = batch # input is a 5d tensor, target is 2d
         >>> bs, ncrops, c, h, w = input.size()
         >>> result = model(input.view(-1, c, h, w)) # fuse batch size and ncrops
         >>> result_avg = result.view(bs, ncrops, -1).mean(1) # avg over crops
    """

    def __init__(self, size, vertical_flip=False):
vfdev's avatar
vfdev committed
898
        super().__init__()
899
900
        if isinstance(size, numbers.Number):
            self.size = (int(size), int(size))
vfdev's avatar
vfdev committed
901
902
        elif isinstance(size, Sequence) and len(size) == 1:
            self.size = (size[0], size[0])
903
        else:
vfdev's avatar
vfdev committed
904
905
906
            if len(size) != 2:
                raise ValueError("Please provide only two dimensions (h, w) for size.")

907
908
909
            self.size = size
        self.vertical_flip = vertical_flip

vfdev's avatar
vfdev committed
910
911
912
913
914
915
916
917
    def forward(self, img):
        """
        Args:
            img (PIL Image or Tensor): Image to be cropped.

        Returns:
            tuple of 10 images. Image can be PIL Image or Tensor
        """
918
919
        return F.ten_crop(img, self.size, self.vertical_flip)

920
    def __repr__(self):
921
        return self.__class__.__name__ + '(size={0}, vertical_flip={1})'.format(self.size, self.vertical_flip)
922

923

924
class LinearTransformation(object):
ekka's avatar
ekka committed
925
    """Transform a tensor image with a square transformation matrix and a mean_vector computed
926
    offline.
ekka's avatar
ekka committed
927
928
929
    Given transformation_matrix and mean_vector, will flatten the torch.*Tensor and
    subtract mean_vector from it which is then followed by computing the dot
    product with the transformation matrix and then reshaping the tensor to its
930
    original shape.
931

932
    Applications:
933
        whitening transformation: Suppose X is a column vector zero-centered data.
934
935
936
        Then compute the data covariance matrix [D x D] with torch.mm(X.t(), X),
        perform SVD on this matrix and pass it as transformation_matrix.

937
938
    Args:
        transformation_matrix (Tensor): tensor [D x D], D = C x H x W
ekka's avatar
ekka committed
939
        mean_vector (Tensor): tensor [D], D = C x H x W
940
941
    """

ekka's avatar
ekka committed
942
    def __init__(self, transformation_matrix, mean_vector):
943
944
945
        if transformation_matrix.size(0) != transformation_matrix.size(1):
            raise ValueError("transformation_matrix should be square. Got " +
                             "[{} x {}] rectangular matrix.".format(*transformation_matrix.size()))
ekka's avatar
ekka committed
946
947
948

        if mean_vector.size(0) != transformation_matrix.size(0):
            raise ValueError("mean_vector should have the same length {}".format(mean_vector.size(0)) +
Francisco Massa's avatar
Francisco Massa committed
949
950
                             " as any one of the dimensions of the transformation_matrix [{}]"
                             .format(tuple(transformation_matrix.size())))
ekka's avatar
ekka committed
951

952
        self.transformation_matrix = transformation_matrix
ekka's avatar
ekka committed
953
        self.mean_vector = mean_vector
954
955
956
957
958
959
960
961
962
963
964
965
966

    def __call__(self, tensor):
        """
        Args:
            tensor (Tensor): Tensor image of size (C, H, W) to be whitened.

        Returns:
            Tensor: Transformed image.
        """
        if tensor.size(0) * tensor.size(1) * tensor.size(2) != self.transformation_matrix.size(0):
            raise ValueError("tensor and transformation matrix have incompatible shape." +
                             "[{} x {} x {}] != ".format(*tensor.size()) +
                             "{}".format(self.transformation_matrix.size(0)))
ekka's avatar
ekka committed
967
        flat_tensor = tensor.view(1, -1) - self.mean_vector
968
969
970
971
        transformed_tensor = torch.mm(flat_tensor, self.transformation_matrix)
        tensor = transformed_tensor.view(tensor.size())
        return tensor

972
    def __repr__(self):
ekka's avatar
ekka committed
973
974
975
        format_string = self.__class__.__name__ + '(transformation_matrix='
        format_string += (str(self.transformation_matrix.tolist()) + ')')
        format_string += (", (mean_vector=" + str(self.mean_vector.tolist()) + ')')
976
977
        return format_string

978

979
class ColorJitter(torch.nn.Module):
980
981
982
    """Randomly change the brightness, contrast and saturation of an image.

    Args:
yaox12's avatar
yaox12 committed
983
984
985
986
987
988
989
990
991
992
993
994
        brightness (float or tuple of float (min, max)): How much to jitter brightness.
            brightness_factor is chosen uniformly from [max(0, 1 - brightness), 1 + brightness]
            or the given [min, max]. Should be non negative numbers.
        contrast (float or tuple of float (min, max)): How much to jitter contrast.
            contrast_factor is chosen uniformly from [max(0, 1 - contrast), 1 + contrast]
            or the given [min, max]. Should be non negative numbers.
        saturation (float or tuple of float (min, max)): How much to jitter saturation.
            saturation_factor is chosen uniformly from [max(0, 1 - saturation), 1 + saturation]
            or the given [min, max]. Should be non negative numbers.
        hue (float or tuple of float (min, max)): How much to jitter hue.
            hue_factor is chosen uniformly from [-hue, hue] or the given [min, max].
            Should have 0<= hue <= 0.5 or -0.5 <= min <= max <= 0.5.
995
    """
996

997
    def __init__(self, brightness=0, contrast=0, saturation=0, hue=0):
998
        super().__init__()
yaox12's avatar
yaox12 committed
999
1000
1001
1002
1003
1004
        self.brightness = self._check_input(brightness, 'brightness')
        self.contrast = self._check_input(contrast, 'contrast')
        self.saturation = self._check_input(saturation, 'saturation')
        self.hue = self._check_input(hue, 'hue', center=0, bound=(-0.5, 0.5),
                                     clip_first_on_zero=False)

1005
    @torch.jit.unused
yaox12's avatar
yaox12 committed
1006
1007
1008
1009
    def _check_input(self, value, name, center=1, bound=(0, float('inf')), clip_first_on_zero=True):
        if isinstance(value, numbers.Number):
            if value < 0:
                raise ValueError("If {} is a single number, it must be non negative.".format(name))
1010
            value = [center - float(value), center + float(value)]
yaox12's avatar
yaox12 committed
1011
            if clip_first_on_zero:
1012
                value[0] = max(value[0], 0.0)
yaox12's avatar
yaox12 committed
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
        elif isinstance(value, (tuple, list)) and len(value) == 2:
            if not bound[0] <= value[0] <= value[1] <= bound[1]:
                raise ValueError("{} values should be between {}".format(name, bound))
        else:
            raise TypeError("{} should be a single number or a list/tuple with lenght 2.".format(name))

        # if value is 0 or (1., 1.) for brightness/contrast/saturation
        # or (0., 0.) for hue, do nothing
        if value[0] == value[1] == center:
            value = None
        return value
1024
1025

    @staticmethod
1026
    @torch.jit.unused
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
    def get_params(brightness, contrast, saturation, hue):
        """Get a randomized transform to be applied on image.

        Arguments are same as that of __init__.

        Returns:
            Transform which randomly adjusts brightness, contrast and
            saturation in a random order.
        """
        transforms = []
yaox12's avatar
yaox12 committed
1037
1038
1039

        if brightness is not None:
            brightness_factor = random.uniform(brightness[0], brightness[1])
1040
1041
            transforms.append(Lambda(lambda img: F.adjust_brightness(img, brightness_factor)))

yaox12's avatar
yaox12 committed
1042
1043
        if contrast is not None:
            contrast_factor = random.uniform(contrast[0], contrast[1])
1044
1045
            transforms.append(Lambda(lambda img: F.adjust_contrast(img, contrast_factor)))

yaox12's avatar
yaox12 committed
1046
1047
        if saturation is not None:
            saturation_factor = random.uniform(saturation[0], saturation[1])
1048
1049
            transforms.append(Lambda(lambda img: F.adjust_saturation(img, saturation_factor)))

yaox12's avatar
yaox12 committed
1050
1051
        if hue is not None:
            hue_factor = random.uniform(hue[0], hue[1])
1052
1053
            transforms.append(Lambda(lambda img: F.adjust_hue(img, hue_factor)))

vfdev's avatar
vfdev committed
1054
        random.shuffle(transforms)
1055
1056
1057
1058
        transform = Compose(transforms)

        return transform

1059
    def forward(self, img):
1060
1061
        """
        Args:
1062
            img (PIL Image or Tensor): Input image.
1063
1064

        Returns:
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079
1080
1081
1082
1083
1084
1085
1086
1087
1088
1089
            PIL Image or Tensor: Color jittered image.
        """
        fn_idx = torch.randperm(4)
        for fn_id in fn_idx:
            if fn_id == 0 and self.brightness is not None:
                brightness = self.brightness
                brightness_factor = torch.tensor(1.0).uniform_(brightness[0], brightness[1]).item()
                img = F.adjust_brightness(img, brightness_factor)

            if fn_id == 1 and self.contrast is not None:
                contrast = self.contrast
                contrast_factor = torch.tensor(1.0).uniform_(contrast[0], contrast[1]).item()
                img = F.adjust_contrast(img, contrast_factor)

            if fn_id == 2 and self.saturation is not None:
                saturation = self.saturation
                saturation_factor = torch.tensor(1.0).uniform_(saturation[0], saturation[1]).item()
                img = F.adjust_saturation(img, saturation_factor)

            if fn_id == 3 and self.hue is not None:
                hue = self.hue
                hue_factor = torch.tensor(1.0).uniform_(hue[0], hue[1]).item()
                img = F.adjust_hue(img, hue_factor)

        return img
1090

1091
    def __repr__(self):
1092
1093
1094
1095
1096
1097
        format_string = self.__class__.__name__ + '('
        format_string += 'brightness={0}'.format(self.brightness)
        format_string += ', contrast={0}'.format(self.contrast)
        format_string += ', saturation={0}'.format(self.saturation)
        format_string += ', hue={0})'.format(self.hue)
        return format_string
1098

1099
1100
1101
1102
1103
1104
1105
1106
1107

class RandomRotation(object):
    """Rotate the image by angle.

    Args:
        degrees (sequence or float or int): Range of degrees to select from.
            If degrees is a number instead of sequence like (min, max), the range of degrees
            will be (-degrees, +degrees).
        resample ({PIL.Image.NEAREST, PIL.Image.BILINEAR, PIL.Image.BICUBIC}, optional):
1108
            An optional resampling filter. See `filters`_ for more information.
1109
1110
1111
1112
1113
1114
1115
1116
            If omitted, or if the image has mode "1" or "P", it is set to PIL.Image.NEAREST.
        expand (bool, optional): Optional expansion flag.
            If true, expands the output to make it large enough to hold the entire rotated image.
            If false or omitted, make the output image the same size as the input image.
            Note that the expand flag assumes rotation around the center and no translation.
        center (2-tuple, optional): Optional center of rotation.
            Origin is the upper left corner.
            Default is the center of the image.
Philip Meier's avatar
Philip Meier committed
1117
1118
1119
        fill (n-tuple or int or float): Pixel fill value for area outside the rotated
            image. If int or float, the value is used for all bands respectively.
            Defaults to 0 for all bands. This option is only available for ``pillow>=5.2.0``.
1120
1121
1122

    .. _filters: https://pillow.readthedocs.io/en/latest/handbook/concepts.html#filters

1123
1124
    """

Philip Meier's avatar
Philip Meier committed
1125
    def __init__(self, degrees, resample=False, expand=False, center=None, fill=None):
1126
1127
1128
1129
1130
1131
1132
1133
1134
1135
1136
1137
        if isinstance(degrees, numbers.Number):
            if degrees < 0:
                raise ValueError("If degrees is a single number, it must be positive.")
            self.degrees = (-degrees, degrees)
        else:
            if len(degrees) != 2:
                raise ValueError("If degrees is a sequence, it must be of len 2.")
            self.degrees = degrees

        self.resample = resample
        self.expand = expand
        self.center = center
1138
        self.fill = fill
1139
1140
1141
1142
1143
1144
1145
1146

    @staticmethod
    def get_params(degrees):
        """Get parameters for ``rotate`` for a random rotation.

        Returns:
            sequence: params to be passed to ``rotate`` for random rotation.
        """
vfdev's avatar
vfdev committed
1147
        angle = random.uniform(degrees[0], degrees[1])
1148
1149
1150
1151
1152

        return angle

    def __call__(self, img):
        """
1153
        Args:
1154
1155
1156
1157
1158
1159
1160
1161
            img (PIL Image): Image to be rotated.

        Returns:
            PIL Image: Rotated image.
        """

        angle = self.get_params(self.degrees)

1162
        return F.rotate(img, angle, self.resample, self.expand, self.center, self.fill)
1163

1164
    def __repr__(self):
1165
1166
1167
1168
1169
        format_string = self.__class__.__name__ + '(degrees={0}'.format(self.degrees)
        format_string += ', resample={0}'.format(self.resample)
        format_string += ', expand={0}'.format(self.expand)
        if self.center is not None:
            format_string += ', center={0}'.format(self.center)
1170
1171
        if self.fill is not None:
            format_string += ', fill={0}'.format(self.fill)
1172
1173
        format_string += ')'
        return format_string
1174

1175

1176
1177
1178
1179
1180
1181
class RandomAffine(object):
    """Random affine transformation of the image keeping center invariant

    Args:
        degrees (sequence or float or int): Range of degrees to select from.
            If degrees is a number instead of sequence like (min, max), the range of degrees
1182
            will be (-degrees, +degrees). Set to 0 to deactivate rotations.
1183
1184
1185
1186
1187
1188
1189
        translate (tuple, optional): tuple of maximum absolute fraction for horizontal
            and vertical translations. For example translate=(a, b), then horizontal shift
            is randomly sampled in the range -img_width * a < dx < img_width * a and vertical shift is
            randomly sampled in the range -img_height * b < dy < img_height * b. Will not translate by default.
        scale (tuple, optional): scaling factor interval, e.g (a, b), then scale is
            randomly sampled from the range a <= scale <= b. Will keep original scale by default.
        shear (sequence or float or int, optional): Range of degrees to select from.
ptrblck's avatar
ptrblck committed
1190
1191
1192
1193
1194
            If shear is a number, a shear parallel to the x axis in the range (-shear, +shear)
            will be apllied. Else if shear is a tuple or list of 2 values a shear parallel to the x axis in the
            range (shear[0], shear[1]) will be applied. Else if shear is a tuple or list of 4 values,
            a x-axis shear in (shear[0], shear[1]) and y-axis shear in (shear[2], shear[3]) will be applied.
            Will not apply shear by default
1195
        resample ({PIL.Image.NEAREST, PIL.Image.BILINEAR, PIL.Image.BICUBIC}, optional):
1196
            An optional resampling filter. See `filters`_ for more information.
1197
            If omitted, or if the image has mode "1" or "P", it is set to PIL.Image.NEAREST.
Surgan Jandial's avatar
Surgan Jandial committed
1198
1199
        fillcolor (tuple or int): Optional fill color (Tuple for RGB Image And int for grayscale) for the area
            outside the transform in the output image.(Pillow>=5.0.0)
1200
1201
1202

    .. _filters: https://pillow.readthedocs.io/en/latest/handbook/concepts.html#filters

1203
1204
1205
1206
1207
1208
1209
1210
1211
1212
1213
1214
1215
1216
1217
1218
1219
1220
1221
1222
1223
1224
1225
1226
1227
1228
1229
1230
1231
1232
1233
1234
1235
1236
    """

    def __init__(self, degrees, translate=None, scale=None, shear=None, resample=False, fillcolor=0):
        if isinstance(degrees, numbers.Number):
            if degrees < 0:
                raise ValueError("If degrees is a single number, it must be positive.")
            self.degrees = (-degrees, degrees)
        else:
            assert isinstance(degrees, (tuple, list)) and len(degrees) == 2, \
                "degrees should be a list or tuple and it must be of length 2."
            self.degrees = degrees

        if translate is not None:
            assert isinstance(translate, (tuple, list)) and len(translate) == 2, \
                "translate should be a list or tuple and it must be of length 2."
            for t in translate:
                if not (0.0 <= t <= 1.0):
                    raise ValueError("translation values should be between 0 and 1")
        self.translate = translate

        if scale is not None:
            assert isinstance(scale, (tuple, list)) and len(scale) == 2, \
                "scale should be a list or tuple and it must be of length 2."
            for s in scale:
                if s <= 0:
                    raise ValueError("scale values should be positive")
        self.scale = scale

        if shear is not None:
            if isinstance(shear, numbers.Number):
                if shear < 0:
                    raise ValueError("If shear is a single number, it must be positive.")
                self.shear = (-shear, shear)
            else:
ptrblck's avatar
ptrblck committed
1237
1238
1239
1240
1241
1242
1243
1244
                assert isinstance(shear, (tuple, list)) and \
                    (len(shear) == 2 or len(shear) == 4), \
                    "shear should be a list or tuple and it must be of length 2 or 4."
                # X-Axis shear with [min, max]
                if len(shear) == 2:
                    self.shear = [shear[0], shear[1], 0., 0.]
                elif len(shear) == 4:
                    self.shear = [s for s in shear]
1245
1246
1247
1248
1249
1250
1251
1252
1253
1254
1255
1256
1257
1258
1259
1260
1261
1262
1263
1264
1265
1266
1267
1268
1269
1270
1271
1272
        else:
            self.shear = shear

        self.resample = resample
        self.fillcolor = fillcolor

    @staticmethod
    def get_params(degrees, translate, scale_ranges, shears, img_size):
        """Get parameters for affine transformation

        Returns:
            sequence: params to be passed to the affine transformation
        """
        angle = random.uniform(degrees[0], degrees[1])
        if translate is not None:
            max_dx = translate[0] * img_size[0]
            max_dy = translate[1] * img_size[1]
            translations = (np.round(random.uniform(-max_dx, max_dx)),
                            np.round(random.uniform(-max_dy, max_dy)))
        else:
            translations = (0, 0)

        if scale_ranges is not None:
            scale = random.uniform(scale_ranges[0], scale_ranges[1])
        else:
            scale = 1.0

        if shears is not None:
ptrblck's avatar
ptrblck committed
1273
1274
1275
1276
1277
            if len(shears) == 2:
                shear = [random.uniform(shears[0], shears[1]), 0.]
            elif len(shears) == 4:
                shear = [random.uniform(shears[0], shears[1]),
                         random.uniform(shears[2], shears[3])]
1278
1279
1280
1281
1282
1283
1284
1285
1286
1287
1288
1289
1290
1291
1292
1293
1294
1295
1296
1297
1298
1299
1300
1301
1302
1303
1304
1305
1306
1307
1308
1309
1310
        else:
            shear = 0.0

        return angle, translations, scale, shear

    def __call__(self, img):
        """
            img (PIL Image): Image to be transformed.

        Returns:
            PIL Image: Affine transformed image.
        """
        ret = self.get_params(self.degrees, self.translate, self.scale, self.shear, img.size)
        return F.affine(img, *ret, resample=self.resample, fillcolor=self.fillcolor)

    def __repr__(self):
        s = '{name}(degrees={degrees}'
        if self.translate is not None:
            s += ', translate={translate}'
        if self.scale is not None:
            s += ', scale={scale}'
        if self.shear is not None:
            s += ', shear={shear}'
        if self.resample > 0:
            s += ', resample={resample}'
        if self.fillcolor != 0:
            s += ', fillcolor={fillcolor}'
        s += ')'
        d = dict(self.__dict__)
        d['resample'] = _pil_interpolation_to_str[d['resample']]
        return s.format(name=self.__class__.__name__, **d)


1311
1312
class Grayscale(object):
    """Convert image to grayscale.
1313

1314
1315
1316
1317
    Args:
        num_output_channels (int): (1 or 3) number of channels desired for output image

    Returns:
1318
        PIL Image: Grayscale version of the input.
1319
1320
         - If ``num_output_channels == 1`` : returned image is single channel
         - If ``num_output_channels == 3`` : returned image is 3 channel with r == g == b
1321
1322
1323
1324
1325
1326
1327
1328
1329
1330
1331
1332
1333
1334
1335
1336

    """

    def __init__(self, num_output_channels=1):
        self.num_output_channels = num_output_channels

    def __call__(self, img):
        """
        Args:
            img (PIL Image): Image to be converted to grayscale.

        Returns:
            PIL Image: Randomly grayscaled image.
        """
        return F.to_grayscale(img, num_output_channels=self.num_output_channels)

1337
    def __repr__(self):
1338
        return self.__class__.__name__ + '(num_output_channels={0})'.format(self.num_output_channels)
1339

1340
1341
1342

class RandomGrayscale(object):
    """Randomly convert image to grayscale with a probability of p (default 0.1).
1343

1344
1345
1346
1347
    Args:
        p (float): probability that image should be converted to grayscale.

    Returns:
1348
1349
1350
1351
        PIL Image: Grayscale version of the input image with probability p and unchanged
        with probability (1-p).
        - If input image is 1 channel: grayscale version is 1 channel
        - If input image is 3 channel: grayscale version is 3 channel with r == g == b
1352
1353
1354
1355
1356
1357
1358
1359
1360
1361
1362
1363
1364
1365
1366
1367
1368
1369

    """

    def __init__(self, p=0.1):
        self.p = p

    def __call__(self, img):
        """
        Args:
            img (PIL Image): Image to be converted to grayscale.

        Returns:
            PIL Image: Randomly grayscaled image.
        """
        num_output_channels = 1 if img.mode == 'L' else 3
        if random.random() < self.p:
            return F.to_grayscale(img, num_output_channels=num_output_channels)
        return img
1370
1371

    def __repr__(self):
1372
        return self.__class__.__name__ + '(p={0})'.format(self.p)
1373
1374


1375
class RandomErasing(torch.nn.Module):
1376
    """ Randomly selects a rectangle region in an image and erases its pixels.
1377
1378
    'Random Erasing Data Augmentation' by Zhong et al. See https://arxiv.org/pdf/1708.04896.pdf

1379
1380
1381
1382
1383
1384
1385
1386
    Args:
         p: probability that the random erasing operation will be performed.
         scale: range of proportion of erased area against input image.
         ratio: range of aspect ratio of erased area.
         value: erasing value. Default is 0. If a single int, it is used to
            erase all pixels. If a tuple of length 3, it is used to erase
            R, G, B channels respectively.
            If a str of 'random', erasing each pixel with random values.
Zhun Zhong's avatar
Zhun Zhong committed
1387
         inplace: boolean to make this transform inplace. Default set to False.
1388

1389
1390
    Returns:
        Erased Image.
1391

1392
1393
    # Examples:
        >>> transform = transforms.Compose([
1394
1395
1396
1397
        >>>   transforms.RandomHorizontalFlip(),
        >>>   transforms.ToTensor(),
        >>>   transforms.Normalize((0.485, 0.456, 0.406), (0.229, 0.224, 0.225)),
        >>>   transforms.RandomErasing(),
1398
1399
1400
        >>> ])
    """

Zhun Zhong's avatar
Zhun Zhong committed
1401
    def __init__(self, p=0.5, scale=(0.02, 0.33), ratio=(0.3, 3.3), value=0, inplace=False):
1402
1403
1404
1405
1406
1407
1408
1409
1410
        super().__init__()
        if not isinstance(value, (numbers.Number, str, tuple, list)):
            raise TypeError("Argument value should be either a number or str or a sequence")
        if isinstance(value, str) and value != "random":
            raise ValueError("If value is str, it should be 'random'")
        if not isinstance(scale, (tuple, list)):
            raise TypeError("Scale should be a sequence")
        if not isinstance(ratio, (tuple, list)):
            raise TypeError("Ratio should be a sequence")
1411
        if (scale[0] > scale[1]) or (ratio[0] > ratio[1]):
1412
            warnings.warn("Scale and ratio should be of kind (min, max)")
1413
        if scale[0] < 0 or scale[1] > 1:
1414
            raise ValueError("Scale should be between 0 and 1")
1415
        if p < 0 or p > 1:
1416
            raise ValueError("Random erasing probability should be between 0 and 1")
1417
1418
1419
1420
1421

        self.p = p
        self.scale = scale
        self.ratio = ratio
        self.value = value
1422
        self.inplace = inplace
1423
1424

    @staticmethod
1425
1426
1427
    def get_params(
            img: Tensor, scale: Tuple[float, float], ratio: Tuple[float, float], value: Optional[List[float]] = None
    ) -> Tuple[int, int, int, int, Tensor]:
1428
1429
1430
1431
        """Get parameters for ``erase`` for a random erasing.

        Args:
            img (Tensor): Tensor image of size (C, H, W) to be erased.
1432
1433
1434
1435
1436
            scale (tuple or list): range of proportion of erased area against input image.
            ratio (tuple or list): range of aspect ratio of erased area.
            value (list, optional): erasing value. If None, it is interpreted as "random"
                (erasing each pixel with random values). If ``len(value)`` is 1, it is interpreted as a number,
                i.e. ``value[0]``.
1437
1438
1439
1440

        Returns:
            tuple: params (i, j, h, w, v) to be passed to ``erase`` for random erasing.
        """
Zhun Zhong's avatar
Zhun Zhong committed
1441
        img_c, img_h, img_w = img.shape
1442
        area = img_h * img_w
1443

1444
        for _ in range(10):
1445
1446
            erase_area = area * torch.empty(1).uniform_(scale[0], scale[1]).item()
            aspect_ratio = torch.empty(1).uniform_(ratio[0], ratio[1]).item()
1447
1448
1449

            h = int(round(math.sqrt(erase_area * aspect_ratio)))
            w = int(round(math.sqrt(erase_area / aspect_ratio)))
1450
1451
1452
1453
1454
1455
1456
            if not (h < img_h and w < img_w):
                continue

            if value is None:
                v = torch.empty([img_c, h, w], dtype=torch.float32).normal_()
            else:
                v = torch.tensor(value)[:, None, None]
1457

1458
1459
            i = torch.randint(0, img_h - h + 1, size=(1, )).item()
            j = torch.randint(0, img_w - w + 1, size=(1, )).item()
1460
            return i, j, h, w, v
1461

Zhun Zhong's avatar
Zhun Zhong committed
1462
1463
1464
        # Return original image
        return 0, 0, img_h, img_w, img

1465
    def forward(self, img):
1466
1467
1468
1469
1470
1471
1472
        """
        Args:
            img (Tensor): Tensor image of size (C, H, W) to be erased.

        Returns:
            img (Tensor): Erased Tensor image.
        """
1473
1474
1475
1476
1477
1478
1479
1480
1481
1482
1483
1484
1485
1486
1487
1488
1489
1490
1491
        if torch.rand(1) < self.p:

            # cast self.value to script acceptable type
            if isinstance(self.value, (int, float)):
                value = [self.value, ]
            elif isinstance(self.value, str):
                value = None
            elif isinstance(self.value, tuple):
                value = list(self.value)
            else:
                value = self.value

            if value is not None and not (len(value) in (1, img.shape[-3])):
                raise ValueError(
                    "If value is a sequence, it should have either a single value or "
                    "{} (number of input channels)".format(img.shape[-3])
                )

            x, y, h, w, v = self.get_params(img, scale=self.scale, ratio=self.ratio, value=value)
1492
            return F.erase(img, x, y, h, w, v, self.inplace)
1493
        return img