transforms.py 77.7 KB
Newer Older
1
import math
vfdev's avatar
vfdev committed
2
import numbers
3
import random
vfdev's avatar
vfdev committed
4
import warnings
vfdev's avatar
vfdev committed
5
from collections.abc import Sequence
6
from typing import Tuple, List, Optional
vfdev's avatar
vfdev committed
7
8
9
10

import torch
from torch import Tensor

11
12
13
14
15
16
try:
    import accimage
except ImportError:
    accimage = None

from . import functional as F
17
from .functional import InterpolationMode, _interpolation_modes_from_int
18

19

20
21
22
23
__all__ = ["Compose", "ToTensor", "PILToTensor", "ConvertImageDtype", "ToPILImage", "Normalize", "Resize", "Scale",
           "CenterCrop", "Pad", "Lambda", "RandomApply", "RandomChoice", "RandomOrder", "RandomCrop",
           "RandomHorizontalFlip", "RandomVerticalFlip", "RandomResizedCrop", "RandomSizedCrop", "FiveCrop", "TenCrop",
           "LinearTransformation", "ColorJitter", "RandomRotation", "RandomAffine", "Grayscale", "RandomGrayscale",
24
25
           "RandomPerspective", "RandomErasing", "GaussianBlur", "InterpolationMode", "RandomInvert", "RandomPosterize",
           "RandomSolarize", "RandomAdjustSharpness", "RandomAutocontrast", "RandomEqualize"]
26

27

28
class Compose:
29
30
    """Composes several transforms together. This transform does not support torchscript.
    Please, see the note below.
31
32
33
34
35
36
37
38
39

    Args:
        transforms (list of ``Transform`` objects): list of transforms to compose.

    Example:
        >>> transforms.Compose([
        >>>     transforms.CenterCrop(10),
        >>>     transforms.ToTensor(),
        >>> ])
40
41
42
43
44
45
46
47
48
49
50
51
52

    .. note::
        In order to script the transformations, please use ``torch.nn.Sequential`` as below.

        >>> transforms = torch.nn.Sequential(
        >>>     transforms.CenterCrop(10),
        >>>     transforms.Normalize((0.485, 0.456, 0.406), (0.229, 0.224, 0.225)),
        >>> )
        >>> scripted_transforms = torch.jit.script(transforms)

        Make sure to use only scriptable transformations, i.e. that work with ``torch.Tensor``, does not require
        `lambda` functions or ``PIL.Image``.

53
54
55
56
57
58
59
60
61
62
    """

    def __init__(self, transforms):
        self.transforms = transforms

    def __call__(self, img):
        for t in self.transforms:
            img = t(img)
        return img

63
64
65
66
67
68
69
70
    def __repr__(self):
        format_string = self.__class__.__name__ + '('
        for t in self.transforms:
            format_string += '\n'
            format_string += '    {0}'.format(t)
        format_string += '\n)'
        return format_string

71

72
class ToTensor:
73
    """Convert a ``PIL Image`` or ``numpy.ndarray`` to tensor. This transform does not support torchscript.
74
75

    Converts a PIL Image or numpy.ndarray (H x W x C) in the range
surgan12's avatar
surgan12 committed
76
77
78
79
80
    [0, 255] to a torch.FloatTensor of shape (C x H x W) in the range [0.0, 1.0]
    if the PIL Image belongs to one of the modes (L, LA, P, I, F, RGB, YCbCr, RGBA, CMYK, 1)
    or if the numpy.ndarray has dtype = np.uint8

    In the other cases, tensors are returned without scaling.
81
82
83
84
85
86

    .. note::
        Because the input image is scaled to [0.0, 1.0], this transformation should not be used when
        transforming target image masks. See the `references`_ for implementing the transforms for image masks.

    .. _references: https://github.com/pytorch/vision/tree/master/references/segmentation
87
88
89
90
91
92
93
94
95
96
97
98
    """

    def __call__(self, pic):
        """
        Args:
            pic (PIL Image or numpy.ndarray): Image to be converted to tensor.

        Returns:
            Tensor: Converted image.
        """
        return F.to_tensor(pic)

99
100
101
    def __repr__(self):
        return self.__class__.__name__ + '()'

102

103
class PILToTensor:
104
    """Convert a ``PIL Image`` to a tensor of the same type. This transform does not support torchscript.
105

vfdev's avatar
vfdev committed
106
    Converts a PIL Image (H x W x C) to a Tensor of shape (C x H x W).
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
    """

    def __call__(self, pic):
        """
        Args:
            pic (PIL Image): Image to be converted to tensor.

        Returns:
            Tensor: Converted image.
        """
        return F.pil_to_tensor(pic)

    def __repr__(self):
        return self.__class__.__name__ + '()'


123
class ConvertImageDtype(torch.nn.Module):
124
    """Convert a tensor image to the given ``dtype`` and scale the values accordingly
125
    This function does not support PIL Image.
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142

    Args:
        dtype (torch.dtype): Desired data type of the output

    .. note::

        When converting from a smaller to a larger integer ``dtype`` the maximum values are **not** mapped exactly.
        If converted back and forth, this mismatch has no effect.

    Raises:
        RuntimeError: When trying to cast :class:`torch.float32` to :class:`torch.int32` or :class:`torch.int64` as
            well as for trying to cast :class:`torch.float64` to :class:`torch.int64`. These conversions might lead to
            overflow errors since the floating point ``dtype`` cannot store consecutive integers over the whole range
            of the integer ``dtype``.
    """

    def __init__(self, dtype: torch.dtype) -> None:
143
        super().__init__()
144
145
        self.dtype = dtype

vfdev's avatar
vfdev committed
146
    def forward(self, image):
147
148
149
        return F.convert_image_dtype(image, self.dtype)


150
class ToPILImage:
151
    """Convert a tensor or an ndarray to PIL Image. This transform does not support torchscript.
152
153
154
155
156
157
158

    Converts a torch.*Tensor of shape C x H x W or a numpy ndarray of shape
    H x W x C to a PIL Image while preserving the value range.

    Args:
        mode (`PIL.Image mode`_): color space and pixel depth of input data (optional).
            If ``mode`` is ``None`` (default) there are some assumptions made about the input data:
vfdev's avatar
vfdev committed
159
160
161
162
163
            - If the input has 4 channels, the ``mode`` is assumed to be ``RGBA``.
            - If the input has 3 channels, the ``mode`` is assumed to be ``RGB``.
            - If the input has 2 channels, the ``mode`` is assumed to be ``LA``.
            - If the input has 1 channel, the ``mode`` is determined by the data type (i.e ``int``, ``float``,
            ``short``).
164

csukuangfj's avatar
csukuangfj committed
165
    .. _PIL.Image mode: https://pillow.readthedocs.io/en/latest/handbook/concepts.html#concept-modes
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
    """
    def __init__(self, mode=None):
        self.mode = mode

    def __call__(self, pic):
        """
        Args:
            pic (Tensor or numpy.ndarray): Image to be converted to PIL Image.

        Returns:
            PIL Image: Image converted to PIL Image.

        """
        return F.to_pil_image(pic, self.mode)

181
    def __repr__(self):
182
183
184
185
186
        format_string = self.__class__.__name__ + '('
        if self.mode is not None:
            format_string += 'mode={0}'.format(self.mode)
        format_string += ')'
        return format_string
187

188

189
class Normalize(torch.nn.Module):
Fang Gao's avatar
Fang Gao committed
190
    """Normalize a tensor image with mean and standard deviation.
191
    This transform does not support PIL Image.
192
193
194
    Given mean: ``(mean[1],...,mean[n])`` and std: ``(std[1],..,std[n])`` for ``n``
    channels, this transform will normalize each channel of the input
    ``torch.*Tensor`` i.e.,
abdjava's avatar
abdjava committed
195
    ``output[channel] = (input[channel] - mean[channel]) / std[channel]``
196

197
    .. note::
198
        This transform acts out of place, i.e., it does not mutate the input tensor.
199

200
201
202
    Args:
        mean (sequence): Sequence of means for each channel.
        std (sequence): Sequence of standard deviations for each channel.
203
204
        inplace(bool,optional): Bool to make this operation in-place.

205
206
    """

surgan12's avatar
surgan12 committed
207
    def __init__(self, mean, std, inplace=False):
208
        super().__init__()
209
210
        self.mean = mean
        self.std = std
surgan12's avatar
surgan12 committed
211
        self.inplace = inplace
212

213
    def forward(self, tensor: Tensor) -> Tensor:
214
215
        """
        Args:
vfdev's avatar
vfdev committed
216
            tensor (Tensor): Tensor image to be normalized.
217
218
219
220

        Returns:
            Tensor: Normalized Tensor image.
        """
surgan12's avatar
surgan12 committed
221
        return F.normalize(tensor, self.mean, self.std, self.inplace)
222

223
224
225
    def __repr__(self):
        return self.__class__.__name__ + '(mean={0}, std={1})'.format(self.mean, self.std)

226

vfdev's avatar
vfdev committed
227
228
class Resize(torch.nn.Module):
    """Resize the input image to the given size.
229
    If the image is torch Tensor, it is expected
vfdev's avatar
vfdev committed
230
    to have [..., H, W] shape, where ... means an arbitrary number of leading dimensions
231

232
233
234
235
    .. warning::
        The output image might be different depending on its type: when downsampling, the interpolation of PIL images
        and tensors is slightly different, because PIL applies antialiasing. This may lead to significant differences
        in the performance of a network. Therefore, it is preferable to train and serve a model with the same input
236
237
        types. See also below the ``antialias`` parameter, which can help making the output of PIL images and tensors
        closer.
238

239
240
241
242
243
    Args:
        size (sequence or int): Desired output size. If size is a sequence like
            (h, w), output size will be matched to this. If size is an int,
            smaller edge of the image will be matched to this number.
            i.e, if height > width, then image will be rescaled to
vfdev's avatar
vfdev committed
244
            (size * height / width, size).
245
246
247

            .. note::
                In torchscript mode size as single int is not supported, use a sequence of length 1: ``[size, ]``.
248
249
250
251
        interpolation (InterpolationMode): Desired interpolation enum defined by
            :class:`torchvision.transforms.InterpolationMode`. Default is ``InterpolationMode.BILINEAR``.
            If input is Tensor, only ``InterpolationMode.NEAREST``, ``InterpolationMode.BILINEAR`` and
            ``InterpolationMode.BICUBIC`` are supported.
252
            For backward compatibility integer values (e.g. ``PIL.Image.NEAREST``) are still acceptable.
253
254
255
256
        max_size (int, optional): The maximum allowed for the longer edge of
            the resized image: if the longer edge of the image is greater
            than ``max_size`` after being resized according to ``size``, then
            the image is resized again so that the longer edge is equal to
257
            ``max_size``. As a result, ``size`` might be overruled, i.e the
258
259
260
            smaller edge may be shorter than ``size``. This is only supported
            if ``size`` is an int (or a sequence of length 1 in torchscript
            mode).
261
        antialias (bool, optional): antialias flag. If ``img`` is PIL Image, the flag is ignored and anti-alias
262
263
264
            is always used. If ``img`` is Tensor, the flag is False by default and can be set to True for
            ``InterpolationMode.BILINEAR`` only mode. This can help making the output for PIL images and tensors
            closer.
265
266
267

            .. warning::
                There is no autodiff support for ``antialias=True`` option with input ``img`` as Tensor.
268

269
270
    """

271
    def __init__(self, size, interpolation=InterpolationMode.BILINEAR, max_size=None, antialias=None):
vfdev's avatar
vfdev committed
272
        super().__init__()
273
274
275
276
277
        if not isinstance(size, (int, Sequence)):
            raise TypeError("Size should be int or sequence. Got {}".format(type(size)))
        if isinstance(size, Sequence) and len(size) not in (1, 2):
            raise ValueError("If size is a sequence, it should have 1 or 2 values")
        self.size = size
278
        self.max_size = max_size
279
280
281
282

        # Backward compatibility with integer value
        if isinstance(interpolation, int):
            warnings.warn(
283
284
                "Argument interpolation should be of type InterpolationMode instead of int. "
                "Please, use InterpolationMode enum."
285
286
287
            )
            interpolation = _interpolation_modes_from_int(interpolation)

288
        self.interpolation = interpolation
289
        self.antialias = antialias
290

vfdev's avatar
vfdev committed
291
    def forward(self, img):
292
293
        """
        Args:
vfdev's avatar
vfdev committed
294
            img (PIL Image or Tensor): Image to be scaled.
295
296

        Returns:
vfdev's avatar
vfdev committed
297
            PIL Image or Tensor: Rescaled image.
298
        """
299
        return F.resize(img, self.size, self.interpolation, self.max_size, self.antialias)
300

301
    def __repr__(self):
302
        interpolate_str = self.interpolation.value
303
304
        return self.__class__.__name__ + '(size={0}, interpolation={1}, max_size={2}, antialias={3})'.format(
            self.size, interpolate_str, self.max_size, self.antialias)
305

306
307
308
309
310
311
312
313
314
315
316

class Scale(Resize):
    """
    Note: This transform is deprecated in favor of Resize.
    """
    def __init__(self, *args, **kwargs):
        warnings.warn("The use of the transforms.Scale transform is deprecated, " +
                      "please use transforms.Resize instead.")
        super(Scale, self).__init__(*args, **kwargs)


vfdev's avatar
vfdev committed
317
318
class CenterCrop(torch.nn.Module):
    """Crops the given image at the center.
319
    If the image is torch Tensor, it is expected
320
321
    to have [..., H, W] shape, where ... means an arbitrary number of leading dimensions.
    If image size is smaller than output size along any edge, image is padded with 0 and then center cropped.
322
323
324
325

    Args:
        size (sequence or int): Desired output size of the crop. If size is an
            int instead of sequence like (h, w), a square crop (size, size) is
326
            made. If provided a sequence of length 1, it will be interpreted as (size[0], size[0]).
327
328
329
    """

    def __init__(self, size):
vfdev's avatar
vfdev committed
330
        super().__init__()
331
        self.size = _setup_size(size, error_msg="Please provide only two dimensions (h, w) for size.")
332

vfdev's avatar
vfdev committed
333
    def forward(self, img):
334
335
        """
        Args:
vfdev's avatar
vfdev committed
336
            img (PIL Image or Tensor): Image to be cropped.
337
338

        Returns:
vfdev's avatar
vfdev committed
339
            PIL Image or Tensor: Cropped image.
340
341
342
        """
        return F.center_crop(img, self.size)

343
344
345
    def __repr__(self):
        return self.__class__.__name__ + '(size={0})'.format(self.size)

346

347
348
class Pad(torch.nn.Module):
    """Pad the given image on all sides with the given "pad" value.
349
    If the image is torch Tensor, it is expected
350
351
352
    to have [..., H, W] shape, where ... means at most 2 leading dimensions for mode reflect and symmetric,
    at most 3 leading dimensions for mode edge,
    and an arbitrary number of leading dimensions for mode constant
353
354

    Args:
355
356
357
        padding (int or sequence): Padding on each border. If a single int is provided this
            is used to pad all borders. If sequence of length 2 is provided this is the padding
            on left/right and top/bottom respectively. If a sequence of length 4 is provided
358
            this is the padding for the left, top, right and bottom borders respectively.
359
360
361
362

            .. note::
                In torchscript mode padding as single int is not supported, use a sequence of
                length 1: ``[padding, ]``.
363
        fill (number or str or tuple): Pixel fill value for constant fill. Default is 0. If a tuple of
364
            length 3, it is used to fill R, G, B channels respectively.
365
366
367
            This value is only used when the padding_mode is constant.
            Only number is supported for torch Tensor.
            Only int or str or tuple value is supported for PIL Image.
368
        padding_mode (str): Type of padding. Should be: constant, edge, reflect or symmetric.
369
            Default is constant.
370
371
372

            - constant: pads with a constant value, this value is specified with fill

373
374
            - edge: pads with the last value at the edge of the image.
              If input a 5D torch Tensor, the last 3 dimensions will be padded instead of the last 2
375

376
377
378
            - reflect: pads with reflection of image without repeating the last value on the edge.
              For example, padding [1, 2, 3, 4] with 2 elements on both sides in reflect mode
              will result in [3, 2, 1, 2, 3, 4, 3, 2]
379

380
381
382
            - symmetric: pads with reflection of image repeating the last value on the edge.
              For example, padding [1, 2, 3, 4] with 2 elements on both sides in symmetric mode
              will result in [2, 1, 1, 2, 3, 4, 4, 3]
383
384
    """

385
386
387
388
389
390
391
392
393
394
395
396
397
    def __init__(self, padding, fill=0, padding_mode="constant"):
        super().__init__()
        if not isinstance(padding, (numbers.Number, tuple, list)):
            raise TypeError("Got inappropriate padding arg")

        if not isinstance(fill, (numbers.Number, str, tuple)):
            raise TypeError("Got inappropriate fill arg")

        if padding_mode not in ["constant", "edge", "reflect", "symmetric"]:
            raise ValueError("Padding mode should be either constant, edge, reflect or symmetric")

        if isinstance(padding, Sequence) and len(padding) not in [1, 2, 4]:
            raise ValueError("Padding must be an int or a 1, 2, or 4 element tuple, not a " +
398
399
400
401
                             "{} element tuple".format(len(padding)))

        self.padding = padding
        self.fill = fill
402
        self.padding_mode = padding_mode
403

404
    def forward(self, img):
405
406
        """
        Args:
407
            img (PIL Image or Tensor): Image to be padded.
408
409

        Returns:
410
            PIL Image or Tensor: Padded image.
411
        """
412
        return F.pad(img, self.padding, self.fill, self.padding_mode)
413

414
    def __repr__(self):
415
416
        return self.__class__.__name__ + '(padding={0}, fill={1}, padding_mode={2})'.\
            format(self.padding, self.fill, self.padding_mode)
417

418

419
class Lambda:
420
    """Apply a user-defined lambda as a transform. This transform does not support torchscript.
421
422
423
424
425
426

    Args:
        lambd (function): Lambda/function to be used for transform.
    """

    def __init__(self, lambd):
427
428
        if not callable(lambd):
            raise TypeError("Argument lambd should be callable, got {}".format(repr(type(lambd).__name__)))
429
430
431
432
433
        self.lambd = lambd

    def __call__(self, img):
        return self.lambd(img)

434
435
436
    def __repr__(self):
        return self.__class__.__name__ + '()'

437

438
class RandomTransforms:
439
440
441
    """Base class for a list of transformations with randomness

    Args:
442
        transforms (sequence): list of transformations
443
444
445
    """

    def __init__(self, transforms):
446
447
        if not isinstance(transforms, Sequence):
            raise TypeError("Argument transforms should be a sequence")
448
449
450
451
452
453
454
455
456
457
458
459
460
461
        self.transforms = transforms

    def __call__(self, *args, **kwargs):
        raise NotImplementedError()

    def __repr__(self):
        format_string = self.__class__.__name__ + '('
        for t in self.transforms:
            format_string += '\n'
            format_string += '    {0}'.format(t)
        format_string += '\n)'
        return format_string


462
class RandomApply(torch.nn.Module):
463
    """Apply randomly a list of transformations with a given probability.
464
465
466
467
468
469
470
471
472
473
474
475

    .. note::
        In order to script the transformation, please use ``torch.nn.ModuleList`` as input instead of list/tuple of
        transforms as shown below:

        >>> transforms = transforms.RandomApply(torch.nn.ModuleList([
        >>>     transforms.ColorJitter(),
        >>> ]), p=0.3)
        >>> scripted_transforms = torch.jit.script(transforms)

        Make sure to use only scriptable transformations, i.e. that work with ``torch.Tensor``, does not require
        `lambda` functions or ``PIL.Image``.
476
477

    Args:
478
        transforms (sequence or torch.nn.Module): list of transformations
479
480
481
482
        p (float): probability
    """

    def __init__(self, transforms, p=0.5):
483
484
        super().__init__()
        self.transforms = transforms
485
486
        self.p = p

487
488
    def forward(self, img):
        if self.p < torch.rand(1):
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
            return img
        for t in self.transforms:
            img = t(img)
        return img

    def __repr__(self):
        format_string = self.__class__.__name__ + '('
        format_string += '\n    p={}'.format(self.p)
        for t in self.transforms:
            format_string += '\n'
            format_string += '    {0}'.format(t)
        format_string += '\n)'
        return format_string


class RandomOrder(RandomTransforms):
505
    """Apply a list of transformations in a random order. This transform does not support torchscript.
506
507
508
509
510
511
512
513
514
515
    """
    def __call__(self, img):
        order = list(range(len(self.transforms)))
        random.shuffle(order)
        for i in order:
            img = self.transforms[i](img)
        return img


class RandomChoice(RandomTransforms):
516
    """Apply single transformation randomly picked from a list. This transform does not support torchscript.
517
518
519
520
521
522
    """
    def __call__(self, img):
        t = random.choice(self.transforms)
        return t(img)


vfdev's avatar
vfdev committed
523
524
class RandomCrop(torch.nn.Module):
    """Crop the given image at a random location.
525
    If the image is torch Tensor, it is expected
526
527
    to have [..., H, W] shape, where ... means an arbitrary number of leading dimensions,
    but if non-constant padding is used, the input is expected to have at most 2 leading dimensions
528
529
530
531

    Args:
        size (sequence or int): Desired output size of the crop. If size is an
            int instead of sequence like (h, w), a square crop (size, size) is
532
            made. If provided a sequence of length 1, it will be interpreted as (size[0], size[0]).
533
        padding (int or sequence, optional): Optional padding on each border
vfdev's avatar
vfdev committed
534
            of the image. Default is None. If a single int is provided this
535
536
            is used to pad all borders. If sequence of length 2 is provided this is the padding
            on left/right and top/bottom respectively. If a sequence of length 4 is provided
vfdev's avatar
vfdev committed
537
            this is the padding for the left, top, right and bottom borders respectively.
538
539
540
541

            .. note::
                In torchscript mode padding as single int is not supported, use a sequence of
                length 1: ``[padding, ]``.
542
        pad_if_needed (boolean): It will pad the image if smaller than the
ekka's avatar
ekka committed
543
            desired size to avoid raising an exception. Since cropping is done
544
            after padding, the padding seems to be done at a random offset.
545
        fill (number or str or tuple): Pixel fill value for constant fill. Default is 0. If a tuple of
546
            length 3, it is used to fill R, G, B channels respectively.
547
548
549
            This value is only used when the padding_mode is constant.
            Only number is supported for torch Tensor.
            Only int or str or tuple value is supported for PIL Image.
550
551
        padding_mode (str): Type of padding. Should be: constant, edge, reflect or symmetric.
            Default is constant.
552

553
            - constant: pads with a constant value, this value is specified with fill
554

555
556
            - edge: pads with the last value at the edge of the image.
              If input a 5D torch Tensor, the last 3 dimensions will be padded instead of the last 2
557

558
559
560
            - reflect: pads with reflection of image without repeating the last value on the edge.
              For example, padding [1, 2, 3, 4] with 2 elements on both sides in reflect mode
              will result in [3, 2, 1, 2, 3, 4, 3, 2]
561

562
563
564
            - symmetric: pads with reflection of image repeating the last value on the edge.
              For example, padding [1, 2, 3, 4] with 2 elements on both sides in symmetric mode
              will result in [2, 1, 1, 2, 3, 4, 4, 3]
565
566
567
    """

    @staticmethod
vfdev's avatar
vfdev committed
568
    def get_params(img: Tensor, output_size: Tuple[int, int]) -> Tuple[int, int, int, int]:
569
570
571
        """Get parameters for ``crop`` for a random crop.

        Args:
vfdev's avatar
vfdev committed
572
            img (PIL Image or Tensor): Image to be cropped.
573
574
575
576
577
            output_size (tuple): Expected output size of the crop.

        Returns:
            tuple: params (i, j, h, w) to be passed to ``crop`` for random crop.
        """
vfdev's avatar
vfdev committed
578
        w, h = F._get_image_size(img)
579
        th, tw = output_size
vfdev's avatar
vfdev committed
580
581
582
583
584
585

        if h + 1 < th or w + 1 < tw:
            raise ValueError(
                "Required crop size {} is larger then input image size {}".format((th, tw), (h, w))
            )

586
587
588
        if w == tw and h == th:
            return 0, 0, h, w

589
590
        i = torch.randint(0, h - th + 1, size=(1, )).item()
        j = torch.randint(0, w - tw + 1, size=(1, )).item()
591
592
        return i, j, th, tw

vfdev's avatar
vfdev committed
593
594
595
    def __init__(self, size, padding=None, pad_if_needed=False, fill=0, padding_mode="constant"):
        super().__init__()

596
597
598
599
        self.size = tuple(_setup_size(
            size, error_msg="Please provide only two dimensions (h, w) for size."
        ))

vfdev's avatar
vfdev committed
600
601
602
603
604
605
        self.padding = padding
        self.pad_if_needed = pad_if_needed
        self.fill = fill
        self.padding_mode = padding_mode

    def forward(self, img):
606
607
        """
        Args:
vfdev's avatar
vfdev committed
608
            img (PIL Image or Tensor): Image to be cropped.
609
610

        Returns:
vfdev's avatar
vfdev committed
611
            PIL Image or Tensor: Cropped image.
612
        """
613
614
        if self.padding is not None:
            img = F.pad(img, self.padding, self.fill, self.padding_mode)
615

vfdev's avatar
vfdev committed
616
        width, height = F._get_image_size(img)
617
        # pad the width if needed
vfdev's avatar
vfdev committed
618
619
620
        if self.pad_if_needed and width < self.size[1]:
            padding = [self.size[1] - width, 0]
            img = F.pad(img, padding, self.fill, self.padding_mode)
621
        # pad the height if needed
vfdev's avatar
vfdev committed
622
623
624
        if self.pad_if_needed and height < self.size[0]:
            padding = [0, self.size[0] - height]
            img = F.pad(img, padding, self.fill, self.padding_mode)
625

626
627
628
629
        i, j, h, w = self.get_params(img, self.size)

        return F.crop(img, i, j, h, w)

630
    def __repr__(self):
vfdev's avatar
vfdev committed
631
        return self.__class__.__name__ + "(size={0}, padding={1})".format(self.size, self.padding)
632

633

634
635
class RandomHorizontalFlip(torch.nn.Module):
    """Horizontally flip the given image randomly with a given probability.
636
    If the image is torch Tensor, it is expected
637
638
    to have [..., H, W] shape, where ... means an arbitrary number of leading
    dimensions
639
640
641
642
643
644

    Args:
        p (float): probability of the image being flipped. Default value is 0.5
    """

    def __init__(self, p=0.5):
645
        super().__init__()
646
        self.p = p
647

648
    def forward(self, img):
649
650
        """
        Args:
651
            img (PIL Image or Tensor): Image to be flipped.
652
653

        Returns:
654
            PIL Image or Tensor: Randomly flipped image.
655
        """
656
        if torch.rand(1) < self.p:
657
658
659
            return F.hflip(img)
        return img

660
    def __repr__(self):
661
        return self.__class__.__name__ + '(p={})'.format(self.p)
662

663

664
class RandomVerticalFlip(torch.nn.Module):
vfdev's avatar
vfdev committed
665
    """Vertically flip the given image randomly with a given probability.
666
    If the image is torch Tensor, it is expected
667
668
    to have [..., H, W] shape, where ... means an arbitrary number of leading
    dimensions
669
670
671
672
673
674

    Args:
        p (float): probability of the image being flipped. Default value is 0.5
    """

    def __init__(self, p=0.5):
675
        super().__init__()
676
        self.p = p
677

678
    def forward(self, img):
679
680
        """
        Args:
681
            img (PIL Image or Tensor): Image to be flipped.
682
683

        Returns:
684
            PIL Image or Tensor: Randomly flipped image.
685
        """
686
        if torch.rand(1) < self.p:
687
688
689
            return F.vflip(img)
        return img

690
    def __repr__(self):
691
        return self.__class__.__name__ + '(p={})'.format(self.p)
692

693

694
695
class RandomPerspective(torch.nn.Module):
    """Performs a random perspective transformation of the given image with a given probability.
696
    If the image is torch Tensor, it is expected
697
    to have [..., H, W] shape, where ... means an arbitrary number of leading dimensions.
698
699

    Args:
700
701
702
        distortion_scale (float): argument to control the degree of distortion and ranges from 0 to 1.
            Default is 0.5.
        p (float): probability of the image being transformed. Default is 0.5.
703
704
705
        interpolation (InterpolationMode): Desired interpolation enum defined by
            :class:`torchvision.transforms.InterpolationMode`. Default is ``InterpolationMode.BILINEAR``.
            If input is Tensor, only ``InterpolationMode.NEAREST``, ``InterpolationMode.BILINEAR`` are supported.
706
            For backward compatibility integer values (e.g. ``PIL.Image.NEAREST``) are still acceptable.
707
708
        fill (sequence or number): Pixel fill value for the area outside the transformed
            image. Default is ``0``. If given a number, the value is used for all bands respectively.
709
710
    """

711
    def __init__(self, distortion_scale=0.5, p=0.5, interpolation=InterpolationMode.BILINEAR, fill=0):
712
        super().__init__()
713
        self.p = p
714
715
716
717

        # Backward compatibility with integer value
        if isinstance(interpolation, int):
            warnings.warn(
718
719
                "Argument interpolation should be of type InterpolationMode instead of int. "
                "Please, use InterpolationMode enum."
720
721
722
            )
            interpolation = _interpolation_modes_from_int(interpolation)

723
724
        self.interpolation = interpolation
        self.distortion_scale = distortion_scale
725
726
727
728
729
730

        if fill is None:
            fill = 0
        elif not isinstance(fill, (Sequence, numbers.Number)):
            raise TypeError("Fill should be either a sequence or a number.")

731
        self.fill = fill
732

733
    def forward(self, img):
734
735
        """
        Args:
736
            img (PIL Image or Tensor): Image to be Perspectively transformed.
737
738

        Returns:
739
            PIL Image or Tensor: Randomly transformed image.
740
        """
741
742
743
744
745
746
747
748

        fill = self.fill
        if isinstance(img, Tensor):
            if isinstance(fill, (int, float)):
                fill = [float(fill)] * F._get_image_num_channels(img)
            else:
                fill = [float(f) for f in fill]

749
750
        if torch.rand(1) < self.p:
            width, height = F._get_image_size(img)
751
            startpoints, endpoints = self.get_params(width, height, self.distortion_scale)
752
            return F.perspective(img, startpoints, endpoints, self.interpolation, fill)
753
754
755
        return img

    @staticmethod
756
    def get_params(width: int, height: int, distortion_scale: float) -> Tuple[List[List[int]], List[List[int]]]:
757
758
759
        """Get parameters for ``perspective`` for a random perspective transform.

        Args:
760
761
762
            width (int): width of the image.
            height (int): height of the image.
            distortion_scale (float): argument to control the degree of distortion and ranges from 0 to 1.
763
764

        Returns:
765
            List containing [top-left, top-right, bottom-right, bottom-left] of the original image,
766
767
            List containing [top-left, top-right, bottom-right, bottom-left] of the transformed image.
        """
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
        half_height = height // 2
        half_width = width // 2
        topleft = [
            int(torch.randint(0, int(distortion_scale * half_width) + 1, size=(1, )).item()),
            int(torch.randint(0, int(distortion_scale * half_height) + 1, size=(1, )).item())
        ]
        topright = [
            int(torch.randint(width - int(distortion_scale * half_width) - 1, width, size=(1, )).item()),
            int(torch.randint(0, int(distortion_scale * half_height) + 1, size=(1, )).item())
        ]
        botright = [
            int(torch.randint(width - int(distortion_scale * half_width) - 1, width, size=(1, )).item()),
            int(torch.randint(height - int(distortion_scale * half_height) - 1, height, size=(1, )).item())
        ]
        botleft = [
            int(torch.randint(0, int(distortion_scale * half_width) + 1, size=(1, )).item()),
            int(torch.randint(height - int(distortion_scale * half_height) - 1, height, size=(1, )).item())
        ]
        startpoints = [[0, 0], [width - 1, 0], [width - 1, height - 1], [0, height - 1]]
787
788
789
790
791
792
793
        endpoints = [topleft, topright, botright, botleft]
        return startpoints, endpoints

    def __repr__(self):
        return self.__class__.__name__ + '(p={})'.format(self.p)


794
class RandomResizedCrop(torch.nn.Module):
795
796
    """Crop a random portion of image and resize it to a given size.

797
    If the image is torch Tensor, it is expected
798
    to have [..., H, W] shape, where ... means an arbitrary number of leading dimensions
799

800
801
802
    A crop of the original image is made: the crop has a random area (H * W)
    and a random aspect ratio. This crop is finally resized to the given
    size. This is popularly used to train the Inception networks.
803
804

    Args:
805
        size (int or sequence): expected output size of the crop, for each edge. If size is an
806
            int instead of sequence like (h, w), a square output size ``(size, size)`` is
807
            made. If provided a sequence of length 1, it will be interpreted as (size[0], size[0]).
808
809
810

            .. note::
                In torchscript mode size as single int is not supported, use a sequence of length 1: ``[size, ]``.
Nicolas Hug's avatar
Nicolas Hug committed
811
812
        scale (tuple of float): Specifies the lower and upper bounds for the random area of the crop,
            before resizing. The scale is defined with respect to the area of the original image.
813
814
        ratio (tuple of float): lower and upper bounds for the random aspect ratio of the crop, before
            resizing.
815
816
817
818
        interpolation (InterpolationMode): Desired interpolation enum defined by
            :class:`torchvision.transforms.InterpolationMode`. Default is ``InterpolationMode.BILINEAR``.
            If input is Tensor, only ``InterpolationMode.NEAREST``, ``InterpolationMode.BILINEAR`` and
            ``InterpolationMode.BICUBIC`` are supported.
819
820
            For backward compatibility integer values (e.g. ``PIL.Image.NEAREST``) are still acceptable.

821
822
    """

823
    def __init__(self, size, scale=(0.08, 1.0), ratio=(3. / 4., 4. / 3.), interpolation=InterpolationMode.BILINEAR):
824
        super().__init__()
825
        self.size = _setup_size(size, error_msg="Please provide only two dimensions (h, w) for size.")
826

827
        if not isinstance(scale, Sequence):
828
            raise TypeError("Scale should be a sequence")
829
        if not isinstance(ratio, Sequence):
830
            raise TypeError("Ratio should be a sequence")
831
        if (scale[0] > scale[1]) or (ratio[0] > ratio[1]):
832
            warnings.warn("Scale and ratio should be of kind (min, max)")
833

834
835
836
        # Backward compatibility with integer value
        if isinstance(interpolation, int):
            warnings.warn(
837
838
                "Argument interpolation should be of type InterpolationMode instead of int. "
                "Please, use InterpolationMode enum."
839
840
841
            )
            interpolation = _interpolation_modes_from_int(interpolation)

842
        self.interpolation = interpolation
843
844
        self.scale = scale
        self.ratio = ratio
845
846

    @staticmethod
847
    def get_params(
848
            img: Tensor, scale: List[float], ratio: List[float]
849
    ) -> Tuple[int, int, int, int]:
850
851
852
        """Get parameters for ``crop`` for a random sized crop.

        Args:
853
            img (PIL Image or Tensor): Input image.
854
855
            scale (list): range of scale of the origin size cropped
            ratio (list): range of aspect ratio of the origin aspect ratio cropped
856
857
858

        Returns:
            tuple: params (i, j, h, w) to be passed to ``crop`` for a random
859
            sized crop.
860
        """
vfdev's avatar
vfdev committed
861
        width, height = F._get_image_size(img)
Zhicheng Yan's avatar
Zhicheng Yan committed
862
        area = height * width
863

864
        log_ratio = torch.log(torch.tensor(ratio))
865
        for _ in range(10):
866
            target_area = area * torch.empty(1).uniform_(scale[0], scale[1]).item()
867
868
869
            aspect_ratio = torch.exp(
                torch.empty(1).uniform_(log_ratio[0], log_ratio[1])
            ).item()
870
871
872
873

            w = int(round(math.sqrt(target_area * aspect_ratio)))
            h = int(round(math.sqrt(target_area / aspect_ratio)))

Zhicheng Yan's avatar
Zhicheng Yan committed
874
            if 0 < w <= width and 0 < h <= height:
875
876
                i = torch.randint(0, height - h + 1, size=(1,)).item()
                j = torch.randint(0, width - w + 1, size=(1,)).item()
877
878
                return i, j, h, w

879
        # Fallback to central crop
Zhicheng Yan's avatar
Zhicheng Yan committed
880
        in_ratio = float(width) / float(height)
881
        if in_ratio < min(ratio):
Zhicheng Yan's avatar
Zhicheng Yan committed
882
            w = width
883
            h = int(round(w / min(ratio)))
884
        elif in_ratio > max(ratio):
Zhicheng Yan's avatar
Zhicheng Yan committed
885
            h = height
886
            w = int(round(h * max(ratio)))
887
        else:  # whole image
Zhicheng Yan's avatar
Zhicheng Yan committed
888
889
890
891
            w = width
            h = height
        i = (height - h) // 2
        j = (width - w) // 2
892
        return i, j, h, w
893

894
    def forward(self, img):
895
896
        """
        Args:
897
            img (PIL Image or Tensor): Image to be cropped and resized.
898
899

        Returns:
900
            PIL Image or Tensor: Randomly cropped and resized image.
901
        """
902
        i, j, h, w = self.get_params(img, self.scale, self.ratio)
903
904
        return F.resized_crop(img, i, j, h, w, self.size, self.interpolation)

905
    def __repr__(self):
906
        interpolate_str = self.interpolation.value
907
        format_string = self.__class__.__name__ + '(size={0}'.format(self.size)
908
909
        format_string += ', scale={0}'.format(tuple(round(s, 4) for s in self.scale))
        format_string += ', ratio={0}'.format(tuple(round(r, 4) for r in self.ratio))
910
911
        format_string += ', interpolation={0})'.format(interpolate_str)
        return format_string
912

913
914
915
916
917
918
919
920
921
922
923

class RandomSizedCrop(RandomResizedCrop):
    """
    Note: This transform is deprecated in favor of RandomResizedCrop.
    """
    def __init__(self, *args, **kwargs):
        warnings.warn("The use of the transforms.RandomSizedCrop transform is deprecated, " +
                      "please use transforms.RandomResizedCrop instead.")
        super(RandomSizedCrop, self).__init__(*args, **kwargs)


vfdev's avatar
vfdev committed
924
925
class FiveCrop(torch.nn.Module):
    """Crop the given image into four corners and the central crop.
926
    If the image is torch Tensor, it is expected
vfdev's avatar
vfdev committed
927
928
    to have [..., H, W] shape, where ... means an arbitrary number of leading
    dimensions
929
930
931
932
933
934
935
936
937

    .. Note::
         This transform returns a tuple of images and there may be a mismatch in the number of
         inputs and targets your Dataset returns. See below for an example of how to deal with
         this.

    Args:
         size (sequence or int): Desired output size of the crop. If size is an ``int``
            instead of sequence like (h, w), a square crop of size (size, size) is made.
938
            If provided a sequence of length 1, it will be interpreted as (size[0], size[0]).
939
940
941
942
943
944
945
946
947
948
949
950
951
952

    Example:
         >>> transform = Compose([
         >>>    FiveCrop(size), # this is a list of PIL Images
         >>>    Lambda(lambda crops: torch.stack([ToTensor()(crop) for crop in crops])) # returns a 4D tensor
         >>> ])
         >>> #In your test loop you can do the following:
         >>> input, target = batch # input is a 5d tensor, target is 2d
         >>> bs, ncrops, c, h, w = input.size()
         >>> result = model(input.view(-1, c, h, w)) # fuse batch size and ncrops
         >>> result_avg = result.view(bs, ncrops, -1).mean(1) # avg over crops
    """

    def __init__(self, size):
vfdev's avatar
vfdev committed
953
        super().__init__()
954
        self.size = _setup_size(size, error_msg="Please provide only two dimensions (h, w) for size.")
955

vfdev's avatar
vfdev committed
956
957
958
959
960
961
962
963
    def forward(self, img):
        """
        Args:
            img (PIL Image or Tensor): Image to be cropped.

        Returns:
            tuple of 5 images. Image can be PIL Image or Tensor
        """
964
965
        return F.five_crop(img, self.size)

966
967
968
    def __repr__(self):
        return self.__class__.__name__ + '(size={0})'.format(self.size)

969

vfdev's avatar
vfdev committed
970
971
972
class TenCrop(torch.nn.Module):
    """Crop the given image into four corners and the central crop plus the flipped version of
    these (horizontal flipping is used by default).
973
    If the image is torch Tensor, it is expected
vfdev's avatar
vfdev committed
974
975
    to have [..., H, W] shape, where ... means an arbitrary number of leading
    dimensions
976
977
978
979
980
981
982
983
984

    .. Note::
         This transform returns a tuple of images and there may be a mismatch in the number of
         inputs and targets your Dataset returns. See below for an example of how to deal with
         this.

    Args:
        size (sequence or int): Desired output size of the crop. If size is an
            int instead of sequence like (h, w), a square crop (size, size) is
985
            made. If provided a sequence of length 1, it will be interpreted as (size[0], size[0]).
986
        vertical_flip (bool): Use vertical flipping instead of horizontal
987
988
989
990
991
992
993
994
995
996
997
998
999
1000

    Example:
         >>> transform = Compose([
         >>>    TenCrop(size), # this is a list of PIL Images
         >>>    Lambda(lambda crops: torch.stack([ToTensor()(crop) for crop in crops])) # returns a 4D tensor
         >>> ])
         >>> #In your test loop you can do the following:
         >>> input, target = batch # input is a 5d tensor, target is 2d
         >>> bs, ncrops, c, h, w = input.size()
         >>> result = model(input.view(-1, c, h, w)) # fuse batch size and ncrops
         >>> result_avg = result.view(bs, ncrops, -1).mean(1) # avg over crops
    """

    def __init__(self, size, vertical_flip=False):
vfdev's avatar
vfdev committed
1001
        super().__init__()
1002
        self.size = _setup_size(size, error_msg="Please provide only two dimensions (h, w) for size.")
1003
1004
        self.vertical_flip = vertical_flip

vfdev's avatar
vfdev committed
1005
1006
1007
1008
1009
1010
1011
1012
    def forward(self, img):
        """
        Args:
            img (PIL Image or Tensor): Image to be cropped.

        Returns:
            tuple of 10 images. Image can be PIL Image or Tensor
        """
1013
1014
        return F.ten_crop(img, self.size, self.vertical_flip)

1015
    def __repr__(self):
1016
        return self.__class__.__name__ + '(size={0}, vertical_flip={1})'.format(self.size, self.vertical_flip)
1017

1018

1019
class LinearTransformation(torch.nn.Module):
ekka's avatar
ekka committed
1020
    """Transform a tensor image with a square transformation matrix and a mean_vector computed
1021
    offline.
1022
    This transform does not support PIL Image.
ekka's avatar
ekka committed
1023
1024
1025
    Given transformation_matrix and mean_vector, will flatten the torch.*Tensor and
    subtract mean_vector from it which is then followed by computing the dot
    product with the transformation matrix and then reshaping the tensor to its
1026
    original shape.
1027

1028
    Applications:
1029
        whitening transformation: Suppose X is a column vector zero-centered data.
1030
1031
1032
        Then compute the data covariance matrix [D x D] with torch.mm(X.t(), X),
        perform SVD on this matrix and pass it as transformation_matrix.

1033
1034
    Args:
        transformation_matrix (Tensor): tensor [D x D], D = C x H x W
ekka's avatar
ekka committed
1035
        mean_vector (Tensor): tensor [D], D = C x H x W
1036
1037
    """

ekka's avatar
ekka committed
1038
    def __init__(self, transformation_matrix, mean_vector):
1039
        super().__init__()
1040
1041
1042
        if transformation_matrix.size(0) != transformation_matrix.size(1):
            raise ValueError("transformation_matrix should be square. Got " +
                             "[{} x {}] rectangular matrix.".format(*transformation_matrix.size()))
ekka's avatar
ekka committed
1043
1044
1045

        if mean_vector.size(0) != transformation_matrix.size(0):
            raise ValueError("mean_vector should have the same length {}".format(mean_vector.size(0)) +
Francisco Massa's avatar
Francisco Massa committed
1046
1047
                             " as any one of the dimensions of the transformation_matrix [{}]"
                             .format(tuple(transformation_matrix.size())))
ekka's avatar
ekka committed
1048

1049
1050
1051
1052
        if transformation_matrix.device != mean_vector.device:
            raise ValueError("Input tensors should be on the same device. Got {} and {}"
                             .format(transformation_matrix.device, mean_vector.device))

1053
        self.transformation_matrix = transformation_matrix
ekka's avatar
ekka committed
1054
        self.mean_vector = mean_vector
1055

1056
    def forward(self, tensor: Tensor) -> Tensor:
1057
1058
        """
        Args:
vfdev's avatar
vfdev committed
1059
            tensor (Tensor): Tensor image to be whitened.
1060
1061
1062
1063

        Returns:
            Tensor: Transformed image.
        """
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
        shape = tensor.shape
        n = shape[-3] * shape[-2] * shape[-1]
        if n != self.transformation_matrix.shape[0]:
            raise ValueError("Input tensor and transformation matrix have incompatible shape." +
                             "[{} x {} x {}] != ".format(shape[-3], shape[-2], shape[-1]) +
                             "{}".format(self.transformation_matrix.shape[0]))

        if tensor.device.type != self.mean_vector.device.type:
            raise ValueError("Input tensor should be on the same device as transformation matrix and mean vector. "
                             "Got {} vs {}".format(tensor.device, self.mean_vector.device))

        flat_tensor = tensor.view(-1, n) - self.mean_vector
1076
        transformed_tensor = torch.mm(flat_tensor, self.transformation_matrix)
1077
        tensor = transformed_tensor.view(shape)
1078
1079
        return tensor

1080
    def __repr__(self):
ekka's avatar
ekka committed
1081
1082
1083
        format_string = self.__class__.__name__ + '(transformation_matrix='
        format_string += (str(self.transformation_matrix.tolist()) + ')')
        format_string += (", (mean_vector=" + str(self.mean_vector.tolist()) + ')')
1084
1085
        return format_string

1086

1087
class ColorJitter(torch.nn.Module):
1088
    """Randomly change the brightness, contrast, saturation and hue of an image.
1089
    If the image is torch Tensor, it is expected
1090
1091
    to have [..., 3, H, W] shape, where ... means an arbitrary number of leading dimensions.
    If img is PIL Image, mode "1", "L", "I", "F" and modes with transparency (alpha channel) are not supported.
1092
1093

    Args:
yaox12's avatar
yaox12 committed
1094
1095
1096
1097
1098
1099
1100
1101
1102
1103
1104
1105
        brightness (float or tuple of float (min, max)): How much to jitter brightness.
            brightness_factor is chosen uniformly from [max(0, 1 - brightness), 1 + brightness]
            or the given [min, max]. Should be non negative numbers.
        contrast (float or tuple of float (min, max)): How much to jitter contrast.
            contrast_factor is chosen uniformly from [max(0, 1 - contrast), 1 + contrast]
            or the given [min, max]. Should be non negative numbers.
        saturation (float or tuple of float (min, max)): How much to jitter saturation.
            saturation_factor is chosen uniformly from [max(0, 1 - saturation), 1 + saturation]
            or the given [min, max]. Should be non negative numbers.
        hue (float or tuple of float (min, max)): How much to jitter hue.
            hue_factor is chosen uniformly from [-hue, hue] or the given [min, max].
            Should have 0<= hue <= 0.5 or -0.5 <= min <= max <= 0.5.
1106
    """
1107

1108
    def __init__(self, brightness=0, contrast=0, saturation=0, hue=0):
1109
        super().__init__()
yaox12's avatar
yaox12 committed
1110
1111
1112
1113
1114
1115
        self.brightness = self._check_input(brightness, 'brightness')
        self.contrast = self._check_input(contrast, 'contrast')
        self.saturation = self._check_input(saturation, 'saturation')
        self.hue = self._check_input(hue, 'hue', center=0, bound=(-0.5, 0.5),
                                     clip_first_on_zero=False)

1116
    @torch.jit.unused
yaox12's avatar
yaox12 committed
1117
1118
1119
1120
    def _check_input(self, value, name, center=1, bound=(0, float('inf')), clip_first_on_zero=True):
        if isinstance(value, numbers.Number):
            if value < 0:
                raise ValueError("If {} is a single number, it must be non negative.".format(name))
1121
            value = [center - float(value), center + float(value)]
yaox12's avatar
yaox12 committed
1122
            if clip_first_on_zero:
1123
                value[0] = max(value[0], 0.0)
yaox12's avatar
yaox12 committed
1124
1125
1126
1127
        elif isinstance(value, (tuple, list)) and len(value) == 2:
            if not bound[0] <= value[0] <= value[1] <= bound[1]:
                raise ValueError("{} values should be between {}".format(name, bound))
        else:
1128
            raise TypeError("{} should be a single number or a list/tuple with length 2.".format(name))
yaox12's avatar
yaox12 committed
1129
1130
1131
1132
1133
1134

        # if value is 0 or (1., 1.) for brightness/contrast/saturation
        # or (0., 0.) for hue, do nothing
        if value[0] == value[1] == center:
            value = None
        return value
1135
1136

    @staticmethod
1137
1138
1139
1140
1141
1142
    def get_params(brightness: Optional[List[float]],
                   contrast: Optional[List[float]],
                   saturation: Optional[List[float]],
                   hue: Optional[List[float]]
                   ) -> Tuple[Tensor, Optional[float], Optional[float], Optional[float], Optional[float]]:
        """Get the parameters for the randomized transform to be applied on image.
1143

1144
1145
1146
1147
1148
1149
1150
1151
1152
        Args:
            brightness (tuple of float (min, max), optional): The range from which the brightness_factor is chosen
                uniformly. Pass None to turn off the transformation.
            contrast (tuple of float (min, max), optional): The range from which the contrast_factor is chosen
                uniformly. Pass None to turn off the transformation.
            saturation (tuple of float (min, max), optional): The range from which the saturation_factor is chosen
                uniformly. Pass None to turn off the transformation.
            hue (tuple of float (min, max), optional): The range from which the hue_factor is chosen uniformly.
                Pass None to turn off the transformation.
1153
1154

        Returns:
1155
1156
            tuple: The parameters used to apply the randomized transform
            along with their random order.
1157
        """
1158
        fn_idx = torch.randperm(4)
1159

1160
1161
1162
1163
        b = None if brightness is None else float(torch.empty(1).uniform_(brightness[0], brightness[1]))
        c = None if contrast is None else float(torch.empty(1).uniform_(contrast[0], contrast[1]))
        s = None if saturation is None else float(torch.empty(1).uniform_(saturation[0], saturation[1]))
        h = None if hue is None else float(torch.empty(1).uniform_(hue[0], hue[1]))
1164

1165
        return fn_idx, b, c, s, h
1166

1167
    def forward(self, img):
1168
1169
        """
        Args:
1170
            img (PIL Image or Tensor): Input image.
1171
1172

        Returns:
1173
1174
            PIL Image or Tensor: Color jittered image.
        """
1175
1176
1177
        fn_idx, brightness_factor, contrast_factor, saturation_factor, hue_factor = \
            self.get_params(self.brightness, self.contrast, self.saturation, self.hue)

1178
        for fn_id in fn_idx:
1179
            if fn_id == 0 and brightness_factor is not None:
1180
                img = F.adjust_brightness(img, brightness_factor)
1181
            elif fn_id == 1 and contrast_factor is not None:
1182
                img = F.adjust_contrast(img, contrast_factor)
1183
            elif fn_id == 2 and saturation_factor is not None:
1184
                img = F.adjust_saturation(img, saturation_factor)
1185
            elif fn_id == 3 and hue_factor is not None:
1186
1187
1188
                img = F.adjust_hue(img, hue_factor)

        return img
1189

1190
    def __repr__(self):
1191
1192
1193
1194
1195
1196
        format_string = self.__class__.__name__ + '('
        format_string += 'brightness={0}'.format(self.brightness)
        format_string += ', contrast={0}'.format(self.contrast)
        format_string += ', saturation={0}'.format(self.saturation)
        format_string += ', hue={0})'.format(self.hue)
        return format_string
1197

1198

1199
class RandomRotation(torch.nn.Module):
1200
    """Rotate the image by angle.
1201
    If the image is torch Tensor, it is expected
1202
    to have [..., H, W] shape, where ... means an arbitrary number of leading dimensions.
1203
1204

    Args:
1205
        degrees (sequence or number): Range of degrees to select from.
1206
1207
            If degrees is a number instead of sequence like (min, max), the range of degrees
            will be (-degrees, +degrees).
1208
1209
1210
        interpolation (InterpolationMode): Desired interpolation enum defined by
            :class:`torchvision.transforms.InterpolationMode`. Default is ``InterpolationMode.NEAREST``.
            If input is Tensor, only ``InterpolationMode.NEAREST``, ``InterpolationMode.BILINEAR`` are supported.
1211
            For backward compatibility integer values (e.g. ``PIL.Image.NEAREST``) are still acceptable.
1212
1213
1214
1215
        expand (bool, optional): Optional expansion flag.
            If true, expands the output to make it large enough to hold the entire rotated image.
            If false or omitted, make the output image the same size as the input image.
            Note that the expand flag assumes rotation around the center and no translation.
1216
        center (sequence, optional): Optional center of rotation, (x, y). Origin is the upper left corner.
1217
            Default is the center of the image.
1218
1219
        fill (sequence or number): Pixel fill value for the area outside the rotated
            image. Default is ``0``. If given a number, the value is used for all bands respectively.
1220
        resample (int, optional): deprecated argument and will be removed since v0.10.0.
1221
            Please use the ``interpolation`` parameter instead.
1222
1223
1224

    .. _filters: https://pillow.readthedocs.io/en/latest/handbook/concepts.html#filters

1225
1226
    """

1227
    def __init__(
1228
        self, degrees, interpolation=InterpolationMode.NEAREST, expand=False, center=None, fill=0, resample=None
1229
    ):
1230
        super().__init__()
1231
1232
1233
1234
1235
1236
1237
1238
1239
        if resample is not None:
            warnings.warn(
                "Argument resample is deprecated and will be removed since v0.10.0. Please, use interpolation instead"
            )
            interpolation = _interpolation_modes_from_int(resample)

        # Backward compatibility with integer value
        if isinstance(interpolation, int):
            warnings.warn(
1240
1241
                "Argument interpolation should be of type InterpolationMode instead of int. "
                "Please, use InterpolationMode enum."
1242
1243
1244
            )
            interpolation = _interpolation_modes_from_int(interpolation)

1245
        self.degrees = _setup_angle(degrees, name="degrees", req_sizes=(2, ))
1246
1247

        if center is not None:
1248
            _check_sequence_input(center, "center", req_sizes=(2, ))
1249
1250

        self.center = center
1251

1252
        self.resample = self.interpolation = interpolation
1253
        self.expand = expand
1254
1255
1256
1257
1258
1259

        if fill is None:
            fill = 0
        elif not isinstance(fill, (Sequence, numbers.Number)):
            raise TypeError("Fill should be either a sequence or a number.")

1260
        self.fill = fill
1261
1262

    @staticmethod
1263
    def get_params(degrees: List[float]) -> float:
1264
1265
1266
        """Get parameters for ``rotate`` for a random rotation.

        Returns:
1267
            float: angle parameter to be passed to ``rotate`` for random rotation.
1268
        """
1269
        angle = float(torch.empty(1).uniform_(float(degrees[0]), float(degrees[1])).item())
1270
1271
        return angle

1272
    def forward(self, img):
1273
        """
1274
        Args:
1275
            img (PIL Image or Tensor): Image to be rotated.
1276
1277

        Returns:
1278
            PIL Image or Tensor: Rotated image.
1279
        """
1280
1281
1282
1283
1284
1285
        fill = self.fill
        if isinstance(img, Tensor):
            if isinstance(fill, (int, float)):
                fill = [float(fill)] * F._get_image_num_channels(img)
            else:
                fill = [float(f) for f in fill]
1286
        angle = self.get_params(self.degrees)
1287
1288

        return F.rotate(img, angle, self.resample, self.expand, self.center, fill)
1289

1290
    def __repr__(self):
1291
        interpolate_str = self.interpolation.value
1292
        format_string = self.__class__.__name__ + '(degrees={0}'.format(self.degrees)
1293
        format_string += ', interpolation={0}'.format(interpolate_str)
1294
1295
1296
        format_string += ', expand={0}'.format(self.expand)
        if self.center is not None:
            format_string += ', center={0}'.format(self.center)
1297
1298
        if self.fill is not None:
            format_string += ', fill={0}'.format(self.fill)
1299
1300
        format_string += ')'
        return format_string
1301

1302

1303
1304
class RandomAffine(torch.nn.Module):
    """Random affine transformation of the image keeping center invariant.
1305
    If the image is torch Tensor, it is expected
1306
    to have [..., H, W] shape, where ... means an arbitrary number of leading dimensions.
1307
1308

    Args:
1309
        degrees (sequence or number): Range of degrees to select from.
1310
            If degrees is a number instead of sequence like (min, max), the range of degrees
1311
            will be (-degrees, +degrees). Set to 0 to deactivate rotations.
1312
1313
1314
1315
1316
1317
        translate (tuple, optional): tuple of maximum absolute fraction for horizontal
            and vertical translations. For example translate=(a, b), then horizontal shift
            is randomly sampled in the range -img_width * a < dx < img_width * a and vertical shift is
            randomly sampled in the range -img_height * b < dy < img_height * b. Will not translate by default.
        scale (tuple, optional): scaling factor interval, e.g (a, b), then scale is
            randomly sampled from the range a <= scale <= b. Will keep original scale by default.
1318
        shear (sequence or number, optional): Range of degrees to select from.
ptrblck's avatar
ptrblck committed
1319
            If shear is a number, a shear parallel to the x axis in the range (-shear, +shear)
1320
1321
            will be applied. Else if shear is a sequence of 2 values a shear parallel to the x axis in the
            range (shear[0], shear[1]) will be applied. Else if shear is a sequence of 4 values,
ptrblck's avatar
ptrblck committed
1322
            a x-axis shear in (shear[0], shear[1]) and y-axis shear in (shear[2], shear[3]) will be applied.
1323
            Will not apply shear by default.
1324
1325
1326
        interpolation (InterpolationMode): Desired interpolation enum defined by
            :class:`torchvision.transforms.InterpolationMode`. Default is ``InterpolationMode.NEAREST``.
            If input is Tensor, only ``InterpolationMode.NEAREST``, ``InterpolationMode.BILINEAR`` are supported.
1327
            For backward compatibility integer values (e.g. ``PIL.Image.NEAREST``) are still acceptable.
1328
1329
        fill (sequence or number): Pixel fill value for the area outside the transformed
            image. Default is ``0``. If given a number, the value is used for all bands respectively.
1330
        fillcolor (sequence or number, optional): deprecated argument and will be removed since v0.10.0.
1331
            Please use the ``fill`` parameter instead.
1332
        resample (int, optional): deprecated argument and will be removed since v0.10.0.
1333
            Please use the ``interpolation`` parameter instead.
1334
1335
1336

    .. _filters: https://pillow.readthedocs.io/en/latest/handbook/concepts.html#filters

1337
1338
    """

1339
    def __init__(
1340
        self, degrees, translate=None, scale=None, shear=None, interpolation=InterpolationMode.NEAREST, fill=0,
1341
1342
        fillcolor=None, resample=None
    ):
1343
        super().__init__()
1344
1345
1346
1347
1348
1349
1350
1351
1352
        if resample is not None:
            warnings.warn(
                "Argument resample is deprecated and will be removed since v0.10.0. Please, use interpolation instead"
            )
            interpolation = _interpolation_modes_from_int(resample)

        # Backward compatibility with integer value
        if isinstance(interpolation, int):
            warnings.warn(
1353
1354
                "Argument interpolation should be of type InterpolationMode instead of int. "
                "Please, use InterpolationMode enum."
1355
1356
1357
1358
1359
1360
1361
1362
1363
            )
            interpolation = _interpolation_modes_from_int(interpolation)

        if fillcolor is not None:
            warnings.warn(
                "Argument fillcolor is deprecated and will be removed since v0.10.0. Please, use fill instead"
            )
            fill = fillcolor

1364
        self.degrees = _setup_angle(degrees, name="degrees", req_sizes=(2, ))
1365
1366

        if translate is not None:
1367
            _check_sequence_input(translate, "translate", req_sizes=(2, ))
1368
1369
1370
1371
1372
1373
            for t in translate:
                if not (0.0 <= t <= 1.0):
                    raise ValueError("translation values should be between 0 and 1")
        self.translate = translate

        if scale is not None:
1374
            _check_sequence_input(scale, "scale", req_sizes=(2, ))
1375
1376
1377
1378
1379
1380
            for s in scale:
                if s <= 0:
                    raise ValueError("scale values should be positive")
        self.scale = scale

        if shear is not None:
1381
            self.shear = _setup_angle(shear, name="shear", req_sizes=(2, 4))
1382
1383
1384
        else:
            self.shear = shear

1385
        self.resample = self.interpolation = interpolation
1386
1387
1388
1389
1390
1391

        if fill is None:
            fill = 0
        elif not isinstance(fill, (Sequence, numbers.Number)):
            raise TypeError("Fill should be either a sequence or a number.")

1392
        self.fillcolor = self.fill = fill
1393
1394

    @staticmethod
1395
1396
1397
1398
1399
1400
1401
    def get_params(
            degrees: List[float],
            translate: Optional[List[float]],
            scale_ranges: Optional[List[float]],
            shears: Optional[List[float]],
            img_size: List[int]
    ) -> Tuple[float, Tuple[int, int], float, Tuple[float, float]]:
1402
1403
1404
        """Get parameters for affine transformation

        Returns:
1405
            params to be passed to the affine transformation
1406
        """
1407
        angle = float(torch.empty(1).uniform_(float(degrees[0]), float(degrees[1])).item())
1408
        if translate is not None:
1409
1410
1411
1412
1413
            max_dx = float(translate[0] * img_size[0])
            max_dy = float(translate[1] * img_size[1])
            tx = int(round(torch.empty(1).uniform_(-max_dx, max_dx).item()))
            ty = int(round(torch.empty(1).uniform_(-max_dy, max_dy).item()))
            translations = (tx, ty)
1414
1415
1416
1417
        else:
            translations = (0, 0)

        if scale_ranges is not None:
1418
            scale = float(torch.empty(1).uniform_(scale_ranges[0], scale_ranges[1]).item())
1419
1420
1421
        else:
            scale = 1.0

1422
        shear_x = shear_y = 0.0
1423
        if shears is not None:
1424
1425
1426
1427
1428
            shear_x = float(torch.empty(1).uniform_(shears[0], shears[1]).item())
            if len(shears) == 4:
                shear_y = float(torch.empty(1).uniform_(shears[2], shears[3]).item())

        shear = (shear_x, shear_y)
1429
1430
1431

        return angle, translations, scale, shear

1432
    def forward(self, img):
1433
        """
1434
            img (PIL Image or Tensor): Image to be transformed.
1435
1436

        Returns:
1437
            PIL Image or Tensor: Affine transformed image.
1438
        """
1439
1440
1441
1442
1443
1444
        fill = self.fill
        if isinstance(img, Tensor):
            if isinstance(fill, (int, float)):
                fill = [float(fill)] * F._get_image_num_channels(img)
            else:
                fill = [float(f) for f in fill]
1445
1446
1447
1448

        img_size = F._get_image_size(img)

        ret = self.get_params(self.degrees, self.translate, self.scale, self.shear, img_size)
1449
1450

        return F.affine(img, *ret, interpolation=self.interpolation, fill=fill)
1451
1452
1453
1454
1455
1456
1457
1458
1459

    def __repr__(self):
        s = '{name}(degrees={degrees}'
        if self.translate is not None:
            s += ', translate={translate}'
        if self.scale is not None:
            s += ', scale={scale}'
        if self.shear is not None:
            s += ', shear={shear}'
1460
        if self.interpolation != InterpolationMode.NEAREST:
1461
1462
1463
            s += ', interpolation={interpolation}'
        if self.fill != 0:
            s += ', fill={fill}'
1464
1465
        s += ')'
        d = dict(self.__dict__)
1466
        d['interpolation'] = self.interpolation.value
1467
1468
1469
        return s.format(name=self.__class__.__name__, **d)


1470
class Grayscale(torch.nn.Module):
1471
    """Convert image to grayscale.
1472
1473
    If the image is torch Tensor, it is expected
    to have [..., 3, H, W] shape, where ... means an arbitrary number of leading dimensions
1474

1475
1476
1477
1478
    Args:
        num_output_channels (int): (1 or 3) number of channels desired for output image

    Returns:
1479
        PIL Image: Grayscale version of the input.
1480
1481
1482

        - If ``num_output_channels == 1`` : returned image is single channel
        - If ``num_output_channels == 3`` : returned image is 3 channel with r == g == b
1483
1484
1485
1486

    """

    def __init__(self, num_output_channels=1):
1487
        super().__init__()
1488
1489
        self.num_output_channels = num_output_channels

vfdev's avatar
vfdev committed
1490
    def forward(self, img):
1491
1492
        """
        Args:
1493
            img (PIL Image or Tensor): Image to be converted to grayscale.
1494
1495

        Returns:
1496
            PIL Image or Tensor: Grayscaled image.
1497
        """
1498
        return F.rgb_to_grayscale(img, num_output_channels=self.num_output_channels)
1499

1500
    def __repr__(self):
1501
        return self.__class__.__name__ + '(num_output_channels={0})'.format(self.num_output_channels)
1502

1503

1504
class RandomGrayscale(torch.nn.Module):
1505
    """Randomly convert image to grayscale with a probability of p (default 0.1).
1506
1507
    If the image is torch Tensor, it is expected
    to have [..., 3, H, W] shape, where ... means an arbitrary number of leading dimensions
1508

1509
1510
1511
1512
    Args:
        p (float): probability that image should be converted to grayscale.

    Returns:
1513
        PIL Image or Tensor: Grayscale version of the input image with probability p and unchanged
1514
1515
1516
        with probability (1-p).
        - If input image is 1 channel: grayscale version is 1 channel
        - If input image is 3 channel: grayscale version is 3 channel with r == g == b
1517
1518
1519
1520

    """

    def __init__(self, p=0.1):
1521
        super().__init__()
1522
1523
        self.p = p

vfdev's avatar
vfdev committed
1524
    def forward(self, img):
1525
1526
        """
        Args:
1527
            img (PIL Image or Tensor): Image to be converted to grayscale.
1528
1529

        Returns:
1530
            PIL Image or Tensor: Randomly grayscaled image.
1531
        """
1532
1533
1534
        num_output_channels = F._get_image_num_channels(img)
        if torch.rand(1) < self.p:
            return F.rgb_to_grayscale(img, num_output_channels=num_output_channels)
1535
        return img
1536
1537

    def __repr__(self):
1538
        return self.__class__.__name__ + '(p={0})'.format(self.p)
1539
1540


1541
class RandomErasing(torch.nn.Module):
1542
1543
    """ Randomly selects a rectangle region in an torch Tensor image and erases its pixels.
    This transform does not support PIL Image.
vfdev's avatar
vfdev committed
1544
    'Random Erasing Data Augmentation' by Zhong et al. See https://arxiv.org/abs/1708.04896
1545

1546
1547
1548
1549
1550
1551
1552
1553
    Args:
         p: probability that the random erasing operation will be performed.
         scale: range of proportion of erased area against input image.
         ratio: range of aspect ratio of erased area.
         value: erasing value. Default is 0. If a single int, it is used to
            erase all pixels. If a tuple of length 3, it is used to erase
            R, G, B channels respectively.
            If a str of 'random', erasing each pixel with random values.
Zhun Zhong's avatar
Zhun Zhong committed
1554
         inplace: boolean to make this transform inplace. Default set to False.
1555

1556
1557
    Returns:
        Erased Image.
1558

vfdev's avatar
vfdev committed
1559
    Example:
1560
        >>> transform = transforms.Compose([
1561
1562
1563
1564
        >>>   transforms.RandomHorizontalFlip(),
        >>>   transforms.ToTensor(),
        >>>   transforms.Normalize((0.485, 0.456, 0.406), (0.229, 0.224, 0.225)),
        >>>   transforms.RandomErasing(),
1565
1566
1567
        >>> ])
    """

Zhun Zhong's avatar
Zhun Zhong committed
1568
    def __init__(self, p=0.5, scale=(0.02, 0.33), ratio=(0.3, 3.3), value=0, inplace=False):
1569
1570
1571
1572
1573
1574
1575
1576
1577
        super().__init__()
        if not isinstance(value, (numbers.Number, str, tuple, list)):
            raise TypeError("Argument value should be either a number or str or a sequence")
        if isinstance(value, str) and value != "random":
            raise ValueError("If value is str, it should be 'random'")
        if not isinstance(scale, (tuple, list)):
            raise TypeError("Scale should be a sequence")
        if not isinstance(ratio, (tuple, list)):
            raise TypeError("Ratio should be a sequence")
1578
        if (scale[0] > scale[1]) or (ratio[0] > ratio[1]):
1579
            warnings.warn("Scale and ratio should be of kind (min, max)")
1580
        if scale[0] < 0 or scale[1] > 1:
1581
            raise ValueError("Scale should be between 0 and 1")
1582
        if p < 0 or p > 1:
1583
            raise ValueError("Random erasing probability should be between 0 and 1")
1584
1585
1586
1587
1588

        self.p = p
        self.scale = scale
        self.ratio = ratio
        self.value = value
1589
        self.inplace = inplace
1590
1591

    @staticmethod
1592
1593
1594
    def get_params(
            img: Tensor, scale: Tuple[float, float], ratio: Tuple[float, float], value: Optional[List[float]] = None
    ) -> Tuple[int, int, int, int, Tensor]:
1595
1596
1597
        """Get parameters for ``erase`` for a random erasing.

        Args:
vfdev's avatar
vfdev committed
1598
            img (Tensor): Tensor image to be erased.
1599
1600
            scale (sequence): range of proportion of erased area against input image.
            ratio (sequence): range of aspect ratio of erased area.
1601
1602
1603
            value (list, optional): erasing value. If None, it is interpreted as "random"
                (erasing each pixel with random values). If ``len(value)`` is 1, it is interpreted as a number,
                i.e. ``value[0]``.
1604
1605
1606
1607

        Returns:
            tuple: params (i, j, h, w, v) to be passed to ``erase`` for random erasing.
        """
vfdev's avatar
vfdev committed
1608
        img_c, img_h, img_w = img.shape[-3], img.shape[-2], img.shape[-1]
1609
        area = img_h * img_w
1610

1611
        log_ratio = torch.log(torch.tensor(ratio))
1612
        for _ in range(10):
1613
            erase_area = area * torch.empty(1).uniform_(scale[0], scale[1]).item()
1614
1615
1616
            aspect_ratio = torch.exp(
                torch.empty(1).uniform_(log_ratio[0], log_ratio[1])
            ).item()
1617
1618
1619

            h = int(round(math.sqrt(erase_area * aspect_ratio)))
            w = int(round(math.sqrt(erase_area / aspect_ratio)))
1620
1621
1622
1623
1624
1625
1626
            if not (h < img_h and w < img_w):
                continue

            if value is None:
                v = torch.empty([img_c, h, w], dtype=torch.float32).normal_()
            else:
                v = torch.tensor(value)[:, None, None]
1627

1628
1629
            i = torch.randint(0, img_h - h + 1, size=(1, )).item()
            j = torch.randint(0, img_w - w + 1, size=(1, )).item()
1630
            return i, j, h, w, v
1631

Zhun Zhong's avatar
Zhun Zhong committed
1632
1633
1634
        # Return original image
        return 0, 0, img_h, img_w, img

1635
    def forward(self, img):
1636
1637
        """
        Args:
vfdev's avatar
vfdev committed
1638
            img (Tensor): Tensor image to be erased.
1639
1640
1641
1642

        Returns:
            img (Tensor): Erased Tensor image.
        """
1643
1644
1645
1646
1647
1648
1649
1650
1651
1652
1653
1654
1655
1656
1657
1658
1659
1660
1661
        if torch.rand(1) < self.p:

            # cast self.value to script acceptable type
            if isinstance(self.value, (int, float)):
                value = [self.value, ]
            elif isinstance(self.value, str):
                value = None
            elif isinstance(self.value, tuple):
                value = list(self.value)
            else:
                value = self.value

            if value is not None and not (len(value) in (1, img.shape[-3])):
                raise ValueError(
                    "If value is a sequence, it should have either a single value or "
                    "{} (number of input channels)".format(img.shape[-3])
                )

            x, y, h, w, v = self.get_params(img, scale=self.scale, ratio=self.ratio, value=value)
1662
            return F.erase(img, x, y, h, w, v, self.inplace)
1663
        return img
1664

1665
1666
1667
1668
1669
1670
1671
1672
    def __repr__(self):
        s = '(p={}, '.format(self.p)
        s += 'scale={}, '.format(self.scale)
        s += 'ratio={}, '.format(self.ratio)
        s += 'value={}, '.format(self.value)
        s += 'inplace={})'.format(self.inplace)
        return self.__class__.__name__ + s

1673

1674
1675
class GaussianBlur(torch.nn.Module):
    """Blurs image with randomly chosen Gaussian blur.
1676
1677
    If the image is torch Tensor, it is expected
    to have [..., C, H, W] shape, where ... means an arbitrary number of leading dimensions.
1678
1679
1680
1681
1682
1683
1684
1685
1686
1687
1688
1689
1690
1691
1692
1693
1694
1695
1696
1697
1698
1699
1700
1701
1702
1703
1704
1705
1706
1707
1708
1709
1710
1711

    Args:
        kernel_size (int or sequence): Size of the Gaussian kernel.
        sigma (float or tuple of float (min, max)): Standard deviation to be used for
            creating kernel to perform blurring. If float, sigma is fixed. If it is tuple
            of float (min, max), sigma is chosen uniformly at random to lie in the
            given range.

    Returns:
        PIL Image or Tensor: Gaussian blurred version of the input image.

    """

    def __init__(self, kernel_size, sigma=(0.1, 2.0)):
        super().__init__()
        self.kernel_size = _setup_size(kernel_size, "Kernel size should be a tuple/list of two integers")
        for ks in self.kernel_size:
            if ks <= 0 or ks % 2 == 0:
                raise ValueError("Kernel size value should be an odd and positive number.")

        if isinstance(sigma, numbers.Number):
            if sigma <= 0:
                raise ValueError("If sigma is a single number, it must be positive.")
            sigma = (sigma, sigma)
        elif isinstance(sigma, Sequence) and len(sigma) == 2:
            if not 0. < sigma[0] <= sigma[1]:
                raise ValueError("sigma values should be positive and of the form (min, max).")
        else:
            raise ValueError("sigma should be a single number or a list/tuple with length 2.")

        self.sigma = sigma

    @staticmethod
    def get_params(sigma_min: float, sigma_max: float) -> float:
vfdev's avatar
vfdev committed
1712
        """Choose sigma for random gaussian blurring.
1713
1714
1715
1716
1717
1718
1719
1720
1721
1722
1723
1724
1725

        Args:
            sigma_min (float): Minimum standard deviation that can be chosen for blurring kernel.
            sigma_max (float): Maximum standard deviation that can be chosen for blurring kernel.

        Returns:
            float: Standard deviation to be passed to calculate kernel for gaussian blurring.
        """
        return torch.empty(1).uniform_(sigma_min, sigma_max).item()

    def forward(self, img: Tensor) -> Tensor:
        """
        Args:
vfdev's avatar
vfdev committed
1726
            img (PIL Image or Tensor): image to be blurred.
1727
1728
1729
1730
1731
1732
1733
1734
1735
1736
1737
1738
1739

        Returns:
            PIL Image or Tensor: Gaussian blurred image
        """
        sigma = self.get_params(self.sigma[0], self.sigma[1])
        return F.gaussian_blur(img, self.kernel_size, [sigma, sigma])

    def __repr__(self):
        s = '(kernel_size={}, '.format(self.kernel_size)
        s += 'sigma={})'.format(self.sigma)
        return self.__class__.__name__ + s


1740
1741
1742
1743
1744
1745
1746
1747
1748
1749
1750
1751
1752
1753
1754
1755
1756
1757
1758
1759
1760
1761
1762
1763
1764
1765
1766
1767
1768
1769
def _setup_size(size, error_msg):
    if isinstance(size, numbers.Number):
        return int(size), int(size)

    if isinstance(size, Sequence) and len(size) == 1:
        return size[0], size[0]

    if len(size) != 2:
        raise ValueError(error_msg)

    return size


def _check_sequence_input(x, name, req_sizes):
    msg = req_sizes[0] if len(req_sizes) < 2 else " or ".join([str(s) for s in req_sizes])
    if not isinstance(x, Sequence):
        raise TypeError("{} should be a sequence of length {}.".format(name, msg))
    if len(x) not in req_sizes:
        raise ValueError("{} should be sequence of length {}.".format(name, msg))


def _setup_angle(x, name, req_sizes=(2, )):
    if isinstance(x, numbers.Number):
        if x < 0:
            raise ValueError("If {} is a single number, it must be positive.".format(name))
        x = [-x, x]
    else:
        _check_sequence_input(x, name, req_sizes)

    return [float(d) for d in x]
1770
1771
1772
1773


class RandomInvert(torch.nn.Module):
    """Inverts the colors of the given image randomly with a given probability.
1774
1775
1776
    If img is a Tensor, it is expected to be in [..., 1 or 3, H, W] format,
    where ... means it can have an arbitrary number of leading dimensions.
    If img is PIL Image, it is expected to be in mode "L" or "RGB".
1777
1778
1779
1780
1781
1782
1783
1784
1785
1786
1787
1788
1789
1790
1791
1792
1793
1794
1795
1796
1797
1798
1799
1800
1801
1802
1803

    Args:
        p (float): probability of the image being color inverted. Default value is 0.5
    """

    def __init__(self, p=0.5):
        super().__init__()
        self.p = p

    def forward(self, img):
        """
        Args:
            img (PIL Image or Tensor): Image to be inverted.

        Returns:
            PIL Image or Tensor: Randomly color inverted image.
        """
        if torch.rand(1).item() < self.p:
            return F.invert(img)
        return img

    def __repr__(self):
        return self.__class__.__name__ + '(p={})'.format(self.p)


class RandomPosterize(torch.nn.Module):
    """Posterize the image randomly with a given probability by reducing the
1804
1805
1806
    number of bits for each color channel. If the image is torch Tensor, it should be of type torch.uint8,
    and it is expected to have [..., 1 or 3, H, W] shape, where ... means an arbitrary number of leading dimensions.
    If img is PIL Image, it is expected to be in mode "L" or "RGB".
1807
1808
1809
1810
1811
1812
1813
1814
1815
1816
1817
1818
1819
1820
1821
1822
1823
1824
1825
1826
1827
1828
1829
1830
1831
1832
1833
1834
1835

    Args:
        bits (int): number of bits to keep for each channel (0-8)
        p (float): probability of the image being color inverted. Default value is 0.5
    """

    def __init__(self, bits, p=0.5):
        super().__init__()
        self.bits = bits
        self.p = p

    def forward(self, img):
        """
        Args:
            img (PIL Image or Tensor): Image to be posterized.

        Returns:
            PIL Image or Tensor: Randomly posterized image.
        """
        if torch.rand(1).item() < self.p:
            return F.posterize(img, self.bits)
        return img

    def __repr__(self):
        return self.__class__.__name__ + '(bits={},p={})'.format(self.bits, self.p)


class RandomSolarize(torch.nn.Module):
    """Solarize the image randomly with a given probability by inverting all pixel
1836
1837
1838
    values above a threshold. If img is a Tensor, it is expected to be in [..., 1 or 3, H, W] format,
    where ... means it can have an arbitrary number of leading dimensions.
    If img is PIL Image, it is expected to be in mode "L" or "RGB".
1839
1840
1841
1842
1843
1844
1845
1846
1847
1848
1849
1850
1851
1852
1853
1854
1855
1856
1857
1858
1859
1860
1861
1862
1863
1864
1865
1866

    Args:
        threshold (float): all pixels equal or above this value are inverted.
        p (float): probability of the image being color inverted. Default value is 0.5
    """

    def __init__(self, threshold, p=0.5):
        super().__init__()
        self.threshold = threshold
        self.p = p

    def forward(self, img):
        """
        Args:
            img (PIL Image or Tensor): Image to be solarized.

        Returns:
            PIL Image or Tensor: Randomly solarized image.
        """
        if torch.rand(1).item() < self.p:
            return F.solarize(img, self.threshold)
        return img

    def __repr__(self):
        return self.__class__.__name__ + '(threshold={},p={})'.format(self.threshold, self.p)


class RandomAdjustSharpness(torch.nn.Module):
1867
1868
    """Adjust the sharpness of the image randomly with a given probability. If the image is torch Tensor,
    it is expected to have [..., 1 or 3, H, W] shape, where ... means an arbitrary number of leading dimensions.
1869
1870
1871
1872
1873
1874
1875
1876
1877
1878
1879
1880
1881
1882
1883
1884
1885
1886
1887
1888
1889
1890
1891
1892
1893
1894
1895
1896
1897
1898
1899

    Args:
        sharpness_factor (float):  How much to adjust the sharpness. Can be
            any non negative number. 0 gives a blurred image, 1 gives the
            original image while 2 increases the sharpness by a factor of 2.
        p (float): probability of the image being color inverted. Default value is 0.5
    """

    def __init__(self, sharpness_factor, p=0.5):
        super().__init__()
        self.sharpness_factor = sharpness_factor
        self.p = p

    def forward(self, img):
        """
        Args:
            img (PIL Image or Tensor): Image to be sharpened.

        Returns:
            PIL Image or Tensor: Randomly sharpened image.
        """
        if torch.rand(1).item() < self.p:
            return F.adjust_sharpness(img, self.sharpness_factor)
        return img

    def __repr__(self):
        return self.__class__.__name__ + '(sharpness_factor={},p={})'.format(self.sharpness_factor, self.p)


class RandomAutocontrast(torch.nn.Module):
    """Autocontrast the pixels of the given image randomly with a given probability.
1900
1901
1902
    If the image is torch Tensor, it is expected
    to have [..., 1 or 3, H, W] shape, where ... means an arbitrary number of leading dimensions.
    If img is PIL Image, it is expected to be in mode "L" or "RGB".
1903
1904
1905
1906
1907
1908
1909
1910
1911
1912
1913
1914
1915
1916
1917
1918
1919
1920
1921
1922
1923
1924
1925
1926
1927
1928
1929

    Args:
        p (float): probability of the image being autocontrasted. Default value is 0.5
    """

    def __init__(self, p=0.5):
        super().__init__()
        self.p = p

    def forward(self, img):
        """
        Args:
            img (PIL Image or Tensor): Image to be autocontrasted.

        Returns:
            PIL Image or Tensor: Randomly autocontrasted image.
        """
        if torch.rand(1).item() < self.p:
            return F.autocontrast(img)
        return img

    def __repr__(self):
        return self.__class__.__name__ + '(p={})'.format(self.p)


class RandomEqualize(torch.nn.Module):
    """Equalize the histogram of the given image randomly with a given probability.
1930
1931
1932
    If the image is torch Tensor, it is expected
    to have [..., 1 or 3, H, W] shape, where ... means an arbitrary number of leading dimensions.
    If img is PIL Image, it is expected to be in mode "P", "L" or "RGB".
1933
1934
1935
1936
1937
1938
1939
1940
1941
1942
1943
1944
1945
1946
1947
1948
1949
1950
1951
1952
1953
1954
1955

    Args:
        p (float): probability of the image being equalized. Default value is 0.5
    """

    def __init__(self, p=0.5):
        super().__init__()
        self.p = p

    def forward(self, img):
        """
        Args:
            img (PIL Image or Tensor): Image to be equalized.

        Returns:
            PIL Image or Tensor: Randomly equalized image.
        """
        if torch.rand(1).item() < self.p:
            return F.equalize(img)
        return img

    def __repr__(self):
        return self.__class__.__name__ + '(p={})'.format(self.p)