transforms.py 37.2 KB
Newer Older
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
from __future__ import division
import torch
import math
import random
from PIL import Image, ImageOps, ImageEnhance
try:
    import accimage
except ImportError:
    accimage = None
import numpy as np
import numbers
import types
import collections
import warnings

from . import functional as F

__all__ = ["Compose", "ToTensor", "ToPILImage", "Normalize", "Resize", "Scale", "CenterCrop", "Pad",
19
20
           "Lambda", "RandomApply", "RandomChoice", "RandomOrder", "RandomCrop", "RandomHorizontalFlip",
           "RandomVerticalFlip", "RandomResizedCrop", "RandomSizedCrop", "FiveCrop", "TenCrop", "LinearTransformation",
21
           "ColorJitter", "RandomRotation", "RandomAffine", "Grayscale", "RandomGrayscale"]
22

23
24
25
26
27
28
29
_pil_interpolation_to_str = {
    Image.NEAREST: 'PIL.Image.NEAREST',
    Image.BILINEAR: 'PIL.Image.BILINEAR',
    Image.BICUBIC: 'PIL.Image.BICUBIC',
    Image.LANCZOS: 'PIL.Image.LANCZOS',
}

30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51

class Compose(object):
    """Composes several transforms together.

    Args:
        transforms (list of ``Transform`` objects): list of transforms to compose.

    Example:
        >>> transforms.Compose([
        >>>     transforms.CenterCrop(10),
        >>>     transforms.ToTensor(),
        >>> ])
    """

    def __init__(self, transforms):
        self.transforms = transforms

    def __call__(self, img):
        for t in self.transforms:
            img = t(img)
        return img

52
53
54
55
56
57
58
59
    def __repr__(self):
        format_string = self.__class__.__name__ + '('
        for t in self.transforms:
            format_string += '\n'
            format_string += '    {0}'.format(t)
        format_string += '\n)'
        return format_string

60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77

class ToTensor(object):
    """Convert a ``PIL Image`` or ``numpy.ndarray`` to tensor.

    Converts a PIL Image or numpy.ndarray (H x W x C) in the range
    [0, 255] to a torch.FloatTensor of shape (C x H x W) in the range [0.0, 1.0].
    """

    def __call__(self, pic):
        """
        Args:
            pic (PIL Image or numpy.ndarray): Image to be converted to tensor.

        Returns:
            Tensor: Converted image.
        """
        return F.to_tensor(pic)

78
79
80
    def __repr__(self):
        return self.__class__.__name__ + '()'

81
82
83
84
85
86
87
88
89
90
91
92
93
94
95

class ToPILImage(object):
    """Convert a tensor or an ndarray to PIL Image.

    Converts a torch.*Tensor of shape C x H x W or a numpy ndarray of shape
    H x W x C to a PIL Image while preserving the value range.

    Args:
        mode (`PIL.Image mode`_): color space and pixel depth of input data (optional).
            If ``mode`` is ``None`` (default) there are some assumptions made about the input data:
            1. If the input has 3 channels, the ``mode`` is assumed to be ``RGB``.
            2. If the input has 4 channels, the ``mode`` is assumed to be ``RGBA``.
            3. If the input has 1 channel, the ``mode`` is determined by the data type (i,e,
            ``int``, ``float``, ``short``).

csukuangfj's avatar
csukuangfj committed
96
    .. _PIL.Image mode: https://pillow.readthedocs.io/en/latest/handbook/concepts.html#concept-modes
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
    """
    def __init__(self, mode=None):
        self.mode = mode

    def __call__(self, pic):
        """
        Args:
            pic (Tensor or numpy.ndarray): Image to be converted to PIL Image.

        Returns:
            PIL Image: Image converted to PIL Image.

        """
        return F.to_pil_image(pic, self.mode)

112
    def __repr__(self):
113
114
115
116
117
        format_string = self.__class__.__name__ + '('
        if self.mode is not None:
            format_string += 'mode={0}'.format(self.mode)
        format_string += ')'
        return format_string
118

119
120

class Normalize(object):
Fang Gao's avatar
Fang Gao committed
121
    """Normalize a tensor image with mean and standard deviation.
122
    Given mean: ``(M1,...,Mn)`` and std: ``(S1,..,Sn)`` for ``n`` channels, this transform
123
124
125
    will normalize each channel of the input ``torch.*Tensor`` i.e.
    ``input[channel] = (input[channel] - mean[channel]) / std[channel]``

126
127
128
    .. note::
        This transform acts in-place, i.e., it mutates the input tensor.

129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
    Args:
        mean (sequence): Sequence of means for each channel.
        std (sequence): Sequence of standard deviations for each channel.
    """

    def __init__(self, mean, std):
        self.mean = mean
        self.std = std

    def __call__(self, tensor):
        """
        Args:
            tensor (Tensor): Tensor image of size (C, H, W) to be normalized.

        Returns:
            Tensor: Normalized Tensor image.
        """
        return F.normalize(tensor, self.mean, self.std)

148
149
150
    def __repr__(self):
        return self.__class__.__name__ + '(mean={0}, std={1})'.format(self.mean, self.std)

151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179

class Resize(object):
    """Resize the input PIL Image to the given size.

    Args:
        size (sequence or int): Desired output size. If size is a sequence like
            (h, w), output size will be matched to this. If size is an int,
            smaller edge of the image will be matched to this number.
            i.e, if height > width, then image will be rescaled to
            (size * height / width, size)
        interpolation (int, optional): Desired interpolation. Default is
            ``PIL.Image.BILINEAR``
    """

    def __init__(self, size, interpolation=Image.BILINEAR):
        assert isinstance(size, int) or (isinstance(size, collections.Iterable) and len(size) == 2)
        self.size = size
        self.interpolation = interpolation

    def __call__(self, img):
        """
        Args:
            img (PIL Image): Image to be scaled.

        Returns:
            PIL Image: Rescaled image.
        """
        return F.resize(img, self.size, self.interpolation)

180
    def __repr__(self):
181
182
        interpolate_str = _pil_interpolation_to_str[self.interpolation]
        return self.__class__.__name__ + '(size={0}, interpolation={1})'.format(self.size, interpolate_str)
183

184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219

class Scale(Resize):
    """
    Note: This transform is deprecated in favor of Resize.
    """
    def __init__(self, *args, **kwargs):
        warnings.warn("The use of the transforms.Scale transform is deprecated, " +
                      "please use transforms.Resize instead.")
        super(Scale, self).__init__(*args, **kwargs)


class CenterCrop(object):
    """Crops the given PIL Image at the center.

    Args:
        size (sequence or int): Desired output size of the crop. If size is an
            int instead of sequence like (h, w), a square crop (size, size) is
            made.
    """

    def __init__(self, size):
        if isinstance(size, numbers.Number):
            self.size = (int(size), int(size))
        else:
            self.size = size

    def __call__(self, img):
        """
        Args:
            img (PIL Image): Image to be cropped.

        Returns:
            PIL Image: Cropped image.
        """
        return F.center_crop(img, self.size)

220
221
222
    def __repr__(self):
        return self.__class__.__name__ + '(size={0})'.format(self.size)

223
224
225
226
227
228
229
230
231
232

class Pad(object):
    """Pad the given PIL Image on all sides with the given "pad" value.

    Args:
        padding (int or tuple): Padding on each border. If a single int is provided this
            is used to pad all borders. If tuple of length 2 is provided this is the padding
            on left/right and top/bottom respectively. If a tuple of length 4 is provided
            this is the padding for the left, top, right and bottom borders
            respectively.
233
        fill (int or tuple): Pixel fill value for constant fill. Default is 0. If a tuple of
234
            length 3, it is used to fill R, G, B channels respectively.
235
            This value is only used when the padding_mode is constant
236
237
238
239
240
241
242
243
244
245
        padding_mode (str): Type of padding. Should be: constant, edge, reflect or symmetric.
            Default is constant.

            - constant: pads with a constant value, this value is specified with fill

            - edge: pads with the last value at the edge of the image

            - reflect: pads with reflection of image without repeating the last value on the edge

                For example, padding [1, 2, 3, 4] with 2 elements on both sides in reflect mode
246
                will result in [3, 2, 1, 2, 3, 4, 3, 2]
247
248
249
250

            - symmetric: pads with reflection of image repeating the last value on the edge

                For example, padding [1, 2, 3, 4] with 2 elements on both sides in symmetric mode
251
                will result in [2, 1, 1, 2, 3, 4, 4, 3]
252
253
    """

254
    def __init__(self, padding, fill=0, padding_mode='constant'):
255
256
        assert isinstance(padding, (numbers.Number, tuple))
        assert isinstance(fill, (numbers.Number, str, tuple))
257
        assert padding_mode in ['constant', 'edge', 'reflect', 'symmetric']
258
259
260
261
262
263
        if isinstance(padding, collections.Sequence) and len(padding) not in [2, 4]:
            raise ValueError("Padding must be an int or a 2, or 4 element tuple, not a " +
                             "{} element tuple".format(len(padding)))

        self.padding = padding
        self.fill = fill
264
        self.padding_mode = padding_mode
265
266
267
268
269
270
271
272
273

    def __call__(self, img):
        """
        Args:
            img (PIL Image): Image to be padded.

        Returns:
            PIL Image: Padded image.
        """
274
        return F.pad(img, self.padding, self.fill, self.padding_mode)
275

276
    def __repr__(self):
277
278
        return self.__class__.__name__ + '(padding={0}, fill={1}, padding_mode={2})'.\
            format(self.padding, self.fill, self.padding_mode)
279

280
281
282
283
284
285
286
287
288
289
290
291
292
293
294

class Lambda(object):
    """Apply a user-defined lambda as a transform.

    Args:
        lambd (function): Lambda/function to be used for transform.
    """

    def __init__(self, lambd):
        assert isinstance(lambd, types.LambdaType)
        self.lambd = lambd

    def __call__(self, img):
        return self.lambd(img)

295
296
297
    def __repr__(self):
        return self.__class__.__name__ + '()'

298

299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
class RandomTransforms(object):
    """Base class for a list of transformations with randomness

    Args:
        transforms (list or tuple): list of transformations
    """

    def __init__(self, transforms):
        assert isinstance(transforms, (list, tuple))
        self.transforms = transforms

    def __call__(self, *args, **kwargs):
        raise NotImplementedError()

    def __repr__(self):
        format_string = self.__class__.__name__ + '('
        for t in self.transforms:
            format_string += '\n'
            format_string += '    {0}'.format(t)
        format_string += '\n)'
        return format_string


class RandomApply(RandomTransforms):
    """Apply randomly a list of transformations with a given probability

    Args:
        transforms (list or tuple): list of transformations
        p (float): probability
    """

    def __init__(self, transforms, p=0.5):
        super(RandomApply, self).__init__(transforms)
        self.p = p

    def __call__(self, img):
        if self.p < random.random():
            return img
        for t in self.transforms:
            img = t(img)
        return img

    def __repr__(self):
        format_string = self.__class__.__name__ + '('
        format_string += '\n    p={}'.format(self.p)
        for t in self.transforms:
            format_string += '\n'
            format_string += '    {0}'.format(t)
        format_string += '\n)'
        return format_string


class RandomOrder(RandomTransforms):
    """Apply a list of transformations in a random order
    """
    def __call__(self, img):
        order = list(range(len(self.transforms)))
        random.shuffle(order)
        for i in order:
            img = self.transforms[i](img)
        return img


class RandomChoice(RandomTransforms):
    """Apply single transformation randomly picked from a list
    """
    def __call__(self, img):
        t = random.choice(self.transforms)
        return t(img)


370
371
372
373
374
375
376
377
class RandomCrop(object):
    """Crop the given PIL Image at a random location.

    Args:
        size (sequence or int): Desired output size of the crop. If size is an
            int instead of sequence like (h, w), a square crop (size, size) is
            made.
        padding (int or sequence, optional): Optional padding on each border
378
            of the image. Default is None, i.e no padding. If a sequence of length
379
            4 is provided, it is used to pad left, top, right, bottom borders
380
381
            respectively. If a sequence of length 2 is provided, it is used to
            pad left/right, top/bottom borders, respectively.
382
383
        pad_if_needed (boolean): It will pad the image if smaller than the
            desired size to avoid raising an exception.
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
        fill: Pixel fill value for constant fill. Default is 0. If a tuple of
            length 3, it is used to fill R, G, B channels respectively.
            This value is only used when the padding_mode is constant
        padding_mode: Type of padding. Should be: constant, edge, reflect or symmetric. Default is constant.

             - constant: pads with a constant value, this value is specified with fill

             - edge: pads with the last value on the edge of the image

             - reflect: pads with reflection of image (without repeating the last value on the edge)

                padding [1, 2, 3, 4] with 2 elements on both sides in reflect mode
                will result in [3, 2, 1, 2, 3, 4, 3, 2]

             - symmetric: pads with reflection of image (repeating the last value on the edge)

                padding [1, 2, 3, 4] with 2 elements on both sides in symmetric mode
                will result in [2, 1, 1, 2, 3, 4, 4, 3]

403
404
    """

405
    def __init__(self, size, padding=None, pad_if_needed=False, fill=0, padding_mode='constant'):
406
407
408
409
410
        if isinstance(size, numbers.Number):
            self.size = (int(size), int(size))
        else:
            self.size = size
        self.padding = padding
411
        self.pad_if_needed = pad_if_needed
412
413
        self.fill = fill
        self.padding_mode = padding_mode
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442

    @staticmethod
    def get_params(img, output_size):
        """Get parameters for ``crop`` for a random crop.

        Args:
            img (PIL Image): Image to be cropped.
            output_size (tuple): Expected output size of the crop.

        Returns:
            tuple: params (i, j, h, w) to be passed to ``crop`` for random crop.
        """
        w, h = img.size
        th, tw = output_size
        if w == tw and h == th:
            return 0, 0, h, w

        i = random.randint(0, h - th)
        j = random.randint(0, w - tw)
        return i, j, th, tw

    def __call__(self, img):
        """
        Args:
            img (PIL Image): Image to be cropped.

        Returns:
            PIL Image: Cropped image.
        """
443
444
        if self.padding is not None:
            img = F.pad(img, self.padding, self.fill, self.padding_mode)
445

446
447
        # pad the width if needed
        if self.pad_if_needed and img.size[0] < self.size[1]:
448
            img = F.pad(img, (int((1 + self.size[1] - img.size[0]) / 2), 0), self.fill, self.padding_mode)
449
450
        # pad the height if needed
        if self.pad_if_needed and img.size[1] < self.size[0]:
451
            img = F.pad(img, (0, int((1 + self.size[0] - img.size[1]) / 2)), self.fill, self.padding_mode)
452

453
454
455
456
        i, j, h, w = self.get_params(img, self.size)

        return F.crop(img, i, j, h, w)

457
    def __repr__(self):
458
        return self.__class__.__name__ + '(size={0}, padding={1})'.format(self.size, self.padding)
459

460
461

class RandomHorizontalFlip(object):
462
463
464
465
466
467
468
469
    """Horizontally flip the given PIL Image randomly with a given probability.

    Args:
        p (float): probability of the image being flipped. Default value is 0.5
    """

    def __init__(self, p=0.5):
        self.p = p
470
471
472
473
474
475
476
477
478

    def __call__(self, img):
        """
        Args:
            img (PIL Image): Image to be flipped.

        Returns:
            PIL Image: Randomly flipped image.
        """
479
        if random.random() < self.p:
480
481
482
            return F.hflip(img)
        return img

483
    def __repr__(self):
484
        return self.__class__.__name__ + '(p={})'.format(self.p)
485

486
487

class RandomVerticalFlip(object):
488
489
490
491
492
493
494
495
    """Vertically flip the given PIL Image randomly with a given probability.

    Args:
        p (float): probability of the image being flipped. Default value is 0.5
    """

    def __init__(self, p=0.5):
        self.p = p
496
497
498
499
500
501
502
503
504

    def __call__(self, img):
        """
        Args:
            img (PIL Image): Image to be flipped.

        Returns:
            PIL Image: Randomly flipped image.
        """
505
        if random.random() < self.p:
506
507
508
            return F.vflip(img)
        return img

509
    def __repr__(self):
510
        return self.__class__.__name__ + '(p={})'.format(self.p)
511

512
513
514
515

class RandomResizedCrop(object):
    """Crop the given PIL Image to random size and aspect ratio.

516
517
    A crop of random size (default: of 0.08 to 1.0) of the original size and a random
    aspect ratio (default: of 3/4 to 4/3) of the original aspect ratio is made. This crop
518
519
520
521
522
    is finally resized to given size.
    This is popularly used to train the Inception networks.

    Args:
        size: expected output size of each edge
523
524
        scale: range of size of the origin size cropped
        ratio: range of aspect ratio of the origin aspect ratio cropped
525
526
527
        interpolation: Default: PIL.Image.BILINEAR
    """

528
    def __init__(self, size, scale=(0.08, 1.0), ratio=(3. / 4., 4. / 3.), interpolation=Image.BILINEAR):
529
530
        self.size = (size, size)
        self.interpolation = interpolation
531
532
        self.scale = scale
        self.ratio = ratio
533
534

    @staticmethod
535
    def get_params(img, scale, ratio):
536
537
538
539
        """Get parameters for ``crop`` for a random sized crop.

        Args:
            img (PIL Image): Image to be cropped.
540
541
            scale (tuple): range of size of the origin size cropped
            ratio (tuple): range of aspect ratio of the origin aspect ratio cropped
542
543
544
545
546
547
548

        Returns:
            tuple: params (i, j, h, w) to be passed to ``crop`` for a random
                sized crop.
        """
        for attempt in range(10):
            area = img.size[0] * img.size[1]
549
550
            target_area = random.uniform(*scale) * area
            aspect_ratio = random.uniform(*ratio)
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571

            w = int(round(math.sqrt(target_area * aspect_ratio)))
            h = int(round(math.sqrt(target_area / aspect_ratio)))

            if random.random() < 0.5:
                w, h = h, w

            if w <= img.size[0] and h <= img.size[1]:
                i = random.randint(0, img.size[1] - h)
                j = random.randint(0, img.size[0] - w)
                return i, j, h, w

        # Fallback
        w = min(img.size[0], img.size[1])
        i = (img.size[1] - w) // 2
        j = (img.size[0] - w) // 2
        return i, j, w, w

    def __call__(self, img):
        """
        Args:
572
            img (PIL Image): Image to be cropped and resized.
573
574

        Returns:
575
            PIL Image: Randomly cropped and resized image.
576
        """
577
        i, j, h, w = self.get_params(img, self.scale, self.ratio)
578
579
        return F.resized_crop(img, i, j, h, w, self.size, self.interpolation)

580
    def __repr__(self):
581
582
        interpolate_str = _pil_interpolation_to_str[self.interpolation]
        format_string = self.__class__.__name__ + '(size={0}'.format(self.size)
583
584
        format_string += ', scale={0}'.format(tuple(round(s, 4) for s in self.scale))
        format_string += ', ratio={0}'.format(tuple(round(r, 4) for r in self.ratio))
585
586
        format_string += ', interpolation={0})'.format(interpolate_str)
        return format_string
587

588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633

class RandomSizedCrop(RandomResizedCrop):
    """
    Note: This transform is deprecated in favor of RandomResizedCrop.
    """
    def __init__(self, *args, **kwargs):
        warnings.warn("The use of the transforms.RandomSizedCrop transform is deprecated, " +
                      "please use transforms.RandomResizedCrop instead.")
        super(RandomSizedCrop, self).__init__(*args, **kwargs)


class FiveCrop(object):
    """Crop the given PIL Image into four corners and the central crop

    .. Note::
         This transform returns a tuple of images and there may be a mismatch in the number of
         inputs and targets your Dataset returns. See below for an example of how to deal with
         this.

    Args:
         size (sequence or int): Desired output size of the crop. If size is an ``int``
            instead of sequence like (h, w), a square crop of size (size, size) is made.

    Example:
         >>> transform = Compose([
         >>>    FiveCrop(size), # this is a list of PIL Images
         >>>    Lambda(lambda crops: torch.stack([ToTensor()(crop) for crop in crops])) # returns a 4D tensor
         >>> ])
         >>> #In your test loop you can do the following:
         >>> input, target = batch # input is a 5d tensor, target is 2d
         >>> bs, ncrops, c, h, w = input.size()
         >>> result = model(input.view(-1, c, h, w)) # fuse batch size and ncrops
         >>> result_avg = result.view(bs, ncrops, -1).mean(1) # avg over crops
    """

    def __init__(self, size):
        self.size = size
        if isinstance(size, numbers.Number):
            self.size = (int(size), int(size))
        else:
            assert len(size) == 2, "Please provide only two dimensions (h, w) for size."
            self.size = size

    def __call__(self, img):
        return F.five_crop(img, self.size)

634
635
636
    def __repr__(self):
        return self.__class__.__name__ + '(size={0})'.format(self.size)

637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676

class TenCrop(object):
    """Crop the given PIL Image into four corners and the central crop plus the flipped version of
    these (horizontal flipping is used by default)

    .. Note::
         This transform returns a tuple of images and there may be a mismatch in the number of
         inputs and targets your Dataset returns. See below for an example of how to deal with
         this.

    Args:
        size (sequence or int): Desired output size of the crop. If size is an
            int instead of sequence like (h, w), a square crop (size, size) is
            made.
        vertical_flip(bool): Use vertical flipping instead of horizontal

    Example:
         >>> transform = Compose([
         >>>    TenCrop(size), # this is a list of PIL Images
         >>>    Lambda(lambda crops: torch.stack([ToTensor()(crop) for crop in crops])) # returns a 4D tensor
         >>> ])
         >>> #In your test loop you can do the following:
         >>> input, target = batch # input is a 5d tensor, target is 2d
         >>> bs, ncrops, c, h, w = input.size()
         >>> result = model(input.view(-1, c, h, w)) # fuse batch size and ncrops
         >>> result_avg = result.view(bs, ncrops, -1).mean(1) # avg over crops
    """

    def __init__(self, size, vertical_flip=False):
        self.size = size
        if isinstance(size, numbers.Number):
            self.size = (int(size), int(size))
        else:
            assert len(size) == 2, "Please provide only two dimensions (h, w) for size."
            self.size = size
        self.vertical_flip = vertical_flip

    def __call__(self, img):
        return F.ten_crop(img, self.size, self.vertical_flip)

677
    def __repr__(self):
678
        return self.__class__.__name__ + '(size={0}, vertical_flip={1})'.format(self.size, self.vertical_flip)
679

680
681
682
683
684
685
686
687
688
689

class LinearTransformation(object):
    """Transform a tensor image with a square transformation matrix computed
    offline.

    Given transformation_matrix, will flatten the torch.*Tensor, compute the dot
    product with the transformation matrix and reshape the tensor to its
    original shape.

    Applications:
690
        - whitening: zero-center the data, compute the data covariance matrix
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
                 [D x D] with np.dot(X.T, X), perform SVD on this matrix and
                 pass it as transformation_matrix.

    Args:
        transformation_matrix (Tensor): tensor [D x D], D = C x H x W
    """

    def __init__(self, transformation_matrix):
        if transformation_matrix.size(0) != transformation_matrix.size(1):
            raise ValueError("transformation_matrix should be square. Got " +
                             "[{} x {}] rectangular matrix.".format(*transformation_matrix.size()))
        self.transformation_matrix = transformation_matrix

    def __call__(self, tensor):
        """
        Args:
            tensor (Tensor): Tensor image of size (C, H, W) to be whitened.

        Returns:
            Tensor: Transformed image.
        """
        if tensor.size(0) * tensor.size(1) * tensor.size(2) != self.transformation_matrix.size(0):
            raise ValueError("tensor and transformation matrix have incompatible shape." +
                             "[{} x {} x {}] != ".format(*tensor.size()) +
                             "{}".format(self.transformation_matrix.size(0)))
        flat_tensor = tensor.view(1, -1)
        transformed_tensor = torch.mm(flat_tensor, self.transformation_matrix)
        tensor = transformed_tensor.view(tensor.size())
        return tensor

721
722
723
724
725
    def __repr__(self):
        format_string = self.__class__.__name__ + '('
        format_string += (str(self.transformation_matrix.numpy().tolist()) + ')')
        return format_string

726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757

class ColorJitter(object):
    """Randomly change the brightness, contrast and saturation of an image.

    Args:
        brightness (float): How much to jitter brightness. brightness_factor
            is chosen uniformly from [max(0, 1 - brightness), 1 + brightness].
        contrast (float): How much to jitter contrast. contrast_factor
            is chosen uniformly from [max(0, 1 - contrast), 1 + contrast].
        saturation (float): How much to jitter saturation. saturation_factor
            is chosen uniformly from [max(0, 1 - saturation), 1 + saturation].
        hue(float): How much to jitter hue. hue_factor is chosen uniformly from
            [-hue, hue]. Should be >=0 and <= 0.5.
    """
    def __init__(self, brightness=0, contrast=0, saturation=0, hue=0):
        self.brightness = brightness
        self.contrast = contrast
        self.saturation = saturation
        self.hue = hue

    @staticmethod
    def get_params(brightness, contrast, saturation, hue):
        """Get a randomized transform to be applied on image.

        Arguments are same as that of __init__.

        Returns:
            Transform which randomly adjusts brightness, contrast and
            saturation in a random order.
        """
        transforms = []
        if brightness > 0:
vfdev's avatar
vfdev committed
758
            brightness_factor = random.uniform(max(0, 1 - brightness), 1 + brightness)
759
760
761
            transforms.append(Lambda(lambda img: F.adjust_brightness(img, brightness_factor)))

        if contrast > 0:
vfdev's avatar
vfdev committed
762
            contrast_factor = random.uniform(max(0, 1 - contrast), 1 + contrast)
763
764
765
            transforms.append(Lambda(lambda img: F.adjust_contrast(img, contrast_factor)))

        if saturation > 0:
vfdev's avatar
vfdev committed
766
            saturation_factor = random.uniform(max(0, 1 - saturation), 1 + saturation)
767
768
769
            transforms.append(Lambda(lambda img: F.adjust_saturation(img, saturation_factor)))

        if hue > 0:
vfdev's avatar
vfdev committed
770
            hue_factor = random.uniform(-hue, hue)
771
772
            transforms.append(Lambda(lambda img: F.adjust_hue(img, hue_factor)))

vfdev's avatar
vfdev committed
773
        random.shuffle(transforms)
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
        transform = Compose(transforms)

        return transform

    def __call__(self, img):
        """
        Args:
            img (PIL Image): Input image.

        Returns:
            PIL Image: Color jittered image.
        """
        transform = self.get_params(self.brightness, self.contrast,
                                    self.saturation, self.hue)
        return transform(img)
789

790
    def __repr__(self):
791
792
793
794
795
796
        format_string = self.__class__.__name__ + '('
        format_string += 'brightness={0}'.format(self.brightness)
        format_string += ', contrast={0}'.format(self.contrast)
        format_string += ', saturation={0}'.format(self.saturation)
        format_string += ', hue={0})'.format(self.hue)
        return format_string
797

798
799
800
801
802
803
804
805
806

class RandomRotation(object):
    """Rotate the image by angle.

    Args:
        degrees (sequence or float or int): Range of degrees to select from.
            If degrees is a number instead of sequence like (min, max), the range of degrees
            will be (-degrees, +degrees).
        resample ({PIL.Image.NEAREST, PIL.Image.BILINEAR, PIL.Image.BICUBIC}, optional):
807
            An optional resampling filter. See `filters`_ for more information.
808
809
810
811
812
813
814
815
            If omitted, or if the image has mode "1" or "P", it is set to PIL.Image.NEAREST.
        expand (bool, optional): Optional expansion flag.
            If true, expands the output to make it large enough to hold the entire rotated image.
            If false or omitted, make the output image the same size as the input image.
            Note that the expand flag assumes rotation around the center and no translation.
        center (2-tuple, optional): Optional center of rotation.
            Origin is the upper left corner.
            Default is the center of the image.
816
817
818

    .. _filters: https://pillow.readthedocs.io/en/latest/handbook/concepts.html#filters

819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
    """

    def __init__(self, degrees, resample=False, expand=False, center=None):
        if isinstance(degrees, numbers.Number):
            if degrees < 0:
                raise ValueError("If degrees is a single number, it must be positive.")
            self.degrees = (-degrees, degrees)
        else:
            if len(degrees) != 2:
                raise ValueError("If degrees is a sequence, it must be of len 2.")
            self.degrees = degrees

        self.resample = resample
        self.expand = expand
        self.center = center

    @staticmethod
    def get_params(degrees):
        """Get parameters for ``rotate`` for a random rotation.

        Returns:
            sequence: params to be passed to ``rotate`` for random rotation.
        """
vfdev's avatar
vfdev committed
842
        angle = random.uniform(degrees[0], degrees[1])
843
844
845
846
847
848
849
850
851
852
853
854
855
856

        return angle

    def __call__(self, img):
        """
            img (PIL Image): Image to be rotated.

        Returns:
            PIL Image: Rotated image.
        """

        angle = self.get_params(self.degrees)

        return F.rotate(img, angle, self.resample, self.expand, self.center)
857

858
    def __repr__(self):
859
860
861
862
863
864
865
        format_string = self.__class__.__name__ + '(degrees={0}'.format(self.degrees)
        format_string += ', resample={0}'.format(self.resample)
        format_string += ', expand={0}'.format(self.expand)
        if self.center is not None:
            format_string += ', center={0}'.format(self.center)
        format_string += ')'
        return format_string
866

867

868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
class RandomAffine(object):
    """Random affine transformation of the image keeping center invariant

    Args:
        degrees (sequence or float or int): Range of degrees to select from.
            If degrees is a number instead of sequence like (min, max), the range of degrees
            will be (-degrees, +degrees). Set to 0 to desactivate rotations.
        translate (tuple, optional): tuple of maximum absolute fraction for horizontal
            and vertical translations. For example translate=(a, b), then horizontal shift
            is randomly sampled in the range -img_width * a < dx < img_width * a and vertical shift is
            randomly sampled in the range -img_height * b < dy < img_height * b. Will not translate by default.
        scale (tuple, optional): scaling factor interval, e.g (a, b), then scale is
            randomly sampled from the range a <= scale <= b. Will keep original scale by default.
        shear (sequence or float or int, optional): Range of degrees to select from.
            If degrees is a number instead of sequence like (min, max), the range of degrees
            will be (-degrees, +degrees). Will not apply shear by default
        resample ({PIL.Image.NEAREST, PIL.Image.BILINEAR, PIL.Image.BICUBIC}, optional):
885
            An optional resampling filter. See `filters`_ for more information.
886
            If omitted, or if the image has mode "1" or "P", it is set to PIL.Image.NEAREST.
887
        fillcolor (int): Optional fill color for the area outside the transform in the output image. (Pillow>=5.0.0)
888
889
890

    .. _filters: https://pillow.readthedocs.io/en/latest/handbook/concepts.html#filters

891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
    """

    def __init__(self, degrees, translate=None, scale=None, shear=None, resample=False, fillcolor=0):
        if isinstance(degrees, numbers.Number):
            if degrees < 0:
                raise ValueError("If degrees is a single number, it must be positive.")
            self.degrees = (-degrees, degrees)
        else:
            assert isinstance(degrees, (tuple, list)) and len(degrees) == 2, \
                "degrees should be a list or tuple and it must be of length 2."
            self.degrees = degrees

        if translate is not None:
            assert isinstance(translate, (tuple, list)) and len(translate) == 2, \
                "translate should be a list or tuple and it must be of length 2."
            for t in translate:
                if not (0.0 <= t <= 1.0):
                    raise ValueError("translation values should be between 0 and 1")
        self.translate = translate

        if scale is not None:
            assert isinstance(scale, (tuple, list)) and len(scale) == 2, \
                "scale should be a list or tuple and it must be of length 2."
            for s in scale:
                if s <= 0:
                    raise ValueError("scale values should be positive")
        self.scale = scale

        if shear is not None:
            if isinstance(shear, numbers.Number):
                if shear < 0:
                    raise ValueError("If shear is a single number, it must be positive.")
                self.shear = (-shear, shear)
            else:
                assert isinstance(shear, (tuple, list)) and len(shear) == 2, \
                    "shear should be a list or tuple and it must be of length 2."
                self.shear = shear
        else:
            self.shear = shear

        self.resample = resample
        self.fillcolor = fillcolor

    @staticmethod
    def get_params(degrees, translate, scale_ranges, shears, img_size):
        """Get parameters for affine transformation

        Returns:
            sequence: params to be passed to the affine transformation
        """
        angle = random.uniform(degrees[0], degrees[1])
        if translate is not None:
            max_dx = translate[0] * img_size[0]
            max_dy = translate[1] * img_size[1]
            translations = (np.round(random.uniform(-max_dx, max_dx)),
                            np.round(random.uniform(-max_dy, max_dy)))
        else:
            translations = (0, 0)

        if scale_ranges is not None:
            scale = random.uniform(scale_ranges[0], scale_ranges[1])
        else:
            scale = 1.0

        if shears is not None:
            shear = random.uniform(shears[0], shears[1])
        else:
            shear = 0.0

        return angle, translations, scale, shear

    def __call__(self, img):
        """
            img (PIL Image): Image to be transformed.

        Returns:
            PIL Image: Affine transformed image.
        """
        ret = self.get_params(self.degrees, self.translate, self.scale, self.shear, img.size)
        return F.affine(img, *ret, resample=self.resample, fillcolor=self.fillcolor)

    def __repr__(self):
        s = '{name}(degrees={degrees}'
        if self.translate is not None:
            s += ', translate={translate}'
        if self.scale is not None:
            s += ', scale={scale}'
        if self.shear is not None:
            s += ', shear={shear}'
        if self.resample > 0:
            s += ', resample={resample}'
        if self.fillcolor != 0:
            s += ', fillcolor={fillcolor}'
        s += ')'
        d = dict(self.__dict__)
        d['resample'] = _pil_interpolation_to_str[d['resample']]
        return s.format(name=self.__class__.__name__, **d)


990
991
class Grayscale(object):
    """Convert image to grayscale.
992

993
994
995
996
    Args:
        num_output_channels (int): (1 or 3) number of channels desired for output image

    Returns:
997
998
999
        PIL Image: Grayscale version of the input.
        - If num_output_channels == 1 : returned image is single channel
        - If num_output_channels == 3 : returned image is 3 channel with r == g == b
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015

    """

    def __init__(self, num_output_channels=1):
        self.num_output_channels = num_output_channels

    def __call__(self, img):
        """
        Args:
            img (PIL Image): Image to be converted to grayscale.

        Returns:
            PIL Image: Randomly grayscaled image.
        """
        return F.to_grayscale(img, num_output_channels=self.num_output_channels)

1016
    def __repr__(self):
1017
        return self.__class__.__name__ + '(num_output_channels={0})'.format(self.num_output_channels)
1018

1019
1020
1021

class RandomGrayscale(object):
    """Randomly convert image to grayscale with a probability of p (default 0.1).
1022

1023
1024
1025
1026
    Args:
        p (float): probability that image should be converted to grayscale.

    Returns:
1027
1028
1029
1030
        PIL Image: Grayscale version of the input image with probability p and unchanged
        with probability (1-p).
        - If input image is 1 channel: grayscale version is 1 channel
        - If input image is 3 channel: grayscale version is 3 channel with r == g == b
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048

    """

    def __init__(self, p=0.1):
        self.p = p

    def __call__(self, img):
        """
        Args:
            img (PIL Image): Image to be converted to grayscale.

        Returns:
            PIL Image: Randomly grayscaled image.
        """
        num_output_channels = 1 if img.mode == 'L' else 3
        if random.random() < self.p:
            return F.to_grayscale(img, num_output_channels=num_output_channels)
        return img
1049
1050

    def __repr__(self):
1051
        return self.__class__.__name__ + '(p={0})'.format(self.p)