transforms.py 39.5 KB
Newer Older
1
2
3
from __future__ import division
import torch
import math
Tongzhou Wang's avatar
Tongzhou Wang committed
4
import sys
5
import random
6
from PIL import Image
7
8
9
10
11
12
13
14
15
16
17
18
try:
    import accimage
except ImportError:
    accimage = None
import numpy as np
import numbers
import types
import collections
import warnings

from . import functional as F

Tongzhou Wang's avatar
Tongzhou Wang committed
19
20
21
22
23
24
25
26
if sys.version_info < (3, 3):
    Sequence = collections.Sequence
    Iterable = collections.Iterable
else:
    Sequence = collections.abc.Sequence
    Iterable = collections.abc.Iterable


27
__all__ = ["Compose", "ToTensor", "ToPILImage", "Normalize", "Resize", "Scale", "CenterCrop", "Pad",
28
29
           "Lambda", "RandomApply", "RandomChoice", "RandomOrder", "RandomCrop", "RandomHorizontalFlip",
           "RandomVerticalFlip", "RandomResizedCrop", "RandomSizedCrop", "FiveCrop", "TenCrop", "LinearTransformation",
30
           "ColorJitter", "RandomRotation", "RandomAffine", "Grayscale", "RandomGrayscale"]
31

32
33
34
35
36
_pil_interpolation_to_str = {
    Image.NEAREST: 'PIL.Image.NEAREST',
    Image.BILINEAR: 'PIL.Image.BILINEAR',
    Image.BICUBIC: 'PIL.Image.BICUBIC',
    Image.LANCZOS: 'PIL.Image.LANCZOS',
surgan12's avatar
surgan12 committed
37
38
    Image.HAMMING: 'PIL.Image.HAMMING',
    Image.BOX: 'PIL.Image.BOX',
39
40
}

41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62

class Compose(object):
    """Composes several transforms together.

    Args:
        transforms (list of ``Transform`` objects): list of transforms to compose.

    Example:
        >>> transforms.Compose([
        >>>     transforms.CenterCrop(10),
        >>>     transforms.ToTensor(),
        >>> ])
    """

    def __init__(self, transforms):
        self.transforms = transforms

    def __call__(self, img):
        for t in self.transforms:
            img = t(img)
        return img

63
64
65
66
67
68
69
70
    def __repr__(self):
        format_string = self.__class__.__name__ + '('
        for t in self.transforms:
            format_string += '\n'
            format_string += '    {0}'.format(t)
        format_string += '\n)'
        return format_string

71
72
73
74
75

class ToTensor(object):
    """Convert a ``PIL Image`` or ``numpy.ndarray`` to tensor.

    Converts a PIL Image or numpy.ndarray (H x W x C) in the range
surgan12's avatar
surgan12 committed
76
77
78
79
80
    [0, 255] to a torch.FloatTensor of shape (C x H x W) in the range [0.0, 1.0]
    if the PIL Image belongs to one of the modes (L, LA, P, I, F, RGB, YCbCr, RGBA, CMYK, 1)
    or if the numpy.ndarray has dtype = np.uint8

    In the other cases, tensors are returned without scaling.
81
82
83
84
85
86
87
88
89
90
91
92
    """

    def __call__(self, pic):
        """
        Args:
            pic (PIL Image or numpy.ndarray): Image to be converted to tensor.

        Returns:
            Tensor: Converted image.
        """
        return F.to_tensor(pic)

93
94
95
    def __repr__(self):
        return self.__class__.__name__ + '()'

96
97
98
99
100
101
102
103
104
105

class ToPILImage(object):
    """Convert a tensor or an ndarray to PIL Image.

    Converts a torch.*Tensor of shape C x H x W or a numpy ndarray of shape
    H x W x C to a PIL Image while preserving the value range.

    Args:
        mode (`PIL.Image mode`_): color space and pixel depth of input data (optional).
            If ``mode`` is ``None`` (default) there are some assumptions made about the input data:
surgan12's avatar
surgan12 committed
106
107
108
109
110
             - If the input has 4 channels, the ``mode`` is assumed to be ``RGBA``.
             - If the input has 3 channels, the ``mode`` is assumed to be ``RGB``.
             - If the input has 2 channels, the ``mode`` is assumed to be ``LA``.
             - If the input has 1 channel, the ``mode`` is determined by the data type (i.e ``int``, ``float``,
              ``short``).
111

csukuangfj's avatar
csukuangfj committed
112
    .. _PIL.Image mode: https://pillow.readthedocs.io/en/latest/handbook/concepts.html#concept-modes
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
    """
    def __init__(self, mode=None):
        self.mode = mode

    def __call__(self, pic):
        """
        Args:
            pic (Tensor or numpy.ndarray): Image to be converted to PIL Image.

        Returns:
            PIL Image: Image converted to PIL Image.

        """
        return F.to_pil_image(pic, self.mode)

128
    def __repr__(self):
129
130
131
132
133
        format_string = self.__class__.__name__ + '('
        if self.mode is not None:
            format_string += 'mode={0}'.format(self.mode)
        format_string += ')'
        return format_string
134

135
136

class Normalize(object):
Fang Gao's avatar
Fang Gao committed
137
    """Normalize a tensor image with mean and standard deviation.
138
    Given mean: ``(M1,...,Mn)`` and std: ``(S1,..,Sn)`` for ``n`` channels, this transform
139
140
141
    will normalize each channel of the input ``torch.*Tensor`` i.e.
    ``input[channel] = (input[channel] - mean[channel]) / std[channel]``

142
    .. note::
surgan12's avatar
surgan12 committed
143
        This transform acts out of place, i.e., it does not mutates the input tensor.
144

145
146
147
148
149
    Args:
        mean (sequence): Sequence of means for each channel.
        std (sequence): Sequence of standard deviations for each channel.
    """

surgan12's avatar
surgan12 committed
150
    def __init__(self, mean, std, inplace=False):
151
152
        self.mean = mean
        self.std = std
surgan12's avatar
surgan12 committed
153
        self.inplace = inplace
154
155
156
157
158
159
160
161
162

    def __call__(self, tensor):
        """
        Args:
            tensor (Tensor): Tensor image of size (C, H, W) to be normalized.

        Returns:
            Tensor: Normalized Tensor image.
        """
surgan12's avatar
surgan12 committed
163
        return F.normalize(tensor, self.mean, self.std, self.inplace)
164

165
166
167
    def __repr__(self):
        return self.__class__.__name__ + '(mean={0}, std={1})'.format(self.mean, self.std)

168
169
170
171
172
173
174
175
176
177
178
179
180
181
182

class Resize(object):
    """Resize the input PIL Image to the given size.

    Args:
        size (sequence or int): Desired output size. If size is a sequence like
            (h, w), output size will be matched to this. If size is an int,
            smaller edge of the image will be matched to this number.
            i.e, if height > width, then image will be rescaled to
            (size * height / width, size)
        interpolation (int, optional): Desired interpolation. Default is
            ``PIL.Image.BILINEAR``
    """

    def __init__(self, size, interpolation=Image.BILINEAR):
Tongzhou Wang's avatar
Tongzhou Wang committed
183
        assert isinstance(size, int) or (isinstance(size, Iterable) and len(size) == 2)
184
185
186
187
188
189
190
191
192
193
194
195
196
        self.size = size
        self.interpolation = interpolation

    def __call__(self, img):
        """
        Args:
            img (PIL Image): Image to be scaled.

        Returns:
            PIL Image: Rescaled image.
        """
        return F.resize(img, self.size, self.interpolation)

197
    def __repr__(self):
198
199
        interpolate_str = _pil_interpolation_to_str[self.interpolation]
        return self.__class__.__name__ + '(size={0}, interpolation={1})'.format(self.size, interpolate_str)
200

201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236

class Scale(Resize):
    """
    Note: This transform is deprecated in favor of Resize.
    """
    def __init__(self, *args, **kwargs):
        warnings.warn("The use of the transforms.Scale transform is deprecated, " +
                      "please use transforms.Resize instead.")
        super(Scale, self).__init__(*args, **kwargs)


class CenterCrop(object):
    """Crops the given PIL Image at the center.

    Args:
        size (sequence or int): Desired output size of the crop. If size is an
            int instead of sequence like (h, w), a square crop (size, size) is
            made.
    """

    def __init__(self, size):
        if isinstance(size, numbers.Number):
            self.size = (int(size), int(size))
        else:
            self.size = size

    def __call__(self, img):
        """
        Args:
            img (PIL Image): Image to be cropped.

        Returns:
            PIL Image: Cropped image.
        """
        return F.center_crop(img, self.size)

237
238
239
    def __repr__(self):
        return self.__class__.__name__ + '(size={0})'.format(self.size)

240
241
242
243
244
245
246
247
248
249

class Pad(object):
    """Pad the given PIL Image on all sides with the given "pad" value.

    Args:
        padding (int or tuple): Padding on each border. If a single int is provided this
            is used to pad all borders. If tuple of length 2 is provided this is the padding
            on left/right and top/bottom respectively. If a tuple of length 4 is provided
            this is the padding for the left, top, right and bottom borders
            respectively.
250
        fill (int or tuple): Pixel fill value for constant fill. Default is 0. If a tuple of
251
            length 3, it is used to fill R, G, B channels respectively.
252
            This value is only used when the padding_mode is constant
253
254
255
256
257
258
259
260
261
262
        padding_mode (str): Type of padding. Should be: constant, edge, reflect or symmetric.
            Default is constant.

            - constant: pads with a constant value, this value is specified with fill

            - edge: pads with the last value at the edge of the image

            - reflect: pads with reflection of image without repeating the last value on the edge

                For example, padding [1, 2, 3, 4] with 2 elements on both sides in reflect mode
263
                will result in [3, 2, 1, 2, 3, 4, 3, 2]
264
265
266
267

            - symmetric: pads with reflection of image repeating the last value on the edge

                For example, padding [1, 2, 3, 4] with 2 elements on both sides in symmetric mode
268
                will result in [2, 1, 1, 2, 3, 4, 4, 3]
269
270
    """

271
    def __init__(self, padding, fill=0, padding_mode='constant'):
272
273
        assert isinstance(padding, (numbers.Number, tuple))
        assert isinstance(fill, (numbers.Number, str, tuple))
274
        assert padding_mode in ['constant', 'edge', 'reflect', 'symmetric']
Tongzhou Wang's avatar
Tongzhou Wang committed
275
        if isinstance(padding, Sequence) and len(padding) not in [2, 4]:
276
277
278
279
280
            raise ValueError("Padding must be an int or a 2, or 4 element tuple, not a " +
                             "{} element tuple".format(len(padding)))

        self.padding = padding
        self.fill = fill
281
        self.padding_mode = padding_mode
282
283
284
285
286
287
288
289
290

    def __call__(self, img):
        """
        Args:
            img (PIL Image): Image to be padded.

        Returns:
            PIL Image: Padded image.
        """
291
        return F.pad(img, self.padding, self.fill, self.padding_mode)
292

293
    def __repr__(self):
294
295
        return self.__class__.__name__ + '(padding={0}, fill={1}, padding_mode={2})'.\
            format(self.padding, self.fill, self.padding_mode)
296

297
298
299
300
301
302
303
304
305

class Lambda(object):
    """Apply a user-defined lambda as a transform.

    Args:
        lambd (function): Lambda/function to be used for transform.
    """

    def __init__(self, lambd):
306
        assert callable(lambd), repr(type(lambd).__name__) + " object is not callable"
307
308
309
310
311
        self.lambd = lambd

    def __call__(self, img):
        return self.lambd(img)

312
313
314
    def __repr__(self):
        return self.__class__.__name__ + '()'

315

316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
class RandomTransforms(object):
    """Base class for a list of transformations with randomness

    Args:
        transforms (list or tuple): list of transformations
    """

    def __init__(self, transforms):
        assert isinstance(transforms, (list, tuple))
        self.transforms = transforms

    def __call__(self, *args, **kwargs):
        raise NotImplementedError()

    def __repr__(self):
        format_string = self.__class__.__name__ + '('
        for t in self.transforms:
            format_string += '\n'
            format_string += '    {0}'.format(t)
        format_string += '\n)'
        return format_string


class RandomApply(RandomTransforms):
    """Apply randomly a list of transformations with a given probability

    Args:
        transforms (list or tuple): list of transformations
        p (float): probability
    """

    def __init__(self, transforms, p=0.5):
        super(RandomApply, self).__init__(transforms)
        self.p = p

    def __call__(self, img):
        if self.p < random.random():
            return img
        for t in self.transforms:
            img = t(img)
        return img

    def __repr__(self):
        format_string = self.__class__.__name__ + '('
        format_string += '\n    p={}'.format(self.p)
        for t in self.transforms:
            format_string += '\n'
            format_string += '    {0}'.format(t)
        format_string += '\n)'
        return format_string


class RandomOrder(RandomTransforms):
    """Apply a list of transformations in a random order
    """
    def __call__(self, img):
        order = list(range(len(self.transforms)))
        random.shuffle(order)
        for i in order:
            img = self.transforms[i](img)
        return img


class RandomChoice(RandomTransforms):
    """Apply single transformation randomly picked from a list
    """
    def __call__(self, img):
        t = random.choice(self.transforms)
        return t(img)


387
388
389
390
391
392
393
394
class RandomCrop(object):
    """Crop the given PIL Image at a random location.

    Args:
        size (sequence or int): Desired output size of the crop. If size is an
            int instead of sequence like (h, w), a square crop (size, size) is
            made.
        padding (int or sequence, optional): Optional padding on each border
395
            of the image. Default is None, i.e no padding. If a sequence of length
396
            4 is provided, it is used to pad left, top, right, bottom borders
397
398
            respectively. If a sequence of length 2 is provided, it is used to
            pad left/right, top/bottom borders, respectively.
399
400
        pad_if_needed (boolean): It will pad the image if smaller than the
            desired size to avoid raising an exception.
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
        fill: Pixel fill value for constant fill. Default is 0. If a tuple of
            length 3, it is used to fill R, G, B channels respectively.
            This value is only used when the padding_mode is constant
        padding_mode: Type of padding. Should be: constant, edge, reflect or symmetric. Default is constant.

             - constant: pads with a constant value, this value is specified with fill

             - edge: pads with the last value on the edge of the image

             - reflect: pads with reflection of image (without repeating the last value on the edge)

                padding [1, 2, 3, 4] with 2 elements on both sides in reflect mode
                will result in [3, 2, 1, 2, 3, 4, 3, 2]

             - symmetric: pads with reflection of image (repeating the last value on the edge)

                padding [1, 2, 3, 4] with 2 elements on both sides in symmetric mode
                will result in [2, 1, 1, 2, 3, 4, 4, 3]

420
421
    """

422
    def __init__(self, size, padding=None, pad_if_needed=False, fill=0, padding_mode='constant'):
423
424
425
426
427
        if isinstance(size, numbers.Number):
            self.size = (int(size), int(size))
        else:
            self.size = size
        self.padding = padding
428
        self.pad_if_needed = pad_if_needed
429
430
        self.fill = fill
        self.padding_mode = padding_mode
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459

    @staticmethod
    def get_params(img, output_size):
        """Get parameters for ``crop`` for a random crop.

        Args:
            img (PIL Image): Image to be cropped.
            output_size (tuple): Expected output size of the crop.

        Returns:
            tuple: params (i, j, h, w) to be passed to ``crop`` for random crop.
        """
        w, h = img.size
        th, tw = output_size
        if w == tw and h == th:
            return 0, 0, h, w

        i = random.randint(0, h - th)
        j = random.randint(0, w - tw)
        return i, j, th, tw

    def __call__(self, img):
        """
        Args:
            img (PIL Image): Image to be cropped.

        Returns:
            PIL Image: Cropped image.
        """
460
461
        if self.padding is not None:
            img = F.pad(img, self.padding, self.fill, self.padding_mode)
462

463
464
        # pad the width if needed
        if self.pad_if_needed and img.size[0] < self.size[1]:
465
            img = F.pad(img, (self.size[1] - img.size[0], 0), self.fill, self.padding_mode)
466
467
        # pad the height if needed
        if self.pad_if_needed and img.size[1] < self.size[0]:
468
            img = F.pad(img, (0, self.size[0] - img.size[1]), self.fill, self.padding_mode)
469

470
471
472
473
        i, j, h, w = self.get_params(img, self.size)

        return F.crop(img, i, j, h, w)

474
    def __repr__(self):
475
        return self.__class__.__name__ + '(size={0}, padding={1})'.format(self.size, self.padding)
476

477
478

class RandomHorizontalFlip(object):
479
480
481
482
483
484
485
486
    """Horizontally flip the given PIL Image randomly with a given probability.

    Args:
        p (float): probability of the image being flipped. Default value is 0.5
    """

    def __init__(self, p=0.5):
        self.p = p
487
488
489
490
491
492
493
494
495

    def __call__(self, img):
        """
        Args:
            img (PIL Image): Image to be flipped.

        Returns:
            PIL Image: Randomly flipped image.
        """
496
        if random.random() < self.p:
497
498
499
            return F.hflip(img)
        return img

500
    def __repr__(self):
501
        return self.__class__.__name__ + '(p={})'.format(self.p)
502

503
504

class RandomVerticalFlip(object):
505
506
507
508
509
510
511
512
    """Vertically flip the given PIL Image randomly with a given probability.

    Args:
        p (float): probability of the image being flipped. Default value is 0.5
    """

    def __init__(self, p=0.5):
        self.p = p
513
514
515
516
517
518
519
520
521

    def __call__(self, img):
        """
        Args:
            img (PIL Image): Image to be flipped.

        Returns:
            PIL Image: Randomly flipped image.
        """
522
        if random.random() < self.p:
523
524
525
            return F.vflip(img)
        return img

526
    def __repr__(self):
527
        return self.__class__.__name__ + '(p={})'.format(self.p)
528

529
530
531
532

class RandomResizedCrop(object):
    """Crop the given PIL Image to random size and aspect ratio.

533
534
    A crop of random size (default: of 0.08 to 1.0) of the original size and a random
    aspect ratio (default: of 3/4 to 4/3) of the original aspect ratio is made. This crop
535
536
537
538
539
    is finally resized to given size.
    This is popularly used to train the Inception networks.

    Args:
        size: expected output size of each edge
540
541
        scale: range of size of the origin size cropped
        ratio: range of aspect ratio of the origin aspect ratio cropped
542
543
544
        interpolation: Default: PIL.Image.BILINEAR
    """

545
    def __init__(self, size, scale=(0.08, 1.0), ratio=(3. / 4., 4. / 3.), interpolation=Image.BILINEAR):
546
547
548
549
550
551
552
        if isinstance(size, tuple):
            self.size = size
        else:
            self.size = (size, size)
        if (scale[0] > scale[1]) or (ratio[0] > ratio[1]):
            warnings.warn("range should be of kind (min, max)")

553
        self.interpolation = interpolation
554
555
        self.scale = scale
        self.ratio = ratio
556
557

    @staticmethod
558
    def get_params(img, scale, ratio):
559
560
561
562
        """Get parameters for ``crop`` for a random sized crop.

        Args:
            img (PIL Image): Image to be cropped.
563
564
            scale (tuple): range of size of the origin size cropped
            ratio (tuple): range of aspect ratio of the origin aspect ratio cropped
565
566
567
568
569

        Returns:
            tuple: params (i, j, h, w) to be passed to ``crop`` for a random
                sized crop.
        """
570
571
        area = img.size[0] * img.size[1]

572
        for attempt in range(10):
573
574
            target_area = random.uniform(*scale) * area
            aspect_ratio = random.uniform(*ratio)
575
576
577
578

            w = int(round(math.sqrt(target_area * aspect_ratio)))
            h = int(round(math.sqrt(target_area / aspect_ratio)))

579
            if random.random() < 0.5 and min(ratio) <= (h / w) <= max(ratio):
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
                w, h = h, w

            if w <= img.size[0] and h <= img.size[1]:
                i = random.randint(0, img.size[1] - h)
                j = random.randint(0, img.size[0] - w)
                return i, j, h, w

        # Fallback
        w = min(img.size[0], img.size[1])
        i = (img.size[1] - w) // 2
        j = (img.size[0] - w) // 2
        return i, j, w, w

    def __call__(self, img):
        """
        Args:
596
            img (PIL Image): Image to be cropped and resized.
597
598

        Returns:
599
            PIL Image: Randomly cropped and resized image.
600
        """
601
        i, j, h, w = self.get_params(img, self.scale, self.ratio)
602
603
        return F.resized_crop(img, i, j, h, w, self.size, self.interpolation)

604
    def __repr__(self):
605
606
        interpolate_str = _pil_interpolation_to_str[self.interpolation]
        format_string = self.__class__.__name__ + '(size={0}'.format(self.size)
607
608
        format_string += ', scale={0}'.format(tuple(round(s, 4) for s in self.scale))
        format_string += ', ratio={0}'.format(tuple(round(r, 4) for r in self.ratio))
609
610
        format_string += ', interpolation={0})'.format(interpolate_str)
        return format_string
611

612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657

class RandomSizedCrop(RandomResizedCrop):
    """
    Note: This transform is deprecated in favor of RandomResizedCrop.
    """
    def __init__(self, *args, **kwargs):
        warnings.warn("The use of the transforms.RandomSizedCrop transform is deprecated, " +
                      "please use transforms.RandomResizedCrop instead.")
        super(RandomSizedCrop, self).__init__(*args, **kwargs)


class FiveCrop(object):
    """Crop the given PIL Image into four corners and the central crop

    .. Note::
         This transform returns a tuple of images and there may be a mismatch in the number of
         inputs and targets your Dataset returns. See below for an example of how to deal with
         this.

    Args:
         size (sequence or int): Desired output size of the crop. If size is an ``int``
            instead of sequence like (h, w), a square crop of size (size, size) is made.

    Example:
         >>> transform = Compose([
         >>>    FiveCrop(size), # this is a list of PIL Images
         >>>    Lambda(lambda crops: torch.stack([ToTensor()(crop) for crop in crops])) # returns a 4D tensor
         >>> ])
         >>> #In your test loop you can do the following:
         >>> input, target = batch # input is a 5d tensor, target is 2d
         >>> bs, ncrops, c, h, w = input.size()
         >>> result = model(input.view(-1, c, h, w)) # fuse batch size and ncrops
         >>> result_avg = result.view(bs, ncrops, -1).mean(1) # avg over crops
    """

    def __init__(self, size):
        self.size = size
        if isinstance(size, numbers.Number):
            self.size = (int(size), int(size))
        else:
            assert len(size) == 2, "Please provide only two dimensions (h, w) for size."
            self.size = size

    def __call__(self, img):
        return F.five_crop(img, self.size)

658
659
660
    def __repr__(self):
        return self.__class__.__name__ + '(size={0})'.format(self.size)

661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700

class TenCrop(object):
    """Crop the given PIL Image into four corners and the central crop plus the flipped version of
    these (horizontal flipping is used by default)

    .. Note::
         This transform returns a tuple of images and there may be a mismatch in the number of
         inputs and targets your Dataset returns. See below for an example of how to deal with
         this.

    Args:
        size (sequence or int): Desired output size of the crop. If size is an
            int instead of sequence like (h, w), a square crop (size, size) is
            made.
        vertical_flip(bool): Use vertical flipping instead of horizontal

    Example:
         >>> transform = Compose([
         >>>    TenCrop(size), # this is a list of PIL Images
         >>>    Lambda(lambda crops: torch.stack([ToTensor()(crop) for crop in crops])) # returns a 4D tensor
         >>> ])
         >>> #In your test loop you can do the following:
         >>> input, target = batch # input is a 5d tensor, target is 2d
         >>> bs, ncrops, c, h, w = input.size()
         >>> result = model(input.view(-1, c, h, w)) # fuse batch size and ncrops
         >>> result_avg = result.view(bs, ncrops, -1).mean(1) # avg over crops
    """

    def __init__(self, size, vertical_flip=False):
        self.size = size
        if isinstance(size, numbers.Number):
            self.size = (int(size), int(size))
        else:
            assert len(size) == 2, "Please provide only two dimensions (h, w) for size."
            self.size = size
        self.vertical_flip = vertical_flip

    def __call__(self, img):
        return F.ten_crop(img, self.size, self.vertical_flip)

701
    def __repr__(self):
702
        return self.__class__.__name__ + '(size={0}, vertical_flip={1})'.format(self.size, self.vertical_flip)
703

704
705
706
707
708
709
710
711
712
713

class LinearTransformation(object):
    """Transform a tensor image with a square transformation matrix computed
    offline.

    Given transformation_matrix, will flatten the torch.*Tensor, compute the dot
    product with the transformation matrix and reshape the tensor to its
    original shape.

    Applications:
714
        - whitening: zero-center the data, compute the data covariance matrix
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
                 [D x D] with np.dot(X.T, X), perform SVD on this matrix and
                 pass it as transformation_matrix.

    Args:
        transformation_matrix (Tensor): tensor [D x D], D = C x H x W
    """

    def __init__(self, transformation_matrix):
        if transformation_matrix.size(0) != transformation_matrix.size(1):
            raise ValueError("transformation_matrix should be square. Got " +
                             "[{} x {}] rectangular matrix.".format(*transformation_matrix.size()))
        self.transformation_matrix = transformation_matrix

    def __call__(self, tensor):
        """
        Args:
            tensor (Tensor): Tensor image of size (C, H, W) to be whitened.

        Returns:
            Tensor: Transformed image.
        """
        if tensor.size(0) * tensor.size(1) * tensor.size(2) != self.transformation_matrix.size(0):
            raise ValueError("tensor and transformation matrix have incompatible shape." +
                             "[{} x {} x {}] != ".format(*tensor.size()) +
                             "{}".format(self.transformation_matrix.size(0)))
        flat_tensor = tensor.view(1, -1)
        transformed_tensor = torch.mm(flat_tensor, self.transformation_matrix)
        tensor = transformed_tensor.view(tensor.size())
        return tensor

745
746
747
748
749
    def __repr__(self):
        format_string = self.__class__.__name__ + '('
        format_string += (str(self.transformation_matrix.numpy().tolist()) + ')')
        return format_string

750
751
752
753
754

class ColorJitter(object):
    """Randomly change the brightness, contrast and saturation of an image.

    Args:
yaox12's avatar
yaox12 committed
755
756
757
758
759
760
761
762
763
764
765
766
        brightness (float or tuple of float (min, max)): How much to jitter brightness.
            brightness_factor is chosen uniformly from [max(0, 1 - brightness), 1 + brightness]
            or the given [min, max]. Should be non negative numbers.
        contrast (float or tuple of float (min, max)): How much to jitter contrast.
            contrast_factor is chosen uniformly from [max(0, 1 - contrast), 1 + contrast]
            or the given [min, max]. Should be non negative numbers.
        saturation (float or tuple of float (min, max)): How much to jitter saturation.
            saturation_factor is chosen uniformly from [max(0, 1 - saturation), 1 + saturation]
            or the given [min, max]. Should be non negative numbers.
        hue (float or tuple of float (min, max)): How much to jitter hue.
            hue_factor is chosen uniformly from [-hue, hue] or the given [min, max].
            Should have 0<= hue <= 0.5 or -0.5 <= min <= max <= 0.5.
767
768
    """
    def __init__(self, brightness=0, contrast=0, saturation=0, hue=0):
yaox12's avatar
yaox12 committed
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
        self.brightness = self._check_input(brightness, 'brightness')
        self.contrast = self._check_input(contrast, 'contrast')
        self.saturation = self._check_input(saturation, 'saturation')
        self.hue = self._check_input(hue, 'hue', center=0, bound=(-0.5, 0.5),
                                     clip_first_on_zero=False)

    def _check_input(self, value, name, center=1, bound=(0, float('inf')), clip_first_on_zero=True):
        if isinstance(value, numbers.Number):
            if value < 0:
                raise ValueError("If {} is a single number, it must be non negative.".format(name))
            value = [center - value, center + value]
            if clip_first_on_zero:
                value[0] = max(value[0], 0)
        elif isinstance(value, (tuple, list)) and len(value) == 2:
            if not bound[0] <= value[0] <= value[1] <= bound[1]:
                raise ValueError("{} values should be between {}".format(name, bound))
        else:
            raise TypeError("{} should be a single number or a list/tuple with lenght 2.".format(name))

        # if value is 0 or (1., 1.) for brightness/contrast/saturation
        # or (0., 0.) for hue, do nothing
        if value[0] == value[1] == center:
            value = None
        return value
793
794
795
796
797
798
799
800
801
802
803
804

    @staticmethod
    def get_params(brightness, contrast, saturation, hue):
        """Get a randomized transform to be applied on image.

        Arguments are same as that of __init__.

        Returns:
            Transform which randomly adjusts brightness, contrast and
            saturation in a random order.
        """
        transforms = []
yaox12's avatar
yaox12 committed
805
806
807

        if brightness is not None:
            brightness_factor = random.uniform(brightness[0], brightness[1])
808
809
            transforms.append(Lambda(lambda img: F.adjust_brightness(img, brightness_factor)))

yaox12's avatar
yaox12 committed
810
811
        if contrast is not None:
            contrast_factor = random.uniform(contrast[0], contrast[1])
812
813
            transforms.append(Lambda(lambda img: F.adjust_contrast(img, contrast_factor)))

yaox12's avatar
yaox12 committed
814
815
        if saturation is not None:
            saturation_factor = random.uniform(saturation[0], saturation[1])
816
817
            transforms.append(Lambda(lambda img: F.adjust_saturation(img, saturation_factor)))

yaox12's avatar
yaox12 committed
818
819
        if hue is not None:
            hue_factor = random.uniform(hue[0], hue[1])
820
821
            transforms.append(Lambda(lambda img: F.adjust_hue(img, hue_factor)))

vfdev's avatar
vfdev committed
822
        random.shuffle(transforms)
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
        transform = Compose(transforms)

        return transform

    def __call__(self, img):
        """
        Args:
            img (PIL Image): Input image.

        Returns:
            PIL Image: Color jittered image.
        """
        transform = self.get_params(self.brightness, self.contrast,
                                    self.saturation, self.hue)
        return transform(img)
838

839
    def __repr__(self):
840
841
842
843
844
845
        format_string = self.__class__.__name__ + '('
        format_string += 'brightness={0}'.format(self.brightness)
        format_string += ', contrast={0}'.format(self.contrast)
        format_string += ', saturation={0}'.format(self.saturation)
        format_string += ', hue={0})'.format(self.hue)
        return format_string
846

847
848
849
850
851
852
853
854
855

class RandomRotation(object):
    """Rotate the image by angle.

    Args:
        degrees (sequence or float or int): Range of degrees to select from.
            If degrees is a number instead of sequence like (min, max), the range of degrees
            will be (-degrees, +degrees).
        resample ({PIL.Image.NEAREST, PIL.Image.BILINEAR, PIL.Image.BICUBIC}, optional):
856
            An optional resampling filter. See `filters`_ for more information.
857
858
859
860
861
862
863
864
            If omitted, or if the image has mode "1" or "P", it is set to PIL.Image.NEAREST.
        expand (bool, optional): Optional expansion flag.
            If true, expands the output to make it large enough to hold the entire rotated image.
            If false or omitted, make the output image the same size as the input image.
            Note that the expand flag assumes rotation around the center and no translation.
        center (2-tuple, optional): Optional center of rotation.
            Origin is the upper left corner.
            Default is the center of the image.
865
866
867

    .. _filters: https://pillow.readthedocs.io/en/latest/handbook/concepts.html#filters

868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
    """

    def __init__(self, degrees, resample=False, expand=False, center=None):
        if isinstance(degrees, numbers.Number):
            if degrees < 0:
                raise ValueError("If degrees is a single number, it must be positive.")
            self.degrees = (-degrees, degrees)
        else:
            if len(degrees) != 2:
                raise ValueError("If degrees is a sequence, it must be of len 2.")
            self.degrees = degrees

        self.resample = resample
        self.expand = expand
        self.center = center

    @staticmethod
    def get_params(degrees):
        """Get parameters for ``rotate`` for a random rotation.

        Returns:
            sequence: params to be passed to ``rotate`` for random rotation.
        """
vfdev's avatar
vfdev committed
891
        angle = random.uniform(degrees[0], degrees[1])
892
893
894
895
896
897
898
899
900
901
902
903
904
905

        return angle

    def __call__(self, img):
        """
            img (PIL Image): Image to be rotated.

        Returns:
            PIL Image: Rotated image.
        """

        angle = self.get_params(self.degrees)

        return F.rotate(img, angle, self.resample, self.expand, self.center)
906

907
    def __repr__(self):
908
909
910
911
912
913
914
        format_string = self.__class__.__name__ + '(degrees={0}'.format(self.degrees)
        format_string += ', resample={0}'.format(self.resample)
        format_string += ', expand={0}'.format(self.expand)
        if self.center is not None:
            format_string += ', center={0}'.format(self.center)
        format_string += ')'
        return format_string
915

916

917
918
919
920
921
922
class RandomAffine(object):
    """Random affine transformation of the image keeping center invariant

    Args:
        degrees (sequence or float or int): Range of degrees to select from.
            If degrees is a number instead of sequence like (min, max), the range of degrees
923
            will be (-degrees, +degrees). Set to 0 to deactivate rotations.
924
925
926
927
928
929
930
931
932
933
        translate (tuple, optional): tuple of maximum absolute fraction for horizontal
            and vertical translations. For example translate=(a, b), then horizontal shift
            is randomly sampled in the range -img_width * a < dx < img_width * a and vertical shift is
            randomly sampled in the range -img_height * b < dy < img_height * b. Will not translate by default.
        scale (tuple, optional): scaling factor interval, e.g (a, b), then scale is
            randomly sampled from the range a <= scale <= b. Will keep original scale by default.
        shear (sequence or float or int, optional): Range of degrees to select from.
            If degrees is a number instead of sequence like (min, max), the range of degrees
            will be (-degrees, +degrees). Will not apply shear by default
        resample ({PIL.Image.NEAREST, PIL.Image.BILINEAR, PIL.Image.BICUBIC}, optional):
934
            An optional resampling filter. See `filters`_ for more information.
935
            If omitted, or if the image has mode "1" or "P", it is set to PIL.Image.NEAREST.
936
        fillcolor (int): Optional fill color for the area outside the transform in the output image. (Pillow>=5.0.0)
937
938
939

    .. _filters: https://pillow.readthedocs.io/en/latest/handbook/concepts.html#filters

940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025
1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
    """

    def __init__(self, degrees, translate=None, scale=None, shear=None, resample=False, fillcolor=0):
        if isinstance(degrees, numbers.Number):
            if degrees < 0:
                raise ValueError("If degrees is a single number, it must be positive.")
            self.degrees = (-degrees, degrees)
        else:
            assert isinstance(degrees, (tuple, list)) and len(degrees) == 2, \
                "degrees should be a list or tuple and it must be of length 2."
            self.degrees = degrees

        if translate is not None:
            assert isinstance(translate, (tuple, list)) and len(translate) == 2, \
                "translate should be a list or tuple and it must be of length 2."
            for t in translate:
                if not (0.0 <= t <= 1.0):
                    raise ValueError("translation values should be between 0 and 1")
        self.translate = translate

        if scale is not None:
            assert isinstance(scale, (tuple, list)) and len(scale) == 2, \
                "scale should be a list or tuple and it must be of length 2."
            for s in scale:
                if s <= 0:
                    raise ValueError("scale values should be positive")
        self.scale = scale

        if shear is not None:
            if isinstance(shear, numbers.Number):
                if shear < 0:
                    raise ValueError("If shear is a single number, it must be positive.")
                self.shear = (-shear, shear)
            else:
                assert isinstance(shear, (tuple, list)) and len(shear) == 2, \
                    "shear should be a list or tuple and it must be of length 2."
                self.shear = shear
        else:
            self.shear = shear

        self.resample = resample
        self.fillcolor = fillcolor

    @staticmethod
    def get_params(degrees, translate, scale_ranges, shears, img_size):
        """Get parameters for affine transformation

        Returns:
            sequence: params to be passed to the affine transformation
        """
        angle = random.uniform(degrees[0], degrees[1])
        if translate is not None:
            max_dx = translate[0] * img_size[0]
            max_dy = translate[1] * img_size[1]
            translations = (np.round(random.uniform(-max_dx, max_dx)),
                            np.round(random.uniform(-max_dy, max_dy)))
        else:
            translations = (0, 0)

        if scale_ranges is not None:
            scale = random.uniform(scale_ranges[0], scale_ranges[1])
        else:
            scale = 1.0

        if shears is not None:
            shear = random.uniform(shears[0], shears[1])
        else:
            shear = 0.0

        return angle, translations, scale, shear

    def __call__(self, img):
        """
            img (PIL Image): Image to be transformed.

        Returns:
            PIL Image: Affine transformed image.
        """
        ret = self.get_params(self.degrees, self.translate, self.scale, self.shear, img.size)
        return F.affine(img, *ret, resample=self.resample, fillcolor=self.fillcolor)

    def __repr__(self):
        s = '{name}(degrees={degrees}'
        if self.translate is not None:
            s += ', translate={translate}'
        if self.scale is not None:
            s += ', scale={scale}'
        if self.shear is not None:
            s += ', shear={shear}'
        if self.resample > 0:
            s += ', resample={resample}'
        if self.fillcolor != 0:
            s += ', fillcolor={fillcolor}'
        s += ')'
        d = dict(self.__dict__)
        d['resample'] = _pil_interpolation_to_str[d['resample']]
        return s.format(name=self.__class__.__name__, **d)


1039
1040
class Grayscale(object):
    """Convert image to grayscale.
1041

1042
1043
1044
1045
    Args:
        num_output_channels (int): (1 or 3) number of channels desired for output image

    Returns:
1046
1047
1048
        PIL Image: Grayscale version of the input.
        - If num_output_channels == 1 : returned image is single channel
        - If num_output_channels == 3 : returned image is 3 channel with r == g == b
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064

    """

    def __init__(self, num_output_channels=1):
        self.num_output_channels = num_output_channels

    def __call__(self, img):
        """
        Args:
            img (PIL Image): Image to be converted to grayscale.

        Returns:
            PIL Image: Randomly grayscaled image.
        """
        return F.to_grayscale(img, num_output_channels=self.num_output_channels)

1065
    def __repr__(self):
1066
        return self.__class__.__name__ + '(num_output_channels={0})'.format(self.num_output_channels)
1067

1068
1069
1070

class RandomGrayscale(object):
    """Randomly convert image to grayscale with a probability of p (default 0.1).
1071

1072
1073
1074
1075
    Args:
        p (float): probability that image should be converted to grayscale.

    Returns:
1076
1077
1078
1079
        PIL Image: Grayscale version of the input image with probability p and unchanged
        with probability (1-p).
        - If input image is 1 channel: grayscale version is 1 channel
        - If input image is 3 channel: grayscale version is 3 channel with r == g == b
1080
1081
1082
1083
1084
1085
1086
1087
1088
1089
1090
1091
1092
1093
1094
1095
1096
1097

    """

    def __init__(self, p=0.1):
        self.p = p

    def __call__(self, img):
        """
        Args:
            img (PIL Image): Image to be converted to grayscale.

        Returns:
            PIL Image: Randomly grayscaled image.
        """
        num_output_channels = 1 if img.mode == 'L' else 3
        if random.random() < self.p:
            return F.to_grayscale(img, num_output_channels=num_output_channels)
        return img
1098
1099

    def __repr__(self):
1100
        return self.__class__.__name__ + '(p={0})'.format(self.p)