"server/text_generation_server/models/flash_cohere.py" did not exist on "72ee382dedb9d2988b82ddca1e6d8933088ec707"
transforms.py 48.3 KB
Newer Older
1
2
3
import torch
import math
import random
4
from PIL import Image
5
6
7
8
9
10
11
try:
    import accimage
except ImportError:
    accimage = None
import numpy as np
import numbers
import types
12
from collections.abc import Sequence, Iterable
13
14
15
16
import warnings

from . import functional as F

Tongzhou Wang's avatar
Tongzhou Wang committed
17

18
__all__ = ["Compose", "ToTensor", "ToPILImage", "Normalize", "Resize", "Scale", "CenterCrop", "Pad",
19
20
           "Lambda", "RandomApply", "RandomChoice", "RandomOrder", "RandomCrop", "RandomHorizontalFlip",
           "RandomVerticalFlip", "RandomResizedCrop", "RandomSizedCrop", "FiveCrop", "TenCrop", "LinearTransformation",
21
           "ColorJitter", "RandomRotation", "RandomAffine", "Grayscale", "RandomGrayscale",
22
           "RandomPerspective", "RandomErasing"]
23

24
25
26
27
28
_pil_interpolation_to_str = {
    Image.NEAREST: 'PIL.Image.NEAREST',
    Image.BILINEAR: 'PIL.Image.BILINEAR',
    Image.BICUBIC: 'PIL.Image.BICUBIC',
    Image.LANCZOS: 'PIL.Image.LANCZOS',
surgan12's avatar
surgan12 committed
29
30
    Image.HAMMING: 'PIL.Image.HAMMING',
    Image.BOX: 'PIL.Image.BOX',
31
32
}

33

Zhicheng Yan's avatar
Zhicheng Yan committed
34
35
36
37
38
39
40
41
42
def _get_image_size(img):
    if F._is_pil_image(img):
        return img.size
    elif isinstance(img, torch.Tensor) and img.dim() > 2:
        return img.shape[-2:][::-1]
    else:
        raise TypeError("Unexpected type {}".format(type(img)))


43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
class Compose(object):
    """Composes several transforms together.

    Args:
        transforms (list of ``Transform`` objects): list of transforms to compose.

    Example:
        >>> transforms.Compose([
        >>>     transforms.CenterCrop(10),
        >>>     transforms.ToTensor(),
        >>> ])
    """

    def __init__(self, transforms):
        self.transforms = transforms

    def __call__(self, img):
        for t in self.transforms:
            img = t(img)
        return img

64
65
66
67
68
69
70
71
    def __repr__(self):
        format_string = self.__class__.__name__ + '('
        for t in self.transforms:
            format_string += '\n'
            format_string += '    {0}'.format(t)
        format_string += '\n)'
        return format_string

72
73
74
75
76

class ToTensor(object):
    """Convert a ``PIL Image`` or ``numpy.ndarray`` to tensor.

    Converts a PIL Image or numpy.ndarray (H x W x C) in the range
surgan12's avatar
surgan12 committed
77
78
79
80
81
    [0, 255] to a torch.FloatTensor of shape (C x H x W) in the range [0.0, 1.0]
    if the PIL Image belongs to one of the modes (L, LA, P, I, F, RGB, YCbCr, RGBA, CMYK, 1)
    or if the numpy.ndarray has dtype = np.uint8

    In the other cases, tensors are returned without scaling.
82
83
84
85
86
87
88
89
90
91
92
93
    """

    def __call__(self, pic):
        """
        Args:
            pic (PIL Image or numpy.ndarray): Image to be converted to tensor.

        Returns:
            Tensor: Converted image.
        """
        return F.to_tensor(pic)

94
95
96
    def __repr__(self):
        return self.__class__.__name__ + '()'

97
98
99
100
101
102
103
104
105
106

class ToPILImage(object):
    """Convert a tensor or an ndarray to PIL Image.

    Converts a torch.*Tensor of shape C x H x W or a numpy ndarray of shape
    H x W x C to a PIL Image while preserving the value range.

    Args:
        mode (`PIL.Image mode`_): color space and pixel depth of input data (optional).
            If ``mode`` is ``None`` (default) there are some assumptions made about the input data:
surgan12's avatar
surgan12 committed
107
108
109
110
             - If the input has 4 channels, the ``mode`` is assumed to be ``RGBA``.
             - If the input has 3 channels, the ``mode`` is assumed to be ``RGB``.
             - If the input has 2 channels, the ``mode`` is assumed to be ``LA``.
             - If the input has 1 channel, the ``mode`` is determined by the data type (i.e ``int``, ``float``,
111
               ``short``).
112

csukuangfj's avatar
csukuangfj committed
113
    .. _PIL.Image mode: https://pillow.readthedocs.io/en/latest/handbook/concepts.html#concept-modes
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
    """
    def __init__(self, mode=None):
        self.mode = mode

    def __call__(self, pic):
        """
        Args:
            pic (Tensor or numpy.ndarray): Image to be converted to PIL Image.

        Returns:
            PIL Image: Image converted to PIL Image.

        """
        return F.to_pil_image(pic, self.mode)

129
    def __repr__(self):
130
131
132
133
134
        format_string = self.__class__.__name__ + '('
        if self.mode is not None:
            format_string += 'mode={0}'.format(self.mode)
        format_string += ')'
        return format_string
135

136
137

class Normalize(object):
Fang Gao's avatar
Fang Gao committed
138
    """Normalize a tensor image with mean and standard deviation.
139
140
141
    Given mean: ``(mean[1],...,mean[n])`` and std: ``(std[1],..,std[n])`` for ``n``
    channels, this transform will normalize each channel of the input
    ``torch.*Tensor`` i.e.,
abdjava's avatar
abdjava committed
142
    ``output[channel] = (input[channel] - mean[channel]) / std[channel]``
143

144
    .. note::
145
        This transform acts out of place, i.e., it does not mutate the input tensor.
146

147
148
149
    Args:
        mean (sequence): Sequence of means for each channel.
        std (sequence): Sequence of standard deviations for each channel.
150
151
        inplace(bool,optional): Bool to make this operation in-place.

152
153
    """

surgan12's avatar
surgan12 committed
154
    def __init__(self, mean, std, inplace=False):
155
156
        self.mean = mean
        self.std = std
surgan12's avatar
surgan12 committed
157
        self.inplace = inplace
158
159
160
161
162
163
164
165
166

    def __call__(self, tensor):
        """
        Args:
            tensor (Tensor): Tensor image of size (C, H, W) to be normalized.

        Returns:
            Tensor: Normalized Tensor image.
        """
surgan12's avatar
surgan12 committed
167
        return F.normalize(tensor, self.mean, self.std, self.inplace)
168

169
170
171
    def __repr__(self):
        return self.__class__.__name__ + '(mean={0}, std={1})'.format(self.mean, self.std)

172
173
174
175
176
177
178
179
180
181
182
183
184
185
186

class Resize(object):
    """Resize the input PIL Image to the given size.

    Args:
        size (sequence or int): Desired output size. If size is a sequence like
            (h, w), output size will be matched to this. If size is an int,
            smaller edge of the image will be matched to this number.
            i.e, if height > width, then image will be rescaled to
            (size * height / width, size)
        interpolation (int, optional): Desired interpolation. Default is
            ``PIL.Image.BILINEAR``
    """

    def __init__(self, size, interpolation=Image.BILINEAR):
Tongzhou Wang's avatar
Tongzhou Wang committed
187
        assert isinstance(size, int) or (isinstance(size, Iterable) and len(size) == 2)
188
189
190
191
192
193
194
195
196
197
198
199
200
        self.size = size
        self.interpolation = interpolation

    def __call__(self, img):
        """
        Args:
            img (PIL Image): Image to be scaled.

        Returns:
            PIL Image: Rescaled image.
        """
        return F.resize(img, self.size, self.interpolation)

201
    def __repr__(self):
202
203
        interpolate_str = _pil_interpolation_to_str[self.interpolation]
        return self.__class__.__name__ + '(size={0}, interpolation={1})'.format(self.size, interpolate_str)
204

205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240

class Scale(Resize):
    """
    Note: This transform is deprecated in favor of Resize.
    """
    def __init__(self, *args, **kwargs):
        warnings.warn("The use of the transforms.Scale transform is deprecated, " +
                      "please use transforms.Resize instead.")
        super(Scale, self).__init__(*args, **kwargs)


class CenterCrop(object):
    """Crops the given PIL Image at the center.

    Args:
        size (sequence or int): Desired output size of the crop. If size is an
            int instead of sequence like (h, w), a square crop (size, size) is
            made.
    """

    def __init__(self, size):
        if isinstance(size, numbers.Number):
            self.size = (int(size), int(size))
        else:
            self.size = size

    def __call__(self, img):
        """
        Args:
            img (PIL Image): Image to be cropped.

        Returns:
            PIL Image: Cropped image.
        """
        return F.center_crop(img, self.size)

241
242
243
    def __repr__(self):
        return self.__class__.__name__ + '(size={0})'.format(self.size)

244
245
246
247
248
249
250
251
252
253

class Pad(object):
    """Pad the given PIL Image on all sides with the given "pad" value.

    Args:
        padding (int or tuple): Padding on each border. If a single int is provided this
            is used to pad all borders. If tuple of length 2 is provided this is the padding
            on left/right and top/bottom respectively. If a tuple of length 4 is provided
            this is the padding for the left, top, right and bottom borders
            respectively.
254
        fill (int or tuple): Pixel fill value for constant fill. Default is 0. If a tuple of
255
            length 3, it is used to fill R, G, B channels respectively.
256
            This value is only used when the padding_mode is constant
257
258
259
260
261
262
263
264
265
266
        padding_mode (str): Type of padding. Should be: constant, edge, reflect or symmetric.
            Default is constant.

            - constant: pads with a constant value, this value is specified with fill

            - edge: pads with the last value at the edge of the image

            - reflect: pads with reflection of image without repeating the last value on the edge

                For example, padding [1, 2, 3, 4] with 2 elements on both sides in reflect mode
267
                will result in [3, 2, 1, 2, 3, 4, 3, 2]
268
269
270
271

            - symmetric: pads with reflection of image repeating the last value on the edge

                For example, padding [1, 2, 3, 4] with 2 elements on both sides in symmetric mode
272
                will result in [2, 1, 1, 2, 3, 4, 4, 3]
273
274
    """

275
    def __init__(self, padding, fill=0, padding_mode='constant'):
276
277
        assert isinstance(padding, (numbers.Number, tuple))
        assert isinstance(fill, (numbers.Number, str, tuple))
278
        assert padding_mode in ['constant', 'edge', 'reflect', 'symmetric']
Tongzhou Wang's avatar
Tongzhou Wang committed
279
        if isinstance(padding, Sequence) and len(padding) not in [2, 4]:
280
281
282
283
284
            raise ValueError("Padding must be an int or a 2, or 4 element tuple, not a " +
                             "{} element tuple".format(len(padding)))

        self.padding = padding
        self.fill = fill
285
        self.padding_mode = padding_mode
286
287
288
289
290
291
292
293
294

    def __call__(self, img):
        """
        Args:
            img (PIL Image): Image to be padded.

        Returns:
            PIL Image: Padded image.
        """
295
        return F.pad(img, self.padding, self.fill, self.padding_mode)
296

297
    def __repr__(self):
298
299
        return self.__class__.__name__ + '(padding={0}, fill={1}, padding_mode={2})'.\
            format(self.padding, self.fill, self.padding_mode)
300

301
302
303
304
305
306
307
308
309

class Lambda(object):
    """Apply a user-defined lambda as a transform.

    Args:
        lambd (function): Lambda/function to be used for transform.
    """

    def __init__(self, lambd):
310
        assert callable(lambd), repr(type(lambd).__name__) + " object is not callable"
311
312
313
314
315
        self.lambd = lambd

    def __call__(self, img):
        return self.lambd(img)

316
317
318
    def __repr__(self):
        return self.__class__.__name__ + '()'

319

320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
class RandomTransforms(object):
    """Base class for a list of transformations with randomness

    Args:
        transforms (list or tuple): list of transformations
    """

    def __init__(self, transforms):
        assert isinstance(transforms, (list, tuple))
        self.transforms = transforms

    def __call__(self, *args, **kwargs):
        raise NotImplementedError()

    def __repr__(self):
        format_string = self.__class__.__name__ + '('
        for t in self.transforms:
            format_string += '\n'
            format_string += '    {0}'.format(t)
        format_string += '\n)'
        return format_string


class RandomApply(RandomTransforms):
    """Apply randomly a list of transformations with a given probability

    Args:
        transforms (list or tuple): list of transformations
        p (float): probability
    """

    def __init__(self, transforms, p=0.5):
        super(RandomApply, self).__init__(transforms)
        self.p = p

    def __call__(self, img):
        if self.p < random.random():
            return img
        for t in self.transforms:
            img = t(img)
        return img

    def __repr__(self):
        format_string = self.__class__.__name__ + '('
        format_string += '\n    p={}'.format(self.p)
        for t in self.transforms:
            format_string += '\n'
            format_string += '    {0}'.format(t)
        format_string += '\n)'
        return format_string


class RandomOrder(RandomTransforms):
    """Apply a list of transformations in a random order
    """
    def __call__(self, img):
        order = list(range(len(self.transforms)))
        random.shuffle(order)
        for i in order:
            img = self.transforms[i](img)
        return img


class RandomChoice(RandomTransforms):
    """Apply single transformation randomly picked from a list
    """
    def __call__(self, img):
        t = random.choice(self.transforms)
        return t(img)


391
392
393
394
395
396
397
398
class RandomCrop(object):
    """Crop the given PIL Image at a random location.

    Args:
        size (sequence or int): Desired output size of the crop. If size is an
            int instead of sequence like (h, w), a square crop (size, size) is
            made.
        padding (int or sequence, optional): Optional padding on each border
399
            of the image. Default is None, i.e no padding. If a sequence of length
400
            4 is provided, it is used to pad left, top, right, bottom borders
401
402
            respectively. If a sequence of length 2 is provided, it is used to
            pad left/right, top/bottom borders, respectively.
403
        pad_if_needed (boolean): It will pad the image if smaller than the
ekka's avatar
ekka committed
404
            desired size to avoid raising an exception. Since cropping is done
405
            after padding, the padding seems to be done at a random offset.
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
        fill: Pixel fill value for constant fill. Default is 0. If a tuple of
            length 3, it is used to fill R, G, B channels respectively.
            This value is only used when the padding_mode is constant
        padding_mode: Type of padding. Should be: constant, edge, reflect or symmetric. Default is constant.

             - constant: pads with a constant value, this value is specified with fill

             - edge: pads with the last value on the edge of the image

             - reflect: pads with reflection of image (without repeating the last value on the edge)

                padding [1, 2, 3, 4] with 2 elements on both sides in reflect mode
                will result in [3, 2, 1, 2, 3, 4, 3, 2]

             - symmetric: pads with reflection of image (repeating the last value on the edge)

                padding [1, 2, 3, 4] with 2 elements on both sides in symmetric mode
                will result in [2, 1, 1, 2, 3, 4, 4, 3]

425
426
    """

427
    def __init__(self, size, padding=None, pad_if_needed=False, fill=0, padding_mode='constant'):
428
429
430
431
432
        if isinstance(size, numbers.Number):
            self.size = (int(size), int(size))
        else:
            self.size = size
        self.padding = padding
433
        self.pad_if_needed = pad_if_needed
434
435
        self.fill = fill
        self.padding_mode = padding_mode
436
437
438
439
440
441
442
443
444
445
446
447

    @staticmethod
    def get_params(img, output_size):
        """Get parameters for ``crop`` for a random crop.

        Args:
            img (PIL Image): Image to be cropped.
            output_size (tuple): Expected output size of the crop.

        Returns:
            tuple: params (i, j, h, w) to be passed to ``crop`` for random crop.
        """
Zhicheng Yan's avatar
Zhicheng Yan committed
448
        w, h = _get_image_size(img)
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
        th, tw = output_size
        if w == tw and h == th:
            return 0, 0, h, w

        i = random.randint(0, h - th)
        j = random.randint(0, w - tw)
        return i, j, th, tw

    def __call__(self, img):
        """
        Args:
            img (PIL Image): Image to be cropped.

        Returns:
            PIL Image: Cropped image.
        """
465
466
        if self.padding is not None:
            img = F.pad(img, self.padding, self.fill, self.padding_mode)
467

468
469
        # pad the width if needed
        if self.pad_if_needed and img.size[0] < self.size[1]:
470
            img = F.pad(img, (self.size[1] - img.size[0], 0), self.fill, self.padding_mode)
471
472
        # pad the height if needed
        if self.pad_if_needed and img.size[1] < self.size[0]:
473
            img = F.pad(img, (0, self.size[0] - img.size[1]), self.fill, self.padding_mode)
474

475
476
477
478
        i, j, h, w = self.get_params(img, self.size)

        return F.crop(img, i, j, h, w)

479
    def __repr__(self):
480
        return self.__class__.__name__ + '(size={0}, padding={1})'.format(self.size, self.padding)
481

482
483

class RandomHorizontalFlip(object):
484
485
486
487
488
489
490
491
    """Horizontally flip the given PIL Image randomly with a given probability.

    Args:
        p (float): probability of the image being flipped. Default value is 0.5
    """

    def __init__(self, p=0.5):
        self.p = p
492
493
494
495
496
497
498
499
500

    def __call__(self, img):
        """
        Args:
            img (PIL Image): Image to be flipped.

        Returns:
            PIL Image: Randomly flipped image.
        """
501
        if random.random() < self.p:
502
503
504
            return F.hflip(img)
        return img

505
    def __repr__(self):
506
        return self.__class__.__name__ + '(p={})'.format(self.p)
507

508
509

class RandomVerticalFlip(object):
510
511
512
513
514
515
516
517
    """Vertically flip the given PIL Image randomly with a given probability.

    Args:
        p (float): probability of the image being flipped. Default value is 0.5
    """

    def __init__(self, p=0.5):
        self.p = p
518
519
520
521
522
523
524
525
526

    def __call__(self, img):
        """
        Args:
            img (PIL Image): Image to be flipped.

        Returns:
            PIL Image: Randomly flipped image.
        """
527
        if random.random() < self.p:
528
529
530
            return F.vflip(img)
        return img

531
    def __repr__(self):
532
        return self.__class__.__name__ + '(p={})'.format(self.p)
533

534

535
536
537
538
539
540
541
542
543
544
class RandomPerspective(object):
    """Performs Perspective transformation of the given PIL Image randomly with a given probability.

    Args:
        interpolation : Default- Image.BICUBIC

        p (float): probability of the image being perspectively transformed. Default value is 0.5

        distortion_scale(float): it controls the degree of distortion and ranges from 0 to 1. Default value is 0.5.

545
546
        fill (3-tuple or int): RGB pixel fill value for area outside the rotated image.
            If int, it is used for all channels respectively. Default value is 0.
547
548
    """

549
    def __init__(self, distortion_scale=0.5, p=0.5, interpolation=Image.BICUBIC, fill=0):
550
551
552
        self.p = p
        self.interpolation = interpolation
        self.distortion_scale = distortion_scale
553
        self.fill = fill
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568

    def __call__(self, img):
        """
        Args:
            img (PIL Image): Image to be Perspectively transformed.

        Returns:
            PIL Image: Random perspectivley transformed image.
        """
        if not F._is_pil_image(img):
            raise TypeError('img should be PIL Image. Got {}'.format(type(img)))

        if random.random() < self.p:
            width, height = img.size
            startpoints, endpoints = self.get_params(width, height, self.distortion_scale)
569
            return F.perspective(img, startpoints, endpoints, self.interpolation, self.fill)
570
571
572
573
574
575
576
577
578
579
580
        return img

    @staticmethod
    def get_params(width, height, distortion_scale):
        """Get parameters for ``perspective`` for a random perspective transform.

        Args:
            width : width of the image.
            height : height of the image.

        Returns:
581
            List containing [top-left, top-right, bottom-right, bottom-left] of the original image,
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
            List containing [top-left, top-right, bottom-right, bottom-left] of the transformed image.
        """
        half_height = int(height / 2)
        half_width = int(width / 2)
        topleft = (random.randint(0, int(distortion_scale * half_width)),
                   random.randint(0, int(distortion_scale * half_height)))
        topright = (random.randint(width - int(distortion_scale * half_width) - 1, width - 1),
                    random.randint(0, int(distortion_scale * half_height)))
        botright = (random.randint(width - int(distortion_scale * half_width) - 1, width - 1),
                    random.randint(height - int(distortion_scale * half_height) - 1, height - 1))
        botleft = (random.randint(0, int(distortion_scale * half_width)),
                   random.randint(height - int(distortion_scale * half_height) - 1, height - 1))
        startpoints = [(0, 0), (width - 1, 0), (width - 1, height - 1), (0, height - 1)]
        endpoints = [topleft, topright, botright, botleft]
        return startpoints, endpoints

    def __repr__(self):
        return self.__class__.__name__ + '(p={})'.format(self.p)


602
603
604
class RandomResizedCrop(object):
    """Crop the given PIL Image to random size and aspect ratio.

605
606
    A crop of random size (default: of 0.08 to 1.0) of the original size and a random
    aspect ratio (default: of 3/4 to 4/3) of the original aspect ratio is made. This crop
607
608
609
610
611
    is finally resized to given size.
    This is popularly used to train the Inception networks.

    Args:
        size: expected output size of each edge
612
613
        scale: range of size of the origin size cropped
        ratio: range of aspect ratio of the origin aspect ratio cropped
614
615
616
        interpolation: Default: PIL.Image.BILINEAR
    """

617
    def __init__(self, size, scale=(0.08, 1.0), ratio=(3. / 4., 4. / 3.), interpolation=Image.BILINEAR):
618
        if isinstance(size, (tuple, list)):
619
620
621
622
623
624
            self.size = size
        else:
            self.size = (size, size)
        if (scale[0] > scale[1]) or (ratio[0] > ratio[1]):
            warnings.warn("range should be of kind (min, max)")

625
        self.interpolation = interpolation
626
627
        self.scale = scale
        self.ratio = ratio
628
629

    @staticmethod
630
    def get_params(img, scale, ratio):
631
632
633
634
        """Get parameters for ``crop`` for a random sized crop.

        Args:
            img (PIL Image): Image to be cropped.
635
636
            scale (tuple): range of size of the origin size cropped
            ratio (tuple): range of aspect ratio of the origin aspect ratio cropped
637
638
639
640
641

        Returns:
            tuple: params (i, j, h, w) to be passed to ``crop`` for a random
                sized crop.
        """
Zhicheng Yan's avatar
Zhicheng Yan committed
642
643
        width, height = _get_image_size(img)
        area = height * width
644

645
        for _ in range(10):
646
            target_area = random.uniform(*scale) * area
647
648
            log_ratio = (math.log(ratio[0]), math.log(ratio[1]))
            aspect_ratio = math.exp(random.uniform(*log_ratio))
649
650
651
652

            w = int(round(math.sqrt(target_area * aspect_ratio)))
            h = int(round(math.sqrt(target_area / aspect_ratio)))

Zhicheng Yan's avatar
Zhicheng Yan committed
653
654
655
            if 0 < w <= width and 0 < h <= height:
                i = random.randint(0, height - h)
                j = random.randint(0, width - w)
656
657
                return i, j, h, w

658
        # Fallback to central crop
Zhicheng Yan's avatar
Zhicheng Yan committed
659
        in_ratio = float(width) / float(height)
660
        if (in_ratio < min(ratio)):
Zhicheng Yan's avatar
Zhicheng Yan committed
661
            w = width
662
            h = int(round(w / min(ratio)))
663
        elif (in_ratio > max(ratio)):
Zhicheng Yan's avatar
Zhicheng Yan committed
664
            h = height
665
            w = int(round(h * max(ratio)))
666
        else:  # whole image
Zhicheng Yan's avatar
Zhicheng Yan committed
667
668
669
670
            w = width
            h = height
        i = (height - h) // 2
        j = (width - w) // 2
671
        return i, j, h, w
672
673
674
675

    def __call__(self, img):
        """
        Args:
676
            img (PIL Image): Image to be cropped and resized.
677
678

        Returns:
679
            PIL Image: Randomly cropped and resized image.
680
        """
681
        i, j, h, w = self.get_params(img, self.scale, self.ratio)
682
683
        return F.resized_crop(img, i, j, h, w, self.size, self.interpolation)

684
    def __repr__(self):
685
686
        interpolate_str = _pil_interpolation_to_str[self.interpolation]
        format_string = self.__class__.__name__ + '(size={0}'.format(self.size)
687
688
        format_string += ', scale={0}'.format(tuple(round(s, 4) for s in self.scale))
        format_string += ', ratio={0}'.format(tuple(round(r, 4) for r in self.ratio))
689
690
        format_string += ', interpolation={0})'.format(interpolate_str)
        return format_string
691

692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737

class RandomSizedCrop(RandomResizedCrop):
    """
    Note: This transform is deprecated in favor of RandomResizedCrop.
    """
    def __init__(self, *args, **kwargs):
        warnings.warn("The use of the transforms.RandomSizedCrop transform is deprecated, " +
                      "please use transforms.RandomResizedCrop instead.")
        super(RandomSizedCrop, self).__init__(*args, **kwargs)


class FiveCrop(object):
    """Crop the given PIL Image into four corners and the central crop

    .. Note::
         This transform returns a tuple of images and there may be a mismatch in the number of
         inputs and targets your Dataset returns. See below for an example of how to deal with
         this.

    Args:
         size (sequence or int): Desired output size of the crop. If size is an ``int``
            instead of sequence like (h, w), a square crop of size (size, size) is made.

    Example:
         >>> transform = Compose([
         >>>    FiveCrop(size), # this is a list of PIL Images
         >>>    Lambda(lambda crops: torch.stack([ToTensor()(crop) for crop in crops])) # returns a 4D tensor
         >>> ])
         >>> #In your test loop you can do the following:
         >>> input, target = batch # input is a 5d tensor, target is 2d
         >>> bs, ncrops, c, h, w = input.size()
         >>> result = model(input.view(-1, c, h, w)) # fuse batch size and ncrops
         >>> result_avg = result.view(bs, ncrops, -1).mean(1) # avg over crops
    """

    def __init__(self, size):
        self.size = size
        if isinstance(size, numbers.Number):
            self.size = (int(size), int(size))
        else:
            assert len(size) == 2, "Please provide only two dimensions (h, w) for size."
            self.size = size

    def __call__(self, img):
        return F.five_crop(img, self.size)

738
739
740
    def __repr__(self):
        return self.__class__.__name__ + '(size={0})'.format(self.size)

741
742
743
744
745
746
747
748
749
750
751
752
753
754

class TenCrop(object):
    """Crop the given PIL Image into four corners and the central crop plus the flipped version of
    these (horizontal flipping is used by default)

    .. Note::
         This transform returns a tuple of images and there may be a mismatch in the number of
         inputs and targets your Dataset returns. See below for an example of how to deal with
         this.

    Args:
        size (sequence or int): Desired output size of the crop. If size is an
            int instead of sequence like (h, w), a square crop (size, size) is
            made.
755
        vertical_flip (bool): Use vertical flipping instead of horizontal
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780

    Example:
         >>> transform = Compose([
         >>>    TenCrop(size), # this is a list of PIL Images
         >>>    Lambda(lambda crops: torch.stack([ToTensor()(crop) for crop in crops])) # returns a 4D tensor
         >>> ])
         >>> #In your test loop you can do the following:
         >>> input, target = batch # input is a 5d tensor, target is 2d
         >>> bs, ncrops, c, h, w = input.size()
         >>> result = model(input.view(-1, c, h, w)) # fuse batch size and ncrops
         >>> result_avg = result.view(bs, ncrops, -1).mean(1) # avg over crops
    """

    def __init__(self, size, vertical_flip=False):
        self.size = size
        if isinstance(size, numbers.Number):
            self.size = (int(size), int(size))
        else:
            assert len(size) == 2, "Please provide only two dimensions (h, w) for size."
            self.size = size
        self.vertical_flip = vertical_flip

    def __call__(self, img):
        return F.ten_crop(img, self.size, self.vertical_flip)

781
    def __repr__(self):
782
        return self.__class__.__name__ + '(size={0}, vertical_flip={1})'.format(self.size, self.vertical_flip)
783

784

785
class LinearTransformation(object):
ekka's avatar
ekka committed
786
    """Transform a tensor image with a square transformation matrix and a mean_vector computed
787
    offline.
ekka's avatar
ekka committed
788
789
790
    Given transformation_matrix and mean_vector, will flatten the torch.*Tensor and
    subtract mean_vector from it which is then followed by computing the dot
    product with the transformation matrix and then reshaping the tensor to its
791
    original shape.
792

793
    Applications:
794
        whitening transformation: Suppose X is a column vector zero-centered data.
795
796
797
        Then compute the data covariance matrix [D x D] with torch.mm(X.t(), X),
        perform SVD on this matrix and pass it as transformation_matrix.

798
799
    Args:
        transformation_matrix (Tensor): tensor [D x D], D = C x H x W
ekka's avatar
ekka committed
800
        mean_vector (Tensor): tensor [D], D = C x H x W
801
802
    """

ekka's avatar
ekka committed
803
    def __init__(self, transformation_matrix, mean_vector):
804
805
806
        if transformation_matrix.size(0) != transformation_matrix.size(1):
            raise ValueError("transformation_matrix should be square. Got " +
                             "[{} x {}] rectangular matrix.".format(*transformation_matrix.size()))
ekka's avatar
ekka committed
807
808
809

        if mean_vector.size(0) != transformation_matrix.size(0):
            raise ValueError("mean_vector should have the same length {}".format(mean_vector.size(0)) +
Francisco Massa's avatar
Francisco Massa committed
810
811
                             " as any one of the dimensions of the transformation_matrix [{}]"
                             .format(tuple(transformation_matrix.size())))
ekka's avatar
ekka committed
812

813
        self.transformation_matrix = transformation_matrix
ekka's avatar
ekka committed
814
        self.mean_vector = mean_vector
815
816
817
818
819
820
821
822
823
824
825
826
827

    def __call__(self, tensor):
        """
        Args:
            tensor (Tensor): Tensor image of size (C, H, W) to be whitened.

        Returns:
            Tensor: Transformed image.
        """
        if tensor.size(0) * tensor.size(1) * tensor.size(2) != self.transformation_matrix.size(0):
            raise ValueError("tensor and transformation matrix have incompatible shape." +
                             "[{} x {} x {}] != ".format(*tensor.size()) +
                             "{}".format(self.transformation_matrix.size(0)))
ekka's avatar
ekka committed
828
        flat_tensor = tensor.view(1, -1) - self.mean_vector
829
830
831
832
        transformed_tensor = torch.mm(flat_tensor, self.transformation_matrix)
        tensor = transformed_tensor.view(tensor.size())
        return tensor

833
    def __repr__(self):
ekka's avatar
ekka committed
834
835
836
        format_string = self.__class__.__name__ + '(transformation_matrix='
        format_string += (str(self.transformation_matrix.tolist()) + ')')
        format_string += (", (mean_vector=" + str(self.mean_vector.tolist()) + ')')
837
838
        return format_string

839
840
841
842
843

class ColorJitter(object):
    """Randomly change the brightness, contrast and saturation of an image.

    Args:
yaox12's avatar
yaox12 committed
844
845
846
847
848
849
850
851
852
853
854
855
        brightness (float or tuple of float (min, max)): How much to jitter brightness.
            brightness_factor is chosen uniformly from [max(0, 1 - brightness), 1 + brightness]
            or the given [min, max]. Should be non negative numbers.
        contrast (float or tuple of float (min, max)): How much to jitter contrast.
            contrast_factor is chosen uniformly from [max(0, 1 - contrast), 1 + contrast]
            or the given [min, max]. Should be non negative numbers.
        saturation (float or tuple of float (min, max)): How much to jitter saturation.
            saturation_factor is chosen uniformly from [max(0, 1 - saturation), 1 + saturation]
            or the given [min, max]. Should be non negative numbers.
        hue (float or tuple of float (min, max)): How much to jitter hue.
            hue_factor is chosen uniformly from [-hue, hue] or the given [min, max].
            Should have 0<= hue <= 0.5 or -0.5 <= min <= max <= 0.5.
856
857
    """
    def __init__(self, brightness=0, contrast=0, saturation=0, hue=0):
yaox12's avatar
yaox12 committed
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
        self.brightness = self._check_input(brightness, 'brightness')
        self.contrast = self._check_input(contrast, 'contrast')
        self.saturation = self._check_input(saturation, 'saturation')
        self.hue = self._check_input(hue, 'hue', center=0, bound=(-0.5, 0.5),
                                     clip_first_on_zero=False)

    def _check_input(self, value, name, center=1, bound=(0, float('inf')), clip_first_on_zero=True):
        if isinstance(value, numbers.Number):
            if value < 0:
                raise ValueError("If {} is a single number, it must be non negative.".format(name))
            value = [center - value, center + value]
            if clip_first_on_zero:
                value[0] = max(value[0], 0)
        elif isinstance(value, (tuple, list)) and len(value) == 2:
            if not bound[0] <= value[0] <= value[1] <= bound[1]:
                raise ValueError("{} values should be between {}".format(name, bound))
        else:
            raise TypeError("{} should be a single number or a list/tuple with lenght 2.".format(name))

        # if value is 0 or (1., 1.) for brightness/contrast/saturation
        # or (0., 0.) for hue, do nothing
        if value[0] == value[1] == center:
            value = None
        return value
882
883
884
885
886
887
888
889
890
891
892
893

    @staticmethod
    def get_params(brightness, contrast, saturation, hue):
        """Get a randomized transform to be applied on image.

        Arguments are same as that of __init__.

        Returns:
            Transform which randomly adjusts brightness, contrast and
            saturation in a random order.
        """
        transforms = []
yaox12's avatar
yaox12 committed
894
895
896

        if brightness is not None:
            brightness_factor = random.uniform(brightness[0], brightness[1])
897
898
            transforms.append(Lambda(lambda img: F.adjust_brightness(img, brightness_factor)))

yaox12's avatar
yaox12 committed
899
900
        if contrast is not None:
            contrast_factor = random.uniform(contrast[0], contrast[1])
901
902
            transforms.append(Lambda(lambda img: F.adjust_contrast(img, contrast_factor)))

yaox12's avatar
yaox12 committed
903
904
        if saturation is not None:
            saturation_factor = random.uniform(saturation[0], saturation[1])
905
906
            transforms.append(Lambda(lambda img: F.adjust_saturation(img, saturation_factor)))

yaox12's avatar
yaox12 committed
907
908
        if hue is not None:
            hue_factor = random.uniform(hue[0], hue[1])
909
910
            transforms.append(Lambda(lambda img: F.adjust_hue(img, hue_factor)))

vfdev's avatar
vfdev committed
911
        random.shuffle(transforms)
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
        transform = Compose(transforms)

        return transform

    def __call__(self, img):
        """
        Args:
            img (PIL Image): Input image.

        Returns:
            PIL Image: Color jittered image.
        """
        transform = self.get_params(self.brightness, self.contrast,
                                    self.saturation, self.hue)
        return transform(img)
927

928
    def __repr__(self):
929
930
931
932
933
934
        format_string = self.__class__.__name__ + '('
        format_string += 'brightness={0}'.format(self.brightness)
        format_string += ', contrast={0}'.format(self.contrast)
        format_string += ', saturation={0}'.format(self.saturation)
        format_string += ', hue={0})'.format(self.hue)
        return format_string
935

936
937
938
939
940
941
942
943
944

class RandomRotation(object):
    """Rotate the image by angle.

    Args:
        degrees (sequence or float or int): Range of degrees to select from.
            If degrees is a number instead of sequence like (min, max), the range of degrees
            will be (-degrees, +degrees).
        resample ({PIL.Image.NEAREST, PIL.Image.BILINEAR, PIL.Image.BICUBIC}, optional):
945
            An optional resampling filter. See `filters`_ for more information.
946
947
948
949
950
951
952
953
            If omitted, or if the image has mode "1" or "P", it is set to PIL.Image.NEAREST.
        expand (bool, optional): Optional expansion flag.
            If true, expands the output to make it large enough to hold the entire rotated image.
            If false or omitted, make the output image the same size as the input image.
            Note that the expand flag assumes rotation around the center and no translation.
        center (2-tuple, optional): Optional center of rotation.
            Origin is the upper left corner.
            Default is the center of the image.
Philip Meier's avatar
Philip Meier committed
954
955
956
        fill (n-tuple or int or float): Pixel fill value for area outside the rotated
            image. If int or float, the value is used for all bands respectively.
            Defaults to 0 for all bands. This option is only available for ``pillow>=5.2.0``.
957
958
959

    .. _filters: https://pillow.readthedocs.io/en/latest/handbook/concepts.html#filters

960
961
    """

Philip Meier's avatar
Philip Meier committed
962
    def __init__(self, degrees, resample=False, expand=False, center=None, fill=None):
963
964
965
966
967
968
969
970
971
972
973
974
        if isinstance(degrees, numbers.Number):
            if degrees < 0:
                raise ValueError("If degrees is a single number, it must be positive.")
            self.degrees = (-degrees, degrees)
        else:
            if len(degrees) != 2:
                raise ValueError("If degrees is a sequence, it must be of len 2.")
            self.degrees = degrees

        self.resample = resample
        self.expand = expand
        self.center = center
975
        self.fill = fill
976
977
978
979
980
981
982
983

    @staticmethod
    def get_params(degrees):
        """Get parameters for ``rotate`` for a random rotation.

        Returns:
            sequence: params to be passed to ``rotate`` for random rotation.
        """
vfdev's avatar
vfdev committed
984
        angle = random.uniform(degrees[0], degrees[1])
985
986
987
988
989

        return angle

    def __call__(self, img):
        """
990
        Args:
991
992
993
994
995
996
997
998
            img (PIL Image): Image to be rotated.

        Returns:
            PIL Image: Rotated image.
        """

        angle = self.get_params(self.degrees)

999
        return F.rotate(img, angle, self.resample, self.expand, self.center, self.fill)
1000

1001
    def __repr__(self):
1002
1003
1004
1005
1006
1007
1008
        format_string = self.__class__.__name__ + '(degrees={0}'.format(self.degrees)
        format_string += ', resample={0}'.format(self.resample)
        format_string += ', expand={0}'.format(self.expand)
        if self.center is not None:
            format_string += ', center={0}'.format(self.center)
        format_string += ')'
        return format_string
1009

1010

1011
1012
1013
1014
1015
1016
class RandomAffine(object):
    """Random affine transformation of the image keeping center invariant

    Args:
        degrees (sequence or float or int): Range of degrees to select from.
            If degrees is a number instead of sequence like (min, max), the range of degrees
1017
            will be (-degrees, +degrees). Set to 0 to deactivate rotations.
1018
1019
1020
1021
1022
1023
1024
        translate (tuple, optional): tuple of maximum absolute fraction for horizontal
            and vertical translations. For example translate=(a, b), then horizontal shift
            is randomly sampled in the range -img_width * a < dx < img_width * a and vertical shift is
            randomly sampled in the range -img_height * b < dy < img_height * b. Will not translate by default.
        scale (tuple, optional): scaling factor interval, e.g (a, b), then scale is
            randomly sampled from the range a <= scale <= b. Will keep original scale by default.
        shear (sequence or float or int, optional): Range of degrees to select from.
ptrblck's avatar
ptrblck committed
1025
1026
1027
1028
1029
            If shear is a number, a shear parallel to the x axis in the range (-shear, +shear)
            will be apllied. Else if shear is a tuple or list of 2 values a shear parallel to the x axis in the
            range (shear[0], shear[1]) will be applied. Else if shear is a tuple or list of 4 values,
            a x-axis shear in (shear[0], shear[1]) and y-axis shear in (shear[2], shear[3]) will be applied.
            Will not apply shear by default
1030
        resample ({PIL.Image.NEAREST, PIL.Image.BILINEAR, PIL.Image.BICUBIC}, optional):
1031
            An optional resampling filter. See `filters`_ for more information.
1032
            If omitted, or if the image has mode "1" or "P", it is set to PIL.Image.NEAREST.
Surgan Jandial's avatar
Surgan Jandial committed
1033
1034
        fillcolor (tuple or int): Optional fill color (Tuple for RGB Image And int for grayscale) for the area
            outside the transform in the output image.(Pillow>=5.0.0)
1035
1036
1037

    .. _filters: https://pillow.readthedocs.io/en/latest/handbook/concepts.html#filters

1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
    """

    def __init__(self, degrees, translate=None, scale=None, shear=None, resample=False, fillcolor=0):
        if isinstance(degrees, numbers.Number):
            if degrees < 0:
                raise ValueError("If degrees is a single number, it must be positive.")
            self.degrees = (-degrees, degrees)
        else:
            assert isinstance(degrees, (tuple, list)) and len(degrees) == 2, \
                "degrees should be a list or tuple and it must be of length 2."
            self.degrees = degrees

        if translate is not None:
            assert isinstance(translate, (tuple, list)) and len(translate) == 2, \
                "translate should be a list or tuple and it must be of length 2."
            for t in translate:
                if not (0.0 <= t <= 1.0):
                    raise ValueError("translation values should be between 0 and 1")
        self.translate = translate

        if scale is not None:
            assert isinstance(scale, (tuple, list)) and len(scale) == 2, \
                "scale should be a list or tuple and it must be of length 2."
            for s in scale:
                if s <= 0:
                    raise ValueError("scale values should be positive")
        self.scale = scale

        if shear is not None:
            if isinstance(shear, numbers.Number):
                if shear < 0:
                    raise ValueError("If shear is a single number, it must be positive.")
                self.shear = (-shear, shear)
            else:
ptrblck's avatar
ptrblck committed
1072
1073
1074
1075
1076
1077
1078
1079
                assert isinstance(shear, (tuple, list)) and \
                    (len(shear) == 2 or len(shear) == 4), \
                    "shear should be a list or tuple and it must be of length 2 or 4."
                # X-Axis shear with [min, max]
                if len(shear) == 2:
                    self.shear = [shear[0], shear[1], 0., 0.]
                elif len(shear) == 4:
                    self.shear = [s for s in shear]
1080
1081
1082
1083
1084
1085
1086
1087
1088
1089
1090
1091
1092
1093
1094
1095
1096
1097
1098
1099
1100
1101
1102
1103
1104
1105
1106
1107
        else:
            self.shear = shear

        self.resample = resample
        self.fillcolor = fillcolor

    @staticmethod
    def get_params(degrees, translate, scale_ranges, shears, img_size):
        """Get parameters for affine transformation

        Returns:
            sequence: params to be passed to the affine transformation
        """
        angle = random.uniform(degrees[0], degrees[1])
        if translate is not None:
            max_dx = translate[0] * img_size[0]
            max_dy = translate[1] * img_size[1]
            translations = (np.round(random.uniform(-max_dx, max_dx)),
                            np.round(random.uniform(-max_dy, max_dy)))
        else:
            translations = (0, 0)

        if scale_ranges is not None:
            scale = random.uniform(scale_ranges[0], scale_ranges[1])
        else:
            scale = 1.0

        if shears is not None:
ptrblck's avatar
ptrblck committed
1108
1109
1110
1111
1112
            if len(shears) == 2:
                shear = [random.uniform(shears[0], shears[1]), 0.]
            elif len(shears) == 4:
                shear = [random.uniform(shears[0], shears[1]),
                         random.uniform(shears[2], shears[3])]
1113
1114
1115
1116
1117
1118
1119
1120
1121
1122
1123
1124
1125
1126
1127
1128
1129
1130
1131
1132
1133
1134
1135
1136
1137
1138
1139
1140
1141
1142
1143
1144
1145
        else:
            shear = 0.0

        return angle, translations, scale, shear

    def __call__(self, img):
        """
            img (PIL Image): Image to be transformed.

        Returns:
            PIL Image: Affine transformed image.
        """
        ret = self.get_params(self.degrees, self.translate, self.scale, self.shear, img.size)
        return F.affine(img, *ret, resample=self.resample, fillcolor=self.fillcolor)

    def __repr__(self):
        s = '{name}(degrees={degrees}'
        if self.translate is not None:
            s += ', translate={translate}'
        if self.scale is not None:
            s += ', scale={scale}'
        if self.shear is not None:
            s += ', shear={shear}'
        if self.resample > 0:
            s += ', resample={resample}'
        if self.fillcolor != 0:
            s += ', fillcolor={fillcolor}'
        s += ')'
        d = dict(self.__dict__)
        d['resample'] = _pil_interpolation_to_str[d['resample']]
        return s.format(name=self.__class__.__name__, **d)


1146
1147
class Grayscale(object):
    """Convert image to grayscale.
1148

1149
1150
1151
1152
    Args:
        num_output_channels (int): (1 or 3) number of channels desired for output image

    Returns:
1153
        PIL Image: Grayscale version of the input.
1154
1155
         - If ``num_output_channels == 1`` : returned image is single channel
         - If ``num_output_channels == 3`` : returned image is 3 channel with r == g == b
1156
1157
1158
1159
1160
1161
1162
1163
1164
1165
1166
1167
1168
1169
1170
1171

    """

    def __init__(self, num_output_channels=1):
        self.num_output_channels = num_output_channels

    def __call__(self, img):
        """
        Args:
            img (PIL Image): Image to be converted to grayscale.

        Returns:
            PIL Image: Randomly grayscaled image.
        """
        return F.to_grayscale(img, num_output_channels=self.num_output_channels)

1172
    def __repr__(self):
1173
        return self.__class__.__name__ + '(num_output_channels={0})'.format(self.num_output_channels)
1174

1175
1176
1177

class RandomGrayscale(object):
    """Randomly convert image to grayscale with a probability of p (default 0.1).
1178

1179
1180
1181
1182
    Args:
        p (float): probability that image should be converted to grayscale.

    Returns:
1183
1184
1185
1186
        PIL Image: Grayscale version of the input image with probability p and unchanged
        with probability (1-p).
        - If input image is 1 channel: grayscale version is 1 channel
        - If input image is 3 channel: grayscale version is 3 channel with r == g == b
1187
1188
1189
1190
1191
1192
1193
1194
1195
1196
1197
1198
1199
1200
1201
1202
1203
1204

    """

    def __init__(self, p=0.1):
        self.p = p

    def __call__(self, img):
        """
        Args:
            img (PIL Image): Image to be converted to grayscale.

        Returns:
            PIL Image: Randomly grayscaled image.
        """
        num_output_channels = 1 if img.mode == 'L' else 3
        if random.random() < self.p:
            return F.to_grayscale(img, num_output_channels=num_output_channels)
        return img
1205
1206

    def __repr__(self):
1207
        return self.__class__.__name__ + '(p={0})'.format(self.p)
1208
1209
1210
1211


class RandomErasing(object):
    """ Randomly selects a rectangle region in an image and erases its pixels.
1212
1213
    'Random Erasing Data Augmentation' by Zhong et al. See https://arxiv.org/pdf/1708.04896.pdf

1214
1215
1216
1217
1218
1219
1220
1221
    Args:
         p: probability that the random erasing operation will be performed.
         scale: range of proportion of erased area against input image.
         ratio: range of aspect ratio of erased area.
         value: erasing value. Default is 0. If a single int, it is used to
            erase all pixels. If a tuple of length 3, it is used to erase
            R, G, B channels respectively.
            If a str of 'random', erasing each pixel with random values.
Zhun Zhong's avatar
Zhun Zhong committed
1222
         inplace: boolean to make this transform inplace. Default set to False.
1223

1224
1225
    Returns:
        Erased Image.
1226

1227
1228
    # Examples:
        >>> transform = transforms.Compose([
1229
1230
1231
1232
        >>>   transforms.RandomHorizontalFlip(),
        >>>   transforms.ToTensor(),
        >>>   transforms.Normalize((0.485, 0.456, 0.406), (0.229, 0.224, 0.225)),
        >>>   transforms.RandomErasing(),
1233
1234
1235
        >>> ])
    """

Zhun Zhong's avatar
Zhun Zhong committed
1236
    def __init__(self, p=0.5, scale=(0.02, 0.33), ratio=(0.3, 3.3), value=0, inplace=False):
1237
1238
1239
1240
1241
        assert isinstance(value, (numbers.Number, str, tuple, list))
        if (scale[0] > scale[1]) or (ratio[0] > ratio[1]):
            warnings.warn("range should be of kind (min, max)")
        if scale[0] < 0 or scale[1] > 1:
            raise ValueError("range of scale should be between 0 and 1")
1242
1243
        if p < 0 or p > 1:
            raise ValueError("range of random erasing probability should be between 0 and 1")
1244
1245
1246
1247
1248

        self.p = p
        self.scale = scale
        self.ratio = ratio
        self.value = value
1249
        self.inplace = inplace
1250
1251
1252
1253
1254
1255
1256
1257
1258
1259
1260
1261
1262

    @staticmethod
    def get_params(img, scale, ratio, value=0):
        """Get parameters for ``erase`` for a random erasing.

        Args:
            img (Tensor): Tensor image of size (C, H, W) to be erased.
            scale: range of proportion of erased area against input image.
            ratio: range of aspect ratio of erased area.

        Returns:
            tuple: params (i, j, h, w, v) to be passed to ``erase`` for random erasing.
        """
Zhun Zhong's avatar
Zhun Zhong committed
1263
        img_c, img_h, img_w = img.shape
1264
        area = img_h * img_w
1265

1266
        for _ in range(10):
1267
1268
1269
1270
1271
1272
            erase_area = random.uniform(scale[0], scale[1]) * area
            aspect_ratio = random.uniform(ratio[0], ratio[1])

            h = int(round(math.sqrt(erase_area * aspect_ratio)))
            w = int(round(math.sqrt(erase_area / aspect_ratio)))

1273
1274
1275
            if h < img_h and w < img_w:
                i = random.randint(0, img_h - h)
                j = random.randint(0, img_w - w)
1276
1277
1278
                if isinstance(value, numbers.Number):
                    v = value
                elif isinstance(value, torch._six.string_classes):
Zhun Zhong's avatar
Zhun Zhong committed
1279
                    v = torch.empty([img_c, h, w], dtype=torch.float32).normal_()
1280
1281
1282
1283
                elif isinstance(value, (list, tuple)):
                    v = torch.tensor(value, dtype=torch.float32).view(-1, 1, 1).expand(-1, h, w)
                return i, j, h, w, v

Zhun Zhong's avatar
Zhun Zhong committed
1284
1285
1286
        # Return original image
        return 0, 0, img_h, img_w, img

1287
1288
1289
1290
1291
1292
1293
1294
1295
1296
    def __call__(self, img):
        """
        Args:
            img (Tensor): Tensor image of size (C, H, W) to be erased.

        Returns:
            img (Tensor): Erased Tensor image.
        """
        if random.uniform(0, 1) < self.p:
            x, y, h, w, v = self.get_params(img, scale=self.scale, ratio=self.ratio, value=self.value)
1297
            return F.erase(img, x, y, h, w, v, self.inplace)
1298
        return img