transforms.py 60 KB
Newer Older
1
import math
vfdev's avatar
vfdev committed
2
import numbers
3
import random
vfdev's avatar
vfdev committed
4
import warnings
vfdev's avatar
vfdev committed
5
from collections.abc import Sequence
6
from typing import Tuple, List, Optional, Any
vfdev's avatar
vfdev committed
7
8

import torch
9
from PIL import Image
vfdev's avatar
vfdev committed
10
11
from torch import Tensor

12
13
14
15
16
17
18
try:
    import accimage
except ImportError:
    accimage = None

from . import functional as F

19
20
21
22
__all__ = ["Compose", "ToTensor", "PILToTensor", "ConvertImageDtype", "ToPILImage", "Normalize", "Resize", "Scale",
           "CenterCrop", "Pad", "Lambda", "RandomApply", "RandomChoice", "RandomOrder", "RandomCrop",
           "RandomHorizontalFlip", "RandomVerticalFlip", "RandomResizedCrop", "RandomSizedCrop", "FiveCrop", "TenCrop",
           "LinearTransformation", "ColorJitter", "RandomRotation", "RandomAffine", "Grayscale", "RandomGrayscale",
23
           "RandomPerspective", "RandomErasing"]
24

25
26
27
28
29
_pil_interpolation_to_str = {
    Image.NEAREST: 'PIL.Image.NEAREST',
    Image.BILINEAR: 'PIL.Image.BILINEAR',
    Image.BICUBIC: 'PIL.Image.BICUBIC',
    Image.LANCZOS: 'PIL.Image.LANCZOS',
surgan12's avatar
surgan12 committed
30
31
    Image.HAMMING: 'PIL.Image.HAMMING',
    Image.BOX: 'PIL.Image.BOX',
32
33
}

34

35
class Compose:
36
37
38
39
40
41
42
43
44
45
    """Composes several transforms together.

    Args:
        transforms (list of ``Transform`` objects): list of transforms to compose.

    Example:
        >>> transforms.Compose([
        >>>     transforms.CenterCrop(10),
        >>>     transforms.ToTensor(),
        >>> ])
46
47
48
49
50
51
52
53
54
55
56
57
58

    .. note::
        In order to script the transformations, please use ``torch.nn.Sequential`` as below.

        >>> transforms = torch.nn.Sequential(
        >>>     transforms.CenterCrop(10),
        >>>     transforms.Normalize((0.485, 0.456, 0.406), (0.229, 0.224, 0.225)),
        >>> )
        >>> scripted_transforms = torch.jit.script(transforms)

        Make sure to use only scriptable transformations, i.e. that work with ``torch.Tensor``, does not require
        `lambda` functions or ``PIL.Image``.

59
60
61
62
63
64
65
66
67
68
    """

    def __init__(self, transforms):
        self.transforms = transforms

    def __call__(self, img):
        for t in self.transforms:
            img = t(img)
        return img

69
70
71
72
73
74
75
76
    def __repr__(self):
        format_string = self.__class__.__name__ + '('
        for t in self.transforms:
            format_string += '\n'
            format_string += '    {0}'.format(t)
        format_string += '\n)'
        return format_string

77

78
class ToTensor:
79
80
81
    """Convert a ``PIL Image`` or ``numpy.ndarray`` to tensor.

    Converts a PIL Image or numpy.ndarray (H x W x C) in the range
surgan12's avatar
surgan12 committed
82
83
84
85
86
    [0, 255] to a torch.FloatTensor of shape (C x H x W) in the range [0.0, 1.0]
    if the PIL Image belongs to one of the modes (L, LA, P, I, F, RGB, YCbCr, RGBA, CMYK, 1)
    or if the numpy.ndarray has dtype = np.uint8

    In the other cases, tensors are returned without scaling.
87
88
89
90
91
92

    .. note::
        Because the input image is scaled to [0.0, 1.0], this transformation should not be used when
        transforming target image masks. See the `references`_ for implementing the transforms for image masks.

    .. _references: https://github.com/pytorch/vision/tree/master/references/segmentation
93
94
95
96
97
98
99
100
101
102
103
104
    """

    def __call__(self, pic):
        """
        Args:
            pic (PIL Image or numpy.ndarray): Image to be converted to tensor.

        Returns:
            Tensor: Converted image.
        """
        return F.to_tensor(pic)

105
106
107
    def __repr__(self):
        return self.__class__.__name__ + '()'

108

109
class PILToTensor:
110
111
    """Convert a ``PIL Image`` to a tensor of the same type.

vfdev's avatar
vfdev committed
112
    Converts a PIL Image (H x W x C) to a Tensor of shape (C x H x W).
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
    """

    def __call__(self, pic):
        """
        Args:
            pic (PIL Image): Image to be converted to tensor.

        Returns:
            Tensor: Converted image.
        """
        return F.pil_to_tensor(pic)

    def __repr__(self):
        return self.__class__.__name__ + '()'


129
class ConvertImageDtype(torch.nn.Module):
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
    """Convert a tensor image to the given ``dtype`` and scale the values accordingly

    Args:
        dtype (torch.dtype): Desired data type of the output

    .. note::

        When converting from a smaller to a larger integer ``dtype`` the maximum values are **not** mapped exactly.
        If converted back and forth, this mismatch has no effect.

    Raises:
        RuntimeError: When trying to cast :class:`torch.float32` to :class:`torch.int32` or :class:`torch.int64` as
            well as for trying to cast :class:`torch.float64` to :class:`torch.int64`. These conversions might lead to
            overflow errors since the floating point ``dtype`` cannot store consecutive integers over the whole range
            of the integer ``dtype``.
    """

    def __init__(self, dtype: torch.dtype) -> None:
148
        super().__init__()
149
150
        self.dtype = dtype

151
    def forward(self, image: torch.Tensor) -> torch.Tensor:
152
153
154
        return F.convert_image_dtype(image, self.dtype)


155
class ToPILImage:
156
157
158
159
160
161
162
163
    """Convert a tensor or an ndarray to PIL Image.

    Converts a torch.*Tensor of shape C x H x W or a numpy ndarray of shape
    H x W x C to a PIL Image while preserving the value range.

    Args:
        mode (`PIL.Image mode`_): color space and pixel depth of input data (optional).
            If ``mode`` is ``None`` (default) there are some assumptions made about the input data:
vfdev's avatar
vfdev committed
164
165
166
167
168
            - If the input has 4 channels, the ``mode`` is assumed to be ``RGBA``.
            - If the input has 3 channels, the ``mode`` is assumed to be ``RGB``.
            - If the input has 2 channels, the ``mode`` is assumed to be ``LA``.
            - If the input has 1 channel, the ``mode`` is determined by the data type (i.e ``int``, ``float``,
            ``short``).
169

csukuangfj's avatar
csukuangfj committed
170
    .. _PIL.Image mode: https://pillow.readthedocs.io/en/latest/handbook/concepts.html#concept-modes
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
    """
    def __init__(self, mode=None):
        self.mode = mode

    def __call__(self, pic):
        """
        Args:
            pic (Tensor or numpy.ndarray): Image to be converted to PIL Image.

        Returns:
            PIL Image: Image converted to PIL Image.

        """
        return F.to_pil_image(pic, self.mode)

186
    def __repr__(self):
187
188
189
190
191
        format_string = self.__class__.__name__ + '('
        if self.mode is not None:
            format_string += 'mode={0}'.format(self.mode)
        format_string += ')'
        return format_string
192

193

194
class Normalize(torch.nn.Module):
Fang Gao's avatar
Fang Gao committed
195
    """Normalize a tensor image with mean and standard deviation.
196
197
198
    Given mean: ``(mean[1],...,mean[n])`` and std: ``(std[1],..,std[n])`` for ``n``
    channels, this transform will normalize each channel of the input
    ``torch.*Tensor`` i.e.,
abdjava's avatar
abdjava committed
199
    ``output[channel] = (input[channel] - mean[channel]) / std[channel]``
200

201
    .. note::
202
        This transform acts out of place, i.e., it does not mutate the input tensor.
203

204
205
206
    Args:
        mean (sequence): Sequence of means for each channel.
        std (sequence): Sequence of standard deviations for each channel.
207
208
        inplace(bool,optional): Bool to make this operation in-place.

209
210
    """

surgan12's avatar
surgan12 committed
211
    def __init__(self, mean, std, inplace=False):
212
        super().__init__()
213
214
        self.mean = mean
        self.std = std
surgan12's avatar
surgan12 committed
215
        self.inplace = inplace
216

217
    def forward(self, tensor: Tensor) -> Tensor:
218
219
220
221
222
223
224
        """
        Args:
            tensor (Tensor): Tensor image of size (C, H, W) to be normalized.

        Returns:
            Tensor: Normalized Tensor image.
        """
surgan12's avatar
surgan12 committed
225
        return F.normalize(tensor, self.mean, self.std, self.inplace)
226

227
228
229
    def __repr__(self):
        return self.__class__.__name__ + '(mean={0}, std={1})'.format(self.mean, self.std)

230

vfdev's avatar
vfdev committed
231
232
233
234
class Resize(torch.nn.Module):
    """Resize the input image to the given size.
    The image can be a PIL Image or a torch Tensor, in which case it is expected
    to have [..., H, W] shape, where ... means an arbitrary number of leading dimensions
235
236
237
238
239
240

    Args:
        size (sequence or int): Desired output size. If size is a sequence like
            (h, w), output size will be matched to this. If size is an int,
            smaller edge of the image will be matched to this number.
            i.e, if height > width, then image will be rescaled to
vfdev's avatar
vfdev committed
241
242
243
            (size * height / width, size).
            In torchscript mode padding as single int is not supported, use a tuple or
            list of length 1: ``[size, ]``.
vfdev's avatar
vfdev committed
244
245
246
        interpolation (int, optional): Desired interpolation enum defined by `filters`_.
            Default is ``PIL.Image.BILINEAR``. If input is Tensor, only ``PIL.Image.NEAREST``, ``PIL.Image.BILINEAR``
            and ``PIL.Image.BICUBIC`` are supported.
247
248
249
    """

    def __init__(self, size, interpolation=Image.BILINEAR):
vfdev's avatar
vfdev committed
250
        super().__init__()
251
        self.size = _setup_size(size, error_msg="If size is a sequence, it should have 2 values")
252
253
        self.interpolation = interpolation

vfdev's avatar
vfdev committed
254
    def forward(self, img):
255
256
        """
        Args:
vfdev's avatar
vfdev committed
257
            img (PIL Image or Tensor): Image to be scaled.
258
259

        Returns:
vfdev's avatar
vfdev committed
260
            PIL Image or Tensor: Rescaled image.
261
262
263
        """
        return F.resize(img, self.size, self.interpolation)

264
    def __repr__(self):
265
266
        interpolate_str = _pil_interpolation_to_str[self.interpolation]
        return self.__class__.__name__ + '(size={0}, interpolation={1})'.format(self.size, interpolate_str)
267

268
269
270
271
272
273
274
275
276
277
278

class Scale(Resize):
    """
    Note: This transform is deprecated in favor of Resize.
    """
    def __init__(self, *args, **kwargs):
        warnings.warn("The use of the transforms.Scale transform is deprecated, " +
                      "please use transforms.Resize instead.")
        super(Scale, self).__init__(*args, **kwargs)


vfdev's avatar
vfdev committed
279
280
281
282
class CenterCrop(torch.nn.Module):
    """Crops the given image at the center.
    The image can be a PIL Image or a torch Tensor, in which case it is expected
    to have [..., H, W] shape, where ... means an arbitrary number of leading dimensions
283
284
285
286

    Args:
        size (sequence or int): Desired output size of the crop. If size is an
            int instead of sequence like (h, w), a square crop (size, size) is
vfdev's avatar
vfdev committed
287
            made. If provided a tuple or list of length 1, it will be interpreted as (size[0], size[0]).
288
289
290
    """

    def __init__(self, size):
vfdev's avatar
vfdev committed
291
        super().__init__()
292
        self.size = _setup_size(size, error_msg="Please provide only two dimensions (h, w) for size.")
293

vfdev's avatar
vfdev committed
294
    def forward(self, img):
295
296
        """
        Args:
vfdev's avatar
vfdev committed
297
            img (PIL Image or Tensor): Image to be cropped.
298
299

        Returns:
vfdev's avatar
vfdev committed
300
            PIL Image or Tensor: Cropped image.
301
302
303
        """
        return F.center_crop(img, self.size)

304
305
306
    def __repr__(self):
        return self.__class__.__name__ + '(size={0})'.format(self.size)

307

308
309
310
311
class Pad(torch.nn.Module):
    """Pad the given image on all sides with the given "pad" value.
    The image can be a PIL Image or a torch Tensor, in which case it is expected
    to have [..., H, W] shape, where ... means an arbitrary number of leading dimensions
312
313

    Args:
314
        padding (int or tuple or list): Padding on each border. If a single int is provided this
315
316
            is used to pad all borders. If tuple of length 2 is provided this is the padding
            on left/right and top/bottom respectively. If a tuple of length 4 is provided
317
318
319
            this is the padding for the left, top, right and bottom borders respectively.
            In torchscript mode padding as single int is not supported, use a tuple or
            list of length 1: ``[padding, ]``.
320
        fill (int or tuple): Pixel fill value for constant fill. Default is 0. If a tuple of
321
            length 3, it is used to fill R, G, B channels respectively.
322
            This value is only used when the padding_mode is constant
323
        padding_mode (str): Type of padding. Should be: constant, edge, reflect or symmetric.
vfdev's avatar
vfdev committed
324
            Default is constant. Mode symmetric is not yet supported for Tensor inputs.
325
326
327
328
329
330
331
332

            - constant: pads with a constant value, this value is specified with fill

            - edge: pads with the last value at the edge of the image

            - reflect: pads with reflection of image without repeating the last value on the edge

                For example, padding [1, 2, 3, 4] with 2 elements on both sides in reflect mode
333
                will result in [3, 2, 1, 2, 3, 4, 3, 2]
334
335
336
337

            - symmetric: pads with reflection of image repeating the last value on the edge

                For example, padding [1, 2, 3, 4] with 2 elements on both sides in symmetric mode
338
                will result in [2, 1, 1, 2, 3, 4, 4, 3]
339
340
    """

341
342
343
344
345
346
347
348
349
350
351
352
353
    def __init__(self, padding, fill=0, padding_mode="constant"):
        super().__init__()
        if not isinstance(padding, (numbers.Number, tuple, list)):
            raise TypeError("Got inappropriate padding arg")

        if not isinstance(fill, (numbers.Number, str, tuple)):
            raise TypeError("Got inappropriate fill arg")

        if padding_mode not in ["constant", "edge", "reflect", "symmetric"]:
            raise ValueError("Padding mode should be either constant, edge, reflect or symmetric")

        if isinstance(padding, Sequence) and len(padding) not in [1, 2, 4]:
            raise ValueError("Padding must be an int or a 1, 2, or 4 element tuple, not a " +
354
355
356
357
                             "{} element tuple".format(len(padding)))

        self.padding = padding
        self.fill = fill
358
        self.padding_mode = padding_mode
359

360
    def forward(self, img):
361
362
        """
        Args:
363
            img (PIL Image or Tensor): Image to be padded.
364
365

        Returns:
366
            PIL Image or Tensor: Padded image.
367
        """
368
        return F.pad(img, self.padding, self.fill, self.padding_mode)
369

370
    def __repr__(self):
371
372
        return self.__class__.__name__ + '(padding={0}, fill={1}, padding_mode={2})'.\
            format(self.padding, self.fill, self.padding_mode)
373

374

375
class Lambda:
376
377
378
379
380
381
382
    """Apply a user-defined lambda as a transform.

    Args:
        lambd (function): Lambda/function to be used for transform.
    """

    def __init__(self, lambd):
383
384
        if not callable(lambd):
            raise TypeError("Argument lambd should be callable, got {}".format(repr(type(lambd).__name__)))
385
386
387
388
389
        self.lambd = lambd

    def __call__(self, img):
        return self.lambd(img)

390
391
392
    def __repr__(self):
        return self.__class__.__name__ + '()'

393

394
class RandomTransforms:
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
    """Base class for a list of transformations with randomness

    Args:
        transforms (list or tuple): list of transformations
    """

    def __init__(self, transforms):
        assert isinstance(transforms, (list, tuple))
        self.transforms = transforms

    def __call__(self, *args, **kwargs):
        raise NotImplementedError()

    def __repr__(self):
        format_string = self.__class__.__name__ + '('
        for t in self.transforms:
            format_string += '\n'
            format_string += '    {0}'.format(t)
        format_string += '\n)'
        return format_string


class RandomApply(RandomTransforms):
    """Apply randomly a list of transformations with a given probability

    Args:
        transforms (list or tuple): list of transformations
        p (float): probability
    """

    def __init__(self, transforms, p=0.5):
426
        super().__init__(transforms)
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
        self.p = p

    def __call__(self, img):
        if self.p < random.random():
            return img
        for t in self.transforms:
            img = t(img)
        return img

    def __repr__(self):
        format_string = self.__class__.__name__ + '('
        format_string += '\n    p={}'.format(self.p)
        for t in self.transforms:
            format_string += '\n'
            format_string += '    {0}'.format(t)
        format_string += '\n)'
        return format_string


class RandomOrder(RandomTransforms):
    """Apply a list of transformations in a random order
    """
    def __call__(self, img):
        order = list(range(len(self.transforms)))
        random.shuffle(order)
        for i in order:
            img = self.transforms[i](img)
        return img


class RandomChoice(RandomTransforms):
    """Apply single transformation randomly picked from a list
    """
    def __call__(self, img):
        t = random.choice(self.transforms)
        return t(img)


vfdev's avatar
vfdev committed
465
466
467
468
469
class RandomCrop(torch.nn.Module):
    """Crop the given image at a random location.
    The image can be a PIL Image or a Tensor, in which case it is expected
    to have [..., H, W] shape, where ... means an arbitrary number of leading
    dimensions
470
471
472
473

    Args:
        size (sequence or int): Desired output size of the crop. If size is an
            int instead of sequence like (h, w), a square crop (size, size) is
vfdev's avatar
vfdev committed
474
            made. If provided a tuple or list of length 1, it will be interpreted as (size[0], size[0]).
475
        padding (int or sequence, optional): Optional padding on each border
vfdev's avatar
vfdev committed
476
477
478
479
480
481
            of the image. Default is None. If a single int is provided this
            is used to pad all borders. If tuple of length 2 is provided this is the padding
            on left/right and top/bottom respectively. If a tuple of length 4 is provided
            this is the padding for the left, top, right and bottom borders respectively.
            In torchscript mode padding as single int is not supported, use a tuple or
            list of length 1: ``[padding, ]``.
482
        pad_if_needed (boolean): It will pad the image if smaller than the
ekka's avatar
ekka committed
483
            desired size to avoid raising an exception. Since cropping is done
484
            after padding, the padding seems to be done at a random offset.
vfdev's avatar
vfdev committed
485
        fill (int or tuple): Pixel fill value for constant fill. Default is 0. If a tuple of
486
487
            length 3, it is used to fill R, G, B channels respectively.
            This value is only used when the padding_mode is constant
vfdev's avatar
vfdev committed
488
        padding_mode (str): Type of padding. Should be: constant, edge, reflect or symmetric. Default is constant.
vfdev's avatar
vfdev committed
489
            Mode symmetric is not yet supported for Tensor inputs.
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504

             - constant: pads with a constant value, this value is specified with fill

             - edge: pads with the last value on the edge of the image

             - reflect: pads with reflection of image (without repeating the last value on the edge)

                padding [1, 2, 3, 4] with 2 elements on both sides in reflect mode
                will result in [3, 2, 1, 2, 3, 4, 3, 2]

             - symmetric: pads with reflection of image (repeating the last value on the edge)

                padding [1, 2, 3, 4] with 2 elements on both sides in symmetric mode
                will result in [2, 1, 1, 2, 3, 4, 4, 3]

505
506
507
    """

    @staticmethod
vfdev's avatar
vfdev committed
508
    def get_params(img: Tensor, output_size: Tuple[int, int]) -> Tuple[int, int, int, int]:
509
510
511
        """Get parameters for ``crop`` for a random crop.

        Args:
vfdev's avatar
vfdev committed
512
            img (PIL Image or Tensor): Image to be cropped.
513
514
515
516
517
            output_size (tuple): Expected output size of the crop.

        Returns:
            tuple: params (i, j, h, w) to be passed to ``crop`` for random crop.
        """
vfdev's avatar
vfdev committed
518
        w, h = F._get_image_size(img)
519
520
521
522
        th, tw = output_size
        if w == tw and h == th:
            return 0, 0, h, w

523
524
        i = torch.randint(0, h - th + 1, size=(1, )).item()
        j = torch.randint(0, w - tw + 1, size=(1, )).item()
525
526
        return i, j, th, tw

vfdev's avatar
vfdev committed
527
528
529
    def __init__(self, size, padding=None, pad_if_needed=False, fill=0, padding_mode="constant"):
        super().__init__()

530
531
532
533
        self.size = tuple(_setup_size(
            size, error_msg="Please provide only two dimensions (h, w) for size."
        ))

vfdev's avatar
vfdev committed
534
535
536
537
538
539
        self.padding = padding
        self.pad_if_needed = pad_if_needed
        self.fill = fill
        self.padding_mode = padding_mode

    def forward(self, img):
540
541
        """
        Args:
vfdev's avatar
vfdev committed
542
            img (PIL Image or Tensor): Image to be cropped.
543
544

        Returns:
vfdev's avatar
vfdev committed
545
            PIL Image or Tensor: Cropped image.
546
        """
547
548
        if self.padding is not None:
            img = F.pad(img, self.padding, self.fill, self.padding_mode)
549

vfdev's avatar
vfdev committed
550
        width, height = F._get_image_size(img)
551
        # pad the width if needed
vfdev's avatar
vfdev committed
552
553
554
        if self.pad_if_needed and width < self.size[1]:
            padding = [self.size[1] - width, 0]
            img = F.pad(img, padding, self.fill, self.padding_mode)
555
        # pad the height if needed
vfdev's avatar
vfdev committed
556
557
558
        if self.pad_if_needed and height < self.size[0]:
            padding = [0, self.size[0] - height]
            img = F.pad(img, padding, self.fill, self.padding_mode)
559

560
561
562
563
        i, j, h, w = self.get_params(img, self.size)

        return F.crop(img, i, j, h, w)

564
    def __repr__(self):
vfdev's avatar
vfdev committed
565
        return self.__class__.__name__ + "(size={0}, padding={1})".format(self.size, self.padding)
566

567

568
569
570
571
572
class RandomHorizontalFlip(torch.nn.Module):
    """Horizontally flip the given image randomly with a given probability.
    The image can be a PIL Image or a torch Tensor, in which case it is expected
    to have [..., H, W] shape, where ... means an arbitrary number of leading
    dimensions
573
574
575
576
577
578

    Args:
        p (float): probability of the image being flipped. Default value is 0.5
    """

    def __init__(self, p=0.5):
579
        super().__init__()
580
        self.p = p
581

582
    def forward(self, img):
583
584
        """
        Args:
585
            img (PIL Image or Tensor): Image to be flipped.
586
587

        Returns:
588
            PIL Image or Tensor: Randomly flipped image.
589
        """
590
        if torch.rand(1) < self.p:
591
592
593
            return F.hflip(img)
        return img

594
    def __repr__(self):
595
        return self.__class__.__name__ + '(p={})'.format(self.p)
596

597

598
class RandomVerticalFlip(torch.nn.Module):
vfdev's avatar
vfdev committed
599
    """Vertically flip the given image randomly with a given probability.
600
601
602
    The image can be a PIL Image or a torch Tensor, in which case it is expected
    to have [..., H, W] shape, where ... means an arbitrary number of leading
    dimensions
603
604
605
606
607
608

    Args:
        p (float): probability of the image being flipped. Default value is 0.5
    """

    def __init__(self, p=0.5):
609
        super().__init__()
610
        self.p = p
611

612
    def forward(self, img):
613
614
        """
        Args:
615
            img (PIL Image or Tensor): Image to be flipped.
616
617

        Returns:
618
            PIL Image or Tensor: Randomly flipped image.
619
        """
620
        if torch.rand(1) < self.p:
621
622
623
            return F.vflip(img)
        return img

624
    def __repr__(self):
625
        return self.__class__.__name__ + '(p={})'.format(self.p)
626

627

628
629
630
631
class RandomPerspective(torch.nn.Module):
    """Performs a random perspective transformation of the given image with a given probability.
    The image can be a PIL Image or a Tensor, in which case it is expected
    to have [..., H, W] shape, where ... means an arbitrary number of leading dimensions.
632
633

    Args:
634
635
636
637
638
639
640
641
642
        distortion_scale (float): argument to control the degree of distortion and ranges from 0 to 1.
            Default is 0.5.
        p (float): probability of the image being transformed. Default is 0.5.
        interpolation (int): Interpolation type. If input is Tensor, only ``PIL.Image.NEAREST`` and
            ``PIL.Image.BILINEAR`` are supported. Default, ``PIL.Image.BILINEAR`` for PIL images and Tensors.
        fill (n-tuple or int or float): Pixel fill value for area outside the rotated
            image. If int or float, the value is used for all bands respectively. Default is 0.
            This option is only available for ``pillow>=5.0.0``. This option is not supported for Tensor
            input. Fill value for the area outside the transform in the output image is always 0.
643
644
645

    """

646
647
    def __init__(self, distortion_scale=0.5, p=0.5, interpolation=Image.BILINEAR, fill=0):
        super().__init__()
648
649
650
        self.p = p
        self.interpolation = interpolation
        self.distortion_scale = distortion_scale
651
        self.fill = fill
652

653
    def forward(self, img):
654
655
        """
        Args:
656
            img (PIL Image or Tensor): Image to be Perspectively transformed.
657
658

        Returns:
659
            PIL Image or Tensor: Randomly transformed image.
660
        """
661
662
        if torch.rand(1) < self.p:
            width, height = F._get_image_size(img)
663
            startpoints, endpoints = self.get_params(width, height, self.distortion_scale)
664
            return F.perspective(img, startpoints, endpoints, self.interpolation, self.fill)
665
666
667
        return img

    @staticmethod
668
    def get_params(width: int, height: int, distortion_scale: float) -> Tuple[List[List[int]], List[List[int]]]:
669
670
671
        """Get parameters for ``perspective`` for a random perspective transform.

        Args:
672
673
674
            width (int): width of the image.
            height (int): height of the image.
            distortion_scale (float): argument to control the degree of distortion and ranges from 0 to 1.
675
676

        Returns:
677
            List containing [top-left, top-right, bottom-right, bottom-left] of the original image,
678
679
            List containing [top-left, top-right, bottom-right, bottom-left] of the transformed image.
        """
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
        half_height = height // 2
        half_width = width // 2
        topleft = [
            int(torch.randint(0, int(distortion_scale * half_width) + 1, size=(1, )).item()),
            int(torch.randint(0, int(distortion_scale * half_height) + 1, size=(1, )).item())
        ]
        topright = [
            int(torch.randint(width - int(distortion_scale * half_width) - 1, width, size=(1, )).item()),
            int(torch.randint(0, int(distortion_scale * half_height) + 1, size=(1, )).item())
        ]
        botright = [
            int(torch.randint(width - int(distortion_scale * half_width) - 1, width, size=(1, )).item()),
            int(torch.randint(height - int(distortion_scale * half_height) - 1, height, size=(1, )).item())
        ]
        botleft = [
            int(torch.randint(0, int(distortion_scale * half_width) + 1, size=(1, )).item()),
            int(torch.randint(height - int(distortion_scale * half_height) - 1, height, size=(1, )).item())
        ]
        startpoints = [[0, 0], [width - 1, 0], [width - 1, height - 1], [0, height - 1]]
699
700
701
702
703
704
705
        endpoints = [topleft, topright, botright, botleft]
        return startpoints, endpoints

    def __repr__(self):
        return self.__class__.__name__ + '(p={})'.format(self.p)


706
707
708
709
class RandomResizedCrop(torch.nn.Module):
    """Crop the given image to random size and aspect ratio.
    The image can be a PIL Image or a Tensor, in which case it is expected
    to have [..., H, W] shape, where ... means an arbitrary number of leading dimensions
710

711
712
    A crop of random size (default: of 0.08 to 1.0) of the original size and a random
    aspect ratio (default: of 3/4 to 4/3) of the original aspect ratio is made. This crop
713
714
715
716
    is finally resized to given size.
    This is popularly used to train the Inception networks.

    Args:
717
718
719
720
721
        size (int or sequence): expected output size of each edge. If size is an
            int instead of sequence like (h, w), a square output size ``(size, size)`` is
            made. If provided a tuple or list of length 1, it will be interpreted as (size[0], size[0]).
        scale (tuple of float): range of size of the origin size cropped
        ratio (tuple of float): range of aspect ratio of the origin aspect ratio cropped.
vfdev's avatar
vfdev committed
722
723
724
        interpolation (int): Desired interpolation enum defined by `filters`_.
            Default is ``PIL.Image.BILINEAR``. If input is Tensor, only ``PIL.Image.NEAREST``, ``PIL.Image.BILINEAR``
            and ``PIL.Image.BICUBIC`` are supported.
725
726
    """

727
    def __init__(self, size, scale=(0.08, 1.0), ratio=(3. / 4., 4. / 3.), interpolation=Image.BILINEAR):
728
        super().__init__()
729
        self.size = _setup_size(size, error_msg="Please provide only two dimensions (h, w) for size.")
730

731
        if not isinstance(scale, Sequence):
732
            raise TypeError("Scale should be a sequence")
733
        if not isinstance(ratio, Sequence):
734
            raise TypeError("Ratio should be a sequence")
735
        if (scale[0] > scale[1]) or (ratio[0] > ratio[1]):
736
            warnings.warn("Scale and ratio should be of kind (min, max)")
737

738
        self.interpolation = interpolation
739
740
        self.scale = scale
        self.ratio = ratio
741
742

    @staticmethod
743
    def get_params(
744
            img: Tensor, scale: List[float], ratio: List[float]
745
    ) -> Tuple[int, int, int, int]:
746
747
748
        """Get parameters for ``crop`` for a random sized crop.

        Args:
749
            img (PIL Image or Tensor): Input image.
750
751
            scale (list): range of scale of the origin size cropped
            ratio (list): range of aspect ratio of the origin aspect ratio cropped
752
753
754
755
756

        Returns:
            tuple: params (i, j, h, w) to be passed to ``crop`` for a random
                sized crop.
        """
vfdev's avatar
vfdev committed
757
        width, height = F._get_image_size(img)
Zhicheng Yan's avatar
Zhicheng Yan committed
758
        area = height * width
759

760
        for _ in range(10):
761
            target_area = area * torch.empty(1).uniform_(scale[0], scale[1]).item()
762
763
764
765
            log_ratio = torch.log(torch.tensor(ratio))
            aspect_ratio = torch.exp(
                torch.empty(1).uniform_(log_ratio[0], log_ratio[1])
            ).item()
766
767
768
769

            w = int(round(math.sqrt(target_area * aspect_ratio)))
            h = int(round(math.sqrt(target_area / aspect_ratio)))

Zhicheng Yan's avatar
Zhicheng Yan committed
770
            if 0 < w <= width and 0 < h <= height:
771
772
                i = torch.randint(0, height - h + 1, size=(1,)).item()
                j = torch.randint(0, width - w + 1, size=(1,)).item()
773
774
                return i, j, h, w

775
        # Fallback to central crop
Zhicheng Yan's avatar
Zhicheng Yan committed
776
        in_ratio = float(width) / float(height)
777
        if in_ratio < min(ratio):
Zhicheng Yan's avatar
Zhicheng Yan committed
778
            w = width
779
            h = int(round(w / min(ratio)))
780
        elif in_ratio > max(ratio):
Zhicheng Yan's avatar
Zhicheng Yan committed
781
            h = height
782
            w = int(round(h * max(ratio)))
783
        else:  # whole image
Zhicheng Yan's avatar
Zhicheng Yan committed
784
785
786
787
            w = width
            h = height
        i = (height - h) // 2
        j = (width - w) // 2
788
        return i, j, h, w
789

790
    def forward(self, img):
791
792
        """
        Args:
793
            img (PIL Image or Tensor): Image to be cropped and resized.
794
795

        Returns:
796
            PIL Image or Tensor: Randomly cropped and resized image.
797
        """
798
        i, j, h, w = self.get_params(img, self.scale, self.ratio)
799
800
        return F.resized_crop(img, i, j, h, w, self.size, self.interpolation)

801
    def __repr__(self):
802
803
        interpolate_str = _pil_interpolation_to_str[self.interpolation]
        format_string = self.__class__.__name__ + '(size={0}'.format(self.size)
804
805
        format_string += ', scale={0}'.format(tuple(round(s, 4) for s in self.scale))
        format_string += ', ratio={0}'.format(tuple(round(r, 4) for r in self.ratio))
806
807
        format_string += ', interpolation={0})'.format(interpolate_str)
        return format_string
808

809
810
811
812
813
814
815
816
817
818
819

class RandomSizedCrop(RandomResizedCrop):
    """
    Note: This transform is deprecated in favor of RandomResizedCrop.
    """
    def __init__(self, *args, **kwargs):
        warnings.warn("The use of the transforms.RandomSizedCrop transform is deprecated, " +
                      "please use transforms.RandomResizedCrop instead.")
        super(RandomSizedCrop, self).__init__(*args, **kwargs)


vfdev's avatar
vfdev committed
820
821
822
823
824
class FiveCrop(torch.nn.Module):
    """Crop the given image into four corners and the central crop.
    The image can be a PIL Image or a Tensor, in which case it is expected
    to have [..., H, W] shape, where ... means an arbitrary number of leading
    dimensions
825
826
827
828
829
830
831
832
833

    .. Note::
         This transform returns a tuple of images and there may be a mismatch in the number of
         inputs and targets your Dataset returns. See below for an example of how to deal with
         this.

    Args:
         size (sequence or int): Desired output size of the crop. If size is an ``int``
            instead of sequence like (h, w), a square crop of size (size, size) is made.
vfdev's avatar
vfdev committed
834
            If provided a tuple or list of length 1, it will be interpreted as (size[0], size[0]).
835
836
837
838
839
840
841
842
843
844
845
846
847
848

    Example:
         >>> transform = Compose([
         >>>    FiveCrop(size), # this is a list of PIL Images
         >>>    Lambda(lambda crops: torch.stack([ToTensor()(crop) for crop in crops])) # returns a 4D tensor
         >>> ])
         >>> #In your test loop you can do the following:
         >>> input, target = batch # input is a 5d tensor, target is 2d
         >>> bs, ncrops, c, h, w = input.size()
         >>> result = model(input.view(-1, c, h, w)) # fuse batch size and ncrops
         >>> result_avg = result.view(bs, ncrops, -1).mean(1) # avg over crops
    """

    def __init__(self, size):
vfdev's avatar
vfdev committed
849
        super().__init__()
850
        self.size = _setup_size(size, error_msg="Please provide only two dimensions (h, w) for size.")
851

vfdev's avatar
vfdev committed
852
853
854
855
856
857
858
859
    def forward(self, img):
        """
        Args:
            img (PIL Image or Tensor): Image to be cropped.

        Returns:
            tuple of 5 images. Image can be PIL Image or Tensor
        """
860
861
        return F.five_crop(img, self.size)

862
863
864
    def __repr__(self):
        return self.__class__.__name__ + '(size={0})'.format(self.size)

865

vfdev's avatar
vfdev committed
866
867
868
869
870
871
class TenCrop(torch.nn.Module):
    """Crop the given image into four corners and the central crop plus the flipped version of
    these (horizontal flipping is used by default).
    The image can be a PIL Image or a Tensor, in which case it is expected
    to have [..., H, W] shape, where ... means an arbitrary number of leading
    dimensions
872
873
874
875
876
877
878
879
880

    .. Note::
         This transform returns a tuple of images and there may be a mismatch in the number of
         inputs and targets your Dataset returns. See below for an example of how to deal with
         this.

    Args:
        size (sequence or int): Desired output size of the crop. If size is an
            int instead of sequence like (h, w), a square crop (size, size) is
vfdev's avatar
vfdev committed
881
            made. If provided a tuple or list of length 1, it will be interpreted as (size[0], size[0]).
882
        vertical_flip (bool): Use vertical flipping instead of horizontal
883
884
885
886
887
888
889
890
891
892
893
894
895
896

    Example:
         >>> transform = Compose([
         >>>    TenCrop(size), # this is a list of PIL Images
         >>>    Lambda(lambda crops: torch.stack([ToTensor()(crop) for crop in crops])) # returns a 4D tensor
         >>> ])
         >>> #In your test loop you can do the following:
         >>> input, target = batch # input is a 5d tensor, target is 2d
         >>> bs, ncrops, c, h, w = input.size()
         >>> result = model(input.view(-1, c, h, w)) # fuse batch size and ncrops
         >>> result_avg = result.view(bs, ncrops, -1).mean(1) # avg over crops
    """

    def __init__(self, size, vertical_flip=False):
vfdev's avatar
vfdev committed
897
        super().__init__()
898
        self.size = _setup_size(size, error_msg="Please provide only two dimensions (h, w) for size.")
899
900
        self.vertical_flip = vertical_flip

vfdev's avatar
vfdev committed
901
902
903
904
905
906
907
908
    def forward(self, img):
        """
        Args:
            img (PIL Image or Tensor): Image to be cropped.

        Returns:
            tuple of 10 images. Image can be PIL Image or Tensor
        """
909
910
        return F.ten_crop(img, self.size, self.vertical_flip)

911
    def __repr__(self):
912
        return self.__class__.__name__ + '(size={0}, vertical_flip={1})'.format(self.size, self.vertical_flip)
913

914

915
class LinearTransformation(torch.nn.Module):
ekka's avatar
ekka committed
916
    """Transform a tensor image with a square transformation matrix and a mean_vector computed
917
    offline.
ekka's avatar
ekka committed
918
919
920
    Given transformation_matrix and mean_vector, will flatten the torch.*Tensor and
    subtract mean_vector from it which is then followed by computing the dot
    product with the transformation matrix and then reshaping the tensor to its
921
    original shape.
922

923
    Applications:
924
        whitening transformation: Suppose X is a column vector zero-centered data.
925
926
927
        Then compute the data covariance matrix [D x D] with torch.mm(X.t(), X),
        perform SVD on this matrix and pass it as transformation_matrix.

928
929
    Args:
        transformation_matrix (Tensor): tensor [D x D], D = C x H x W
ekka's avatar
ekka committed
930
        mean_vector (Tensor): tensor [D], D = C x H x W
931
932
    """

ekka's avatar
ekka committed
933
    def __init__(self, transformation_matrix, mean_vector):
934
        super().__init__()
935
936
937
        if transformation_matrix.size(0) != transformation_matrix.size(1):
            raise ValueError("transformation_matrix should be square. Got " +
                             "[{} x {}] rectangular matrix.".format(*transformation_matrix.size()))
ekka's avatar
ekka committed
938
939
940

        if mean_vector.size(0) != transformation_matrix.size(0):
            raise ValueError("mean_vector should have the same length {}".format(mean_vector.size(0)) +
Francisco Massa's avatar
Francisco Massa committed
941
942
                             " as any one of the dimensions of the transformation_matrix [{}]"
                             .format(tuple(transformation_matrix.size())))
ekka's avatar
ekka committed
943

944
945
946
947
        if transformation_matrix.device != mean_vector.device:
            raise ValueError("Input tensors should be on the same device. Got {} and {}"
                             .format(transformation_matrix.device, mean_vector.device))

948
        self.transformation_matrix = transformation_matrix
ekka's avatar
ekka committed
949
        self.mean_vector = mean_vector
950

951
    def forward(self, tensor: Tensor) -> Tensor:
952
953
954
955
956
957
958
        """
        Args:
            tensor (Tensor): Tensor image of size (C, H, W) to be whitened.

        Returns:
            Tensor: Transformed image.
        """
959
960
961
962
963
964
965
966
967
968
969
970
        shape = tensor.shape
        n = shape[-3] * shape[-2] * shape[-1]
        if n != self.transformation_matrix.shape[0]:
            raise ValueError("Input tensor and transformation matrix have incompatible shape." +
                             "[{} x {} x {}] != ".format(shape[-3], shape[-2], shape[-1]) +
                             "{}".format(self.transformation_matrix.shape[0]))

        if tensor.device.type != self.mean_vector.device.type:
            raise ValueError("Input tensor should be on the same device as transformation matrix and mean vector. "
                             "Got {} vs {}".format(tensor.device, self.mean_vector.device))

        flat_tensor = tensor.view(-1, n) - self.mean_vector
971
        transformed_tensor = torch.mm(flat_tensor, self.transformation_matrix)
972
        tensor = transformed_tensor.view(shape)
973
974
        return tensor

975
    def __repr__(self):
ekka's avatar
ekka committed
976
977
978
        format_string = self.__class__.__name__ + '(transformation_matrix='
        format_string += (str(self.transformation_matrix.tolist()) + ')')
        format_string += (", (mean_vector=" + str(self.mean_vector.tolist()) + ')')
979
980
        return format_string

981

982
class ColorJitter(torch.nn.Module):
983
984
985
    """Randomly change the brightness, contrast and saturation of an image.

    Args:
yaox12's avatar
yaox12 committed
986
987
988
989
990
991
992
993
994
995
996
997
        brightness (float or tuple of float (min, max)): How much to jitter brightness.
            brightness_factor is chosen uniformly from [max(0, 1 - brightness), 1 + brightness]
            or the given [min, max]. Should be non negative numbers.
        contrast (float or tuple of float (min, max)): How much to jitter contrast.
            contrast_factor is chosen uniformly from [max(0, 1 - contrast), 1 + contrast]
            or the given [min, max]. Should be non negative numbers.
        saturation (float or tuple of float (min, max)): How much to jitter saturation.
            saturation_factor is chosen uniformly from [max(0, 1 - saturation), 1 + saturation]
            or the given [min, max]. Should be non negative numbers.
        hue (float or tuple of float (min, max)): How much to jitter hue.
            hue_factor is chosen uniformly from [-hue, hue] or the given [min, max].
            Should have 0<= hue <= 0.5 or -0.5 <= min <= max <= 0.5.
998
    """
999

1000
    def __init__(self, brightness=0, contrast=0, saturation=0, hue=0):
1001
        super().__init__()
yaox12's avatar
yaox12 committed
1002
1003
1004
1005
1006
1007
        self.brightness = self._check_input(brightness, 'brightness')
        self.contrast = self._check_input(contrast, 'contrast')
        self.saturation = self._check_input(saturation, 'saturation')
        self.hue = self._check_input(hue, 'hue', center=0, bound=(-0.5, 0.5),
                                     clip_first_on_zero=False)

1008
    @torch.jit.unused
yaox12's avatar
yaox12 committed
1009
1010
1011
1012
    def _check_input(self, value, name, center=1, bound=(0, float('inf')), clip_first_on_zero=True):
        if isinstance(value, numbers.Number):
            if value < 0:
                raise ValueError("If {} is a single number, it must be non negative.".format(name))
1013
            value = [center - float(value), center + float(value)]
yaox12's avatar
yaox12 committed
1014
            if clip_first_on_zero:
1015
                value[0] = max(value[0], 0.0)
yaox12's avatar
yaox12 committed
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025
1026
        elif isinstance(value, (tuple, list)) and len(value) == 2:
            if not bound[0] <= value[0] <= value[1] <= bound[1]:
                raise ValueError("{} values should be between {}".format(name, bound))
        else:
            raise TypeError("{} should be a single number or a list/tuple with lenght 2.".format(name))

        # if value is 0 or (1., 1.) for brightness/contrast/saturation
        # or (0., 0.) for hue, do nothing
        if value[0] == value[1] == center:
            value = None
        return value
1027
1028

    @staticmethod
1029
    @torch.jit.unused
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
    def get_params(brightness, contrast, saturation, hue):
        """Get a randomized transform to be applied on image.

        Arguments are same as that of __init__.

        Returns:
            Transform which randomly adjusts brightness, contrast and
            saturation in a random order.
        """
        transforms = []
yaox12's avatar
yaox12 committed
1040
1041
1042

        if brightness is not None:
            brightness_factor = random.uniform(brightness[0], brightness[1])
1043
1044
            transforms.append(Lambda(lambda img: F.adjust_brightness(img, brightness_factor)))

yaox12's avatar
yaox12 committed
1045
1046
        if contrast is not None:
            contrast_factor = random.uniform(contrast[0], contrast[1])
1047
1048
            transforms.append(Lambda(lambda img: F.adjust_contrast(img, contrast_factor)))

yaox12's avatar
yaox12 committed
1049
1050
        if saturation is not None:
            saturation_factor = random.uniform(saturation[0], saturation[1])
1051
1052
            transforms.append(Lambda(lambda img: F.adjust_saturation(img, saturation_factor)))

yaox12's avatar
yaox12 committed
1053
1054
        if hue is not None:
            hue_factor = random.uniform(hue[0], hue[1])
1055
1056
            transforms.append(Lambda(lambda img: F.adjust_hue(img, hue_factor)))

vfdev's avatar
vfdev committed
1057
        random.shuffle(transforms)
1058
1059
1060
1061
        transform = Compose(transforms)

        return transform

1062
    def forward(self, img):
1063
1064
        """
        Args:
1065
            img (PIL Image or Tensor): Input image.
1066
1067

        Returns:
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079
1080
1081
1082
1083
1084
1085
1086
1087
1088
1089
1090
1091
1092
            PIL Image or Tensor: Color jittered image.
        """
        fn_idx = torch.randperm(4)
        for fn_id in fn_idx:
            if fn_id == 0 and self.brightness is not None:
                brightness = self.brightness
                brightness_factor = torch.tensor(1.0).uniform_(brightness[0], brightness[1]).item()
                img = F.adjust_brightness(img, brightness_factor)

            if fn_id == 1 and self.contrast is not None:
                contrast = self.contrast
                contrast_factor = torch.tensor(1.0).uniform_(contrast[0], contrast[1]).item()
                img = F.adjust_contrast(img, contrast_factor)

            if fn_id == 2 and self.saturation is not None:
                saturation = self.saturation
                saturation_factor = torch.tensor(1.0).uniform_(saturation[0], saturation[1]).item()
                img = F.adjust_saturation(img, saturation_factor)

            if fn_id == 3 and self.hue is not None:
                hue = self.hue
                hue_factor = torch.tensor(1.0).uniform_(hue[0], hue[1]).item()
                img = F.adjust_hue(img, hue_factor)

        return img
1093

1094
    def __repr__(self):
1095
1096
1097
1098
1099
1100
        format_string = self.__class__.__name__ + '('
        format_string += 'brightness={0}'.format(self.brightness)
        format_string += ', contrast={0}'.format(self.contrast)
        format_string += ', saturation={0}'.format(self.saturation)
        format_string += ', hue={0})'.format(self.hue)
        return format_string
1101

1102

1103
class RandomRotation(torch.nn.Module):
1104
    """Rotate the image by angle.
1105
1106
    The image can be a PIL Image or a Tensor, in which case it is expected
    to have [..., H, W] shape, where ... means an arbitrary number of leading dimensions.
1107
1108
1109
1110
1111

    Args:
        degrees (sequence or float or int): Range of degrees to select from.
            If degrees is a number instead of sequence like (min, max), the range of degrees
            will be (-degrees, +degrees).
1112
        resample (int, optional): An optional resampling filter. See `filters`_ for more information.
1113
            If omitted, or if the image has mode "1" or "P", it is set to PIL.Image.NEAREST.
1114
            If input is Tensor, only ``PIL.Image.NEAREST`` and ``PIL.Image.BILINEAR`` are supported.
1115
1116
1117
1118
        expand (bool, optional): Optional expansion flag.
            If true, expands the output to make it large enough to hold the entire rotated image.
            If false or omitted, make the output image the same size as the input image.
            Note that the expand flag assumes rotation around the center and no translation.
1119
        center (list or tuple, optional): Optional center of rotation, (x, y). Origin is the upper left corner.
1120
            Default is the center of the image.
Philip Meier's avatar
Philip Meier committed
1121
1122
        fill (n-tuple or int or float): Pixel fill value for area outside the rotated
            image. If int or float, the value is used for all bands respectively.
1123
1124
1125
            Defaults to 0 for all bands. This option is only available for Pillow>=5.2.0.
            This option is not supported for Tensor input. Fill value for the area outside the transform in the output
            image is always 0.
1126
1127
1128

    .. _filters: https://pillow.readthedocs.io/en/latest/handbook/concepts.html#filters

1129
1130
    """

Philip Meier's avatar
Philip Meier committed
1131
    def __init__(self, degrees, resample=False, expand=False, center=None, fill=None):
1132
        super().__init__()
1133
        self.degrees = _setup_angle(degrees, name="degrees", req_sizes=(2, ))
1134
1135

        if center is not None:
1136
            _check_sequence_input(center, "center", req_sizes=(2, ))
1137
1138

        self.center = center
1139
1140
1141

        self.resample = resample
        self.expand = expand
1142
        self.fill = fill
1143
1144

    @staticmethod
1145
    def get_params(degrees: List[float]) -> float:
1146
1147
1148
        """Get parameters for ``rotate`` for a random rotation.

        Returns:
1149
            float: angle parameter to be passed to ``rotate`` for random rotation.
1150
        """
1151
        angle = float(torch.empty(1).uniform_(float(degrees[0]), float(degrees[1])).item())
1152
1153
        return angle

1154
    def forward(self, img):
1155
        """
1156
        Args:
1157
            img (PIL Image or Tensor): Image to be rotated.
1158
1159

        Returns:
1160
            PIL Image or Tensor: Rotated image.
1161
1162
        """
        angle = self.get_params(self.degrees)
1163
        return F.rotate(img, angle, self.resample, self.expand, self.center, self.fill)
1164

1165
    def __repr__(self):
1166
1167
1168
1169
1170
        format_string = self.__class__.__name__ + '(degrees={0}'.format(self.degrees)
        format_string += ', resample={0}'.format(self.resample)
        format_string += ', expand={0}'.format(self.expand)
        if self.center is not None:
            format_string += ', center={0}'.format(self.center)
1171
1172
        if self.fill is not None:
            format_string += ', fill={0}'.format(self.fill)
1173
1174
        format_string += ')'
        return format_string
1175

1176

1177
1178
1179
1180
class RandomAffine(torch.nn.Module):
    """Random affine transformation of the image keeping center invariant.
    The image can be a PIL Image or a Tensor, in which case it is expected
    to have [..., H, W] shape, where ... means an arbitrary number of leading dimensions.
1181
1182
1183
1184

    Args:
        degrees (sequence or float or int): Range of degrees to select from.
            If degrees is a number instead of sequence like (min, max), the range of degrees
1185
            will be (-degrees, +degrees). Set to 0 to deactivate rotations.
1186
1187
1188
1189
1190
1191
1192
        translate (tuple, optional): tuple of maximum absolute fraction for horizontal
            and vertical translations. For example translate=(a, b), then horizontal shift
            is randomly sampled in the range -img_width * a < dx < img_width * a and vertical shift is
            randomly sampled in the range -img_height * b < dy < img_height * b. Will not translate by default.
        scale (tuple, optional): scaling factor interval, e.g (a, b), then scale is
            randomly sampled from the range a <= scale <= b. Will keep original scale by default.
        shear (sequence or float or int, optional): Range of degrees to select from.
ptrblck's avatar
ptrblck committed
1193
            If shear is a number, a shear parallel to the x axis in the range (-shear, +shear)
1194
            will be applied. Else if shear is a tuple or list of 2 values a shear parallel to the x axis in the
ptrblck's avatar
ptrblck committed
1195
1196
            range (shear[0], shear[1]) will be applied. Else if shear is a tuple or list of 4 values,
            a x-axis shear in (shear[0], shear[1]) and y-axis shear in (shear[2], shear[3]) will be applied.
1197
1198
1199
1200
1201
1202
1203
            Will not apply shear by default.
        resample (int, optional): An optional resampling filter. See `filters`_ for more information.
            If omitted, or if the image has mode "1" or "P", it is set to ``PIL.Image.NEAREST``.
            If input is Tensor, only ``PIL.Image.NEAREST`` and ``PIL.Image.BILINEAR`` are supported.
        fillcolor (tuple or int): Optional fill color (Tuple for RGB Image and int for grayscale) for the area
            outside the transform in the output image (Pillow>=5.0.0). This option is not supported for Tensor
            input. Fill value for the area outside the transform in the output image is always 0.
1204
1205
1206

    .. _filters: https://pillow.readthedocs.io/en/latest/handbook/concepts.html#filters

1207
1208
    """

1209
1210
    def __init__(self, degrees, translate=None, scale=None, shear=None, resample=0, fillcolor=0):
        super().__init__()
1211
        self.degrees = _setup_angle(degrees, name="degrees", req_sizes=(2, ))
1212
1213

        if translate is not None:
1214
            _check_sequence_input(translate, "translate", req_sizes=(2, ))
1215
1216
1217
1218
1219
1220
            for t in translate:
                if not (0.0 <= t <= 1.0):
                    raise ValueError("translation values should be between 0 and 1")
        self.translate = translate

        if scale is not None:
1221
            _check_sequence_input(scale, "scale", req_sizes=(2, ))
1222
1223
1224
1225
1226
1227
            for s in scale:
                if s <= 0:
                    raise ValueError("scale values should be positive")
        self.scale = scale

        if shear is not None:
1228
            self.shear = _setup_angle(shear, name="shear", req_sizes=(2, 4))
1229
1230
1231
1232
1233
1234
1235
        else:
            self.shear = shear

        self.resample = resample
        self.fillcolor = fillcolor

    @staticmethod
1236
1237
1238
1239
1240
1241
1242
    def get_params(
            degrees: List[float],
            translate: Optional[List[float]],
            scale_ranges: Optional[List[float]],
            shears: Optional[List[float]],
            img_size: List[int]
    ) -> Tuple[float, Tuple[int, int], float, Tuple[float, float]]:
1243
1244
1245
        """Get parameters for affine transformation

        Returns:
1246
            params to be passed to the affine transformation
1247
        """
1248
        angle = float(torch.empty(1).uniform_(float(degrees[0]), float(degrees[1])).item())
1249
        if translate is not None:
1250
1251
1252
1253
1254
            max_dx = float(translate[0] * img_size[0])
            max_dy = float(translate[1] * img_size[1])
            tx = int(round(torch.empty(1).uniform_(-max_dx, max_dx).item()))
            ty = int(round(torch.empty(1).uniform_(-max_dy, max_dy).item()))
            translations = (tx, ty)
1255
1256
1257
1258
        else:
            translations = (0, 0)

        if scale_ranges is not None:
1259
            scale = float(torch.empty(1).uniform_(scale_ranges[0], scale_ranges[1]).item())
1260
1261
1262
        else:
            scale = 1.0

1263
        shear_x = shear_y = 0.0
1264
        if shears is not None:
1265
1266
1267
1268
1269
            shear_x = float(torch.empty(1).uniform_(shears[0], shears[1]).item())
            if len(shears) == 4:
                shear_y = float(torch.empty(1).uniform_(shears[2], shears[3]).item())

        shear = (shear_x, shear_y)
1270
1271
1272

        return angle, translations, scale, shear

1273
    def forward(self, img):
1274
        """
1275
            img (PIL Image or Tensor): Image to be transformed.
1276
1277

        Returns:
1278
            PIL Image or Tensor: Affine transformed image.
1279
        """
1280
1281
1282
1283

        img_size = F._get_image_size(img)

        ret = self.get_params(self.degrees, self.translate, self.scale, self.shear, img_size)
1284
1285
1286
1287
1288
1289
1290
1291
1292
1293
1294
1295
1296
1297
1298
1299
1300
1301
1302
1303
        return F.affine(img, *ret, resample=self.resample, fillcolor=self.fillcolor)

    def __repr__(self):
        s = '{name}(degrees={degrees}'
        if self.translate is not None:
            s += ', translate={translate}'
        if self.scale is not None:
            s += ', scale={scale}'
        if self.shear is not None:
            s += ', shear={shear}'
        if self.resample > 0:
            s += ', resample={resample}'
        if self.fillcolor != 0:
            s += ', fillcolor={fillcolor}'
        s += ')'
        d = dict(self.__dict__)
        d['resample'] = _pil_interpolation_to_str[d['resample']]
        return s.format(name=self.__class__.__name__, **d)


1304
class Grayscale(torch.nn.Module):
1305
    """Convert image to grayscale.
1306
1307
1308
    The image can be a PIL Image or a Tensor, in which case it is expected
    to have [..., 3, H, W] shape, where ... means an arbitrary number of leading
    dimensions
1309

1310
1311
1312
1313
    Args:
        num_output_channels (int): (1 or 3) number of channels desired for output image

    Returns:
1314
        PIL Image: Grayscale version of the input.
1315
1316
         - If ``num_output_channels == 1`` : returned image is single channel
         - If ``num_output_channels == 3`` : returned image is 3 channel with r == g == b
1317
1318
1319
1320

    """

    def __init__(self, num_output_channels=1):
1321
        super().__init__()
1322
1323
        self.num_output_channels = num_output_channels

1324
    def forward(self, img: Tensor) -> Tensor:
1325
1326
        """
        Args:
1327
            img (PIL Image or Tensor): Image to be converted to grayscale.
1328
1329

        Returns:
1330
            PIL Image or Tensor: Grayscaled image.
1331
        """
1332
        return F.rgb_to_grayscale(img, num_output_channels=self.num_output_channels)
1333

1334
    def __repr__(self):
1335
        return self.__class__.__name__ + '(num_output_channels={0})'.format(self.num_output_channels)
1336

1337

1338
class RandomGrayscale(torch.nn.Module):
1339
    """Randomly convert image to grayscale with a probability of p (default 0.1).
1340
1341
1342
    The image can be a PIL Image or a Tensor, in which case it is expected
    to have [..., 3, H, W] shape, where ... means an arbitrary number of leading
    dimensions
1343

1344
1345
1346
1347
    Args:
        p (float): probability that image should be converted to grayscale.

    Returns:
1348
        PIL Image or Tensor: Grayscale version of the input image with probability p and unchanged
1349
1350
1351
        with probability (1-p).
        - If input image is 1 channel: grayscale version is 1 channel
        - If input image is 3 channel: grayscale version is 3 channel with r == g == b
1352
1353
1354
1355

    """

    def __init__(self, p=0.1):
1356
        super().__init__()
1357
1358
        self.p = p

1359
    def forward(self, img: Tensor) -> Tensor:
1360
1361
        """
        Args:
1362
            img (PIL Image or Tensor): Image to be converted to grayscale.
1363
1364

        Returns:
1365
            PIL Image or Tensor: Randomly grayscaled image.
1366
        """
1367
1368
1369
        num_output_channels = F._get_image_num_channels(img)
        if torch.rand(1) < self.p:
            return F.rgb_to_grayscale(img, num_output_channels=num_output_channels)
1370
        return img
1371
1372

    def __repr__(self):
1373
        return self.__class__.__name__ + '(p={0})'.format(self.p)
1374
1375


1376
class RandomErasing(torch.nn.Module):
1377
    """ Randomly selects a rectangle region in an image and erases its pixels.
vfdev's avatar
vfdev committed
1378
    'Random Erasing Data Augmentation' by Zhong et al. See https://arxiv.org/abs/1708.04896
1379

1380
1381
1382
1383
1384
1385
1386
1387
    Args:
         p: probability that the random erasing operation will be performed.
         scale: range of proportion of erased area against input image.
         ratio: range of aspect ratio of erased area.
         value: erasing value. Default is 0. If a single int, it is used to
            erase all pixels. If a tuple of length 3, it is used to erase
            R, G, B channels respectively.
            If a str of 'random', erasing each pixel with random values.
Zhun Zhong's avatar
Zhun Zhong committed
1388
         inplace: boolean to make this transform inplace. Default set to False.
1389

1390
1391
    Returns:
        Erased Image.
1392

1393
1394
    # Examples:
        >>> transform = transforms.Compose([
1395
1396
1397
1398
        >>>   transforms.RandomHorizontalFlip(),
        >>>   transforms.ToTensor(),
        >>>   transforms.Normalize((0.485, 0.456, 0.406), (0.229, 0.224, 0.225)),
        >>>   transforms.RandomErasing(),
1399
1400
1401
        >>> ])
    """

Zhun Zhong's avatar
Zhun Zhong committed
1402
    def __init__(self, p=0.5, scale=(0.02, 0.33), ratio=(0.3, 3.3), value=0, inplace=False):
1403
1404
1405
1406
1407
1408
1409
1410
1411
        super().__init__()
        if not isinstance(value, (numbers.Number, str, tuple, list)):
            raise TypeError("Argument value should be either a number or str or a sequence")
        if isinstance(value, str) and value != "random":
            raise ValueError("If value is str, it should be 'random'")
        if not isinstance(scale, (tuple, list)):
            raise TypeError("Scale should be a sequence")
        if not isinstance(ratio, (tuple, list)):
            raise TypeError("Ratio should be a sequence")
1412
        if (scale[0] > scale[1]) or (ratio[0] > ratio[1]):
1413
            warnings.warn("Scale and ratio should be of kind (min, max)")
1414
        if scale[0] < 0 or scale[1] > 1:
1415
            raise ValueError("Scale should be between 0 and 1")
1416
        if p < 0 or p > 1:
1417
            raise ValueError("Random erasing probability should be between 0 and 1")
1418
1419
1420
1421
1422

        self.p = p
        self.scale = scale
        self.ratio = ratio
        self.value = value
1423
        self.inplace = inplace
1424
1425

    @staticmethod
1426
1427
1428
    def get_params(
            img: Tensor, scale: Tuple[float, float], ratio: Tuple[float, float], value: Optional[List[float]] = None
    ) -> Tuple[int, int, int, int, Tensor]:
1429
1430
1431
1432
        """Get parameters for ``erase`` for a random erasing.

        Args:
            img (Tensor): Tensor image of size (C, H, W) to be erased.
1433
1434
1435
1436
1437
            scale (tuple or list): range of proportion of erased area against input image.
            ratio (tuple or list): range of aspect ratio of erased area.
            value (list, optional): erasing value. If None, it is interpreted as "random"
                (erasing each pixel with random values). If ``len(value)`` is 1, it is interpreted as a number,
                i.e. ``value[0]``.
1438
1439
1440
1441

        Returns:
            tuple: params (i, j, h, w, v) to be passed to ``erase`` for random erasing.
        """
vfdev's avatar
vfdev committed
1442
        img_c, img_h, img_w = img.shape[-3], img.shape[-2], img.shape[-1]
1443
        area = img_h * img_w
1444

1445
        for _ in range(10):
1446
1447
            erase_area = area * torch.empty(1).uniform_(scale[0], scale[1]).item()
            aspect_ratio = torch.empty(1).uniform_(ratio[0], ratio[1]).item()
1448
1449
1450

            h = int(round(math.sqrt(erase_area * aspect_ratio)))
            w = int(round(math.sqrt(erase_area / aspect_ratio)))
1451
1452
1453
1454
1455
1456
1457
            if not (h < img_h and w < img_w):
                continue

            if value is None:
                v = torch.empty([img_c, h, w], dtype=torch.float32).normal_()
            else:
                v = torch.tensor(value)[:, None, None]
1458

1459
1460
            i = torch.randint(0, img_h - h + 1, size=(1, )).item()
            j = torch.randint(0, img_w - w + 1, size=(1, )).item()
1461
            return i, j, h, w, v
1462

Zhun Zhong's avatar
Zhun Zhong committed
1463
1464
1465
        # Return original image
        return 0, 0, img_h, img_w, img

1466
    def forward(self, img):
1467
1468
1469
1470
1471
1472
1473
        """
        Args:
            img (Tensor): Tensor image of size (C, H, W) to be erased.

        Returns:
            img (Tensor): Erased Tensor image.
        """
1474
1475
1476
1477
1478
1479
1480
1481
1482
1483
1484
1485
1486
1487
1488
1489
1490
1491
1492
        if torch.rand(1) < self.p:

            # cast self.value to script acceptable type
            if isinstance(self.value, (int, float)):
                value = [self.value, ]
            elif isinstance(self.value, str):
                value = None
            elif isinstance(self.value, tuple):
                value = list(self.value)
            else:
                value = self.value

            if value is not None and not (len(value) in (1, img.shape[-3])):
                raise ValueError(
                    "If value is a sequence, it should have either a single value or "
                    "{} (number of input channels)".format(img.shape[-3])
                )

            x, y, h, w, v = self.get_params(img, scale=self.scale, ratio=self.ratio, value=value)
1493
            return F.erase(img, x, y, h, w, v, self.inplace)
1494
        return img
1495
1496
1497
1498
1499
1500
1501
1502
1503
1504
1505
1506
1507
1508
1509
1510
1511
1512
1513
1514
1515
1516
1517
1518
1519
1520
1521
1522
1523
1524
1525
1526


def _setup_size(size, error_msg):
    if isinstance(size, numbers.Number):
        return int(size), int(size)

    if isinstance(size, Sequence) and len(size) == 1:
        return size[0], size[0]

    if len(size) != 2:
        raise ValueError(error_msg)

    return size


def _check_sequence_input(x, name, req_sizes):
    msg = req_sizes[0] if len(req_sizes) < 2 else " or ".join([str(s) for s in req_sizes])
    if not isinstance(x, Sequence):
        raise TypeError("{} should be a sequence of length {}.".format(name, msg))
    if len(x) not in req_sizes:
        raise ValueError("{} should be sequence of length {}.".format(name, msg))


def _setup_angle(x, name, req_sizes=(2, )):
    if isinstance(x, numbers.Number):
        if x < 0:
            raise ValueError("If {} is a single number, it must be positive.".format(name))
        x = [-x, x]
    else:
        _check_sequence_input(x, name, req_sizes)

    return [float(d) for d in x]