transforms.py 63.1 KB
Newer Older
1
import math
vfdev's avatar
vfdev committed
2
import numbers
3
import random
vfdev's avatar
vfdev committed
4
import warnings
vfdev's avatar
vfdev committed
5
from collections.abc import Sequence
6
from typing import Tuple, List, Optional
vfdev's avatar
vfdev committed
7
8

import torch
9
from PIL import Image
vfdev's avatar
vfdev committed
10
11
from torch import Tensor

12
13
14
15
16
17
18
try:
    import accimage
except ImportError:
    accimage = None

from . import functional as F

19
20
21
22
__all__ = ["Compose", "ToTensor", "PILToTensor", "ConvertImageDtype", "ToPILImage", "Normalize", "Resize", "Scale",
           "CenterCrop", "Pad", "Lambda", "RandomApply", "RandomChoice", "RandomOrder", "RandomCrop",
           "RandomHorizontalFlip", "RandomVerticalFlip", "RandomResizedCrop", "RandomSizedCrop", "FiveCrop", "TenCrop",
           "LinearTransformation", "ColorJitter", "RandomRotation", "RandomAffine", "Grayscale", "RandomGrayscale",
23
           "RandomPerspective", "RandomErasing", "GaussianBlur"]
24

25
26
27
28
29
_pil_interpolation_to_str = {
    Image.NEAREST: 'PIL.Image.NEAREST',
    Image.BILINEAR: 'PIL.Image.BILINEAR',
    Image.BICUBIC: 'PIL.Image.BICUBIC',
    Image.LANCZOS: 'PIL.Image.LANCZOS',
surgan12's avatar
surgan12 committed
30
31
    Image.HAMMING: 'PIL.Image.HAMMING',
    Image.BOX: 'PIL.Image.BOX',
32
33
}

34

35
class Compose:
36
37
    """Composes several transforms together. This transform does not support torchscript.
    Please, see the note below.
38
39
40
41
42
43
44
45
46

    Args:
        transforms (list of ``Transform`` objects): list of transforms to compose.

    Example:
        >>> transforms.Compose([
        >>>     transforms.CenterCrop(10),
        >>>     transforms.ToTensor(),
        >>> ])
47
48
49
50
51
52
53
54
55
56
57
58
59

    .. note::
        In order to script the transformations, please use ``torch.nn.Sequential`` as below.

        >>> transforms = torch.nn.Sequential(
        >>>     transforms.CenterCrop(10),
        >>>     transforms.Normalize((0.485, 0.456, 0.406), (0.229, 0.224, 0.225)),
        >>> )
        >>> scripted_transforms = torch.jit.script(transforms)

        Make sure to use only scriptable transformations, i.e. that work with ``torch.Tensor``, does not require
        `lambda` functions or ``PIL.Image``.

60
61
62
63
64
65
66
67
68
69
    """

    def __init__(self, transforms):
        self.transforms = transforms

    def __call__(self, img):
        for t in self.transforms:
            img = t(img)
        return img

70
71
72
73
74
75
76
77
    def __repr__(self):
        format_string = self.__class__.__name__ + '('
        for t in self.transforms:
            format_string += '\n'
            format_string += '    {0}'.format(t)
        format_string += '\n)'
        return format_string

78

79
class ToTensor:
80
    """Convert a ``PIL Image`` or ``numpy.ndarray`` to tensor. This transform does not support torchscript.
81
82

    Converts a PIL Image or numpy.ndarray (H x W x C) in the range
surgan12's avatar
surgan12 committed
83
84
85
86
87
    [0, 255] to a torch.FloatTensor of shape (C x H x W) in the range [0.0, 1.0]
    if the PIL Image belongs to one of the modes (L, LA, P, I, F, RGB, YCbCr, RGBA, CMYK, 1)
    or if the numpy.ndarray has dtype = np.uint8

    In the other cases, tensors are returned without scaling.
88
89
90
91
92
93

    .. note::
        Because the input image is scaled to [0.0, 1.0], this transformation should not be used when
        transforming target image masks. See the `references`_ for implementing the transforms for image masks.

    .. _references: https://github.com/pytorch/vision/tree/master/references/segmentation
94
95
96
97
98
99
100
101
102
103
104
105
    """

    def __call__(self, pic):
        """
        Args:
            pic (PIL Image or numpy.ndarray): Image to be converted to tensor.

        Returns:
            Tensor: Converted image.
        """
        return F.to_tensor(pic)

106
107
108
    def __repr__(self):
        return self.__class__.__name__ + '()'

109

110
class PILToTensor:
111
    """Convert a ``PIL Image`` to a tensor of the same type. This transform does not support torchscript.
112

vfdev's avatar
vfdev committed
113
    Converts a PIL Image (H x W x C) to a Tensor of shape (C x H x W).
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
    """

    def __call__(self, pic):
        """
        Args:
            pic (PIL Image): Image to be converted to tensor.

        Returns:
            Tensor: Converted image.
        """
        return F.pil_to_tensor(pic)

    def __repr__(self):
        return self.__class__.__name__ + '()'


130
class ConvertImageDtype(torch.nn.Module):
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
    """Convert a tensor image to the given ``dtype`` and scale the values accordingly

    Args:
        dtype (torch.dtype): Desired data type of the output

    .. note::

        When converting from a smaller to a larger integer ``dtype`` the maximum values are **not** mapped exactly.
        If converted back and forth, this mismatch has no effect.

    Raises:
        RuntimeError: When trying to cast :class:`torch.float32` to :class:`torch.int32` or :class:`torch.int64` as
            well as for trying to cast :class:`torch.float64` to :class:`torch.int64`. These conversions might lead to
            overflow errors since the floating point ``dtype`` cannot store consecutive integers over the whole range
            of the integer ``dtype``.
    """

    def __init__(self, dtype: torch.dtype) -> None:
149
        super().__init__()
150
151
        self.dtype = dtype

152
    def forward(self, image: torch.Tensor) -> torch.Tensor:
153
154
155
        return F.convert_image_dtype(image, self.dtype)


156
class ToPILImage:
157
    """Convert a tensor or an ndarray to PIL Image. This transform does not support torchscript.
158
159
160
161
162
163
164

    Converts a torch.*Tensor of shape C x H x W or a numpy ndarray of shape
    H x W x C to a PIL Image while preserving the value range.

    Args:
        mode (`PIL.Image mode`_): color space and pixel depth of input data (optional).
            If ``mode`` is ``None`` (default) there are some assumptions made about the input data:
vfdev's avatar
vfdev committed
165
166
167
168
169
            - If the input has 4 channels, the ``mode`` is assumed to be ``RGBA``.
            - If the input has 3 channels, the ``mode`` is assumed to be ``RGB``.
            - If the input has 2 channels, the ``mode`` is assumed to be ``LA``.
            - If the input has 1 channel, the ``mode`` is determined by the data type (i.e ``int``, ``float``,
            ``short``).
170

csukuangfj's avatar
csukuangfj committed
171
    .. _PIL.Image mode: https://pillow.readthedocs.io/en/latest/handbook/concepts.html#concept-modes
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
    """
    def __init__(self, mode=None):
        self.mode = mode

    def __call__(self, pic):
        """
        Args:
            pic (Tensor or numpy.ndarray): Image to be converted to PIL Image.

        Returns:
            PIL Image: Image converted to PIL Image.

        """
        return F.to_pil_image(pic, self.mode)

187
    def __repr__(self):
188
189
190
191
192
        format_string = self.__class__.__name__ + '('
        if self.mode is not None:
            format_string += 'mode={0}'.format(self.mode)
        format_string += ')'
        return format_string
193

194

195
class Normalize(torch.nn.Module):
Fang Gao's avatar
Fang Gao committed
196
    """Normalize a tensor image with mean and standard deviation.
197
198
199
    Given mean: ``(mean[1],...,mean[n])`` and std: ``(std[1],..,std[n])`` for ``n``
    channels, this transform will normalize each channel of the input
    ``torch.*Tensor`` i.e.,
abdjava's avatar
abdjava committed
200
    ``output[channel] = (input[channel] - mean[channel]) / std[channel]``
201

202
    .. note::
203
        This transform acts out of place, i.e., it does not mutate the input tensor.
204

205
206
207
    Args:
        mean (sequence): Sequence of means for each channel.
        std (sequence): Sequence of standard deviations for each channel.
208
209
        inplace(bool,optional): Bool to make this operation in-place.

210
211
    """

surgan12's avatar
surgan12 committed
212
    def __init__(self, mean, std, inplace=False):
213
        super().__init__()
214
215
        self.mean = mean
        self.std = std
surgan12's avatar
surgan12 committed
216
        self.inplace = inplace
217

218
    def forward(self, tensor: Tensor) -> Tensor:
219
220
221
222
223
224
225
        """
        Args:
            tensor (Tensor): Tensor image of size (C, H, W) to be normalized.

        Returns:
            Tensor: Normalized Tensor image.
        """
surgan12's avatar
surgan12 committed
226
        return F.normalize(tensor, self.mean, self.std, self.inplace)
227

228
229
230
    def __repr__(self):
        return self.__class__.__name__ + '(mean={0}, std={1})'.format(self.mean, self.std)

231

vfdev's avatar
vfdev committed
232
233
234
235
class Resize(torch.nn.Module):
    """Resize the input image to the given size.
    The image can be a PIL Image or a torch Tensor, in which case it is expected
    to have [..., H, W] shape, where ... means an arbitrary number of leading dimensions
236
237
238
239
240
241

    Args:
        size (sequence or int): Desired output size. If size is a sequence like
            (h, w), output size will be matched to this. If size is an int,
            smaller edge of the image will be matched to this number.
            i.e, if height > width, then image will be rescaled to
vfdev's avatar
vfdev committed
242
243
244
            (size * height / width, size).
            In torchscript mode padding as single int is not supported, use a tuple or
            list of length 1: ``[size, ]``.
vfdev's avatar
vfdev committed
245
246
247
        interpolation (int, optional): Desired interpolation enum defined by `filters`_.
            Default is ``PIL.Image.BILINEAR``. If input is Tensor, only ``PIL.Image.NEAREST``, ``PIL.Image.BILINEAR``
            and ``PIL.Image.BICUBIC`` are supported.
248
249
250
    """

    def __init__(self, size, interpolation=Image.BILINEAR):
vfdev's avatar
vfdev committed
251
        super().__init__()
252
        self.size = _setup_size(size, error_msg="If size is a sequence, it should have 2 values")
253
254
        self.interpolation = interpolation

vfdev's avatar
vfdev committed
255
    def forward(self, img):
256
257
        """
        Args:
vfdev's avatar
vfdev committed
258
            img (PIL Image or Tensor): Image to be scaled.
259
260

        Returns:
vfdev's avatar
vfdev committed
261
            PIL Image or Tensor: Rescaled image.
262
263
264
        """
        return F.resize(img, self.size, self.interpolation)

265
    def __repr__(self):
266
267
        interpolate_str = _pil_interpolation_to_str[self.interpolation]
        return self.__class__.__name__ + '(size={0}, interpolation={1})'.format(self.size, interpolate_str)
268

269
270
271
272
273
274
275
276
277
278
279

class Scale(Resize):
    """
    Note: This transform is deprecated in favor of Resize.
    """
    def __init__(self, *args, **kwargs):
        warnings.warn("The use of the transforms.Scale transform is deprecated, " +
                      "please use transforms.Resize instead.")
        super(Scale, self).__init__(*args, **kwargs)


vfdev's avatar
vfdev committed
280
281
282
283
class CenterCrop(torch.nn.Module):
    """Crops the given image at the center.
    The image can be a PIL Image or a torch Tensor, in which case it is expected
    to have [..., H, W] shape, where ... means an arbitrary number of leading dimensions
284
285
286
287

    Args:
        size (sequence or int): Desired output size of the crop. If size is an
            int instead of sequence like (h, w), a square crop (size, size) is
vfdev's avatar
vfdev committed
288
            made. If provided a tuple or list of length 1, it will be interpreted as (size[0], size[0]).
289
290
291
    """

    def __init__(self, size):
vfdev's avatar
vfdev committed
292
        super().__init__()
293
        self.size = _setup_size(size, error_msg="Please provide only two dimensions (h, w) for size.")
294

vfdev's avatar
vfdev committed
295
    def forward(self, img):
296
297
        """
        Args:
vfdev's avatar
vfdev committed
298
            img (PIL Image or Tensor): Image to be cropped.
299
300

        Returns:
vfdev's avatar
vfdev committed
301
            PIL Image or Tensor: Cropped image.
302
303
304
        """
        return F.center_crop(img, self.size)

305
306
307
    def __repr__(self):
        return self.__class__.__name__ + '(size={0})'.format(self.size)

308

309
310
311
312
class Pad(torch.nn.Module):
    """Pad the given image on all sides with the given "pad" value.
    The image can be a PIL Image or a torch Tensor, in which case it is expected
    to have [..., H, W] shape, where ... means an arbitrary number of leading dimensions
313
314

    Args:
315
        padding (int or tuple or list): Padding on each border. If a single int is provided this
316
317
            is used to pad all borders. If tuple of length 2 is provided this is the padding
            on left/right and top/bottom respectively. If a tuple of length 4 is provided
318
319
320
            this is the padding for the left, top, right and bottom borders respectively.
            In torchscript mode padding as single int is not supported, use a tuple or
            list of length 1: ``[padding, ]``.
321
        fill (int or tuple): Pixel fill value for constant fill. Default is 0. If a tuple of
322
            length 3, it is used to fill R, G, B channels respectively.
323
            This value is only used when the padding_mode is constant
324
        padding_mode (str): Type of padding. Should be: constant, edge, reflect or symmetric.
vfdev's avatar
vfdev committed
325
            Default is constant. Mode symmetric is not yet supported for Tensor inputs.
326
327
328
329
330
331
332
333

            - constant: pads with a constant value, this value is specified with fill

            - edge: pads with the last value at the edge of the image

            - reflect: pads with reflection of image without repeating the last value on the edge

                For example, padding [1, 2, 3, 4] with 2 elements on both sides in reflect mode
334
                will result in [3, 2, 1, 2, 3, 4, 3, 2]
335
336
337
338

            - symmetric: pads with reflection of image repeating the last value on the edge

                For example, padding [1, 2, 3, 4] with 2 elements on both sides in symmetric mode
339
                will result in [2, 1, 1, 2, 3, 4, 4, 3]
340
341
    """

342
343
344
345
346
347
348
349
350
351
352
353
354
    def __init__(self, padding, fill=0, padding_mode="constant"):
        super().__init__()
        if not isinstance(padding, (numbers.Number, tuple, list)):
            raise TypeError("Got inappropriate padding arg")

        if not isinstance(fill, (numbers.Number, str, tuple)):
            raise TypeError("Got inappropriate fill arg")

        if padding_mode not in ["constant", "edge", "reflect", "symmetric"]:
            raise ValueError("Padding mode should be either constant, edge, reflect or symmetric")

        if isinstance(padding, Sequence) and len(padding) not in [1, 2, 4]:
            raise ValueError("Padding must be an int or a 1, 2, or 4 element tuple, not a " +
355
356
357
358
                             "{} element tuple".format(len(padding)))

        self.padding = padding
        self.fill = fill
359
        self.padding_mode = padding_mode
360

361
    def forward(self, img):
362
363
        """
        Args:
364
            img (PIL Image or Tensor): Image to be padded.
365
366

        Returns:
367
            PIL Image or Tensor: Padded image.
368
        """
369
        return F.pad(img, self.padding, self.fill, self.padding_mode)
370

371
    def __repr__(self):
372
373
        return self.__class__.__name__ + '(padding={0}, fill={1}, padding_mode={2})'.\
            format(self.padding, self.fill, self.padding_mode)
374

375

376
class Lambda:
377
    """Apply a user-defined lambda as a transform. This transform does not support torchscript.
378
379
380
381
382
383

    Args:
        lambd (function): Lambda/function to be used for transform.
    """

    def __init__(self, lambd):
384
385
        if not callable(lambd):
            raise TypeError("Argument lambd should be callable, got {}".format(repr(type(lambd).__name__)))
386
387
388
389
390
        self.lambd = lambd

    def __call__(self, img):
        return self.lambd(img)

391
392
393
    def __repr__(self):
        return self.__class__.__name__ + '()'

394

395
class RandomTransforms:
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
    """Base class for a list of transformations with randomness

    Args:
        transforms (list or tuple): list of transformations
    """

    def __init__(self, transforms):
        assert isinstance(transforms, (list, tuple))
        self.transforms = transforms

    def __call__(self, *args, **kwargs):
        raise NotImplementedError()

    def __repr__(self):
        format_string = self.__class__.__name__ + '('
        for t in self.transforms:
            format_string += '\n'
            format_string += '    {0}'.format(t)
        format_string += '\n)'
        return format_string


class RandomApply(RandomTransforms):
419
420
    """Apply randomly a list of transformations with a given probability.
    This transform does not support torchscript.
421
422
423
424
425
426
427

    Args:
        transforms (list or tuple): list of transformations
        p (float): probability
    """

    def __init__(self, transforms, p=0.5):
428
        super().__init__(transforms)
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
        self.p = p

    def __call__(self, img):
        if self.p < random.random():
            return img
        for t in self.transforms:
            img = t(img)
        return img

    def __repr__(self):
        format_string = self.__class__.__name__ + '('
        format_string += '\n    p={}'.format(self.p)
        for t in self.transforms:
            format_string += '\n'
            format_string += '    {0}'.format(t)
        format_string += '\n)'
        return format_string


class RandomOrder(RandomTransforms):
449
    """Apply a list of transformations in a random order. This transform does not support torchscript.
450
451
452
453
454
455
456
457
458
459
    """
    def __call__(self, img):
        order = list(range(len(self.transforms)))
        random.shuffle(order)
        for i in order:
            img = self.transforms[i](img)
        return img


class RandomChoice(RandomTransforms):
460
    """Apply single transformation randomly picked from a list. This transform does not support torchscript.
461
462
463
464
465
466
    """
    def __call__(self, img):
        t = random.choice(self.transforms)
        return t(img)


vfdev's avatar
vfdev committed
467
468
469
470
471
class RandomCrop(torch.nn.Module):
    """Crop the given image at a random location.
    The image can be a PIL Image or a Tensor, in which case it is expected
    to have [..., H, W] shape, where ... means an arbitrary number of leading
    dimensions
472
473
474
475

    Args:
        size (sequence or int): Desired output size of the crop. If size is an
            int instead of sequence like (h, w), a square crop (size, size) is
vfdev's avatar
vfdev committed
476
            made. If provided a tuple or list of length 1, it will be interpreted as (size[0], size[0]).
477
        padding (int or sequence, optional): Optional padding on each border
vfdev's avatar
vfdev committed
478
479
480
481
482
483
            of the image. Default is None. If a single int is provided this
            is used to pad all borders. If tuple of length 2 is provided this is the padding
            on left/right and top/bottom respectively. If a tuple of length 4 is provided
            this is the padding for the left, top, right and bottom borders respectively.
            In torchscript mode padding as single int is not supported, use a tuple or
            list of length 1: ``[padding, ]``.
484
        pad_if_needed (boolean): It will pad the image if smaller than the
ekka's avatar
ekka committed
485
            desired size to avoid raising an exception. Since cropping is done
486
            after padding, the padding seems to be done at a random offset.
vfdev's avatar
vfdev committed
487
        fill (int or tuple): Pixel fill value for constant fill. Default is 0. If a tuple of
488
489
            length 3, it is used to fill R, G, B channels respectively.
            This value is only used when the padding_mode is constant
vfdev's avatar
vfdev committed
490
        padding_mode (str): Type of padding. Should be: constant, edge, reflect or symmetric. Default is constant.
vfdev's avatar
vfdev committed
491
            Mode symmetric is not yet supported for Tensor inputs.
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506

             - constant: pads with a constant value, this value is specified with fill

             - edge: pads with the last value on the edge of the image

             - reflect: pads with reflection of image (without repeating the last value on the edge)

                padding [1, 2, 3, 4] with 2 elements on both sides in reflect mode
                will result in [3, 2, 1, 2, 3, 4, 3, 2]

             - symmetric: pads with reflection of image (repeating the last value on the edge)

                padding [1, 2, 3, 4] with 2 elements on both sides in symmetric mode
                will result in [2, 1, 1, 2, 3, 4, 4, 3]

507
508
509
    """

    @staticmethod
vfdev's avatar
vfdev committed
510
    def get_params(img: Tensor, output_size: Tuple[int, int]) -> Tuple[int, int, int, int]:
511
512
513
        """Get parameters for ``crop`` for a random crop.

        Args:
vfdev's avatar
vfdev committed
514
            img (PIL Image or Tensor): Image to be cropped.
515
516
517
518
519
            output_size (tuple): Expected output size of the crop.

        Returns:
            tuple: params (i, j, h, w) to be passed to ``crop`` for random crop.
        """
vfdev's avatar
vfdev committed
520
        w, h = F._get_image_size(img)
521
522
523
524
        th, tw = output_size
        if w == tw and h == th:
            return 0, 0, h, w

525
526
        i = torch.randint(0, h - th + 1, size=(1, )).item()
        j = torch.randint(0, w - tw + 1, size=(1, )).item()
527
528
        return i, j, th, tw

vfdev's avatar
vfdev committed
529
530
531
    def __init__(self, size, padding=None, pad_if_needed=False, fill=0, padding_mode="constant"):
        super().__init__()

532
533
534
535
        self.size = tuple(_setup_size(
            size, error_msg="Please provide only two dimensions (h, w) for size."
        ))

vfdev's avatar
vfdev committed
536
537
538
539
540
541
        self.padding = padding
        self.pad_if_needed = pad_if_needed
        self.fill = fill
        self.padding_mode = padding_mode

    def forward(self, img):
542
543
        """
        Args:
vfdev's avatar
vfdev committed
544
            img (PIL Image or Tensor): Image to be cropped.
545
546

        Returns:
vfdev's avatar
vfdev committed
547
            PIL Image or Tensor: Cropped image.
548
        """
549
550
        if self.padding is not None:
            img = F.pad(img, self.padding, self.fill, self.padding_mode)
551

vfdev's avatar
vfdev committed
552
        width, height = F._get_image_size(img)
553
        # pad the width if needed
vfdev's avatar
vfdev committed
554
555
556
        if self.pad_if_needed and width < self.size[1]:
            padding = [self.size[1] - width, 0]
            img = F.pad(img, padding, self.fill, self.padding_mode)
557
        # pad the height if needed
vfdev's avatar
vfdev committed
558
559
560
        if self.pad_if_needed and height < self.size[0]:
            padding = [0, self.size[0] - height]
            img = F.pad(img, padding, self.fill, self.padding_mode)
561

562
563
564
565
        i, j, h, w = self.get_params(img, self.size)

        return F.crop(img, i, j, h, w)

566
    def __repr__(self):
vfdev's avatar
vfdev committed
567
        return self.__class__.__name__ + "(size={0}, padding={1})".format(self.size, self.padding)
568

569

570
571
572
573
574
class RandomHorizontalFlip(torch.nn.Module):
    """Horizontally flip the given image randomly with a given probability.
    The image can be a PIL Image or a torch Tensor, in which case it is expected
    to have [..., H, W] shape, where ... means an arbitrary number of leading
    dimensions
575
576
577
578
579
580

    Args:
        p (float): probability of the image being flipped. Default value is 0.5
    """

    def __init__(self, p=0.5):
581
        super().__init__()
582
        self.p = p
583

584
    def forward(self, img):
585
586
        """
        Args:
587
            img (PIL Image or Tensor): Image to be flipped.
588
589

        Returns:
590
            PIL Image or Tensor: Randomly flipped image.
591
        """
592
        if torch.rand(1) < self.p:
593
594
595
            return F.hflip(img)
        return img

596
    def __repr__(self):
597
        return self.__class__.__name__ + '(p={})'.format(self.p)
598

599

600
class RandomVerticalFlip(torch.nn.Module):
vfdev's avatar
vfdev committed
601
    """Vertically flip the given image randomly with a given probability.
602
603
604
    The image can be a PIL Image or a torch Tensor, in which case it is expected
    to have [..., H, W] shape, where ... means an arbitrary number of leading
    dimensions
605
606
607
608
609
610

    Args:
        p (float): probability of the image being flipped. Default value is 0.5
    """

    def __init__(self, p=0.5):
611
        super().__init__()
612
        self.p = p
613

614
    def forward(self, img):
615
616
        """
        Args:
617
            img (PIL Image or Tensor): Image to be flipped.
618
619

        Returns:
620
            PIL Image or Tensor: Randomly flipped image.
621
        """
622
        if torch.rand(1) < self.p:
623
624
625
            return F.vflip(img)
        return img

626
    def __repr__(self):
627
        return self.__class__.__name__ + '(p={})'.format(self.p)
628

629

630
631
632
633
class RandomPerspective(torch.nn.Module):
    """Performs a random perspective transformation of the given image with a given probability.
    The image can be a PIL Image or a Tensor, in which case it is expected
    to have [..., H, W] shape, where ... means an arbitrary number of leading dimensions.
634
635

    Args:
636
637
638
639
640
641
642
643
644
        distortion_scale (float): argument to control the degree of distortion and ranges from 0 to 1.
            Default is 0.5.
        p (float): probability of the image being transformed. Default is 0.5.
        interpolation (int): Interpolation type. If input is Tensor, only ``PIL.Image.NEAREST`` and
            ``PIL.Image.BILINEAR`` are supported. Default, ``PIL.Image.BILINEAR`` for PIL images and Tensors.
        fill (n-tuple or int or float): Pixel fill value for area outside the rotated
            image. If int or float, the value is used for all bands respectively. Default is 0.
            This option is only available for ``pillow>=5.0.0``. This option is not supported for Tensor
            input. Fill value for the area outside the transform in the output image is always 0.
645
646
647

    """

648
649
    def __init__(self, distortion_scale=0.5, p=0.5, interpolation=Image.BILINEAR, fill=0):
        super().__init__()
650
651
652
        self.p = p
        self.interpolation = interpolation
        self.distortion_scale = distortion_scale
653
        self.fill = fill
654

655
    def forward(self, img):
656
657
        """
        Args:
658
            img (PIL Image or Tensor): Image to be Perspectively transformed.
659
660

        Returns:
661
            PIL Image or Tensor: Randomly transformed image.
662
        """
663
664
        if torch.rand(1) < self.p:
            width, height = F._get_image_size(img)
665
            startpoints, endpoints = self.get_params(width, height, self.distortion_scale)
666
            return F.perspective(img, startpoints, endpoints, self.interpolation, self.fill)
667
668
669
        return img

    @staticmethod
670
    def get_params(width: int, height: int, distortion_scale: float) -> Tuple[List[List[int]], List[List[int]]]:
671
672
673
        """Get parameters for ``perspective`` for a random perspective transform.

        Args:
674
675
676
            width (int): width of the image.
            height (int): height of the image.
            distortion_scale (float): argument to control the degree of distortion and ranges from 0 to 1.
677
678

        Returns:
679
            List containing [top-left, top-right, bottom-right, bottom-left] of the original image,
680
681
            List containing [top-left, top-right, bottom-right, bottom-left] of the transformed image.
        """
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
        half_height = height // 2
        half_width = width // 2
        topleft = [
            int(torch.randint(0, int(distortion_scale * half_width) + 1, size=(1, )).item()),
            int(torch.randint(0, int(distortion_scale * half_height) + 1, size=(1, )).item())
        ]
        topright = [
            int(torch.randint(width - int(distortion_scale * half_width) - 1, width, size=(1, )).item()),
            int(torch.randint(0, int(distortion_scale * half_height) + 1, size=(1, )).item())
        ]
        botright = [
            int(torch.randint(width - int(distortion_scale * half_width) - 1, width, size=(1, )).item()),
            int(torch.randint(height - int(distortion_scale * half_height) - 1, height, size=(1, )).item())
        ]
        botleft = [
            int(torch.randint(0, int(distortion_scale * half_width) + 1, size=(1, )).item()),
            int(torch.randint(height - int(distortion_scale * half_height) - 1, height, size=(1, )).item())
        ]
        startpoints = [[0, 0], [width - 1, 0], [width - 1, height - 1], [0, height - 1]]
701
702
703
704
705
706
707
        endpoints = [topleft, topright, botright, botleft]
        return startpoints, endpoints

    def __repr__(self):
        return self.__class__.__name__ + '(p={})'.format(self.p)


708
709
710
711
class RandomResizedCrop(torch.nn.Module):
    """Crop the given image to random size and aspect ratio.
    The image can be a PIL Image or a Tensor, in which case it is expected
    to have [..., H, W] shape, where ... means an arbitrary number of leading dimensions
712

713
714
    A crop of random size (default: of 0.08 to 1.0) of the original size and a random
    aspect ratio (default: of 3/4 to 4/3) of the original aspect ratio is made. This crop
715
716
717
718
    is finally resized to given size.
    This is popularly used to train the Inception networks.

    Args:
719
720
721
722
723
        size (int or sequence): expected output size of each edge. If size is an
            int instead of sequence like (h, w), a square output size ``(size, size)`` is
            made. If provided a tuple or list of length 1, it will be interpreted as (size[0], size[0]).
        scale (tuple of float): range of size of the origin size cropped
        ratio (tuple of float): range of aspect ratio of the origin aspect ratio cropped.
vfdev's avatar
vfdev committed
724
725
726
        interpolation (int): Desired interpolation enum defined by `filters`_.
            Default is ``PIL.Image.BILINEAR``. If input is Tensor, only ``PIL.Image.NEAREST``, ``PIL.Image.BILINEAR``
            and ``PIL.Image.BICUBIC`` are supported.
727
728
    """

729
    def __init__(self, size, scale=(0.08, 1.0), ratio=(3. / 4., 4. / 3.), interpolation=Image.BILINEAR):
730
        super().__init__()
731
        self.size = _setup_size(size, error_msg="Please provide only two dimensions (h, w) for size.")
732

733
        if not isinstance(scale, Sequence):
734
            raise TypeError("Scale should be a sequence")
735
        if not isinstance(ratio, Sequence):
736
            raise TypeError("Ratio should be a sequence")
737
        if (scale[0] > scale[1]) or (ratio[0] > ratio[1]):
738
            warnings.warn("Scale and ratio should be of kind (min, max)")
739

740
        self.interpolation = interpolation
741
742
        self.scale = scale
        self.ratio = ratio
743
744

    @staticmethod
745
    def get_params(
746
            img: Tensor, scale: List[float], ratio: List[float]
747
    ) -> Tuple[int, int, int, int]:
748
749
750
        """Get parameters for ``crop`` for a random sized crop.

        Args:
751
            img (PIL Image or Tensor): Input image.
752
753
            scale (list): range of scale of the origin size cropped
            ratio (list): range of aspect ratio of the origin aspect ratio cropped
754
755
756
757
758

        Returns:
            tuple: params (i, j, h, w) to be passed to ``crop`` for a random
                sized crop.
        """
vfdev's avatar
vfdev committed
759
        width, height = F._get_image_size(img)
Zhicheng Yan's avatar
Zhicheng Yan committed
760
        area = height * width
761

762
        for _ in range(10):
763
            target_area = area * torch.empty(1).uniform_(scale[0], scale[1]).item()
764
765
766
767
            log_ratio = torch.log(torch.tensor(ratio))
            aspect_ratio = torch.exp(
                torch.empty(1).uniform_(log_ratio[0], log_ratio[1])
            ).item()
768
769
770
771

            w = int(round(math.sqrt(target_area * aspect_ratio)))
            h = int(round(math.sqrt(target_area / aspect_ratio)))

Zhicheng Yan's avatar
Zhicheng Yan committed
772
            if 0 < w <= width and 0 < h <= height:
773
774
                i = torch.randint(0, height - h + 1, size=(1,)).item()
                j = torch.randint(0, width - w + 1, size=(1,)).item()
775
776
                return i, j, h, w

777
        # Fallback to central crop
Zhicheng Yan's avatar
Zhicheng Yan committed
778
        in_ratio = float(width) / float(height)
779
        if in_ratio < min(ratio):
Zhicheng Yan's avatar
Zhicheng Yan committed
780
            w = width
781
            h = int(round(w / min(ratio)))
782
        elif in_ratio > max(ratio):
Zhicheng Yan's avatar
Zhicheng Yan committed
783
            h = height
784
            w = int(round(h * max(ratio)))
785
        else:  # whole image
Zhicheng Yan's avatar
Zhicheng Yan committed
786
787
788
789
            w = width
            h = height
        i = (height - h) // 2
        j = (width - w) // 2
790
        return i, j, h, w
791

792
    def forward(self, img):
793
794
        """
        Args:
795
            img (PIL Image or Tensor): Image to be cropped and resized.
796
797

        Returns:
798
            PIL Image or Tensor: Randomly cropped and resized image.
799
        """
800
        i, j, h, w = self.get_params(img, self.scale, self.ratio)
801
802
        return F.resized_crop(img, i, j, h, w, self.size, self.interpolation)

803
    def __repr__(self):
804
805
        interpolate_str = _pil_interpolation_to_str[self.interpolation]
        format_string = self.__class__.__name__ + '(size={0}'.format(self.size)
806
807
        format_string += ', scale={0}'.format(tuple(round(s, 4) for s in self.scale))
        format_string += ', ratio={0}'.format(tuple(round(r, 4) for r in self.ratio))
808
809
        format_string += ', interpolation={0})'.format(interpolate_str)
        return format_string
810

811
812
813
814
815
816
817
818
819
820
821

class RandomSizedCrop(RandomResizedCrop):
    """
    Note: This transform is deprecated in favor of RandomResizedCrop.
    """
    def __init__(self, *args, **kwargs):
        warnings.warn("The use of the transforms.RandomSizedCrop transform is deprecated, " +
                      "please use transforms.RandomResizedCrop instead.")
        super(RandomSizedCrop, self).__init__(*args, **kwargs)


vfdev's avatar
vfdev committed
822
823
824
825
826
class FiveCrop(torch.nn.Module):
    """Crop the given image into four corners and the central crop.
    The image can be a PIL Image or a Tensor, in which case it is expected
    to have [..., H, W] shape, where ... means an arbitrary number of leading
    dimensions
827
828
829
830
831
832
833
834
835

    .. Note::
         This transform returns a tuple of images and there may be a mismatch in the number of
         inputs and targets your Dataset returns. See below for an example of how to deal with
         this.

    Args:
         size (sequence or int): Desired output size of the crop. If size is an ``int``
            instead of sequence like (h, w), a square crop of size (size, size) is made.
vfdev's avatar
vfdev committed
836
            If provided a tuple or list of length 1, it will be interpreted as (size[0], size[0]).
837
838
839
840
841
842
843
844
845
846
847
848
849
850

    Example:
         >>> transform = Compose([
         >>>    FiveCrop(size), # this is a list of PIL Images
         >>>    Lambda(lambda crops: torch.stack([ToTensor()(crop) for crop in crops])) # returns a 4D tensor
         >>> ])
         >>> #In your test loop you can do the following:
         >>> input, target = batch # input is a 5d tensor, target is 2d
         >>> bs, ncrops, c, h, w = input.size()
         >>> result = model(input.view(-1, c, h, w)) # fuse batch size and ncrops
         >>> result_avg = result.view(bs, ncrops, -1).mean(1) # avg over crops
    """

    def __init__(self, size):
vfdev's avatar
vfdev committed
851
        super().__init__()
852
        self.size = _setup_size(size, error_msg="Please provide only two dimensions (h, w) for size.")
853

vfdev's avatar
vfdev committed
854
855
856
857
858
859
860
861
    def forward(self, img):
        """
        Args:
            img (PIL Image or Tensor): Image to be cropped.

        Returns:
            tuple of 5 images. Image can be PIL Image or Tensor
        """
862
863
        return F.five_crop(img, self.size)

864
865
866
    def __repr__(self):
        return self.__class__.__name__ + '(size={0})'.format(self.size)

867

vfdev's avatar
vfdev committed
868
869
870
871
872
873
class TenCrop(torch.nn.Module):
    """Crop the given image into four corners and the central crop plus the flipped version of
    these (horizontal flipping is used by default).
    The image can be a PIL Image or a Tensor, in which case it is expected
    to have [..., H, W] shape, where ... means an arbitrary number of leading
    dimensions
874
875
876
877
878
879
880
881
882

    .. Note::
         This transform returns a tuple of images and there may be a mismatch in the number of
         inputs and targets your Dataset returns. See below for an example of how to deal with
         this.

    Args:
        size (sequence or int): Desired output size of the crop. If size is an
            int instead of sequence like (h, w), a square crop (size, size) is
vfdev's avatar
vfdev committed
883
            made. If provided a tuple or list of length 1, it will be interpreted as (size[0], size[0]).
884
        vertical_flip (bool): Use vertical flipping instead of horizontal
885
886
887
888
889
890
891
892
893
894
895
896
897
898

    Example:
         >>> transform = Compose([
         >>>    TenCrop(size), # this is a list of PIL Images
         >>>    Lambda(lambda crops: torch.stack([ToTensor()(crop) for crop in crops])) # returns a 4D tensor
         >>> ])
         >>> #In your test loop you can do the following:
         >>> input, target = batch # input is a 5d tensor, target is 2d
         >>> bs, ncrops, c, h, w = input.size()
         >>> result = model(input.view(-1, c, h, w)) # fuse batch size and ncrops
         >>> result_avg = result.view(bs, ncrops, -1).mean(1) # avg over crops
    """

    def __init__(self, size, vertical_flip=False):
vfdev's avatar
vfdev committed
899
        super().__init__()
900
        self.size = _setup_size(size, error_msg="Please provide only two dimensions (h, w) for size.")
901
902
        self.vertical_flip = vertical_flip

vfdev's avatar
vfdev committed
903
904
905
906
907
908
909
910
    def forward(self, img):
        """
        Args:
            img (PIL Image or Tensor): Image to be cropped.

        Returns:
            tuple of 10 images. Image can be PIL Image or Tensor
        """
911
912
        return F.ten_crop(img, self.size, self.vertical_flip)

913
    def __repr__(self):
914
        return self.__class__.__name__ + '(size={0}, vertical_flip={1})'.format(self.size, self.vertical_flip)
915

916

917
class LinearTransformation(torch.nn.Module):
ekka's avatar
ekka committed
918
    """Transform a tensor image with a square transformation matrix and a mean_vector computed
919
    offline.
ekka's avatar
ekka committed
920
921
922
    Given transformation_matrix and mean_vector, will flatten the torch.*Tensor and
    subtract mean_vector from it which is then followed by computing the dot
    product with the transformation matrix and then reshaping the tensor to its
923
    original shape.
924

925
    Applications:
926
        whitening transformation: Suppose X is a column vector zero-centered data.
927
928
929
        Then compute the data covariance matrix [D x D] with torch.mm(X.t(), X),
        perform SVD on this matrix and pass it as transformation_matrix.

930
931
    Args:
        transformation_matrix (Tensor): tensor [D x D], D = C x H x W
ekka's avatar
ekka committed
932
        mean_vector (Tensor): tensor [D], D = C x H x W
933
934
    """

ekka's avatar
ekka committed
935
    def __init__(self, transformation_matrix, mean_vector):
936
        super().__init__()
937
938
939
        if transformation_matrix.size(0) != transformation_matrix.size(1):
            raise ValueError("transformation_matrix should be square. Got " +
                             "[{} x {}] rectangular matrix.".format(*transformation_matrix.size()))
ekka's avatar
ekka committed
940
941
942

        if mean_vector.size(0) != transformation_matrix.size(0):
            raise ValueError("mean_vector should have the same length {}".format(mean_vector.size(0)) +
Francisco Massa's avatar
Francisco Massa committed
943
944
                             " as any one of the dimensions of the transformation_matrix [{}]"
                             .format(tuple(transformation_matrix.size())))
ekka's avatar
ekka committed
945

946
947
948
949
        if transformation_matrix.device != mean_vector.device:
            raise ValueError("Input tensors should be on the same device. Got {} and {}"
                             .format(transformation_matrix.device, mean_vector.device))

950
        self.transformation_matrix = transformation_matrix
ekka's avatar
ekka committed
951
        self.mean_vector = mean_vector
952

953
    def forward(self, tensor: Tensor) -> Tensor:
954
955
956
957
958
959
960
        """
        Args:
            tensor (Tensor): Tensor image of size (C, H, W) to be whitened.

        Returns:
            Tensor: Transformed image.
        """
961
962
963
964
965
966
967
968
969
970
971
972
        shape = tensor.shape
        n = shape[-3] * shape[-2] * shape[-1]
        if n != self.transformation_matrix.shape[0]:
            raise ValueError("Input tensor and transformation matrix have incompatible shape." +
                             "[{} x {} x {}] != ".format(shape[-3], shape[-2], shape[-1]) +
                             "{}".format(self.transformation_matrix.shape[0]))

        if tensor.device.type != self.mean_vector.device.type:
            raise ValueError("Input tensor should be on the same device as transformation matrix and mean vector. "
                             "Got {} vs {}".format(tensor.device, self.mean_vector.device))

        flat_tensor = tensor.view(-1, n) - self.mean_vector
973
        transformed_tensor = torch.mm(flat_tensor, self.transformation_matrix)
974
        tensor = transformed_tensor.view(shape)
975
976
        return tensor

977
    def __repr__(self):
ekka's avatar
ekka committed
978
979
980
        format_string = self.__class__.__name__ + '(transformation_matrix='
        format_string += (str(self.transformation_matrix.tolist()) + ')')
        format_string += (", (mean_vector=" + str(self.mean_vector.tolist()) + ')')
981
982
        return format_string

983

984
class ColorJitter(torch.nn.Module):
985
986
987
    """Randomly change the brightness, contrast and saturation of an image.

    Args:
yaox12's avatar
yaox12 committed
988
989
990
991
992
993
994
995
996
997
998
999
        brightness (float or tuple of float (min, max)): How much to jitter brightness.
            brightness_factor is chosen uniformly from [max(0, 1 - brightness), 1 + brightness]
            or the given [min, max]. Should be non negative numbers.
        contrast (float or tuple of float (min, max)): How much to jitter contrast.
            contrast_factor is chosen uniformly from [max(0, 1 - contrast), 1 + contrast]
            or the given [min, max]. Should be non negative numbers.
        saturation (float or tuple of float (min, max)): How much to jitter saturation.
            saturation_factor is chosen uniformly from [max(0, 1 - saturation), 1 + saturation]
            or the given [min, max]. Should be non negative numbers.
        hue (float or tuple of float (min, max)): How much to jitter hue.
            hue_factor is chosen uniformly from [-hue, hue] or the given [min, max].
            Should have 0<= hue <= 0.5 or -0.5 <= min <= max <= 0.5.
1000
    """
1001

1002
    def __init__(self, brightness=0, contrast=0, saturation=0, hue=0):
1003
        super().__init__()
yaox12's avatar
yaox12 committed
1004
1005
1006
1007
1008
1009
        self.brightness = self._check_input(brightness, 'brightness')
        self.contrast = self._check_input(contrast, 'contrast')
        self.saturation = self._check_input(saturation, 'saturation')
        self.hue = self._check_input(hue, 'hue', center=0, bound=(-0.5, 0.5),
                                     clip_first_on_zero=False)

1010
    @torch.jit.unused
yaox12's avatar
yaox12 committed
1011
1012
1013
1014
    def _check_input(self, value, name, center=1, bound=(0, float('inf')), clip_first_on_zero=True):
        if isinstance(value, numbers.Number):
            if value < 0:
                raise ValueError("If {} is a single number, it must be non negative.".format(name))
1015
            value = [center - float(value), center + float(value)]
yaox12's avatar
yaox12 committed
1016
            if clip_first_on_zero:
1017
                value[0] = max(value[0], 0.0)
yaox12's avatar
yaox12 committed
1018
1019
1020
1021
1022
1023
1024
1025
1026
1027
1028
        elif isinstance(value, (tuple, list)) and len(value) == 2:
            if not bound[0] <= value[0] <= value[1] <= bound[1]:
                raise ValueError("{} values should be between {}".format(name, bound))
        else:
            raise TypeError("{} should be a single number or a list/tuple with lenght 2.".format(name))

        # if value is 0 or (1., 1.) for brightness/contrast/saturation
        # or (0., 0.) for hue, do nothing
        if value[0] == value[1] == center:
            value = None
        return value
1029
1030

    @staticmethod
1031
    @torch.jit.unused
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
    def get_params(brightness, contrast, saturation, hue):
        """Get a randomized transform to be applied on image.

        Arguments are same as that of __init__.

        Returns:
            Transform which randomly adjusts brightness, contrast and
            saturation in a random order.
        """
        transforms = []
yaox12's avatar
yaox12 committed
1042
1043
1044

        if brightness is not None:
            brightness_factor = random.uniform(brightness[0], brightness[1])
1045
1046
            transforms.append(Lambda(lambda img: F.adjust_brightness(img, brightness_factor)))

yaox12's avatar
yaox12 committed
1047
1048
        if contrast is not None:
            contrast_factor = random.uniform(contrast[0], contrast[1])
1049
1050
            transforms.append(Lambda(lambda img: F.adjust_contrast(img, contrast_factor)))

yaox12's avatar
yaox12 committed
1051
1052
        if saturation is not None:
            saturation_factor = random.uniform(saturation[0], saturation[1])
1053
1054
            transforms.append(Lambda(lambda img: F.adjust_saturation(img, saturation_factor)))

yaox12's avatar
yaox12 committed
1055
1056
        if hue is not None:
            hue_factor = random.uniform(hue[0], hue[1])
1057
1058
            transforms.append(Lambda(lambda img: F.adjust_hue(img, hue_factor)))

vfdev's avatar
vfdev committed
1059
        random.shuffle(transforms)
1060
1061
1062
1063
        transform = Compose(transforms)

        return transform

1064
    def forward(self, img):
1065
1066
        """
        Args:
1067
            img (PIL Image or Tensor): Input image.
1068
1069

        Returns:
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079
1080
1081
1082
1083
1084
1085
1086
1087
1088
1089
1090
1091
1092
1093
1094
            PIL Image or Tensor: Color jittered image.
        """
        fn_idx = torch.randperm(4)
        for fn_id in fn_idx:
            if fn_id == 0 and self.brightness is not None:
                brightness = self.brightness
                brightness_factor = torch.tensor(1.0).uniform_(brightness[0], brightness[1]).item()
                img = F.adjust_brightness(img, brightness_factor)

            if fn_id == 1 and self.contrast is not None:
                contrast = self.contrast
                contrast_factor = torch.tensor(1.0).uniform_(contrast[0], contrast[1]).item()
                img = F.adjust_contrast(img, contrast_factor)

            if fn_id == 2 and self.saturation is not None:
                saturation = self.saturation
                saturation_factor = torch.tensor(1.0).uniform_(saturation[0], saturation[1]).item()
                img = F.adjust_saturation(img, saturation_factor)

            if fn_id == 3 and self.hue is not None:
                hue = self.hue
                hue_factor = torch.tensor(1.0).uniform_(hue[0], hue[1]).item()
                img = F.adjust_hue(img, hue_factor)

        return img
1095

1096
    def __repr__(self):
1097
1098
1099
1100
1101
1102
        format_string = self.__class__.__name__ + '('
        format_string += 'brightness={0}'.format(self.brightness)
        format_string += ', contrast={0}'.format(self.contrast)
        format_string += ', saturation={0}'.format(self.saturation)
        format_string += ', hue={0})'.format(self.hue)
        return format_string
1103

1104

1105
class RandomRotation(torch.nn.Module):
1106
    """Rotate the image by angle.
1107
1108
    The image can be a PIL Image or a Tensor, in which case it is expected
    to have [..., H, W] shape, where ... means an arbitrary number of leading dimensions.
1109
1110
1111
1112
1113

    Args:
        degrees (sequence or float or int): Range of degrees to select from.
            If degrees is a number instead of sequence like (min, max), the range of degrees
            will be (-degrees, +degrees).
1114
        resample (int, optional): An optional resampling filter. See `filters`_ for more information.
1115
            If omitted, or if the image has mode "1" or "P", it is set to PIL.Image.NEAREST.
1116
            If input is Tensor, only ``PIL.Image.NEAREST`` and ``PIL.Image.BILINEAR`` are supported.
1117
1118
1119
1120
        expand (bool, optional): Optional expansion flag.
            If true, expands the output to make it large enough to hold the entire rotated image.
            If false or omitted, make the output image the same size as the input image.
            Note that the expand flag assumes rotation around the center and no translation.
1121
        center (list or tuple, optional): Optional center of rotation, (x, y). Origin is the upper left corner.
1122
            Default is the center of the image.
Philip Meier's avatar
Philip Meier committed
1123
1124
        fill (n-tuple or int or float): Pixel fill value for area outside the rotated
            image. If int or float, the value is used for all bands respectively.
1125
1126
1127
            Defaults to 0 for all bands. This option is only available for Pillow>=5.2.0.
            This option is not supported for Tensor input. Fill value for the area outside the transform in the output
            image is always 0.
1128
1129
1130

    .. _filters: https://pillow.readthedocs.io/en/latest/handbook/concepts.html#filters

1131
1132
    """

Philip Meier's avatar
Philip Meier committed
1133
    def __init__(self, degrees, resample=False, expand=False, center=None, fill=None):
1134
        super().__init__()
1135
        self.degrees = _setup_angle(degrees, name="degrees", req_sizes=(2, ))
1136
1137

        if center is not None:
1138
            _check_sequence_input(center, "center", req_sizes=(2, ))
1139
1140

        self.center = center
1141
1142
1143

        self.resample = resample
        self.expand = expand
1144
        self.fill = fill
1145
1146

    @staticmethod
1147
    def get_params(degrees: List[float]) -> float:
1148
1149
1150
        """Get parameters for ``rotate`` for a random rotation.

        Returns:
1151
            float: angle parameter to be passed to ``rotate`` for random rotation.
1152
        """
1153
        angle = float(torch.empty(1).uniform_(float(degrees[0]), float(degrees[1])).item())
1154
1155
        return angle

1156
    def forward(self, img):
1157
        """
1158
        Args:
1159
            img (PIL Image or Tensor): Image to be rotated.
1160
1161

        Returns:
1162
            PIL Image or Tensor: Rotated image.
1163
1164
        """
        angle = self.get_params(self.degrees)
1165
        return F.rotate(img, angle, self.resample, self.expand, self.center, self.fill)
1166

1167
    def __repr__(self):
1168
1169
1170
1171
1172
        format_string = self.__class__.__name__ + '(degrees={0}'.format(self.degrees)
        format_string += ', resample={0}'.format(self.resample)
        format_string += ', expand={0}'.format(self.expand)
        if self.center is not None:
            format_string += ', center={0}'.format(self.center)
1173
1174
        if self.fill is not None:
            format_string += ', fill={0}'.format(self.fill)
1175
1176
        format_string += ')'
        return format_string
1177

1178

1179
1180
1181
1182
class RandomAffine(torch.nn.Module):
    """Random affine transformation of the image keeping center invariant.
    The image can be a PIL Image or a Tensor, in which case it is expected
    to have [..., H, W] shape, where ... means an arbitrary number of leading dimensions.
1183
1184
1185
1186

    Args:
        degrees (sequence or float or int): Range of degrees to select from.
            If degrees is a number instead of sequence like (min, max), the range of degrees
1187
            will be (-degrees, +degrees). Set to 0 to deactivate rotations.
1188
1189
1190
1191
1192
1193
1194
        translate (tuple, optional): tuple of maximum absolute fraction for horizontal
            and vertical translations. For example translate=(a, b), then horizontal shift
            is randomly sampled in the range -img_width * a < dx < img_width * a and vertical shift is
            randomly sampled in the range -img_height * b < dy < img_height * b. Will not translate by default.
        scale (tuple, optional): scaling factor interval, e.g (a, b), then scale is
            randomly sampled from the range a <= scale <= b. Will keep original scale by default.
        shear (sequence or float or int, optional): Range of degrees to select from.
ptrblck's avatar
ptrblck committed
1195
            If shear is a number, a shear parallel to the x axis in the range (-shear, +shear)
1196
            will be applied. Else if shear is a tuple or list of 2 values a shear parallel to the x axis in the
ptrblck's avatar
ptrblck committed
1197
1198
            range (shear[0], shear[1]) will be applied. Else if shear is a tuple or list of 4 values,
            a x-axis shear in (shear[0], shear[1]) and y-axis shear in (shear[2], shear[3]) will be applied.
1199
1200
1201
1202
1203
1204
1205
            Will not apply shear by default.
        resample (int, optional): An optional resampling filter. See `filters`_ for more information.
            If omitted, or if the image has mode "1" or "P", it is set to ``PIL.Image.NEAREST``.
            If input is Tensor, only ``PIL.Image.NEAREST`` and ``PIL.Image.BILINEAR`` are supported.
        fillcolor (tuple or int): Optional fill color (Tuple for RGB Image and int for grayscale) for the area
            outside the transform in the output image (Pillow>=5.0.0). This option is not supported for Tensor
            input. Fill value for the area outside the transform in the output image is always 0.
1206
1207
1208

    .. _filters: https://pillow.readthedocs.io/en/latest/handbook/concepts.html#filters

1209
1210
    """

1211
1212
    def __init__(self, degrees, translate=None, scale=None, shear=None, resample=0, fillcolor=0):
        super().__init__()
1213
        self.degrees = _setup_angle(degrees, name="degrees", req_sizes=(2, ))
1214
1215

        if translate is not None:
1216
            _check_sequence_input(translate, "translate", req_sizes=(2, ))
1217
1218
1219
1220
1221
1222
            for t in translate:
                if not (0.0 <= t <= 1.0):
                    raise ValueError("translation values should be between 0 and 1")
        self.translate = translate

        if scale is not None:
1223
            _check_sequence_input(scale, "scale", req_sizes=(2, ))
1224
1225
1226
1227
1228
1229
            for s in scale:
                if s <= 0:
                    raise ValueError("scale values should be positive")
        self.scale = scale

        if shear is not None:
1230
            self.shear = _setup_angle(shear, name="shear", req_sizes=(2, 4))
1231
1232
1233
1234
1235
1236
1237
        else:
            self.shear = shear

        self.resample = resample
        self.fillcolor = fillcolor

    @staticmethod
1238
1239
1240
1241
1242
1243
1244
    def get_params(
            degrees: List[float],
            translate: Optional[List[float]],
            scale_ranges: Optional[List[float]],
            shears: Optional[List[float]],
            img_size: List[int]
    ) -> Tuple[float, Tuple[int, int], float, Tuple[float, float]]:
1245
1246
1247
        """Get parameters for affine transformation

        Returns:
1248
            params to be passed to the affine transformation
1249
        """
1250
        angle = float(torch.empty(1).uniform_(float(degrees[0]), float(degrees[1])).item())
1251
        if translate is not None:
1252
1253
1254
1255
1256
            max_dx = float(translate[0] * img_size[0])
            max_dy = float(translate[1] * img_size[1])
            tx = int(round(torch.empty(1).uniform_(-max_dx, max_dx).item()))
            ty = int(round(torch.empty(1).uniform_(-max_dy, max_dy).item()))
            translations = (tx, ty)
1257
1258
1259
1260
        else:
            translations = (0, 0)

        if scale_ranges is not None:
1261
            scale = float(torch.empty(1).uniform_(scale_ranges[0], scale_ranges[1]).item())
1262
1263
1264
        else:
            scale = 1.0

1265
        shear_x = shear_y = 0.0
1266
        if shears is not None:
1267
1268
1269
1270
1271
            shear_x = float(torch.empty(1).uniform_(shears[0], shears[1]).item())
            if len(shears) == 4:
                shear_y = float(torch.empty(1).uniform_(shears[2], shears[3]).item())

        shear = (shear_x, shear_y)
1272
1273
1274

        return angle, translations, scale, shear

1275
    def forward(self, img):
1276
        """
1277
            img (PIL Image or Tensor): Image to be transformed.
1278
1279

        Returns:
1280
            PIL Image or Tensor: Affine transformed image.
1281
        """
1282
1283
1284
1285

        img_size = F._get_image_size(img)

        ret = self.get_params(self.degrees, self.translate, self.scale, self.shear, img_size)
1286
1287
1288
1289
1290
1291
1292
1293
1294
1295
1296
1297
1298
1299
1300
1301
1302
1303
1304
1305
        return F.affine(img, *ret, resample=self.resample, fillcolor=self.fillcolor)

    def __repr__(self):
        s = '{name}(degrees={degrees}'
        if self.translate is not None:
            s += ', translate={translate}'
        if self.scale is not None:
            s += ', scale={scale}'
        if self.shear is not None:
            s += ', shear={shear}'
        if self.resample > 0:
            s += ', resample={resample}'
        if self.fillcolor != 0:
            s += ', fillcolor={fillcolor}'
        s += ')'
        d = dict(self.__dict__)
        d['resample'] = _pil_interpolation_to_str[d['resample']]
        return s.format(name=self.__class__.__name__, **d)


1306
class Grayscale(torch.nn.Module):
1307
    """Convert image to grayscale.
1308
1309
1310
    The image can be a PIL Image or a Tensor, in which case it is expected
    to have [..., 3, H, W] shape, where ... means an arbitrary number of leading
    dimensions
1311

1312
1313
1314
1315
    Args:
        num_output_channels (int): (1 or 3) number of channels desired for output image

    Returns:
1316
        PIL Image: Grayscale version of the input.
1317
1318
         - If ``num_output_channels == 1`` : returned image is single channel
         - If ``num_output_channels == 3`` : returned image is 3 channel with r == g == b
1319
1320
1321
1322

    """

    def __init__(self, num_output_channels=1):
1323
        super().__init__()
1324
1325
        self.num_output_channels = num_output_channels

1326
    def forward(self, img: Tensor) -> Tensor:
1327
1328
        """
        Args:
1329
            img (PIL Image or Tensor): Image to be converted to grayscale.
1330
1331

        Returns:
1332
            PIL Image or Tensor: Grayscaled image.
1333
        """
1334
        return F.rgb_to_grayscale(img, num_output_channels=self.num_output_channels)
1335

1336
    def __repr__(self):
1337
        return self.__class__.__name__ + '(num_output_channels={0})'.format(self.num_output_channels)
1338

1339

1340
class RandomGrayscale(torch.nn.Module):
1341
    """Randomly convert image to grayscale with a probability of p (default 0.1).
1342
1343
1344
    The image can be a PIL Image or a Tensor, in which case it is expected
    to have [..., 3, H, W] shape, where ... means an arbitrary number of leading
    dimensions
1345

1346
1347
1348
1349
    Args:
        p (float): probability that image should be converted to grayscale.

    Returns:
1350
        PIL Image or Tensor: Grayscale version of the input image with probability p and unchanged
1351
1352
1353
        with probability (1-p).
        - If input image is 1 channel: grayscale version is 1 channel
        - If input image is 3 channel: grayscale version is 3 channel with r == g == b
1354
1355
1356
1357

    """

    def __init__(self, p=0.1):
1358
        super().__init__()
1359
1360
        self.p = p

1361
    def forward(self, img: Tensor) -> Tensor:
1362
1363
        """
        Args:
1364
            img (PIL Image or Tensor): Image to be converted to grayscale.
1365
1366

        Returns:
1367
            PIL Image or Tensor: Randomly grayscaled image.
1368
        """
1369
1370
1371
        num_output_channels = F._get_image_num_channels(img)
        if torch.rand(1) < self.p:
            return F.rgb_to_grayscale(img, num_output_channels=num_output_channels)
1372
        return img
1373
1374

    def __repr__(self):
1375
        return self.__class__.__name__ + '(p={0})'.format(self.p)
1376
1377


1378
class RandomErasing(torch.nn.Module):
1379
    """ Randomly selects a rectangle region in an image and erases its pixels.
vfdev's avatar
vfdev committed
1380
    'Random Erasing Data Augmentation' by Zhong et al. See https://arxiv.org/abs/1708.04896
1381

1382
1383
1384
1385
1386
1387
1388
1389
    Args:
         p: probability that the random erasing operation will be performed.
         scale: range of proportion of erased area against input image.
         ratio: range of aspect ratio of erased area.
         value: erasing value. Default is 0. If a single int, it is used to
            erase all pixels. If a tuple of length 3, it is used to erase
            R, G, B channels respectively.
            If a str of 'random', erasing each pixel with random values.
Zhun Zhong's avatar
Zhun Zhong committed
1390
         inplace: boolean to make this transform inplace. Default set to False.
1391

1392
1393
    Returns:
        Erased Image.
1394

1395
1396
    # Examples:
        >>> transform = transforms.Compose([
1397
1398
1399
1400
        >>>   transforms.RandomHorizontalFlip(),
        >>>   transforms.ToTensor(),
        >>>   transforms.Normalize((0.485, 0.456, 0.406), (0.229, 0.224, 0.225)),
        >>>   transforms.RandomErasing(),
1401
1402
1403
        >>> ])
    """

Zhun Zhong's avatar
Zhun Zhong committed
1404
    def __init__(self, p=0.5, scale=(0.02, 0.33), ratio=(0.3, 3.3), value=0, inplace=False):
1405
1406
1407
1408
1409
1410
1411
1412
1413
        super().__init__()
        if not isinstance(value, (numbers.Number, str, tuple, list)):
            raise TypeError("Argument value should be either a number or str or a sequence")
        if isinstance(value, str) and value != "random":
            raise ValueError("If value is str, it should be 'random'")
        if not isinstance(scale, (tuple, list)):
            raise TypeError("Scale should be a sequence")
        if not isinstance(ratio, (tuple, list)):
            raise TypeError("Ratio should be a sequence")
1414
        if (scale[0] > scale[1]) or (ratio[0] > ratio[1]):
1415
            warnings.warn("Scale and ratio should be of kind (min, max)")
1416
        if scale[0] < 0 or scale[1] > 1:
1417
            raise ValueError("Scale should be between 0 and 1")
1418
        if p < 0 or p > 1:
1419
            raise ValueError("Random erasing probability should be between 0 and 1")
1420
1421
1422
1423
1424

        self.p = p
        self.scale = scale
        self.ratio = ratio
        self.value = value
1425
        self.inplace = inplace
1426
1427

    @staticmethod
1428
1429
1430
    def get_params(
            img: Tensor, scale: Tuple[float, float], ratio: Tuple[float, float], value: Optional[List[float]] = None
    ) -> Tuple[int, int, int, int, Tensor]:
1431
1432
1433
1434
        """Get parameters for ``erase`` for a random erasing.

        Args:
            img (Tensor): Tensor image of size (C, H, W) to be erased.
1435
1436
1437
1438
1439
            scale (tuple or list): range of proportion of erased area against input image.
            ratio (tuple or list): range of aspect ratio of erased area.
            value (list, optional): erasing value. If None, it is interpreted as "random"
                (erasing each pixel with random values). If ``len(value)`` is 1, it is interpreted as a number,
                i.e. ``value[0]``.
1440
1441
1442
1443

        Returns:
            tuple: params (i, j, h, w, v) to be passed to ``erase`` for random erasing.
        """
vfdev's avatar
vfdev committed
1444
        img_c, img_h, img_w = img.shape[-3], img.shape[-2], img.shape[-1]
1445
        area = img_h * img_w
1446

1447
        for _ in range(10):
1448
1449
            erase_area = area * torch.empty(1).uniform_(scale[0], scale[1]).item()
            aspect_ratio = torch.empty(1).uniform_(ratio[0], ratio[1]).item()
1450
1451
1452

            h = int(round(math.sqrt(erase_area * aspect_ratio)))
            w = int(round(math.sqrt(erase_area / aspect_ratio)))
1453
1454
1455
1456
1457
1458
1459
            if not (h < img_h and w < img_w):
                continue

            if value is None:
                v = torch.empty([img_c, h, w], dtype=torch.float32).normal_()
            else:
                v = torch.tensor(value)[:, None, None]
1460

1461
1462
            i = torch.randint(0, img_h - h + 1, size=(1, )).item()
            j = torch.randint(0, img_w - w + 1, size=(1, )).item()
1463
            return i, j, h, w, v
1464

Zhun Zhong's avatar
Zhun Zhong committed
1465
1466
1467
        # Return original image
        return 0, 0, img_h, img_w, img

1468
    def forward(self, img):
1469
1470
1471
1472
1473
1474
1475
        """
        Args:
            img (Tensor): Tensor image of size (C, H, W) to be erased.

        Returns:
            img (Tensor): Erased Tensor image.
        """
1476
1477
1478
1479
1480
1481
1482
1483
1484
1485
1486
1487
1488
1489
1490
1491
1492
1493
1494
        if torch.rand(1) < self.p:

            # cast self.value to script acceptable type
            if isinstance(self.value, (int, float)):
                value = [self.value, ]
            elif isinstance(self.value, str):
                value = None
            elif isinstance(self.value, tuple):
                value = list(self.value)
            else:
                value = self.value

            if value is not None and not (len(value) in (1, img.shape[-3])):
                raise ValueError(
                    "If value is a sequence, it should have either a single value or "
                    "{} (number of input channels)".format(img.shape[-3])
                )

            x, y, h, w, v = self.get_params(img, scale=self.scale, ratio=self.ratio, value=value)
1495
            return F.erase(img, x, y, h, w, v, self.inplace)
1496
        return img
1497
1498


1499
1500
1501
1502
1503
1504
1505
1506
1507
1508
1509
1510
1511
1512
1513
1514
1515
1516
1517
1518
1519
1520
1521
1522
1523
1524
1525
1526
1527
1528
1529
1530
1531
1532
1533
1534
1535
1536
1537
1538
1539
1540
1541
1542
1543
1544
1545
1546
1547
1548
1549
1550
1551
1552
1553
1554
1555
1556
1557
1558
1559
1560
1561
1562
1563
1564
1565
class GaussianBlur(torch.nn.Module):
    """Blurs image with randomly chosen Gaussian blur.
    The image can be a PIL Image or a Tensor, in which case it is expected
    to have [..., 3, H, W] shape, where ... means an arbitrary number of leading
    dimensions

    Args:
        kernel_size (int or sequence): Size of the Gaussian kernel.
        sigma (float or tuple of float (min, max)): Standard deviation to be used for
            creating kernel to perform blurring. If float, sigma is fixed. If it is tuple
            of float (min, max), sigma is chosen uniformly at random to lie in the
            given range.

    Returns:
        PIL Image or Tensor: Gaussian blurred version of the input image.

    """

    def __init__(self, kernel_size, sigma=(0.1, 2.0)):
        super().__init__()
        self.kernel_size = _setup_size(kernel_size, "Kernel size should be a tuple/list of two integers")
        for ks in self.kernel_size:
            if ks <= 0 or ks % 2 == 0:
                raise ValueError("Kernel size value should be an odd and positive number.")

        if isinstance(sigma, numbers.Number):
            if sigma <= 0:
                raise ValueError("If sigma is a single number, it must be positive.")
            sigma = (sigma, sigma)
        elif isinstance(sigma, Sequence) and len(sigma) == 2:
            if not 0. < sigma[0] <= sigma[1]:
                raise ValueError("sigma values should be positive and of the form (min, max).")
        else:
            raise ValueError("sigma should be a single number or a list/tuple with length 2.")

        self.sigma = sigma

    @staticmethod
    def get_params(sigma_min: float, sigma_max: float) -> float:
        """Choose sigma for ``gaussian_blur`` for random gaussian blurring.

        Args:
            sigma_min (float): Minimum standard deviation that can be chosen for blurring kernel.
            sigma_max (float): Maximum standard deviation that can be chosen for blurring kernel.

        Returns:
            float: Standard deviation to be passed to calculate kernel for gaussian blurring.
        """
        return torch.empty(1).uniform_(sigma_min, sigma_max).item()

    def forward(self, img: Tensor) -> Tensor:
        """
        Args:
            img (PIL Image or Tensor): image of size (C, H, W) to be blurred.

        Returns:
            PIL Image or Tensor: Gaussian blurred image
        """
        sigma = self.get_params(self.sigma[0], self.sigma[1])
        return F.gaussian_blur(img, self.kernel_size, [sigma, sigma])

    def __repr__(self):
        s = '(kernel_size={}, '.format(self.kernel_size)
        s += 'sigma={})'.format(self.sigma)
        return self.__class__.__name__ + s


1566
1567
1568
1569
1570
1571
1572
1573
1574
1575
1576
1577
1578
1579
1580
1581
1582
1583
1584
1585
1586
1587
1588
1589
1590
1591
1592
1593
1594
1595
def _setup_size(size, error_msg):
    if isinstance(size, numbers.Number):
        return int(size), int(size)

    if isinstance(size, Sequence) and len(size) == 1:
        return size[0], size[0]

    if len(size) != 2:
        raise ValueError(error_msg)

    return size


def _check_sequence_input(x, name, req_sizes):
    msg = req_sizes[0] if len(req_sizes) < 2 else " or ".join([str(s) for s in req_sizes])
    if not isinstance(x, Sequence):
        raise TypeError("{} should be a sequence of length {}.".format(name, msg))
    if len(x) not in req_sizes:
        raise ValueError("{} should be sequence of length {}.".format(name, msg))


def _setup_angle(x, name, req_sizes=(2, )):
    if isinstance(x, numbers.Number):
        if x < 0:
            raise ValueError("If {} is a single number, it must be positive.".format(name))
        x = [-x, x]
    else:
        _check_sequence_input(x, name, req_sizes)

    return [float(d) for d in x]