transforms.py 77 KB
Newer Older
1
import math
vfdev's avatar
vfdev committed
2
import numbers
3
import random
vfdev's avatar
vfdev committed
4
import warnings
vfdev's avatar
vfdev committed
5
from collections.abc import Sequence
6
from typing import Tuple, List, Optional
vfdev's avatar
vfdev committed
7
8
9
10

import torch
from torch import Tensor

11
12
13
14
15
16
try:
    import accimage
except ImportError:
    accimage = None

from . import functional as F
17
from .functional import InterpolationMode, _interpolation_modes_from_int
18

19

20
21
22
23
__all__ = ["Compose", "ToTensor", "PILToTensor", "ConvertImageDtype", "ToPILImage", "Normalize", "Resize", "Scale",
           "CenterCrop", "Pad", "Lambda", "RandomApply", "RandomChoice", "RandomOrder", "RandomCrop",
           "RandomHorizontalFlip", "RandomVerticalFlip", "RandomResizedCrop", "RandomSizedCrop", "FiveCrop", "TenCrop",
           "LinearTransformation", "ColorJitter", "RandomRotation", "RandomAffine", "Grayscale", "RandomGrayscale",
24
25
           "RandomPerspective", "RandomErasing", "GaussianBlur", "InterpolationMode", "RandomInvert", "RandomPosterize",
           "RandomSolarize", "RandomAdjustSharpness", "RandomAutocontrast", "RandomEqualize"]
26

27

28
class Compose:
29
30
    """Composes several transforms together. This transform does not support torchscript.
    Please, see the note below.
31
32
33
34
35
36
37
38
39

    Args:
        transforms (list of ``Transform`` objects): list of transforms to compose.

    Example:
        >>> transforms.Compose([
        >>>     transforms.CenterCrop(10),
        >>>     transforms.ToTensor(),
        >>> ])
40
41
42
43
44
45
46
47
48
49
50
51
52

    .. note::
        In order to script the transformations, please use ``torch.nn.Sequential`` as below.

        >>> transforms = torch.nn.Sequential(
        >>>     transforms.CenterCrop(10),
        >>>     transforms.Normalize((0.485, 0.456, 0.406), (0.229, 0.224, 0.225)),
        >>> )
        >>> scripted_transforms = torch.jit.script(transforms)

        Make sure to use only scriptable transformations, i.e. that work with ``torch.Tensor``, does not require
        `lambda` functions or ``PIL.Image``.

53
54
55
56
57
58
59
60
61
62
    """

    def __init__(self, transforms):
        self.transforms = transforms

    def __call__(self, img):
        for t in self.transforms:
            img = t(img)
        return img

63
64
65
66
67
68
69
70
    def __repr__(self):
        format_string = self.__class__.__name__ + '('
        for t in self.transforms:
            format_string += '\n'
            format_string += '    {0}'.format(t)
        format_string += '\n)'
        return format_string

71

72
class ToTensor:
73
    """Convert a ``PIL Image`` or ``numpy.ndarray`` to tensor. This transform does not support torchscript.
74
75

    Converts a PIL Image or numpy.ndarray (H x W x C) in the range
surgan12's avatar
surgan12 committed
76
77
78
79
80
    [0, 255] to a torch.FloatTensor of shape (C x H x W) in the range [0.0, 1.0]
    if the PIL Image belongs to one of the modes (L, LA, P, I, F, RGB, YCbCr, RGBA, CMYK, 1)
    or if the numpy.ndarray has dtype = np.uint8

    In the other cases, tensors are returned without scaling.
81
82
83
84
85
86

    .. note::
        Because the input image is scaled to [0.0, 1.0], this transformation should not be used when
        transforming target image masks. See the `references`_ for implementing the transforms for image masks.

    .. _references: https://github.com/pytorch/vision/tree/master/references/segmentation
87
88
89
90
91
92
93
94
95
96
97
98
    """

    def __call__(self, pic):
        """
        Args:
            pic (PIL Image or numpy.ndarray): Image to be converted to tensor.

        Returns:
            Tensor: Converted image.
        """
        return F.to_tensor(pic)

99
100
101
    def __repr__(self):
        return self.__class__.__name__ + '()'

102

103
class PILToTensor:
104
    """Convert a ``PIL Image`` to a tensor of the same type. This transform does not support torchscript.
105

vfdev's avatar
vfdev committed
106
    Converts a PIL Image (H x W x C) to a Tensor of shape (C x H x W).
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
    """

    def __call__(self, pic):
        """
        Args:
            pic (PIL Image): Image to be converted to tensor.

        Returns:
            Tensor: Converted image.
        """
        return F.pil_to_tensor(pic)

    def __repr__(self):
        return self.__class__.__name__ + '()'


123
class ConvertImageDtype(torch.nn.Module):
124
    """Convert a tensor image to the given ``dtype`` and scale the values accordingly
125
    This function does not support PIL Image.
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142

    Args:
        dtype (torch.dtype): Desired data type of the output

    .. note::

        When converting from a smaller to a larger integer ``dtype`` the maximum values are **not** mapped exactly.
        If converted back and forth, this mismatch has no effect.

    Raises:
        RuntimeError: When trying to cast :class:`torch.float32` to :class:`torch.int32` or :class:`torch.int64` as
            well as for trying to cast :class:`torch.float64` to :class:`torch.int64`. These conversions might lead to
            overflow errors since the floating point ``dtype`` cannot store consecutive integers over the whole range
            of the integer ``dtype``.
    """

    def __init__(self, dtype: torch.dtype) -> None:
143
        super().__init__()
144
145
        self.dtype = dtype

vfdev's avatar
vfdev committed
146
    def forward(self, image):
147
148
149
        return F.convert_image_dtype(image, self.dtype)


150
class ToPILImage:
151
    """Convert a tensor or an ndarray to PIL Image. This transform does not support torchscript.
152
153
154
155
156
157
158

    Converts a torch.*Tensor of shape C x H x W or a numpy ndarray of shape
    H x W x C to a PIL Image while preserving the value range.

    Args:
        mode (`PIL.Image mode`_): color space and pixel depth of input data (optional).
            If ``mode`` is ``None`` (default) there are some assumptions made about the input data:
vfdev's avatar
vfdev committed
159
160
161
162
163
            - If the input has 4 channels, the ``mode`` is assumed to be ``RGBA``.
            - If the input has 3 channels, the ``mode`` is assumed to be ``RGB``.
            - If the input has 2 channels, the ``mode`` is assumed to be ``LA``.
            - If the input has 1 channel, the ``mode`` is determined by the data type (i.e ``int``, ``float``,
            ``short``).
164

csukuangfj's avatar
csukuangfj committed
165
    .. _PIL.Image mode: https://pillow.readthedocs.io/en/latest/handbook/concepts.html#concept-modes
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
    """
    def __init__(self, mode=None):
        self.mode = mode

    def __call__(self, pic):
        """
        Args:
            pic (Tensor or numpy.ndarray): Image to be converted to PIL Image.

        Returns:
            PIL Image: Image converted to PIL Image.

        """
        return F.to_pil_image(pic, self.mode)

181
    def __repr__(self):
182
183
184
185
186
        format_string = self.__class__.__name__ + '('
        if self.mode is not None:
            format_string += 'mode={0}'.format(self.mode)
        format_string += ')'
        return format_string
187

188

189
class Normalize(torch.nn.Module):
Fang Gao's avatar
Fang Gao committed
190
    """Normalize a tensor image with mean and standard deviation.
191
    This transform does not support PIL Image.
192
193
194
    Given mean: ``(mean[1],...,mean[n])`` and std: ``(std[1],..,std[n])`` for ``n``
    channels, this transform will normalize each channel of the input
    ``torch.*Tensor`` i.e.,
abdjava's avatar
abdjava committed
195
    ``output[channel] = (input[channel] - mean[channel]) / std[channel]``
196

197
    .. note::
198
        This transform acts out of place, i.e., it does not mutate the input tensor.
199

200
201
202
    Args:
        mean (sequence): Sequence of means for each channel.
        std (sequence): Sequence of standard deviations for each channel.
203
204
        inplace(bool,optional): Bool to make this operation in-place.

205
206
    """

surgan12's avatar
surgan12 committed
207
    def __init__(self, mean, std, inplace=False):
208
        super().__init__()
209
210
        self.mean = mean
        self.std = std
surgan12's avatar
surgan12 committed
211
        self.inplace = inplace
212

213
    def forward(self, tensor: Tensor) -> Tensor:
214
215
        """
        Args:
vfdev's avatar
vfdev committed
216
            tensor (Tensor): Tensor image to be normalized.
217
218
219
220

        Returns:
            Tensor: Normalized Tensor image.
        """
surgan12's avatar
surgan12 committed
221
        return F.normalize(tensor, self.mean, self.std, self.inplace)
222

223
224
225
    def __repr__(self):
        return self.__class__.__name__ + '(mean={0}, std={1})'.format(self.mean, self.std)

226

vfdev's avatar
vfdev committed
227
228
class Resize(torch.nn.Module):
    """Resize the input image to the given size.
229
    If the image is torch Tensor, it is expected
vfdev's avatar
vfdev committed
230
    to have [..., H, W] shape, where ... means an arbitrary number of leading dimensions
231

232
233
234
235
236
237
    .. warning::
        The output image might be different depending on its type: when downsampling, the interpolation of PIL images
        and tensors is slightly different, because PIL applies antialiasing. This may lead to significant differences
        in the performance of a network. Therefore, it is preferable to train and serve a model with the same input
        types.

238
239
240
241
242
    Args:
        size (sequence or int): Desired output size. If size is a sequence like
            (h, w), output size will be matched to this. If size is an int,
            smaller edge of the image will be matched to this number.
            i.e, if height > width, then image will be rescaled to
vfdev's avatar
vfdev committed
243
            (size * height / width, size).
244
            In torchscript mode size as single int is not supported, use a sequence of length 1: ``[size, ]``.
245
246
247
248
        interpolation (InterpolationMode): Desired interpolation enum defined by
            :class:`torchvision.transforms.InterpolationMode`. Default is ``InterpolationMode.BILINEAR``.
            If input is Tensor, only ``InterpolationMode.NEAREST``, ``InterpolationMode.BILINEAR`` and
            ``InterpolationMode.BICUBIC`` are supported.
249
            For backward compatibility integer values (e.g. ``PIL.Image.NEAREST``) are still acceptable.
250
251
252
253
254
255
256
257
        max_size (int, optional): The maximum allowed for the longer edge of
            the resized image: if the longer edge of the image is greater
            than ``max_size`` after being resized according to ``size``, then
            the image is resized again so that the longer edge is equal to
            ``max_size``. As a result, ```size` might be overruled, i.e the
            smaller edge may be shorter than ``size``. This is only supported
            if ``size`` is an int (or a sequence of length 1 in torchscript
            mode).
258

259
260
    """

261
    def __init__(self, size, interpolation=InterpolationMode.BILINEAR, max_size=None):
vfdev's avatar
vfdev committed
262
        super().__init__()
263
264
265
266
267
        if not isinstance(size, (int, Sequence)):
            raise TypeError("Size should be int or sequence. Got {}".format(type(size)))
        if isinstance(size, Sequence) and len(size) not in (1, 2):
            raise ValueError("If size is a sequence, it should have 1 or 2 values")
        self.size = size
268
        self.max_size = max_size
269
270
271
272

        # Backward compatibility with integer value
        if isinstance(interpolation, int):
            warnings.warn(
273
274
                "Argument interpolation should be of type InterpolationMode instead of int. "
                "Please, use InterpolationMode enum."
275
276
277
            )
            interpolation = _interpolation_modes_from_int(interpolation)

278
279
        self.interpolation = interpolation

vfdev's avatar
vfdev committed
280
    def forward(self, img):
281
282
        """
        Args:
vfdev's avatar
vfdev committed
283
            img (PIL Image or Tensor): Image to be scaled.
284
285

        Returns:
vfdev's avatar
vfdev committed
286
            PIL Image or Tensor: Rescaled image.
287
        """
288
        return F.resize(img, self.size, self.interpolation, self.max_size)
289

290
    def __repr__(self):
291
        interpolate_str = self.interpolation.value
292
293
        return self.__class__.__name__ + '(size={0}, interpolation={1}, max_size={2})'.format(
            self.size, interpolate_str, self.max_size)
294

295
296
297
298
299
300
301
302
303
304
305

class Scale(Resize):
    """
    Note: This transform is deprecated in favor of Resize.
    """
    def __init__(self, *args, **kwargs):
        warnings.warn("The use of the transforms.Scale transform is deprecated, " +
                      "please use transforms.Resize instead.")
        super(Scale, self).__init__(*args, **kwargs)


vfdev's avatar
vfdev committed
306
307
class CenterCrop(torch.nn.Module):
    """Crops the given image at the center.
308
    If the image is torch Tensor, it is expected
309
310
    to have [..., H, W] shape, where ... means an arbitrary number of leading dimensions.
    If image size is smaller than output size along any edge, image is padded with 0 and then center cropped.
311
312
313
314

    Args:
        size (sequence or int): Desired output size of the crop. If size is an
            int instead of sequence like (h, w), a square crop (size, size) is
315
            made. If provided a sequence of length 1, it will be interpreted as (size[0], size[0]).
316
317
318
    """

    def __init__(self, size):
vfdev's avatar
vfdev committed
319
        super().__init__()
320
        self.size = _setup_size(size, error_msg="Please provide only two dimensions (h, w) for size.")
321

vfdev's avatar
vfdev committed
322
    def forward(self, img):
323
324
        """
        Args:
vfdev's avatar
vfdev committed
325
            img (PIL Image or Tensor): Image to be cropped.
326
327

        Returns:
vfdev's avatar
vfdev committed
328
            PIL Image or Tensor: Cropped image.
329
330
331
        """
        return F.center_crop(img, self.size)

332
333
334
    def __repr__(self):
        return self.__class__.__name__ + '(size={0})'.format(self.size)

335

336
337
class Pad(torch.nn.Module):
    """Pad the given image on all sides with the given "pad" value.
338
    If the image is torch Tensor, it is expected
339
340
341
    to have [..., H, W] shape, where ... means at most 2 leading dimensions for mode reflect and symmetric,
    at most 3 leading dimensions for mode edge,
    and an arbitrary number of leading dimensions for mode constant
342
343

    Args:
344
345
346
        padding (int or sequence): Padding on each border. If a single int is provided this
            is used to pad all borders. If sequence of length 2 is provided this is the padding
            on left/right and top/bottom respectively. If a sequence of length 4 is provided
347
            this is the padding for the left, top, right and bottom borders respectively.
348
349
            In torchscript mode padding as single int is not supported, use a sequence of length 1: ``[padding, ]``.
        fill (number or str or tuple): Pixel fill value for constant fill. Default is 0. If a tuple of
350
            length 3, it is used to fill R, G, B channels respectively.
351
352
353
            This value is only used when the padding_mode is constant.
            Only number is supported for torch Tensor.
            Only int or str or tuple value is supported for PIL Image.
354
        padding_mode (str): Type of padding. Should be: constant, edge, reflect or symmetric.
355
            Default is constant.
356
357
358

            - constant: pads with a constant value, this value is specified with fill

359
360
            - edge: pads with the last value at the edge of the image,
                    if input a 5D torch Tensor, the last 3 dimensions will be padded instead of the last 2
361
362
363
364

            - reflect: pads with reflection of image without repeating the last value on the edge

                For example, padding [1, 2, 3, 4] with 2 elements on both sides in reflect mode
365
                will result in [3, 2, 1, 2, 3, 4, 3, 2]
366
367
368
369

            - symmetric: pads with reflection of image repeating the last value on the edge

                For example, padding [1, 2, 3, 4] with 2 elements on both sides in symmetric mode
370
                will result in [2, 1, 1, 2, 3, 4, 4, 3]
371
372
    """

373
374
375
376
377
378
379
380
381
382
383
384
385
    def __init__(self, padding, fill=0, padding_mode="constant"):
        super().__init__()
        if not isinstance(padding, (numbers.Number, tuple, list)):
            raise TypeError("Got inappropriate padding arg")

        if not isinstance(fill, (numbers.Number, str, tuple)):
            raise TypeError("Got inappropriate fill arg")

        if padding_mode not in ["constant", "edge", "reflect", "symmetric"]:
            raise ValueError("Padding mode should be either constant, edge, reflect or symmetric")

        if isinstance(padding, Sequence) and len(padding) not in [1, 2, 4]:
            raise ValueError("Padding must be an int or a 1, 2, or 4 element tuple, not a " +
386
387
388
389
                             "{} element tuple".format(len(padding)))

        self.padding = padding
        self.fill = fill
390
        self.padding_mode = padding_mode
391

392
    def forward(self, img):
393
394
        """
        Args:
395
            img (PIL Image or Tensor): Image to be padded.
396
397

        Returns:
398
            PIL Image or Tensor: Padded image.
399
        """
400
        return F.pad(img, self.padding, self.fill, self.padding_mode)
401

402
    def __repr__(self):
403
404
        return self.__class__.__name__ + '(padding={0}, fill={1}, padding_mode={2})'.\
            format(self.padding, self.fill, self.padding_mode)
405

406

407
class Lambda:
408
    """Apply a user-defined lambda as a transform. This transform does not support torchscript.
409
410
411
412
413
414

    Args:
        lambd (function): Lambda/function to be used for transform.
    """

    def __init__(self, lambd):
415
416
        if not callable(lambd):
            raise TypeError("Argument lambd should be callable, got {}".format(repr(type(lambd).__name__)))
417
418
419
420
421
        self.lambd = lambd

    def __call__(self, img):
        return self.lambd(img)

422
423
424
    def __repr__(self):
        return self.__class__.__name__ + '()'

425

426
class RandomTransforms:
427
428
429
    """Base class for a list of transformations with randomness

    Args:
430
        transforms (sequence): list of transformations
431
432
433
    """

    def __init__(self, transforms):
434
435
        if not isinstance(transforms, Sequence):
            raise TypeError("Argument transforms should be a sequence")
436
437
438
439
440
441
442
443
444
445
446
447
448
449
        self.transforms = transforms

    def __call__(self, *args, **kwargs):
        raise NotImplementedError()

    def __repr__(self):
        format_string = self.__class__.__name__ + '('
        for t in self.transforms:
            format_string += '\n'
            format_string += '    {0}'.format(t)
        format_string += '\n)'
        return format_string


450
class RandomApply(torch.nn.Module):
451
    """Apply randomly a list of transformations with a given probability.
452
453
454
455
456
457
458
459
460
461
462
463

    .. note::
        In order to script the transformation, please use ``torch.nn.ModuleList`` as input instead of list/tuple of
        transforms as shown below:

        >>> transforms = transforms.RandomApply(torch.nn.ModuleList([
        >>>     transforms.ColorJitter(),
        >>> ]), p=0.3)
        >>> scripted_transforms = torch.jit.script(transforms)

        Make sure to use only scriptable transformations, i.e. that work with ``torch.Tensor``, does not require
        `lambda` functions or ``PIL.Image``.
464
465

    Args:
466
        transforms (sequence or torch.nn.Module): list of transformations
467
468
469
470
        p (float): probability
    """

    def __init__(self, transforms, p=0.5):
471
472
        super().__init__()
        self.transforms = transforms
473
474
        self.p = p

475
476
    def forward(self, img):
        if self.p < torch.rand(1):
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
            return img
        for t in self.transforms:
            img = t(img)
        return img

    def __repr__(self):
        format_string = self.__class__.__name__ + '('
        format_string += '\n    p={}'.format(self.p)
        for t in self.transforms:
            format_string += '\n'
            format_string += '    {0}'.format(t)
        format_string += '\n)'
        return format_string


class RandomOrder(RandomTransforms):
493
    """Apply a list of transformations in a random order. This transform does not support torchscript.
494
495
496
497
498
499
500
501
502
503
    """
    def __call__(self, img):
        order = list(range(len(self.transforms)))
        random.shuffle(order)
        for i in order:
            img = self.transforms[i](img)
        return img


class RandomChoice(RandomTransforms):
504
    """Apply single transformation randomly picked from a list. This transform does not support torchscript.
505
506
507
508
509
510
    """
    def __call__(self, img):
        t = random.choice(self.transforms)
        return t(img)


vfdev's avatar
vfdev committed
511
512
class RandomCrop(torch.nn.Module):
    """Crop the given image at a random location.
513
    If the image is torch Tensor, it is expected
514
515
    to have [..., H, W] shape, where ... means an arbitrary number of leading dimensions,
    but if non-constant padding is used, the input is expected to have at most 2 leading dimensions
516
517
518
519

    Args:
        size (sequence or int): Desired output size of the crop. If size is an
            int instead of sequence like (h, w), a square crop (size, size) is
520
            made. If provided a sequence of length 1, it will be interpreted as (size[0], size[0]).
521
        padding (int or sequence, optional): Optional padding on each border
vfdev's avatar
vfdev committed
522
            of the image. Default is None. If a single int is provided this
523
524
            is used to pad all borders. If sequence of length 2 is provided this is the padding
            on left/right and top/bottom respectively. If a sequence of length 4 is provided
vfdev's avatar
vfdev committed
525
            this is the padding for the left, top, right and bottom borders respectively.
526
            In torchscript mode padding as single int is not supported, use a sequence of length 1: ``[padding, ]``.
527
        pad_if_needed (boolean): It will pad the image if smaller than the
ekka's avatar
ekka committed
528
            desired size to avoid raising an exception. Since cropping is done
529
            after padding, the padding seems to be done at a random offset.
530
        fill (number or str or tuple): Pixel fill value for constant fill. Default is 0. If a tuple of
531
            length 3, it is used to fill R, G, B channels respectively.
532
533
534
            This value is only used when the padding_mode is constant.
            Only number is supported for torch Tensor.
            Only int or str or tuple value is supported for PIL Image.
vfdev's avatar
vfdev committed
535
        padding_mode (str): Type of padding. Should be: constant, edge, reflect or symmetric. Default is constant.
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550

             - constant: pads with a constant value, this value is specified with fill

             - edge: pads with the last value on the edge of the image

             - reflect: pads with reflection of image (without repeating the last value on the edge)

                padding [1, 2, 3, 4] with 2 elements on both sides in reflect mode
                will result in [3, 2, 1, 2, 3, 4, 3, 2]

             - symmetric: pads with reflection of image (repeating the last value on the edge)

                padding [1, 2, 3, 4] with 2 elements on both sides in symmetric mode
                will result in [2, 1, 1, 2, 3, 4, 4, 3]

551
552
553
    """

    @staticmethod
vfdev's avatar
vfdev committed
554
    def get_params(img: Tensor, output_size: Tuple[int, int]) -> Tuple[int, int, int, int]:
555
556
557
        """Get parameters for ``crop`` for a random crop.

        Args:
vfdev's avatar
vfdev committed
558
            img (PIL Image or Tensor): Image to be cropped.
559
560
561
562
563
            output_size (tuple): Expected output size of the crop.

        Returns:
            tuple: params (i, j, h, w) to be passed to ``crop`` for random crop.
        """
vfdev's avatar
vfdev committed
564
        w, h = F._get_image_size(img)
565
        th, tw = output_size
vfdev's avatar
vfdev committed
566
567
568
569
570
571

        if h + 1 < th or w + 1 < tw:
            raise ValueError(
                "Required crop size {} is larger then input image size {}".format((th, tw), (h, w))
            )

572
573
574
        if w == tw and h == th:
            return 0, 0, h, w

575
576
        i = torch.randint(0, h - th + 1, size=(1, )).item()
        j = torch.randint(0, w - tw + 1, size=(1, )).item()
577
578
        return i, j, th, tw

vfdev's avatar
vfdev committed
579
580
581
    def __init__(self, size, padding=None, pad_if_needed=False, fill=0, padding_mode="constant"):
        super().__init__()

582
583
584
585
        self.size = tuple(_setup_size(
            size, error_msg="Please provide only two dimensions (h, w) for size."
        ))

vfdev's avatar
vfdev committed
586
587
588
589
590
591
        self.padding = padding
        self.pad_if_needed = pad_if_needed
        self.fill = fill
        self.padding_mode = padding_mode

    def forward(self, img):
592
593
        """
        Args:
vfdev's avatar
vfdev committed
594
            img (PIL Image or Tensor): Image to be cropped.
595
596

        Returns:
vfdev's avatar
vfdev committed
597
            PIL Image or Tensor: Cropped image.
598
        """
599
600
        if self.padding is not None:
            img = F.pad(img, self.padding, self.fill, self.padding_mode)
601

vfdev's avatar
vfdev committed
602
        width, height = F._get_image_size(img)
603
        # pad the width if needed
vfdev's avatar
vfdev committed
604
605
606
        if self.pad_if_needed and width < self.size[1]:
            padding = [self.size[1] - width, 0]
            img = F.pad(img, padding, self.fill, self.padding_mode)
607
        # pad the height if needed
vfdev's avatar
vfdev committed
608
609
610
        if self.pad_if_needed and height < self.size[0]:
            padding = [0, self.size[0] - height]
            img = F.pad(img, padding, self.fill, self.padding_mode)
611

612
613
614
615
        i, j, h, w = self.get_params(img, self.size)

        return F.crop(img, i, j, h, w)

616
    def __repr__(self):
vfdev's avatar
vfdev committed
617
        return self.__class__.__name__ + "(size={0}, padding={1})".format(self.size, self.padding)
618

619

620
621
class RandomHorizontalFlip(torch.nn.Module):
    """Horizontally flip the given image randomly with a given probability.
622
    If the image is torch Tensor, it is expected
623
624
    to have [..., H, W] shape, where ... means an arbitrary number of leading
    dimensions
625
626
627
628
629
630

    Args:
        p (float): probability of the image being flipped. Default value is 0.5
    """

    def __init__(self, p=0.5):
631
        super().__init__()
632
        self.p = p
633

634
    def forward(self, img):
635
636
        """
        Args:
637
            img (PIL Image or Tensor): Image to be flipped.
638
639

        Returns:
640
            PIL Image or Tensor: Randomly flipped image.
641
        """
642
        if torch.rand(1) < self.p:
643
644
645
            return F.hflip(img)
        return img

646
    def __repr__(self):
647
        return self.__class__.__name__ + '(p={})'.format(self.p)
648

649

650
class RandomVerticalFlip(torch.nn.Module):
vfdev's avatar
vfdev committed
651
    """Vertically flip the given image randomly with a given probability.
652
    If the image is torch Tensor, it is expected
653
654
    to have [..., H, W] shape, where ... means an arbitrary number of leading
    dimensions
655
656
657
658
659
660

    Args:
        p (float): probability of the image being flipped. Default value is 0.5
    """

    def __init__(self, p=0.5):
661
        super().__init__()
662
        self.p = p
663

664
    def forward(self, img):
665
666
        """
        Args:
667
            img (PIL Image or Tensor): Image to be flipped.
668
669

        Returns:
670
            PIL Image or Tensor: Randomly flipped image.
671
        """
672
        if torch.rand(1) < self.p:
673
674
675
            return F.vflip(img)
        return img

676
    def __repr__(self):
677
        return self.__class__.__name__ + '(p={})'.format(self.p)
678

679

680
681
class RandomPerspective(torch.nn.Module):
    """Performs a random perspective transformation of the given image with a given probability.
682
    If the image is torch Tensor, it is expected
683
    to have [..., H, W] shape, where ... means an arbitrary number of leading dimensions.
684
685

    Args:
686
687
688
        distortion_scale (float): argument to control the degree of distortion and ranges from 0 to 1.
            Default is 0.5.
        p (float): probability of the image being transformed. Default is 0.5.
689
690
691
        interpolation (InterpolationMode): Desired interpolation enum defined by
            :class:`torchvision.transforms.InterpolationMode`. Default is ``InterpolationMode.BILINEAR``.
            If input is Tensor, only ``InterpolationMode.NEAREST``, ``InterpolationMode.BILINEAR`` are supported.
692
            For backward compatibility integer values (e.g. ``PIL.Image.NEAREST``) are still acceptable.
693
694
        fill (sequence or number): Pixel fill value for the area outside the transformed
            image. Default is ``0``. If given a number, the value is used for all bands respectively.
695
            If input is PIL Image, the options is only available for ``Pillow>=5.0.0``.
696
697
    """

698
    def __init__(self, distortion_scale=0.5, p=0.5, interpolation=InterpolationMode.BILINEAR, fill=0):
699
        super().__init__()
700
        self.p = p
701
702
703
704

        # Backward compatibility with integer value
        if isinstance(interpolation, int):
            warnings.warn(
705
706
                "Argument interpolation should be of type InterpolationMode instead of int. "
                "Please, use InterpolationMode enum."
707
708
709
            )
            interpolation = _interpolation_modes_from_int(interpolation)

710
711
        self.interpolation = interpolation
        self.distortion_scale = distortion_scale
712
713
714
715
716
717

        if fill is None:
            fill = 0
        elif not isinstance(fill, (Sequence, numbers.Number)):
            raise TypeError("Fill should be either a sequence or a number.")

718
        self.fill = fill
719

720
    def forward(self, img):
721
722
        """
        Args:
723
            img (PIL Image or Tensor): Image to be Perspectively transformed.
724
725

        Returns:
726
            PIL Image or Tensor: Randomly transformed image.
727
        """
728
729
730
731
732
733
734
735

        fill = self.fill
        if isinstance(img, Tensor):
            if isinstance(fill, (int, float)):
                fill = [float(fill)] * F._get_image_num_channels(img)
            else:
                fill = [float(f) for f in fill]

736
737
        if torch.rand(1) < self.p:
            width, height = F._get_image_size(img)
738
            startpoints, endpoints = self.get_params(width, height, self.distortion_scale)
739
            return F.perspective(img, startpoints, endpoints, self.interpolation, fill)
740
741
742
        return img

    @staticmethod
743
    def get_params(width: int, height: int, distortion_scale: float) -> Tuple[List[List[int]], List[List[int]]]:
744
745
746
        """Get parameters for ``perspective`` for a random perspective transform.

        Args:
747
748
749
            width (int): width of the image.
            height (int): height of the image.
            distortion_scale (float): argument to control the degree of distortion and ranges from 0 to 1.
750
751

        Returns:
752
            List containing [top-left, top-right, bottom-right, bottom-left] of the original image,
753
754
            List containing [top-left, top-right, bottom-right, bottom-left] of the transformed image.
        """
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
        half_height = height // 2
        half_width = width // 2
        topleft = [
            int(torch.randint(0, int(distortion_scale * half_width) + 1, size=(1, )).item()),
            int(torch.randint(0, int(distortion_scale * half_height) + 1, size=(1, )).item())
        ]
        topright = [
            int(torch.randint(width - int(distortion_scale * half_width) - 1, width, size=(1, )).item()),
            int(torch.randint(0, int(distortion_scale * half_height) + 1, size=(1, )).item())
        ]
        botright = [
            int(torch.randint(width - int(distortion_scale * half_width) - 1, width, size=(1, )).item()),
            int(torch.randint(height - int(distortion_scale * half_height) - 1, height, size=(1, )).item())
        ]
        botleft = [
            int(torch.randint(0, int(distortion_scale * half_width) + 1, size=(1, )).item()),
            int(torch.randint(height - int(distortion_scale * half_height) - 1, height, size=(1, )).item())
        ]
        startpoints = [[0, 0], [width - 1, 0], [width - 1, height - 1], [0, height - 1]]
774
775
776
777
778
779
780
        endpoints = [topleft, topright, botright, botleft]
        return startpoints, endpoints

    def __repr__(self):
        return self.__class__.__name__ + '(p={})'.format(self.p)


781
class RandomResizedCrop(torch.nn.Module):
782
783
    """Crop a random portion of image and resize it to a given size.

784
    If the image is torch Tensor, it is expected
785
    to have [..., H, W] shape, where ... means an arbitrary number of leading dimensions
786

787
788
789
    A crop of the original image is made: the crop has a random area (H * W)
    and a random aspect ratio. This crop is finally resized to the given
    size. This is popularly used to train the Inception networks.
790
791

    Args:
792
        size (int or sequence): expected output size of the crop, for each edge. If size is an
793
            int instead of sequence like (h, w), a square output size ``(size, size)`` is
794
795
            made. If provided a sequence of length 1, it will be interpreted as (size[0], size[0]).
            In torchscript mode size as single int is not supported, use a sequence of length 1: ``[size, ]``.
Nicolas Hug's avatar
Nicolas Hug committed
796
797
        scale (tuple of float): Specifies the lower and upper bounds for the random area of the crop,
            before resizing. The scale is defined with respect to the area of the original image.
798
799
        ratio (tuple of float): lower and upper bounds for the random aspect ratio of the crop, before
            resizing.
800
801
802
803
        interpolation (InterpolationMode): Desired interpolation enum defined by
            :class:`torchvision.transforms.InterpolationMode`. Default is ``InterpolationMode.BILINEAR``.
            If input is Tensor, only ``InterpolationMode.NEAREST``, ``InterpolationMode.BILINEAR`` and
            ``InterpolationMode.BICUBIC`` are supported.
804
805
            For backward compatibility integer values (e.g. ``PIL.Image.NEAREST``) are still acceptable.

806
807
    """

808
    def __init__(self, size, scale=(0.08, 1.0), ratio=(3. / 4., 4. / 3.), interpolation=InterpolationMode.BILINEAR):
809
        super().__init__()
810
        self.size = _setup_size(size, error_msg="Please provide only two dimensions (h, w) for size.")
811

812
        if not isinstance(scale, Sequence):
813
            raise TypeError("Scale should be a sequence")
814
        if not isinstance(ratio, Sequence):
815
            raise TypeError("Ratio should be a sequence")
816
        if (scale[0] > scale[1]) or (ratio[0] > ratio[1]):
817
            warnings.warn("Scale and ratio should be of kind (min, max)")
818

819
820
821
        # Backward compatibility with integer value
        if isinstance(interpolation, int):
            warnings.warn(
822
823
                "Argument interpolation should be of type InterpolationMode instead of int. "
                "Please, use InterpolationMode enum."
824
825
826
            )
            interpolation = _interpolation_modes_from_int(interpolation)

827
        self.interpolation = interpolation
828
829
        self.scale = scale
        self.ratio = ratio
830
831

    @staticmethod
832
    def get_params(
833
            img: Tensor, scale: List[float], ratio: List[float]
834
    ) -> Tuple[int, int, int, int]:
835
836
837
        """Get parameters for ``crop`` for a random sized crop.

        Args:
838
            img (PIL Image or Tensor): Input image.
839
840
            scale (list): range of scale of the origin size cropped
            ratio (list): range of aspect ratio of the origin aspect ratio cropped
841
842
843
844
845

        Returns:
            tuple: params (i, j, h, w) to be passed to ``crop`` for a random
                sized crop.
        """
vfdev's avatar
vfdev committed
846
        width, height = F._get_image_size(img)
Zhicheng Yan's avatar
Zhicheng Yan committed
847
        area = height * width
848

849
        log_ratio = torch.log(torch.tensor(ratio))
850
        for _ in range(10):
851
            target_area = area * torch.empty(1).uniform_(scale[0], scale[1]).item()
852
853
854
            aspect_ratio = torch.exp(
                torch.empty(1).uniform_(log_ratio[0], log_ratio[1])
            ).item()
855
856
857
858

            w = int(round(math.sqrt(target_area * aspect_ratio)))
            h = int(round(math.sqrt(target_area / aspect_ratio)))

Zhicheng Yan's avatar
Zhicheng Yan committed
859
            if 0 < w <= width and 0 < h <= height:
860
861
                i = torch.randint(0, height - h + 1, size=(1,)).item()
                j = torch.randint(0, width - w + 1, size=(1,)).item()
862
863
                return i, j, h, w

864
        # Fallback to central crop
Zhicheng Yan's avatar
Zhicheng Yan committed
865
        in_ratio = float(width) / float(height)
866
        if in_ratio < min(ratio):
Zhicheng Yan's avatar
Zhicheng Yan committed
867
            w = width
868
            h = int(round(w / min(ratio)))
869
        elif in_ratio > max(ratio):
Zhicheng Yan's avatar
Zhicheng Yan committed
870
            h = height
871
            w = int(round(h * max(ratio)))
872
        else:  # whole image
Zhicheng Yan's avatar
Zhicheng Yan committed
873
874
875
876
            w = width
            h = height
        i = (height - h) // 2
        j = (width - w) // 2
877
        return i, j, h, w
878

879
    def forward(self, img):
880
881
        """
        Args:
882
            img (PIL Image or Tensor): Image to be cropped and resized.
883
884

        Returns:
885
            PIL Image or Tensor: Randomly cropped and resized image.
886
        """
887
        i, j, h, w = self.get_params(img, self.scale, self.ratio)
888
889
        return F.resized_crop(img, i, j, h, w, self.size, self.interpolation)

890
    def __repr__(self):
891
        interpolate_str = self.interpolation.value
892
        format_string = self.__class__.__name__ + '(size={0}'.format(self.size)
893
894
        format_string += ', scale={0}'.format(tuple(round(s, 4) for s in self.scale))
        format_string += ', ratio={0}'.format(tuple(round(r, 4) for r in self.ratio))
895
896
        format_string += ', interpolation={0})'.format(interpolate_str)
        return format_string
897

898
899
900
901
902
903
904
905
906
907
908

class RandomSizedCrop(RandomResizedCrop):
    """
    Note: This transform is deprecated in favor of RandomResizedCrop.
    """
    def __init__(self, *args, **kwargs):
        warnings.warn("The use of the transforms.RandomSizedCrop transform is deprecated, " +
                      "please use transforms.RandomResizedCrop instead.")
        super(RandomSizedCrop, self).__init__(*args, **kwargs)


vfdev's avatar
vfdev committed
909
910
class FiveCrop(torch.nn.Module):
    """Crop the given image into four corners and the central crop.
911
    If the image is torch Tensor, it is expected
vfdev's avatar
vfdev committed
912
913
    to have [..., H, W] shape, where ... means an arbitrary number of leading
    dimensions
914
915
916
917
918
919
920
921
922

    .. Note::
         This transform returns a tuple of images and there may be a mismatch in the number of
         inputs and targets your Dataset returns. See below for an example of how to deal with
         this.

    Args:
         size (sequence or int): Desired output size of the crop. If size is an ``int``
            instead of sequence like (h, w), a square crop of size (size, size) is made.
923
            If provided a sequence of length 1, it will be interpreted as (size[0], size[0]).
924
925
926
927
928
929
930
931
932
933
934
935
936
937

    Example:
         >>> transform = Compose([
         >>>    FiveCrop(size), # this is a list of PIL Images
         >>>    Lambda(lambda crops: torch.stack([ToTensor()(crop) for crop in crops])) # returns a 4D tensor
         >>> ])
         >>> #In your test loop you can do the following:
         >>> input, target = batch # input is a 5d tensor, target is 2d
         >>> bs, ncrops, c, h, w = input.size()
         >>> result = model(input.view(-1, c, h, w)) # fuse batch size and ncrops
         >>> result_avg = result.view(bs, ncrops, -1).mean(1) # avg over crops
    """

    def __init__(self, size):
vfdev's avatar
vfdev committed
938
        super().__init__()
939
        self.size = _setup_size(size, error_msg="Please provide only two dimensions (h, w) for size.")
940

vfdev's avatar
vfdev committed
941
942
943
944
945
946
947
948
    def forward(self, img):
        """
        Args:
            img (PIL Image or Tensor): Image to be cropped.

        Returns:
            tuple of 5 images. Image can be PIL Image or Tensor
        """
949
950
        return F.five_crop(img, self.size)

951
952
953
    def __repr__(self):
        return self.__class__.__name__ + '(size={0})'.format(self.size)

954

vfdev's avatar
vfdev committed
955
956
957
class TenCrop(torch.nn.Module):
    """Crop the given image into four corners and the central crop plus the flipped version of
    these (horizontal flipping is used by default).
958
    If the image is torch Tensor, it is expected
vfdev's avatar
vfdev committed
959
960
    to have [..., H, W] shape, where ... means an arbitrary number of leading
    dimensions
961
962
963
964
965
966
967
968
969

    .. Note::
         This transform returns a tuple of images and there may be a mismatch in the number of
         inputs and targets your Dataset returns. See below for an example of how to deal with
         this.

    Args:
        size (sequence or int): Desired output size of the crop. If size is an
            int instead of sequence like (h, w), a square crop (size, size) is
970
            made. If provided a sequence of length 1, it will be interpreted as (size[0], size[0]).
971
        vertical_flip (bool): Use vertical flipping instead of horizontal
972
973
974
975
976
977
978
979
980
981
982
983
984
985

    Example:
         >>> transform = Compose([
         >>>    TenCrop(size), # this is a list of PIL Images
         >>>    Lambda(lambda crops: torch.stack([ToTensor()(crop) for crop in crops])) # returns a 4D tensor
         >>> ])
         >>> #In your test loop you can do the following:
         >>> input, target = batch # input is a 5d tensor, target is 2d
         >>> bs, ncrops, c, h, w = input.size()
         >>> result = model(input.view(-1, c, h, w)) # fuse batch size and ncrops
         >>> result_avg = result.view(bs, ncrops, -1).mean(1) # avg over crops
    """

    def __init__(self, size, vertical_flip=False):
vfdev's avatar
vfdev committed
986
        super().__init__()
987
        self.size = _setup_size(size, error_msg="Please provide only two dimensions (h, w) for size.")
988
989
        self.vertical_flip = vertical_flip

vfdev's avatar
vfdev committed
990
991
992
993
994
995
996
997
    def forward(self, img):
        """
        Args:
            img (PIL Image or Tensor): Image to be cropped.

        Returns:
            tuple of 10 images. Image can be PIL Image or Tensor
        """
998
999
        return F.ten_crop(img, self.size, self.vertical_flip)

1000
    def __repr__(self):
1001
        return self.__class__.__name__ + '(size={0}, vertical_flip={1})'.format(self.size, self.vertical_flip)
1002

1003

1004
class LinearTransformation(torch.nn.Module):
ekka's avatar
ekka committed
1005
    """Transform a tensor image with a square transformation matrix and a mean_vector computed
1006
    offline.
1007
    This transform does not support PIL Image.
ekka's avatar
ekka committed
1008
1009
1010
    Given transformation_matrix and mean_vector, will flatten the torch.*Tensor and
    subtract mean_vector from it which is then followed by computing the dot
    product with the transformation matrix and then reshaping the tensor to its
1011
    original shape.
1012

1013
    Applications:
1014
        whitening transformation: Suppose X is a column vector zero-centered data.
1015
1016
1017
        Then compute the data covariance matrix [D x D] with torch.mm(X.t(), X),
        perform SVD on this matrix and pass it as transformation_matrix.

1018
1019
    Args:
        transformation_matrix (Tensor): tensor [D x D], D = C x H x W
ekka's avatar
ekka committed
1020
        mean_vector (Tensor): tensor [D], D = C x H x W
1021
1022
    """

ekka's avatar
ekka committed
1023
    def __init__(self, transformation_matrix, mean_vector):
1024
        super().__init__()
1025
1026
1027
        if transformation_matrix.size(0) != transformation_matrix.size(1):
            raise ValueError("transformation_matrix should be square. Got " +
                             "[{} x {}] rectangular matrix.".format(*transformation_matrix.size()))
ekka's avatar
ekka committed
1028
1029
1030

        if mean_vector.size(0) != transformation_matrix.size(0):
            raise ValueError("mean_vector should have the same length {}".format(mean_vector.size(0)) +
Francisco Massa's avatar
Francisco Massa committed
1031
1032
                             " as any one of the dimensions of the transformation_matrix [{}]"
                             .format(tuple(transformation_matrix.size())))
ekka's avatar
ekka committed
1033

1034
1035
1036
1037
        if transformation_matrix.device != mean_vector.device:
            raise ValueError("Input tensors should be on the same device. Got {} and {}"
                             .format(transformation_matrix.device, mean_vector.device))

1038
        self.transformation_matrix = transformation_matrix
ekka's avatar
ekka committed
1039
        self.mean_vector = mean_vector
1040

1041
    def forward(self, tensor: Tensor) -> Tensor:
1042
1043
        """
        Args:
vfdev's avatar
vfdev committed
1044
            tensor (Tensor): Tensor image to be whitened.
1045
1046
1047
1048

        Returns:
            Tensor: Transformed image.
        """
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
        shape = tensor.shape
        n = shape[-3] * shape[-2] * shape[-1]
        if n != self.transformation_matrix.shape[0]:
            raise ValueError("Input tensor and transformation matrix have incompatible shape." +
                             "[{} x {} x {}] != ".format(shape[-3], shape[-2], shape[-1]) +
                             "{}".format(self.transformation_matrix.shape[0]))

        if tensor.device.type != self.mean_vector.device.type:
            raise ValueError("Input tensor should be on the same device as transformation matrix and mean vector. "
                             "Got {} vs {}".format(tensor.device, self.mean_vector.device))

        flat_tensor = tensor.view(-1, n) - self.mean_vector
1061
        transformed_tensor = torch.mm(flat_tensor, self.transformation_matrix)
1062
        tensor = transformed_tensor.view(shape)
1063
1064
        return tensor

1065
    def __repr__(self):
ekka's avatar
ekka committed
1066
1067
1068
        format_string = self.__class__.__name__ + '(transformation_matrix='
        format_string += (str(self.transformation_matrix.tolist()) + ')')
        format_string += (", (mean_vector=" + str(self.mean_vector.tolist()) + ')')
1069
1070
        return format_string

1071

1072
class ColorJitter(torch.nn.Module):
1073
    """Randomly change the brightness, contrast, saturation and hue of an image.
1074
    If the image is torch Tensor, it is expected
1075
1076
    to have [..., 3, H, W] shape, where ... means an arbitrary number of leading dimensions.
    If img is PIL Image, mode "1", "L", "I", "F" and modes with transparency (alpha channel) are not supported.
1077
1078

    Args:
yaox12's avatar
yaox12 committed
1079
1080
1081
1082
1083
1084
1085
1086
1087
1088
1089
1090
        brightness (float or tuple of float (min, max)): How much to jitter brightness.
            brightness_factor is chosen uniformly from [max(0, 1 - brightness), 1 + brightness]
            or the given [min, max]. Should be non negative numbers.
        contrast (float or tuple of float (min, max)): How much to jitter contrast.
            contrast_factor is chosen uniformly from [max(0, 1 - contrast), 1 + contrast]
            or the given [min, max]. Should be non negative numbers.
        saturation (float or tuple of float (min, max)): How much to jitter saturation.
            saturation_factor is chosen uniformly from [max(0, 1 - saturation), 1 + saturation]
            or the given [min, max]. Should be non negative numbers.
        hue (float or tuple of float (min, max)): How much to jitter hue.
            hue_factor is chosen uniformly from [-hue, hue] or the given [min, max].
            Should have 0<= hue <= 0.5 or -0.5 <= min <= max <= 0.5.
1091
    """
1092

1093
    def __init__(self, brightness=0, contrast=0, saturation=0, hue=0):
1094
        super().__init__()
yaox12's avatar
yaox12 committed
1095
1096
1097
1098
1099
1100
        self.brightness = self._check_input(brightness, 'brightness')
        self.contrast = self._check_input(contrast, 'contrast')
        self.saturation = self._check_input(saturation, 'saturation')
        self.hue = self._check_input(hue, 'hue', center=0, bound=(-0.5, 0.5),
                                     clip_first_on_zero=False)

1101
    @torch.jit.unused
yaox12's avatar
yaox12 committed
1102
1103
1104
1105
    def _check_input(self, value, name, center=1, bound=(0, float('inf')), clip_first_on_zero=True):
        if isinstance(value, numbers.Number):
            if value < 0:
                raise ValueError("If {} is a single number, it must be non negative.".format(name))
1106
            value = [center - float(value), center + float(value)]
yaox12's avatar
yaox12 committed
1107
            if clip_first_on_zero:
1108
                value[0] = max(value[0], 0.0)
yaox12's avatar
yaox12 committed
1109
1110
1111
1112
1113
1114
1115
1116
1117
1118
1119
        elif isinstance(value, (tuple, list)) and len(value) == 2:
            if not bound[0] <= value[0] <= value[1] <= bound[1]:
                raise ValueError("{} values should be between {}".format(name, bound))
        else:
            raise TypeError("{} should be a single number or a list/tuple with lenght 2.".format(name))

        # if value is 0 or (1., 1.) for brightness/contrast/saturation
        # or (0., 0.) for hue, do nothing
        if value[0] == value[1] == center:
            value = None
        return value
1120
1121

    @staticmethod
1122
1123
1124
1125
1126
1127
    def get_params(brightness: Optional[List[float]],
                   contrast: Optional[List[float]],
                   saturation: Optional[List[float]],
                   hue: Optional[List[float]]
                   ) -> Tuple[Tensor, Optional[float], Optional[float], Optional[float], Optional[float]]:
        """Get the parameters for the randomized transform to be applied on image.
1128

1129
1130
1131
1132
1133
1134
1135
1136
1137
        Args:
            brightness (tuple of float (min, max), optional): The range from which the brightness_factor is chosen
                uniformly. Pass None to turn off the transformation.
            contrast (tuple of float (min, max), optional): The range from which the contrast_factor is chosen
                uniformly. Pass None to turn off the transformation.
            saturation (tuple of float (min, max), optional): The range from which the saturation_factor is chosen
                uniformly. Pass None to turn off the transformation.
            hue (tuple of float (min, max), optional): The range from which the hue_factor is chosen uniformly.
                Pass None to turn off the transformation.
1138
1139

        Returns:
1140
1141
            tuple: The parameters used to apply the randomized transform
            along with their random order.
1142
        """
1143
        fn_idx = torch.randperm(4)
1144

1145
1146
1147
1148
        b = None if brightness is None else float(torch.empty(1).uniform_(brightness[0], brightness[1]))
        c = None if contrast is None else float(torch.empty(1).uniform_(contrast[0], contrast[1]))
        s = None if saturation is None else float(torch.empty(1).uniform_(saturation[0], saturation[1]))
        h = None if hue is None else float(torch.empty(1).uniform_(hue[0], hue[1]))
1149

1150
        return fn_idx, b, c, s, h
1151

1152
    def forward(self, img):
1153
1154
        """
        Args:
1155
            img (PIL Image or Tensor): Input image.
1156
1157

        Returns:
1158
1159
            PIL Image or Tensor: Color jittered image.
        """
1160
1161
1162
        fn_idx, brightness_factor, contrast_factor, saturation_factor, hue_factor = \
            self.get_params(self.brightness, self.contrast, self.saturation, self.hue)

1163
        for fn_id in fn_idx:
1164
            if fn_id == 0 and brightness_factor is not None:
1165
                img = F.adjust_brightness(img, brightness_factor)
1166
            elif fn_id == 1 and contrast_factor is not None:
1167
                img = F.adjust_contrast(img, contrast_factor)
1168
            elif fn_id == 2 and saturation_factor is not None:
1169
                img = F.adjust_saturation(img, saturation_factor)
1170
            elif fn_id == 3 and hue_factor is not None:
1171
1172
1173
                img = F.adjust_hue(img, hue_factor)

        return img
1174

1175
    def __repr__(self):
1176
1177
1178
1179
1180
1181
        format_string = self.__class__.__name__ + '('
        format_string += 'brightness={0}'.format(self.brightness)
        format_string += ', contrast={0}'.format(self.contrast)
        format_string += ', saturation={0}'.format(self.saturation)
        format_string += ', hue={0})'.format(self.hue)
        return format_string
1182

1183

1184
class RandomRotation(torch.nn.Module):
1185
    """Rotate the image by angle.
1186
    If the image is torch Tensor, it is expected
1187
    to have [..., H, W] shape, where ... means an arbitrary number of leading dimensions.
1188
1189

    Args:
1190
        degrees (sequence or number): Range of degrees to select from.
1191
1192
            If degrees is a number instead of sequence like (min, max), the range of degrees
            will be (-degrees, +degrees).
1193
1194
1195
        interpolation (InterpolationMode): Desired interpolation enum defined by
            :class:`torchvision.transforms.InterpolationMode`. Default is ``InterpolationMode.NEAREST``.
            If input is Tensor, only ``InterpolationMode.NEAREST``, ``InterpolationMode.BILINEAR`` are supported.
1196
            For backward compatibility integer values (e.g. ``PIL.Image.NEAREST``) are still acceptable.
1197
1198
1199
1200
        expand (bool, optional): Optional expansion flag.
            If true, expands the output to make it large enough to hold the entire rotated image.
            If false or omitted, make the output image the same size as the input image.
            Note that the expand flag assumes rotation around the center and no translation.
1201
        center (sequence, optional): Optional center of rotation, (x, y). Origin is the upper left corner.
1202
            Default is the center of the image.
1203
1204
        fill (sequence or number): Pixel fill value for the area outside the rotated
            image. Default is ``0``. If given a number, the value is used for all bands respectively.
1205
            If input is PIL Image, the options is only available for ``Pillow>=5.2.0``.
1206
        resample (int, optional): deprecated argument and will be removed since v0.10.0.
1207
            Please use the ``interpolation`` parameter instead.
1208
1209
1210

    .. _filters: https://pillow.readthedocs.io/en/latest/handbook/concepts.html#filters

1211
1212
    """

1213
    def __init__(
1214
        self, degrees, interpolation=InterpolationMode.NEAREST, expand=False, center=None, fill=0, resample=None
1215
    ):
1216
        super().__init__()
1217
1218
1219
1220
1221
1222
1223
1224
1225
        if resample is not None:
            warnings.warn(
                "Argument resample is deprecated and will be removed since v0.10.0. Please, use interpolation instead"
            )
            interpolation = _interpolation_modes_from_int(resample)

        # Backward compatibility with integer value
        if isinstance(interpolation, int):
            warnings.warn(
1226
1227
                "Argument interpolation should be of type InterpolationMode instead of int. "
                "Please, use InterpolationMode enum."
1228
1229
1230
            )
            interpolation = _interpolation_modes_from_int(interpolation)

1231
        self.degrees = _setup_angle(degrees, name="degrees", req_sizes=(2, ))
1232
1233

        if center is not None:
1234
            _check_sequence_input(center, "center", req_sizes=(2, ))
1235
1236

        self.center = center
1237

1238
        self.resample = self.interpolation = interpolation
1239
        self.expand = expand
1240
1241
1242
1243
1244
1245

        if fill is None:
            fill = 0
        elif not isinstance(fill, (Sequence, numbers.Number)):
            raise TypeError("Fill should be either a sequence or a number.")

1246
        self.fill = fill
1247
1248

    @staticmethod
1249
    def get_params(degrees: List[float]) -> float:
1250
1251
1252
        """Get parameters for ``rotate`` for a random rotation.

        Returns:
1253
            float: angle parameter to be passed to ``rotate`` for random rotation.
1254
        """
1255
        angle = float(torch.empty(1).uniform_(float(degrees[0]), float(degrees[1])).item())
1256
1257
        return angle

1258
    def forward(self, img):
1259
        """
1260
        Args:
1261
            img (PIL Image or Tensor): Image to be rotated.
1262
1263

        Returns:
1264
            PIL Image or Tensor: Rotated image.
1265
        """
1266
1267
1268
1269
1270
1271
        fill = self.fill
        if isinstance(img, Tensor):
            if isinstance(fill, (int, float)):
                fill = [float(fill)] * F._get_image_num_channels(img)
            else:
                fill = [float(f) for f in fill]
1272
        angle = self.get_params(self.degrees)
1273
1274

        return F.rotate(img, angle, self.resample, self.expand, self.center, fill)
1275

1276
    def __repr__(self):
1277
        interpolate_str = self.interpolation.value
1278
        format_string = self.__class__.__name__ + '(degrees={0}'.format(self.degrees)
1279
        format_string += ', interpolation={0}'.format(interpolate_str)
1280
1281
1282
        format_string += ', expand={0}'.format(self.expand)
        if self.center is not None:
            format_string += ', center={0}'.format(self.center)
1283
1284
        if self.fill is not None:
            format_string += ', fill={0}'.format(self.fill)
1285
1286
        format_string += ')'
        return format_string
1287

1288

1289
1290
class RandomAffine(torch.nn.Module):
    """Random affine transformation of the image keeping center invariant.
1291
    If the image is torch Tensor, it is expected
1292
    to have [..., H, W] shape, where ... means an arbitrary number of leading dimensions.
1293
1294

    Args:
1295
        degrees (sequence or number): Range of degrees to select from.
1296
            If degrees is a number instead of sequence like (min, max), the range of degrees
1297
            will be (-degrees, +degrees). Set to 0 to deactivate rotations.
1298
1299
1300
1301
1302
1303
        translate (tuple, optional): tuple of maximum absolute fraction for horizontal
            and vertical translations. For example translate=(a, b), then horizontal shift
            is randomly sampled in the range -img_width * a < dx < img_width * a and vertical shift is
            randomly sampled in the range -img_height * b < dy < img_height * b. Will not translate by default.
        scale (tuple, optional): scaling factor interval, e.g (a, b), then scale is
            randomly sampled from the range a <= scale <= b. Will keep original scale by default.
1304
        shear (sequence or number, optional): Range of degrees to select from.
ptrblck's avatar
ptrblck committed
1305
            If shear is a number, a shear parallel to the x axis in the range (-shear, +shear)
1306
1307
            will be applied. Else if shear is a sequence of 2 values a shear parallel to the x axis in the
            range (shear[0], shear[1]) will be applied. Else if shear is a sequence of 4 values,
ptrblck's avatar
ptrblck committed
1308
            a x-axis shear in (shear[0], shear[1]) and y-axis shear in (shear[2], shear[3]) will be applied.
1309
            Will not apply shear by default.
1310
1311
1312
        interpolation (InterpolationMode): Desired interpolation enum defined by
            :class:`torchvision.transforms.InterpolationMode`. Default is ``InterpolationMode.NEAREST``.
            If input is Tensor, only ``InterpolationMode.NEAREST``, ``InterpolationMode.BILINEAR`` are supported.
1313
            For backward compatibility integer values (e.g. ``PIL.Image.NEAREST``) are still acceptable.
1314
1315
        fill (sequence or number): Pixel fill value for the area outside the transformed
            image. Default is ``0``. If given a number, the value is used for all bands respectively.
1316
            If input is PIL Image, the options is only available for ``Pillow>=5.0.0``.
1317
        fillcolor (sequence or number, optional): deprecated argument and will be removed since v0.10.0.
1318
            Please use the ``fill`` parameter instead.
1319
        resample (int, optional): deprecated argument and will be removed since v0.10.0.
1320
            Please use the ``interpolation`` parameter instead.
1321
1322
1323

    .. _filters: https://pillow.readthedocs.io/en/latest/handbook/concepts.html#filters

1324
1325
    """

1326
    def __init__(
1327
        self, degrees, translate=None, scale=None, shear=None, interpolation=InterpolationMode.NEAREST, fill=0,
1328
1329
        fillcolor=None, resample=None
    ):
1330
        super().__init__()
1331
1332
1333
1334
1335
1336
1337
1338
1339
        if resample is not None:
            warnings.warn(
                "Argument resample is deprecated and will be removed since v0.10.0. Please, use interpolation instead"
            )
            interpolation = _interpolation_modes_from_int(resample)

        # Backward compatibility with integer value
        if isinstance(interpolation, int):
            warnings.warn(
1340
1341
                "Argument interpolation should be of type InterpolationMode instead of int. "
                "Please, use InterpolationMode enum."
1342
1343
1344
1345
1346
1347
1348
1349
1350
            )
            interpolation = _interpolation_modes_from_int(interpolation)

        if fillcolor is not None:
            warnings.warn(
                "Argument fillcolor is deprecated and will be removed since v0.10.0. Please, use fill instead"
            )
            fill = fillcolor

1351
        self.degrees = _setup_angle(degrees, name="degrees", req_sizes=(2, ))
1352
1353

        if translate is not None:
1354
            _check_sequence_input(translate, "translate", req_sizes=(2, ))
1355
1356
1357
1358
1359
1360
            for t in translate:
                if not (0.0 <= t <= 1.0):
                    raise ValueError("translation values should be between 0 and 1")
        self.translate = translate

        if scale is not None:
1361
            _check_sequence_input(scale, "scale", req_sizes=(2, ))
1362
1363
1364
1365
1366
1367
            for s in scale:
                if s <= 0:
                    raise ValueError("scale values should be positive")
        self.scale = scale

        if shear is not None:
1368
            self.shear = _setup_angle(shear, name="shear", req_sizes=(2, 4))
1369
1370
1371
        else:
            self.shear = shear

1372
        self.resample = self.interpolation = interpolation
1373
1374
1375
1376
1377
1378

        if fill is None:
            fill = 0
        elif not isinstance(fill, (Sequence, numbers.Number)):
            raise TypeError("Fill should be either a sequence or a number.")

1379
        self.fillcolor = self.fill = fill
1380
1381

    @staticmethod
1382
1383
1384
1385
1386
1387
1388
    def get_params(
            degrees: List[float],
            translate: Optional[List[float]],
            scale_ranges: Optional[List[float]],
            shears: Optional[List[float]],
            img_size: List[int]
    ) -> Tuple[float, Tuple[int, int], float, Tuple[float, float]]:
1389
1390
1391
        """Get parameters for affine transformation

        Returns:
1392
            params to be passed to the affine transformation
1393
        """
1394
        angle = float(torch.empty(1).uniform_(float(degrees[0]), float(degrees[1])).item())
1395
        if translate is not None:
1396
1397
1398
1399
1400
            max_dx = float(translate[0] * img_size[0])
            max_dy = float(translate[1] * img_size[1])
            tx = int(round(torch.empty(1).uniform_(-max_dx, max_dx).item()))
            ty = int(round(torch.empty(1).uniform_(-max_dy, max_dy).item()))
            translations = (tx, ty)
1401
1402
1403
1404
        else:
            translations = (0, 0)

        if scale_ranges is not None:
1405
            scale = float(torch.empty(1).uniform_(scale_ranges[0], scale_ranges[1]).item())
1406
1407
1408
        else:
            scale = 1.0

1409
        shear_x = shear_y = 0.0
1410
        if shears is not None:
1411
1412
1413
1414
1415
            shear_x = float(torch.empty(1).uniform_(shears[0], shears[1]).item())
            if len(shears) == 4:
                shear_y = float(torch.empty(1).uniform_(shears[2], shears[3]).item())

        shear = (shear_x, shear_y)
1416
1417
1418

        return angle, translations, scale, shear

1419
    def forward(self, img):
1420
        """
1421
            img (PIL Image or Tensor): Image to be transformed.
1422
1423

        Returns:
1424
            PIL Image or Tensor: Affine transformed image.
1425
        """
1426
1427
1428
1429
1430
1431
        fill = self.fill
        if isinstance(img, Tensor):
            if isinstance(fill, (int, float)):
                fill = [float(fill)] * F._get_image_num_channels(img)
            else:
                fill = [float(f) for f in fill]
1432
1433
1434
1435

        img_size = F._get_image_size(img)

        ret = self.get_params(self.degrees, self.translate, self.scale, self.shear, img_size)
1436
1437

        return F.affine(img, *ret, interpolation=self.interpolation, fill=fill)
1438
1439
1440
1441
1442
1443
1444
1445
1446

    def __repr__(self):
        s = '{name}(degrees={degrees}'
        if self.translate is not None:
            s += ', translate={translate}'
        if self.scale is not None:
            s += ', scale={scale}'
        if self.shear is not None:
            s += ', shear={shear}'
1447
        if self.interpolation != InterpolationMode.NEAREST:
1448
1449
1450
            s += ', interpolation={interpolation}'
        if self.fill != 0:
            s += ', fill={fill}'
1451
1452
        s += ')'
        d = dict(self.__dict__)
1453
        d['interpolation'] = self.interpolation.value
1454
1455
1456
        return s.format(name=self.__class__.__name__, **d)


1457
class Grayscale(torch.nn.Module):
1458
    """Convert image to grayscale.
1459
1460
    If the image is torch Tensor, it is expected
    to have [..., 3, H, W] shape, where ... means an arbitrary number of leading dimensions
1461

1462
1463
1464
1465
    Args:
        num_output_channels (int): (1 or 3) number of channels desired for output image

    Returns:
1466
        PIL Image: Grayscale version of the input.
1467
1468
         - If ``num_output_channels == 1`` : returned image is single channel
         - If ``num_output_channels == 3`` : returned image is 3 channel with r == g == b
1469
1470
1471
1472

    """

    def __init__(self, num_output_channels=1):
1473
        super().__init__()
1474
1475
        self.num_output_channels = num_output_channels

vfdev's avatar
vfdev committed
1476
    def forward(self, img):
1477
1478
        """
        Args:
1479
            img (PIL Image or Tensor): Image to be converted to grayscale.
1480
1481

        Returns:
1482
            PIL Image or Tensor: Grayscaled image.
1483
        """
1484
        return F.rgb_to_grayscale(img, num_output_channels=self.num_output_channels)
1485

1486
    def __repr__(self):
1487
        return self.__class__.__name__ + '(num_output_channels={0})'.format(self.num_output_channels)
1488

1489

1490
class RandomGrayscale(torch.nn.Module):
1491
    """Randomly convert image to grayscale with a probability of p (default 0.1).
1492
1493
    If the image is torch Tensor, it is expected
    to have [..., 3, H, W] shape, where ... means an arbitrary number of leading dimensions
1494

1495
1496
1497
1498
    Args:
        p (float): probability that image should be converted to grayscale.

    Returns:
1499
        PIL Image or Tensor: Grayscale version of the input image with probability p and unchanged
1500
1501
1502
        with probability (1-p).
        - If input image is 1 channel: grayscale version is 1 channel
        - If input image is 3 channel: grayscale version is 3 channel with r == g == b
1503
1504
1505
1506

    """

    def __init__(self, p=0.1):
1507
        super().__init__()
1508
1509
        self.p = p

vfdev's avatar
vfdev committed
1510
    def forward(self, img):
1511
1512
        """
        Args:
1513
            img (PIL Image or Tensor): Image to be converted to grayscale.
1514
1515

        Returns:
1516
            PIL Image or Tensor: Randomly grayscaled image.
1517
        """
1518
1519
1520
        num_output_channels = F._get_image_num_channels(img)
        if torch.rand(1) < self.p:
            return F.rgb_to_grayscale(img, num_output_channels=num_output_channels)
1521
        return img
1522
1523

    def __repr__(self):
1524
        return self.__class__.__name__ + '(p={0})'.format(self.p)
1525
1526


1527
class RandomErasing(torch.nn.Module):
1528
1529
    """ Randomly selects a rectangle region in an torch Tensor image and erases its pixels.
    This transform does not support PIL Image.
vfdev's avatar
vfdev committed
1530
    'Random Erasing Data Augmentation' by Zhong et al. See https://arxiv.org/abs/1708.04896
1531

1532
1533
1534
1535
1536
1537
1538
1539
    Args:
         p: probability that the random erasing operation will be performed.
         scale: range of proportion of erased area against input image.
         ratio: range of aspect ratio of erased area.
         value: erasing value. Default is 0. If a single int, it is used to
            erase all pixels. If a tuple of length 3, it is used to erase
            R, G, B channels respectively.
            If a str of 'random', erasing each pixel with random values.
Zhun Zhong's avatar
Zhun Zhong committed
1540
         inplace: boolean to make this transform inplace. Default set to False.
1541

1542
1543
    Returns:
        Erased Image.
1544

vfdev's avatar
vfdev committed
1545
    Example:
1546
        >>> transform = transforms.Compose([
1547
1548
1549
1550
        >>>   transforms.RandomHorizontalFlip(),
        >>>   transforms.ToTensor(),
        >>>   transforms.Normalize((0.485, 0.456, 0.406), (0.229, 0.224, 0.225)),
        >>>   transforms.RandomErasing(),
1551
1552
1553
        >>> ])
    """

Zhun Zhong's avatar
Zhun Zhong committed
1554
    def __init__(self, p=0.5, scale=(0.02, 0.33), ratio=(0.3, 3.3), value=0, inplace=False):
1555
1556
1557
1558
1559
1560
1561
1562
1563
        super().__init__()
        if not isinstance(value, (numbers.Number, str, tuple, list)):
            raise TypeError("Argument value should be either a number or str or a sequence")
        if isinstance(value, str) and value != "random":
            raise ValueError("If value is str, it should be 'random'")
        if not isinstance(scale, (tuple, list)):
            raise TypeError("Scale should be a sequence")
        if not isinstance(ratio, (tuple, list)):
            raise TypeError("Ratio should be a sequence")
1564
        if (scale[0] > scale[1]) or (ratio[0] > ratio[1]):
1565
            warnings.warn("Scale and ratio should be of kind (min, max)")
1566
        if scale[0] < 0 or scale[1] > 1:
1567
            raise ValueError("Scale should be between 0 and 1")
1568
        if p < 0 or p > 1:
1569
            raise ValueError("Random erasing probability should be between 0 and 1")
1570
1571
1572
1573
1574

        self.p = p
        self.scale = scale
        self.ratio = ratio
        self.value = value
1575
        self.inplace = inplace
1576
1577

    @staticmethod
1578
1579
1580
    def get_params(
            img: Tensor, scale: Tuple[float, float], ratio: Tuple[float, float], value: Optional[List[float]] = None
    ) -> Tuple[int, int, int, int, Tensor]:
1581
1582
1583
        """Get parameters for ``erase`` for a random erasing.

        Args:
vfdev's avatar
vfdev committed
1584
            img (Tensor): Tensor image to be erased.
1585
1586
            scale (sequence): range of proportion of erased area against input image.
            ratio (sequence): range of aspect ratio of erased area.
1587
1588
1589
            value (list, optional): erasing value. If None, it is interpreted as "random"
                (erasing each pixel with random values). If ``len(value)`` is 1, it is interpreted as a number,
                i.e. ``value[0]``.
1590
1591
1592
1593

        Returns:
            tuple: params (i, j, h, w, v) to be passed to ``erase`` for random erasing.
        """
vfdev's avatar
vfdev committed
1594
        img_c, img_h, img_w = img.shape[-3], img.shape[-2], img.shape[-1]
1595
        area = img_h * img_w
1596

1597
        log_ratio = torch.log(torch.tensor(ratio))
1598
        for _ in range(10):
1599
            erase_area = area * torch.empty(1).uniform_(scale[0], scale[1]).item()
1600
1601
1602
            aspect_ratio = torch.exp(
                torch.empty(1).uniform_(log_ratio[0], log_ratio[1])
            ).item()
1603
1604
1605

            h = int(round(math.sqrt(erase_area * aspect_ratio)))
            w = int(round(math.sqrt(erase_area / aspect_ratio)))
1606
1607
1608
1609
1610
1611
1612
            if not (h < img_h and w < img_w):
                continue

            if value is None:
                v = torch.empty([img_c, h, w], dtype=torch.float32).normal_()
            else:
                v = torch.tensor(value)[:, None, None]
1613

1614
1615
            i = torch.randint(0, img_h - h + 1, size=(1, )).item()
            j = torch.randint(0, img_w - w + 1, size=(1, )).item()
1616
            return i, j, h, w, v
1617

Zhun Zhong's avatar
Zhun Zhong committed
1618
1619
1620
        # Return original image
        return 0, 0, img_h, img_w, img

1621
    def forward(self, img):
1622
1623
        """
        Args:
vfdev's avatar
vfdev committed
1624
            img (Tensor): Tensor image to be erased.
1625
1626
1627
1628

        Returns:
            img (Tensor): Erased Tensor image.
        """
1629
1630
1631
1632
1633
1634
1635
1636
1637
1638
1639
1640
1641
1642
1643
1644
1645
1646
1647
        if torch.rand(1) < self.p:

            # cast self.value to script acceptable type
            if isinstance(self.value, (int, float)):
                value = [self.value, ]
            elif isinstance(self.value, str):
                value = None
            elif isinstance(self.value, tuple):
                value = list(self.value)
            else:
                value = self.value

            if value is not None and not (len(value) in (1, img.shape[-3])):
                raise ValueError(
                    "If value is a sequence, it should have either a single value or "
                    "{} (number of input channels)".format(img.shape[-3])
                )

            x, y, h, w, v = self.get_params(img, scale=self.scale, ratio=self.ratio, value=value)
1648
            return F.erase(img, x, y, h, w, v, self.inplace)
1649
        return img
1650

1651
1652
1653
1654
1655
1656
1657
1658
    def __repr__(self):
        s = '(p={}, '.format(self.p)
        s += 'scale={}, '.format(self.scale)
        s += 'ratio={}, '.format(self.ratio)
        s += 'value={}, '.format(self.value)
        s += 'inplace={})'.format(self.inplace)
        return self.__class__.__name__ + s

1659

1660
1661
class GaussianBlur(torch.nn.Module):
    """Blurs image with randomly chosen Gaussian blur.
1662
1663
    If the image is torch Tensor, it is expected
    to have [..., C, H, W] shape, where ... means an arbitrary number of leading dimensions.
1664
1665
1666
1667
1668
1669
1670
1671
1672
1673
1674
1675
1676
1677
1678
1679
1680
1681
1682
1683
1684
1685
1686
1687
1688
1689
1690
1691
1692
1693
1694
1695
1696
1697

    Args:
        kernel_size (int or sequence): Size of the Gaussian kernel.
        sigma (float or tuple of float (min, max)): Standard deviation to be used for
            creating kernel to perform blurring. If float, sigma is fixed. If it is tuple
            of float (min, max), sigma is chosen uniformly at random to lie in the
            given range.

    Returns:
        PIL Image or Tensor: Gaussian blurred version of the input image.

    """

    def __init__(self, kernel_size, sigma=(0.1, 2.0)):
        super().__init__()
        self.kernel_size = _setup_size(kernel_size, "Kernel size should be a tuple/list of two integers")
        for ks in self.kernel_size:
            if ks <= 0 or ks % 2 == 0:
                raise ValueError("Kernel size value should be an odd and positive number.")

        if isinstance(sigma, numbers.Number):
            if sigma <= 0:
                raise ValueError("If sigma is a single number, it must be positive.")
            sigma = (sigma, sigma)
        elif isinstance(sigma, Sequence) and len(sigma) == 2:
            if not 0. < sigma[0] <= sigma[1]:
                raise ValueError("sigma values should be positive and of the form (min, max).")
        else:
            raise ValueError("sigma should be a single number or a list/tuple with length 2.")

        self.sigma = sigma

    @staticmethod
    def get_params(sigma_min: float, sigma_max: float) -> float:
vfdev's avatar
vfdev committed
1698
        """Choose sigma for random gaussian blurring.
1699
1700
1701
1702
1703
1704
1705
1706
1707
1708
1709
1710
1711

        Args:
            sigma_min (float): Minimum standard deviation that can be chosen for blurring kernel.
            sigma_max (float): Maximum standard deviation that can be chosen for blurring kernel.

        Returns:
            float: Standard deviation to be passed to calculate kernel for gaussian blurring.
        """
        return torch.empty(1).uniform_(sigma_min, sigma_max).item()

    def forward(self, img: Tensor) -> Tensor:
        """
        Args:
vfdev's avatar
vfdev committed
1712
            img (PIL Image or Tensor): image to be blurred.
1713
1714
1715
1716
1717
1718
1719
1720
1721
1722
1723
1724
1725

        Returns:
            PIL Image or Tensor: Gaussian blurred image
        """
        sigma = self.get_params(self.sigma[0], self.sigma[1])
        return F.gaussian_blur(img, self.kernel_size, [sigma, sigma])

    def __repr__(self):
        s = '(kernel_size={}, '.format(self.kernel_size)
        s += 'sigma={})'.format(self.sigma)
        return self.__class__.__name__ + s


1726
1727
1728
1729
1730
1731
1732
1733
1734
1735
1736
1737
1738
1739
1740
1741
1742
1743
1744
1745
1746
1747
1748
1749
1750
1751
1752
1753
1754
1755
def _setup_size(size, error_msg):
    if isinstance(size, numbers.Number):
        return int(size), int(size)

    if isinstance(size, Sequence) and len(size) == 1:
        return size[0], size[0]

    if len(size) != 2:
        raise ValueError(error_msg)

    return size


def _check_sequence_input(x, name, req_sizes):
    msg = req_sizes[0] if len(req_sizes) < 2 else " or ".join([str(s) for s in req_sizes])
    if not isinstance(x, Sequence):
        raise TypeError("{} should be a sequence of length {}.".format(name, msg))
    if len(x) not in req_sizes:
        raise ValueError("{} should be sequence of length {}.".format(name, msg))


def _setup_angle(x, name, req_sizes=(2, )):
    if isinstance(x, numbers.Number):
        if x < 0:
            raise ValueError("If {} is a single number, it must be positive.".format(name))
        x = [-x, x]
    else:
        _check_sequence_input(x, name, req_sizes)

    return [float(d) for d in x]
1756
1757
1758
1759


class RandomInvert(torch.nn.Module):
    """Inverts the colors of the given image randomly with a given probability.
1760
1761
1762
    If img is a Tensor, it is expected to be in [..., 1 or 3, H, W] format,
    where ... means it can have an arbitrary number of leading dimensions.
    If img is PIL Image, it is expected to be in mode "L" or "RGB".
1763
1764
1765
1766
1767
1768
1769
1770
1771
1772
1773
1774
1775
1776
1777
1778
1779
1780
1781
1782
1783
1784
1785
1786
1787
1788
1789

    Args:
        p (float): probability of the image being color inverted. Default value is 0.5
    """

    def __init__(self, p=0.5):
        super().__init__()
        self.p = p

    def forward(self, img):
        """
        Args:
            img (PIL Image or Tensor): Image to be inverted.

        Returns:
            PIL Image or Tensor: Randomly color inverted image.
        """
        if torch.rand(1).item() < self.p:
            return F.invert(img)
        return img

    def __repr__(self):
        return self.__class__.__name__ + '(p={})'.format(self.p)


class RandomPosterize(torch.nn.Module):
    """Posterize the image randomly with a given probability by reducing the
1790
1791
1792
    number of bits for each color channel. If the image is torch Tensor, it should be of type torch.uint8,
    and it is expected to have [..., 1 or 3, H, W] shape, where ... means an arbitrary number of leading dimensions.
    If img is PIL Image, it is expected to be in mode "L" or "RGB".
1793
1794
1795
1796
1797
1798
1799
1800
1801
1802
1803
1804
1805
1806
1807
1808
1809
1810
1811
1812
1813
1814
1815
1816
1817
1818
1819
1820
1821

    Args:
        bits (int): number of bits to keep for each channel (0-8)
        p (float): probability of the image being color inverted. Default value is 0.5
    """

    def __init__(self, bits, p=0.5):
        super().__init__()
        self.bits = bits
        self.p = p

    def forward(self, img):
        """
        Args:
            img (PIL Image or Tensor): Image to be posterized.

        Returns:
            PIL Image or Tensor: Randomly posterized image.
        """
        if torch.rand(1).item() < self.p:
            return F.posterize(img, self.bits)
        return img

    def __repr__(self):
        return self.__class__.__name__ + '(bits={},p={})'.format(self.bits, self.p)


class RandomSolarize(torch.nn.Module):
    """Solarize the image randomly with a given probability by inverting all pixel
1822
1823
1824
    values above a threshold. If img is a Tensor, it is expected to be in [..., 1 or 3, H, W] format,
    where ... means it can have an arbitrary number of leading dimensions.
    If img is PIL Image, it is expected to be in mode "L" or "RGB".
1825
1826
1827
1828
1829
1830
1831
1832
1833
1834
1835
1836
1837
1838
1839
1840
1841
1842
1843
1844
1845
1846
1847
1848
1849
1850
1851
1852

    Args:
        threshold (float): all pixels equal or above this value are inverted.
        p (float): probability of the image being color inverted. Default value is 0.5
    """

    def __init__(self, threshold, p=0.5):
        super().__init__()
        self.threshold = threshold
        self.p = p

    def forward(self, img):
        """
        Args:
            img (PIL Image or Tensor): Image to be solarized.

        Returns:
            PIL Image or Tensor: Randomly solarized image.
        """
        if torch.rand(1).item() < self.p:
            return F.solarize(img, self.threshold)
        return img

    def __repr__(self):
        return self.__class__.__name__ + '(threshold={},p={})'.format(self.threshold, self.p)


class RandomAdjustSharpness(torch.nn.Module):
1853
1854
    """Adjust the sharpness of the image randomly with a given probability. If the image is torch Tensor,
    it is expected to have [..., 1 or 3, H, W] shape, where ... means an arbitrary number of leading dimensions.
1855
1856
1857
1858
1859
1860
1861
1862
1863
1864
1865
1866
1867
1868
1869
1870
1871
1872
1873
1874
1875
1876
1877
1878
1879
1880
1881
1882
1883
1884
1885

    Args:
        sharpness_factor (float):  How much to adjust the sharpness. Can be
            any non negative number. 0 gives a blurred image, 1 gives the
            original image while 2 increases the sharpness by a factor of 2.
        p (float): probability of the image being color inverted. Default value is 0.5
    """

    def __init__(self, sharpness_factor, p=0.5):
        super().__init__()
        self.sharpness_factor = sharpness_factor
        self.p = p

    def forward(self, img):
        """
        Args:
            img (PIL Image or Tensor): Image to be sharpened.

        Returns:
            PIL Image or Tensor: Randomly sharpened image.
        """
        if torch.rand(1).item() < self.p:
            return F.adjust_sharpness(img, self.sharpness_factor)
        return img

    def __repr__(self):
        return self.__class__.__name__ + '(sharpness_factor={},p={})'.format(self.sharpness_factor, self.p)


class RandomAutocontrast(torch.nn.Module):
    """Autocontrast the pixels of the given image randomly with a given probability.
1886
1887
1888
    If the image is torch Tensor, it is expected
    to have [..., 1 or 3, H, W] shape, where ... means an arbitrary number of leading dimensions.
    If img is PIL Image, it is expected to be in mode "L" or "RGB".
1889
1890
1891
1892
1893
1894
1895
1896
1897
1898
1899
1900
1901
1902
1903
1904
1905
1906
1907
1908
1909
1910
1911
1912
1913
1914
1915

    Args:
        p (float): probability of the image being autocontrasted. Default value is 0.5
    """

    def __init__(self, p=0.5):
        super().__init__()
        self.p = p

    def forward(self, img):
        """
        Args:
            img (PIL Image or Tensor): Image to be autocontrasted.

        Returns:
            PIL Image or Tensor: Randomly autocontrasted image.
        """
        if torch.rand(1).item() < self.p:
            return F.autocontrast(img)
        return img

    def __repr__(self):
        return self.__class__.__name__ + '(p={})'.format(self.p)


class RandomEqualize(torch.nn.Module):
    """Equalize the histogram of the given image randomly with a given probability.
1916
1917
1918
    If the image is torch Tensor, it is expected
    to have [..., 1 or 3, H, W] shape, where ... means an arbitrary number of leading dimensions.
    If img is PIL Image, it is expected to be in mode "P", "L" or "RGB".
1919
1920
1921
1922
1923
1924
1925
1926
1927
1928
1929
1930
1931
1932
1933
1934
1935
1936
1937
1938
1939
1940
1941

    Args:
        p (float): probability of the image being equalized. Default value is 0.5
    """

    def __init__(self, p=0.5):
        super().__init__()
        self.p = p

    def forward(self, img):
        """
        Args:
            img (PIL Image or Tensor): Image to be equalized.

        Returns:
            PIL Image or Tensor: Randomly equalized image.
        """
        if torch.rand(1).item() < self.p:
            return F.equalize(img)
        return img

    def __repr__(self):
        return self.__class__.__name__ + '(p={})'.format(self.p)