Unverified Commit a0559803 authored by vfdev's avatar vfdev Committed by GitHub
Browse files

Updated transforms docs (#2820)

parent adfc15c4
......@@ -57,77 +57,103 @@ Compositions of transforms
.. autoclass:: Compose
Transforms on PIL Image
-----------------------
Transforms on PIL Image and torch.\*Tensor
------------------------------------------
.. autoclass:: CenterCrop
:members:
.. autoclass:: ColorJitter
:members:
.. autoclass:: FiveCrop
:members:
.. autoclass:: Grayscale
:members:
.. autoclass:: Pad
:members:
.. autoclass:: RandomAffine
:members:
.. autoclass:: RandomApply
.. autoclass:: RandomChoice
.. autoclass:: RandomCrop
:members:
.. autoclass:: RandomGrayscale
:members:
.. autoclass:: RandomHorizontalFlip
.. autoclass:: RandomOrder
:members:
.. autoclass:: RandomPerspective
:members:
.. autoclass:: RandomResizedCrop
:members:
.. autoclass:: RandomRotation
:members:
.. autoclass:: RandomSizedCrop
:members:
.. autoclass:: RandomVerticalFlip
:members:
.. autoclass:: Resize
:members:
.. autoclass:: Scale
:members:
.. autoclass:: TenCrop
:members:
.. autoclass:: GaussianBlur
:members:
Transforms on torch.\*Tensor
Transforms on PIL Image only
----------------------------
.. autoclass:: RandomChoice
.. autoclass:: RandomOrder
Transforms on torch.\*Tensor only
---------------------------------
.. autoclass:: LinearTransformation
:members:
.. autoclass:: Normalize
:members: __call__
:special-members:
:members:
.. autoclass:: RandomErasing
:members:
.. autoclass:: ConvertImageDtype
Conversion Transforms
---------------------
.. autoclass:: ToPILImage
:members: __call__
:special-members:
:members:
.. autoclass:: ToTensor
:members: __call__
:special-members:
:members:
Generic Transforms
------------------
.. autoclass:: Lambda
:members:
Functional Transforms
......
......@@ -139,7 +139,7 @@ def convert_image_dtype(image: torch.Tensor, dtype: torch.dtype = torch.float) -
dtype (torch.dtype): Desired data type of the output
Returns:
(torch.Tensor): Converted image
Tensor: Converted image
.. note::
......
......@@ -149,7 +149,7 @@ class ConvertImageDtype(torch.nn.Module):
super().__init__()
self.dtype = dtype
def forward(self, image: torch.Tensor) -> torch.Tensor:
def forward(self, image):
return F.convert_image_dtype(image, self.dtype)
......@@ -218,7 +218,7 @@ class Normalize(torch.nn.Module):
def forward(self, tensor: Tensor) -> Tensor:
"""
Args:
tensor (Tensor): Tensor image of size (C, H, W) to be normalized.
tensor (Tensor): Tensor image to be normalized.
Returns:
Tensor: Normalized Tensor image.
......@@ -972,7 +972,7 @@ class LinearTransformation(torch.nn.Module):
def forward(self, tensor: Tensor) -> Tensor:
"""
Args:
tensor (Tensor): Tensor image of size (C, H, W) to be whitened.
tensor (Tensor): Tensor image to be whitened.
Returns:
Tensor: Transformed image.
......@@ -1342,7 +1342,7 @@ class Grayscale(torch.nn.Module):
super().__init__()
self.num_output_channels = num_output_channels
def forward(self, img: Tensor) -> Tensor:
def forward(self, img):
"""
Args:
img (PIL Image or Tensor): Image to be converted to grayscale.
......@@ -1377,7 +1377,7 @@ class RandomGrayscale(torch.nn.Module):
super().__init__()
self.p = p
def forward(self, img: Tensor) -> Tensor:
def forward(self, img):
"""
Args:
img (PIL Image or Tensor): Image to be converted to grayscale.
......@@ -1411,7 +1411,7 @@ class RandomErasing(torch.nn.Module):
Returns:
Erased Image.
# Examples:
Example:
>>> transform = transforms.Compose([
>>> transforms.RandomHorizontalFlip(),
>>> transforms.ToTensor(),
......@@ -1450,7 +1450,7 @@ class RandomErasing(torch.nn.Module):
"""Get parameters for ``erase`` for a random erasing.
Args:
img (Tensor): Tensor image of size (C, H, W) to be erased.
img (Tensor): Tensor image to be erased.
scale (tuple or list): range of proportion of erased area against input image.
ratio (tuple or list): range of aspect ratio of erased area.
value (list, optional): erasing value. If None, it is interpreted as "random"
......@@ -1487,7 +1487,7 @@ class RandomErasing(torch.nn.Module):
def forward(self, img):
"""
Args:
img (Tensor): Tensor image of size (C, H, W) to be erased.
img (Tensor): Tensor image to be erased.
Returns:
img (Tensor): Erased Tensor image.
......@@ -1518,7 +1518,7 @@ class RandomErasing(torch.nn.Module):
class GaussianBlur(torch.nn.Module):
"""Blurs image with randomly chosen Gaussian blur.
The image can be a PIL Image or a Tensor, in which case it is expected
to have [..., 3, H, W] shape, where ... means an arbitrary number of leading
to have [..., C, H, W] shape, where ... means an arbitrary number of leading
dimensions
Args:
......@@ -1554,7 +1554,7 @@ class GaussianBlur(torch.nn.Module):
@staticmethod
def get_params(sigma_min: float, sigma_max: float) -> float:
"""Choose sigma for ``gaussian_blur`` for random gaussian blurring.
"""Choose sigma for random gaussian blurring.
Args:
sigma_min (float): Minimum standard deviation that can be chosen for blurring kernel.
......@@ -1568,7 +1568,7 @@ class GaussianBlur(torch.nn.Module):
def forward(self, img: Tensor) -> Tensor:
"""
Args:
img (PIL Image or Tensor): image of size (C, H, W) to be blurred.
img (PIL Image or Tensor): image to be blurred.
Returns:
PIL Image or Tensor: Gaussian blurred image
......
Markdown is supported
0% or .
You are about to add 0 people to the discussion. Proceed with caution.
Finish editing this message first!
Please register or to comment