"docs/vscode:/vscode.git/clone" did not exist on "2b31740d54a27e4370a9a5e152f1c57f24ba967e"
transforms.py 78.3 KB
Newer Older
1
import math
vfdev's avatar
vfdev committed
2
import numbers
3
import random
vfdev's avatar
vfdev committed
4
import warnings
vfdev's avatar
vfdev committed
5
from collections.abc import Sequence
6
from typing import Tuple, List, Optional
vfdev's avatar
vfdev committed
7
8
9
10

import torch
from torch import Tensor

11
12
13
14
15
16
try:
    import accimage
except ImportError:
    accimage = None

from . import functional as F
17
from .functional import InterpolationMode, _interpolation_modes_from_int
18

19

20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
__all__ = [
    "Compose",
    "ToTensor",
    "PILToTensor",
    "ConvertImageDtype",
    "ToPILImage",
    "Normalize",
    "Resize",
    "Scale",
    "CenterCrop",
    "Pad",
    "Lambda",
    "RandomApply",
    "RandomChoice",
    "RandomOrder",
    "RandomCrop",
    "RandomHorizontalFlip",
    "RandomVerticalFlip",
    "RandomResizedCrop",
    "RandomSizedCrop",
    "FiveCrop",
    "TenCrop",
    "LinearTransformation",
    "ColorJitter",
    "RandomRotation",
    "RandomAffine",
    "Grayscale",
    "RandomGrayscale",
    "RandomPerspective",
    "RandomErasing",
    "GaussianBlur",
    "InterpolationMode",
    "RandomInvert",
    "RandomPosterize",
    "RandomSolarize",
    "RandomAdjustSharpness",
    "RandomAutocontrast",
    "RandomEqualize",
]
59

60

61
class Compose:
62
63
    """Composes several transforms together. This transform does not support torchscript.
    Please, see the note below.
64
65
66
67
68
69
70

    Args:
        transforms (list of ``Transform`` objects): list of transforms to compose.

    Example:
        >>> transforms.Compose([
        >>>     transforms.CenterCrop(10),
71
72
        >>>     transforms.PILToTensor(),
        >>>     transforms.ConvertImageDtype(torch.float),
73
        >>> ])
74
75
76
77
78
79
80
81
82
83
84
85
86

    .. note::
        In order to script the transformations, please use ``torch.nn.Sequential`` as below.

        >>> transforms = torch.nn.Sequential(
        >>>     transforms.CenterCrop(10),
        >>>     transforms.Normalize((0.485, 0.456, 0.406), (0.229, 0.224, 0.225)),
        >>> )
        >>> scripted_transforms = torch.jit.script(transforms)

        Make sure to use only scriptable transformations, i.e. that work with ``torch.Tensor``, does not require
        `lambda` functions or ``PIL.Image``.

87
88
89
90
91
92
93
94
95
96
    """

    def __init__(self, transforms):
        self.transforms = transforms

    def __call__(self, img):
        for t in self.transforms:
            img = t(img)
        return img

97
    def __repr__(self):
98
        format_string = self.__class__.__name__ + "("
99
        for t in self.transforms:
100
101
102
            format_string += "\n"
            format_string += "    {0}".format(t)
        format_string += "\n)"
103
104
        return format_string

105

106
class ToTensor:
107
    """Convert a ``PIL Image`` or ``numpy.ndarray`` to tensor. This transform does not support torchscript.
108
109

    Converts a PIL Image or numpy.ndarray (H x W x C) in the range
surgan12's avatar
surgan12 committed
110
111
112
113
114
    [0, 255] to a torch.FloatTensor of shape (C x H x W) in the range [0.0, 1.0]
    if the PIL Image belongs to one of the modes (L, LA, P, I, F, RGB, YCbCr, RGBA, CMYK, 1)
    or if the numpy.ndarray has dtype = np.uint8

    In the other cases, tensors are returned without scaling.
115
116
117
118
119

    .. note::
        Because the input image is scaled to [0.0, 1.0], this transformation should not be used when
        transforming target image masks. See the `references`_ for implementing the transforms for image masks.

120
    .. _references: https://github.com/pytorch/vision/tree/main/references/segmentation
121
122
123
124
125
126
127
128
129
130
131
132
    """

    def __call__(self, pic):
        """
        Args:
            pic (PIL Image or numpy.ndarray): Image to be converted to tensor.

        Returns:
            Tensor: Converted image.
        """
        return F.to_tensor(pic)

133
    def __repr__(self):
134
        return self.__class__.__name__ + "()"
135

136

137
class PILToTensor:
138
    """Convert a ``PIL Image`` to a tensor of the same type. This transform does not support torchscript.
139

vfdev's avatar
vfdev committed
140
    Converts a PIL Image (H x W x C) to a Tensor of shape (C x H x W).
141
142
143
144
    """

    def __call__(self, pic):
        """
145
146
147
148
        .. note::

            A deep copy of the underlying array is performed.

149
150
151
152
153
154
155
156
157
        Args:
            pic (PIL Image): Image to be converted to tensor.

        Returns:
            Tensor: Converted image.
        """
        return F.pil_to_tensor(pic)

    def __repr__(self):
158
        return self.__class__.__name__ + "()"
159
160


161
class ConvertImageDtype(torch.nn.Module):
162
    """Convert a tensor image to the given ``dtype`` and scale the values accordingly
163
    This function does not support PIL Image.
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180

    Args:
        dtype (torch.dtype): Desired data type of the output

    .. note::

        When converting from a smaller to a larger integer ``dtype`` the maximum values are **not** mapped exactly.
        If converted back and forth, this mismatch has no effect.

    Raises:
        RuntimeError: When trying to cast :class:`torch.float32` to :class:`torch.int32` or :class:`torch.int64` as
            well as for trying to cast :class:`torch.float64` to :class:`torch.int64`. These conversions might lead to
            overflow errors since the floating point ``dtype`` cannot store consecutive integers over the whole range
            of the integer ``dtype``.
    """

    def __init__(self, dtype: torch.dtype) -> None:
181
        super().__init__()
182
183
        self.dtype = dtype

vfdev's avatar
vfdev committed
184
    def forward(self, image):
185
186
187
        return F.convert_image_dtype(image, self.dtype)


188
class ToPILImage:
189
    """Convert a tensor or an ndarray to PIL Image. This transform does not support torchscript.
190
191
192
193
194
195
196

    Converts a torch.*Tensor of shape C x H x W or a numpy ndarray of shape
    H x W x C to a PIL Image while preserving the value range.

    Args:
        mode (`PIL.Image mode`_): color space and pixel depth of input data (optional).
            If ``mode`` is ``None`` (default) there are some assumptions made about the input data:
vfdev's avatar
vfdev committed
197
198
199
200
201
            - If the input has 4 channels, the ``mode`` is assumed to be ``RGBA``.
            - If the input has 3 channels, the ``mode`` is assumed to be ``RGB``.
            - If the input has 2 channels, the ``mode`` is assumed to be ``LA``.
            - If the input has 1 channel, the ``mode`` is determined by the data type (i.e ``int``, ``float``,
            ``short``).
202

csukuangfj's avatar
csukuangfj committed
203
    .. _PIL.Image mode: https://pillow.readthedocs.io/en/latest/handbook/concepts.html#concept-modes
204
    """
205

206
207
208
209
210
211
212
213
214
215
216
217
218
219
    def __init__(self, mode=None):
        self.mode = mode

    def __call__(self, pic):
        """
        Args:
            pic (Tensor or numpy.ndarray): Image to be converted to PIL Image.

        Returns:
            PIL Image: Image converted to PIL Image.

        """
        return F.to_pil_image(pic, self.mode)

220
    def __repr__(self):
221
        format_string = self.__class__.__name__ + "("
222
        if self.mode is not None:
223
224
            format_string += "mode={0}".format(self.mode)
        format_string += ")"
225
        return format_string
226

227

228
class Normalize(torch.nn.Module):
Fang Gao's avatar
Fang Gao committed
229
    """Normalize a tensor image with mean and standard deviation.
230
    This transform does not support PIL Image.
231
232
233
    Given mean: ``(mean[1],...,mean[n])`` and std: ``(std[1],..,std[n])`` for ``n``
    channels, this transform will normalize each channel of the input
    ``torch.*Tensor`` i.e.,
abdjava's avatar
abdjava committed
234
    ``output[channel] = (input[channel] - mean[channel]) / std[channel]``
235

236
    .. note::
237
        This transform acts out of place, i.e., it does not mutate the input tensor.
238

239
240
241
    Args:
        mean (sequence): Sequence of means for each channel.
        std (sequence): Sequence of standard deviations for each channel.
242
243
        inplace(bool,optional): Bool to make this operation in-place.

244
245
    """

surgan12's avatar
surgan12 committed
246
    def __init__(self, mean, std, inplace=False):
247
        super().__init__()
248
249
        self.mean = mean
        self.std = std
surgan12's avatar
surgan12 committed
250
        self.inplace = inplace
251

252
    def forward(self, tensor: Tensor) -> Tensor:
253
254
        """
        Args:
vfdev's avatar
vfdev committed
255
            tensor (Tensor): Tensor image to be normalized.
256
257
258
259

        Returns:
            Tensor: Normalized Tensor image.
        """
surgan12's avatar
surgan12 committed
260
        return F.normalize(tensor, self.mean, self.std, self.inplace)
261

262
    def __repr__(self):
263
        return self.__class__.__name__ + "(mean={0}, std={1})".format(self.mean, self.std)
264

265

vfdev's avatar
vfdev committed
266
267
class Resize(torch.nn.Module):
    """Resize the input image to the given size.
268
    If the image is torch Tensor, it is expected
vfdev's avatar
vfdev committed
269
    to have [..., H, W] shape, where ... means an arbitrary number of leading dimensions
270

271
272
273
274
    .. warning::
        The output image might be different depending on its type: when downsampling, the interpolation of PIL images
        and tensors is slightly different, because PIL applies antialiasing. This may lead to significant differences
        in the performance of a network. Therefore, it is preferable to train and serve a model with the same input
275
276
        types. See also below the ``antialias`` parameter, which can help making the output of PIL images and tensors
        closer.
277

278
279
280
281
282
    Args:
        size (sequence or int): Desired output size. If size is a sequence like
            (h, w), output size will be matched to this. If size is an int,
            smaller edge of the image will be matched to this number.
            i.e, if height > width, then image will be rescaled to
vfdev's avatar
vfdev committed
283
            (size * height / width, size).
284
285
286

            .. note::
                In torchscript mode size as single int is not supported, use a sequence of length 1: ``[size, ]``.
287
288
289
290
        interpolation (InterpolationMode): Desired interpolation enum defined by
            :class:`torchvision.transforms.InterpolationMode`. Default is ``InterpolationMode.BILINEAR``.
            If input is Tensor, only ``InterpolationMode.NEAREST``, ``InterpolationMode.BILINEAR`` and
            ``InterpolationMode.BICUBIC`` are supported.
291
            For backward compatibility integer values (e.g. ``PIL.Image.NEAREST``) are still acceptable.
292
293
294
295
        max_size (int, optional): The maximum allowed for the longer edge of
            the resized image: if the longer edge of the image is greater
            than ``max_size`` after being resized according to ``size``, then
            the image is resized again so that the longer edge is equal to
296
            ``max_size``. As a result, ``size`` might be overruled, i.e the
297
298
299
            smaller edge may be shorter than ``size``. This is only supported
            if ``size`` is an int (or a sequence of length 1 in torchscript
            mode).
300
        antialias (bool, optional): antialias flag. If ``img`` is PIL Image, the flag is ignored and anti-alias
301
302
303
            is always used. If ``img`` is Tensor, the flag is False by default and can be set to True for
            ``InterpolationMode.BILINEAR`` only mode. This can help making the output for PIL images and tensors
            closer.
304
305
306

            .. warning::
                There is no autodiff support for ``antialias=True`` option with input ``img`` as Tensor.
307

308
309
    """

310
    def __init__(self, size, interpolation=InterpolationMode.BILINEAR, max_size=None, antialias=None):
vfdev's avatar
vfdev committed
311
        super().__init__()
312
313
314
315
316
        if not isinstance(size, (int, Sequence)):
            raise TypeError("Size should be int or sequence. Got {}".format(type(size)))
        if isinstance(size, Sequence) and len(size) not in (1, 2):
            raise ValueError("If size is a sequence, it should have 1 or 2 values")
        self.size = size
317
        self.max_size = max_size
318
319
320
321

        # Backward compatibility with integer value
        if isinstance(interpolation, int):
            warnings.warn(
322
323
                "Argument interpolation should be of type InterpolationMode instead of int. "
                "Please, use InterpolationMode enum."
324
325
326
            )
            interpolation = _interpolation_modes_from_int(interpolation)

327
        self.interpolation = interpolation
328
        self.antialias = antialias
329

vfdev's avatar
vfdev committed
330
    def forward(self, img):
331
332
        """
        Args:
vfdev's avatar
vfdev committed
333
            img (PIL Image or Tensor): Image to be scaled.
334
335

        Returns:
vfdev's avatar
vfdev committed
336
            PIL Image or Tensor: Rescaled image.
337
        """
338
        return F.resize(img, self.size, self.interpolation, self.max_size, self.antialias)
339

340
    def __repr__(self):
341
        interpolate_str = self.interpolation.value
342
343
344
        return self.__class__.__name__ + "(size={0}, interpolation={1}, max_size={2}, antialias={3})".format(
            self.size, interpolate_str, self.max_size, self.antialias
        )
345

346
347
348
349
350

class Scale(Resize):
    """
    Note: This transform is deprecated in favor of Resize.
    """
351

352
    def __init__(self, *args, **kwargs):
353
354
355
        warnings.warn(
            "The use of the transforms.Scale transform is deprecated, " + "please use transforms.Resize instead."
        )
356
357
358
        super(Scale, self).__init__(*args, **kwargs)


vfdev's avatar
vfdev committed
359
360
class CenterCrop(torch.nn.Module):
    """Crops the given image at the center.
361
    If the image is torch Tensor, it is expected
362
363
    to have [..., H, W] shape, where ... means an arbitrary number of leading dimensions.
    If image size is smaller than output size along any edge, image is padded with 0 and then center cropped.
364
365
366
367

    Args:
        size (sequence or int): Desired output size of the crop. If size is an
            int instead of sequence like (h, w), a square crop (size, size) is
368
            made. If provided a sequence of length 1, it will be interpreted as (size[0], size[0]).
369
370
371
    """

    def __init__(self, size):
vfdev's avatar
vfdev committed
372
        super().__init__()
373
        self.size = _setup_size(size, error_msg="Please provide only two dimensions (h, w) for size.")
374

vfdev's avatar
vfdev committed
375
    def forward(self, img):
376
377
        """
        Args:
vfdev's avatar
vfdev committed
378
            img (PIL Image or Tensor): Image to be cropped.
379
380

        Returns:
vfdev's avatar
vfdev committed
381
            PIL Image or Tensor: Cropped image.
382
383
384
        """
        return F.center_crop(img, self.size)

385
    def __repr__(self):
386
        return self.__class__.__name__ + "(size={0})".format(self.size)
387

388

389
390
class Pad(torch.nn.Module):
    """Pad the given image on all sides with the given "pad" value.
391
    If the image is torch Tensor, it is expected
392
393
394
    to have [..., H, W] shape, where ... means at most 2 leading dimensions for mode reflect and symmetric,
    at most 3 leading dimensions for mode edge,
    and an arbitrary number of leading dimensions for mode constant
395
396

    Args:
397
398
399
        padding (int or sequence): Padding on each border. If a single int is provided this
            is used to pad all borders. If sequence of length 2 is provided this is the padding
            on left/right and top/bottom respectively. If a sequence of length 4 is provided
400
            this is the padding for the left, top, right and bottom borders respectively.
401
402
403
404

            .. note::
                In torchscript mode padding as single int is not supported, use a sequence of
                length 1: ``[padding, ]``.
405
        fill (number or str or tuple): Pixel fill value for constant fill. Default is 0. If a tuple of
406
            length 3, it is used to fill R, G, B channels respectively.
407
408
409
            This value is only used when the padding_mode is constant.
            Only number is supported for torch Tensor.
            Only int or str or tuple value is supported for PIL Image.
410
        padding_mode (str): Type of padding. Should be: constant, edge, reflect or symmetric.
411
            Default is constant.
412
413
414

            - constant: pads with a constant value, this value is specified with fill

415
416
            - edge: pads with the last value at the edge of the image.
              If input a 5D torch Tensor, the last 3 dimensions will be padded instead of the last 2
417

418
419
420
            - reflect: pads with reflection of image without repeating the last value on the edge.
              For example, padding [1, 2, 3, 4] with 2 elements on both sides in reflect mode
              will result in [3, 2, 1, 2, 3, 4, 3, 2]
421

422
423
424
            - symmetric: pads with reflection of image repeating the last value on the edge.
              For example, padding [1, 2, 3, 4] with 2 elements on both sides in symmetric mode
              will result in [2, 1, 1, 2, 3, 4, 4, 3]
425
426
    """

427
428
429
430
431
432
433
434
435
436
437
438
    def __init__(self, padding, fill=0, padding_mode="constant"):
        super().__init__()
        if not isinstance(padding, (numbers.Number, tuple, list)):
            raise TypeError("Got inappropriate padding arg")

        if not isinstance(fill, (numbers.Number, str, tuple)):
            raise TypeError("Got inappropriate fill arg")

        if padding_mode not in ["constant", "edge", "reflect", "symmetric"]:
            raise ValueError("Padding mode should be either constant, edge, reflect or symmetric")

        if isinstance(padding, Sequence) and len(padding) not in [1, 2, 4]:
439
440
441
            raise ValueError(
                "Padding must be an int or a 1, 2, or 4 element tuple, not a " + "{} element tuple".format(len(padding))
            )
442
443
444

        self.padding = padding
        self.fill = fill
445
        self.padding_mode = padding_mode
446

447
    def forward(self, img):
448
449
        """
        Args:
450
            img (PIL Image or Tensor): Image to be padded.
451
452

        Returns:
453
            PIL Image or Tensor: Padded image.
454
        """
455
        return F.pad(img, self.padding, self.fill, self.padding_mode)
456

457
    def __repr__(self):
458
459
460
        return self.__class__.__name__ + "(padding={0}, fill={1}, padding_mode={2})".format(
            self.padding, self.fill, self.padding_mode
        )
461

462

463
class Lambda:
464
    """Apply a user-defined lambda as a transform. This transform does not support torchscript.
465
466
467
468
469
470

    Args:
        lambd (function): Lambda/function to be used for transform.
    """

    def __init__(self, lambd):
471
472
        if not callable(lambd):
            raise TypeError("Argument lambd should be callable, got {}".format(repr(type(lambd).__name__)))
473
474
475
476
477
        self.lambd = lambd

    def __call__(self, img):
        return self.lambd(img)

478
    def __repr__(self):
479
        return self.__class__.__name__ + "()"
480

481

482
class RandomTransforms:
483
484
485
    """Base class for a list of transformations with randomness

    Args:
486
        transforms (sequence): list of transformations
487
488
489
    """

    def __init__(self, transforms):
490
491
        if not isinstance(transforms, Sequence):
            raise TypeError("Argument transforms should be a sequence")
492
493
494
495
496
497
        self.transforms = transforms

    def __call__(self, *args, **kwargs):
        raise NotImplementedError()

    def __repr__(self):
498
        format_string = self.__class__.__name__ + "("
499
        for t in self.transforms:
500
501
502
            format_string += "\n"
            format_string += "    {0}".format(t)
        format_string += "\n)"
503
504
505
        return format_string


506
class RandomApply(torch.nn.Module):
507
    """Apply randomly a list of transformations with a given probability.
508
509
510
511
512
513
514
515
516
517
518
519

    .. note::
        In order to script the transformation, please use ``torch.nn.ModuleList`` as input instead of list/tuple of
        transforms as shown below:

        >>> transforms = transforms.RandomApply(torch.nn.ModuleList([
        >>>     transforms.ColorJitter(),
        >>> ]), p=0.3)
        >>> scripted_transforms = torch.jit.script(transforms)

        Make sure to use only scriptable transformations, i.e. that work with ``torch.Tensor``, does not require
        `lambda` functions or ``PIL.Image``.
520
521

    Args:
522
        transforms (sequence or torch.nn.Module): list of transformations
523
524
525
526
        p (float): probability
    """

    def __init__(self, transforms, p=0.5):
527
528
        super().__init__()
        self.transforms = transforms
529
530
        self.p = p

531
532
    def forward(self, img):
        if self.p < torch.rand(1):
533
534
535
536
537
538
            return img
        for t in self.transforms:
            img = t(img)
        return img

    def __repr__(self):
539
540
        format_string = self.__class__.__name__ + "("
        format_string += "\n    p={}".format(self.p)
541
        for t in self.transforms:
542
543
544
            format_string += "\n"
            format_string += "    {0}".format(t)
        format_string += "\n)"
545
546
547
548
        return format_string


class RandomOrder(RandomTransforms):
549
550
    """Apply a list of transformations in a random order. This transform does not support torchscript."""

551
552
553
554
555
556
557
558
559
    def __call__(self, img):
        order = list(range(len(self.transforms)))
        random.shuffle(order)
        for i in order:
            img = self.transforms[i](img)
        return img


class RandomChoice(RandomTransforms):
560
561
    """Apply single transformation randomly picked from a list. This transform does not support torchscript."""

562
563
564
565
566
567
568
569
570
571
572
573
    def __init__(self, transforms, p=None):
        super().__init__(transforms)
        if p is not None and not isinstance(p, Sequence):
            raise TypeError("Argument transforms should be a sequence")
        self.p = p

    def __call__(self, *args):
        t = random.choices(self.transforms, weights=self.p)[0]
        return t(*args)

    def __repr__(self):
        format_string = super().__repr__()
574
        format_string += "(p={0})".format(self.p)
575
        return format_string
576
577


vfdev's avatar
vfdev committed
578
579
class RandomCrop(torch.nn.Module):
    """Crop the given image at a random location.
580
    If the image is torch Tensor, it is expected
581
582
    to have [..., H, W] shape, where ... means an arbitrary number of leading dimensions,
    but if non-constant padding is used, the input is expected to have at most 2 leading dimensions
583
584
585
586

    Args:
        size (sequence or int): Desired output size of the crop. If size is an
            int instead of sequence like (h, w), a square crop (size, size) is
587
            made. If provided a sequence of length 1, it will be interpreted as (size[0], size[0]).
588
        padding (int or sequence, optional): Optional padding on each border
vfdev's avatar
vfdev committed
589
            of the image. Default is None. If a single int is provided this
590
591
            is used to pad all borders. If sequence of length 2 is provided this is the padding
            on left/right and top/bottom respectively. If a sequence of length 4 is provided
vfdev's avatar
vfdev committed
592
            this is the padding for the left, top, right and bottom borders respectively.
593
594
595
596

            .. note::
                In torchscript mode padding as single int is not supported, use a sequence of
                length 1: ``[padding, ]``.
597
        pad_if_needed (boolean): It will pad the image if smaller than the
ekka's avatar
ekka committed
598
            desired size to avoid raising an exception. Since cropping is done
599
            after padding, the padding seems to be done at a random offset.
600
        fill (number or str or tuple): Pixel fill value for constant fill. Default is 0. If a tuple of
601
            length 3, it is used to fill R, G, B channels respectively.
602
603
604
            This value is only used when the padding_mode is constant.
            Only number is supported for torch Tensor.
            Only int or str or tuple value is supported for PIL Image.
605
606
        padding_mode (str): Type of padding. Should be: constant, edge, reflect or symmetric.
            Default is constant.
607

608
            - constant: pads with a constant value, this value is specified with fill
609

610
611
            - edge: pads with the last value at the edge of the image.
              If input a 5D torch Tensor, the last 3 dimensions will be padded instead of the last 2
612

613
614
615
            - reflect: pads with reflection of image without repeating the last value on the edge.
              For example, padding [1, 2, 3, 4] with 2 elements on both sides in reflect mode
              will result in [3, 2, 1, 2, 3, 4, 3, 2]
616

617
618
619
            - symmetric: pads with reflection of image repeating the last value on the edge.
              For example, padding [1, 2, 3, 4] with 2 elements on both sides in symmetric mode
              will result in [2, 1, 1, 2, 3, 4, 4, 3]
620
621
622
    """

    @staticmethod
vfdev's avatar
vfdev committed
623
    def get_params(img: Tensor, output_size: Tuple[int, int]) -> Tuple[int, int, int, int]:
624
625
626
        """Get parameters for ``crop`` for a random crop.

        Args:
vfdev's avatar
vfdev committed
627
            img (PIL Image or Tensor): Image to be cropped.
628
629
630
631
632
            output_size (tuple): Expected output size of the crop.

        Returns:
            tuple: params (i, j, h, w) to be passed to ``crop`` for random crop.
        """
633
        w, h = F.get_image_size(img)
634
        th, tw = output_size
vfdev's avatar
vfdev committed
635
636

        if h + 1 < th or w + 1 < tw:
637
            raise ValueError("Required crop size {} is larger then input image size {}".format((th, tw), (h, w)))
vfdev's avatar
vfdev committed
638

639
640
641
        if w == tw and h == th:
            return 0, 0, h, w

642
643
        i = torch.randint(0, h - th + 1, size=(1,)).item()
        j = torch.randint(0, w - tw + 1, size=(1,)).item()
644
645
        return i, j, th, tw

vfdev's avatar
vfdev committed
646
647
648
    def __init__(self, size, padding=None, pad_if_needed=False, fill=0, padding_mode="constant"):
        super().__init__()

649
        self.size = tuple(_setup_size(size, error_msg="Please provide only two dimensions (h, w) for size."))
650

vfdev's avatar
vfdev committed
651
652
653
654
655
656
        self.padding = padding
        self.pad_if_needed = pad_if_needed
        self.fill = fill
        self.padding_mode = padding_mode

    def forward(self, img):
657
658
        """
        Args:
vfdev's avatar
vfdev committed
659
            img (PIL Image or Tensor): Image to be cropped.
660
661

        Returns:
vfdev's avatar
vfdev committed
662
            PIL Image or Tensor: Cropped image.
663
        """
664
665
        if self.padding is not None:
            img = F.pad(img, self.padding, self.fill, self.padding_mode)
666

667
        width, height = F.get_image_size(img)
668
        # pad the width if needed
vfdev's avatar
vfdev committed
669
670
671
        if self.pad_if_needed and width < self.size[1]:
            padding = [self.size[1] - width, 0]
            img = F.pad(img, padding, self.fill, self.padding_mode)
672
        # pad the height if needed
vfdev's avatar
vfdev committed
673
674
675
        if self.pad_if_needed and height < self.size[0]:
            padding = [0, self.size[0] - height]
            img = F.pad(img, padding, self.fill, self.padding_mode)
676

677
678
679
680
        i, j, h, w = self.get_params(img, self.size)

        return F.crop(img, i, j, h, w)

681
    def __repr__(self):
vfdev's avatar
vfdev committed
682
        return self.__class__.__name__ + "(size={0}, padding={1})".format(self.size, self.padding)
683

684

685
686
class RandomHorizontalFlip(torch.nn.Module):
    """Horizontally flip the given image randomly with a given probability.
687
    If the image is torch Tensor, it is expected
688
689
    to have [..., H, W] shape, where ... means an arbitrary number of leading
    dimensions
690
691
692
693
694
695

    Args:
        p (float): probability of the image being flipped. Default value is 0.5
    """

    def __init__(self, p=0.5):
696
        super().__init__()
697
        self.p = p
698

699
    def forward(self, img):
700
701
        """
        Args:
702
            img (PIL Image or Tensor): Image to be flipped.
703
704

        Returns:
705
            PIL Image or Tensor: Randomly flipped image.
706
        """
707
        if torch.rand(1) < self.p:
708
709
710
            return F.hflip(img)
        return img

711
    def __repr__(self):
712
        return self.__class__.__name__ + "(p={})".format(self.p)
713

714

715
class RandomVerticalFlip(torch.nn.Module):
vfdev's avatar
vfdev committed
716
    """Vertically flip the given image randomly with a given probability.
717
    If the image is torch Tensor, it is expected
718
719
    to have [..., H, W] shape, where ... means an arbitrary number of leading
    dimensions
720
721
722
723
724
725

    Args:
        p (float): probability of the image being flipped. Default value is 0.5
    """

    def __init__(self, p=0.5):
726
        super().__init__()
727
        self.p = p
728

729
    def forward(self, img):
730
731
        """
        Args:
732
            img (PIL Image or Tensor): Image to be flipped.
733
734

        Returns:
735
            PIL Image or Tensor: Randomly flipped image.
736
        """
737
        if torch.rand(1) < self.p:
738
739
740
            return F.vflip(img)
        return img

741
    def __repr__(self):
742
        return self.__class__.__name__ + "(p={})".format(self.p)
743

744

745
746
class RandomPerspective(torch.nn.Module):
    """Performs a random perspective transformation of the given image with a given probability.
747
    If the image is torch Tensor, it is expected
748
    to have [..., H, W] shape, where ... means an arbitrary number of leading dimensions.
749
750

    Args:
751
752
753
        distortion_scale (float): argument to control the degree of distortion and ranges from 0 to 1.
            Default is 0.5.
        p (float): probability of the image being transformed. Default is 0.5.
754
755
756
        interpolation (InterpolationMode): Desired interpolation enum defined by
            :class:`torchvision.transforms.InterpolationMode`. Default is ``InterpolationMode.BILINEAR``.
            If input is Tensor, only ``InterpolationMode.NEAREST``, ``InterpolationMode.BILINEAR`` are supported.
757
            For backward compatibility integer values (e.g. ``PIL.Image.NEAREST``) are still acceptable.
758
759
        fill (sequence or number): Pixel fill value for the area outside the transformed
            image. Default is ``0``. If given a number, the value is used for all bands respectively.
760
761
    """

762
    def __init__(self, distortion_scale=0.5, p=0.5, interpolation=InterpolationMode.BILINEAR, fill=0):
763
        super().__init__()
764
        self.p = p
765
766
767
768

        # Backward compatibility with integer value
        if isinstance(interpolation, int):
            warnings.warn(
769
770
                "Argument interpolation should be of type InterpolationMode instead of int. "
                "Please, use InterpolationMode enum."
771
772
773
            )
            interpolation = _interpolation_modes_from_int(interpolation)

774
775
        self.interpolation = interpolation
        self.distortion_scale = distortion_scale
776
777
778
779
780
781

        if fill is None:
            fill = 0
        elif not isinstance(fill, (Sequence, numbers.Number)):
            raise TypeError("Fill should be either a sequence or a number.")

782
        self.fill = fill
783

784
    def forward(self, img):
785
786
        """
        Args:
787
            img (PIL Image or Tensor): Image to be Perspectively transformed.
788
789

        Returns:
790
            PIL Image or Tensor: Randomly transformed image.
791
        """
792
793
794
795

        fill = self.fill
        if isinstance(img, Tensor):
            if isinstance(fill, (int, float)):
796
                fill = [float(fill)] * F.get_image_num_channels(img)
797
798
799
            else:
                fill = [float(f) for f in fill]

800
        if torch.rand(1) < self.p:
801
            width, height = F.get_image_size(img)
802
            startpoints, endpoints = self.get_params(width, height, self.distortion_scale)
803
            return F.perspective(img, startpoints, endpoints, self.interpolation, fill)
804
805
806
        return img

    @staticmethod
807
    def get_params(width: int, height: int, distortion_scale: float) -> Tuple[List[List[int]], List[List[int]]]:
808
809
810
        """Get parameters for ``perspective`` for a random perspective transform.

        Args:
811
812
813
            width (int): width of the image.
            height (int): height of the image.
            distortion_scale (float): argument to control the degree of distortion and ranges from 0 to 1.
814
815

        Returns:
816
            List containing [top-left, top-right, bottom-right, bottom-left] of the original image,
817
818
            List containing [top-left, top-right, bottom-right, bottom-left] of the transformed image.
        """
819
820
821
        half_height = height // 2
        half_width = width // 2
        topleft = [
822
823
            int(torch.randint(0, int(distortion_scale * half_width) + 1, size=(1,)).item()),
            int(torch.randint(0, int(distortion_scale * half_height) + 1, size=(1,)).item()),
824
825
        ]
        topright = [
826
827
            int(torch.randint(width - int(distortion_scale * half_width) - 1, width, size=(1,)).item()),
            int(torch.randint(0, int(distortion_scale * half_height) + 1, size=(1,)).item()),
828
829
        ]
        botright = [
830
831
            int(torch.randint(width - int(distortion_scale * half_width) - 1, width, size=(1,)).item()),
            int(torch.randint(height - int(distortion_scale * half_height) - 1, height, size=(1,)).item()),
832
833
        ]
        botleft = [
834
835
            int(torch.randint(0, int(distortion_scale * half_width) + 1, size=(1,)).item()),
            int(torch.randint(height - int(distortion_scale * half_height) - 1, height, size=(1,)).item()),
836
837
        ]
        startpoints = [[0, 0], [width - 1, 0], [width - 1, height - 1], [0, height - 1]]
838
839
840
841
        endpoints = [topleft, topright, botright, botleft]
        return startpoints, endpoints

    def __repr__(self):
842
        return self.__class__.__name__ + "(p={})".format(self.p)
843
844


845
class RandomResizedCrop(torch.nn.Module):
846
847
    """Crop a random portion of image and resize it to a given size.

848
    If the image is torch Tensor, it is expected
849
    to have [..., H, W] shape, where ... means an arbitrary number of leading dimensions
850

851
852
853
    A crop of the original image is made: the crop has a random area (H * W)
    and a random aspect ratio. This crop is finally resized to the given
    size. This is popularly used to train the Inception networks.
854
855

    Args:
856
        size (int or sequence): expected output size of the crop, for each edge. If size is an
857
            int instead of sequence like (h, w), a square output size ``(size, size)`` is
858
            made. If provided a sequence of length 1, it will be interpreted as (size[0], size[0]).
859
860
861

            .. note::
                In torchscript mode size as single int is not supported, use a sequence of length 1: ``[size, ]``.
Nicolas Hug's avatar
Nicolas Hug committed
862
863
        scale (tuple of float): Specifies the lower and upper bounds for the random area of the crop,
            before resizing. The scale is defined with respect to the area of the original image.
864
865
        ratio (tuple of float): lower and upper bounds for the random aspect ratio of the crop, before
            resizing.
866
867
868
869
        interpolation (InterpolationMode): Desired interpolation enum defined by
            :class:`torchvision.transforms.InterpolationMode`. Default is ``InterpolationMode.BILINEAR``.
            If input is Tensor, only ``InterpolationMode.NEAREST``, ``InterpolationMode.BILINEAR`` and
            ``InterpolationMode.BICUBIC`` are supported.
870
871
            For backward compatibility integer values (e.g. ``PIL.Image.NEAREST``) are still acceptable.

872
873
    """

874
    def __init__(self, size, scale=(0.08, 1.0), ratio=(3.0 / 4.0, 4.0 / 3.0), interpolation=InterpolationMode.BILINEAR):
875
        super().__init__()
876
        self.size = _setup_size(size, error_msg="Please provide only two dimensions (h, w) for size.")
877

878
        if not isinstance(scale, Sequence):
879
            raise TypeError("Scale should be a sequence")
880
        if not isinstance(ratio, Sequence):
881
            raise TypeError("Ratio should be a sequence")
882
        if (scale[0] > scale[1]) or (ratio[0] > ratio[1]):
883
            warnings.warn("Scale and ratio should be of kind (min, max)")
884

885
886
887
        # Backward compatibility with integer value
        if isinstance(interpolation, int):
            warnings.warn(
888
889
                "Argument interpolation should be of type InterpolationMode instead of int. "
                "Please, use InterpolationMode enum."
890
891
892
            )
            interpolation = _interpolation_modes_from_int(interpolation)

893
        self.interpolation = interpolation
894
895
        self.scale = scale
        self.ratio = ratio
896
897

    @staticmethod
898
    def get_params(img: Tensor, scale: List[float], ratio: List[float]) -> Tuple[int, int, int, int]:
899
900
901
        """Get parameters for ``crop`` for a random sized crop.

        Args:
902
            img (PIL Image or Tensor): Input image.
903
904
            scale (list): range of scale of the origin size cropped
            ratio (list): range of aspect ratio of the origin aspect ratio cropped
905
906
907

        Returns:
            tuple: params (i, j, h, w) to be passed to ``crop`` for a random
908
            sized crop.
909
        """
910
        width, height = F.get_image_size(img)
Zhicheng Yan's avatar
Zhicheng Yan committed
911
        area = height * width
912

913
        log_ratio = torch.log(torch.tensor(ratio))
914
        for _ in range(10):
915
            target_area = area * torch.empty(1).uniform_(scale[0], scale[1]).item()
916
            aspect_ratio = torch.exp(torch.empty(1).uniform_(log_ratio[0], log_ratio[1])).item()
917
918
919
920

            w = int(round(math.sqrt(target_area * aspect_ratio)))
            h = int(round(math.sqrt(target_area / aspect_ratio)))

Zhicheng Yan's avatar
Zhicheng Yan committed
921
            if 0 < w <= width and 0 < h <= height:
922
923
                i = torch.randint(0, height - h + 1, size=(1,)).item()
                j = torch.randint(0, width - w + 1, size=(1,)).item()
924
925
                return i, j, h, w

926
        # Fallback to central crop
Zhicheng Yan's avatar
Zhicheng Yan committed
927
        in_ratio = float(width) / float(height)
928
        if in_ratio < min(ratio):
Zhicheng Yan's avatar
Zhicheng Yan committed
929
            w = width
930
            h = int(round(w / min(ratio)))
931
        elif in_ratio > max(ratio):
Zhicheng Yan's avatar
Zhicheng Yan committed
932
            h = height
933
            w = int(round(h * max(ratio)))
934
        else:  # whole image
Zhicheng Yan's avatar
Zhicheng Yan committed
935
936
937
938
            w = width
            h = height
        i = (height - h) // 2
        j = (width - w) // 2
939
        return i, j, h, w
940

941
    def forward(self, img):
942
943
        """
        Args:
944
            img (PIL Image or Tensor): Image to be cropped and resized.
945
946

        Returns:
947
            PIL Image or Tensor: Randomly cropped and resized image.
948
        """
949
        i, j, h, w = self.get_params(img, self.scale, self.ratio)
950
951
        return F.resized_crop(img, i, j, h, w, self.size, self.interpolation)

952
    def __repr__(self):
953
        interpolate_str = self.interpolation.value
954
955
956
957
        format_string = self.__class__.__name__ + "(size={0}".format(self.size)
        format_string += ", scale={0}".format(tuple(round(s, 4) for s in self.scale))
        format_string += ", ratio={0}".format(tuple(round(r, 4) for r in self.ratio))
        format_string += ", interpolation={0})".format(interpolate_str)
958
        return format_string
959

960
961
962
963
964

class RandomSizedCrop(RandomResizedCrop):
    """
    Note: This transform is deprecated in favor of RandomResizedCrop.
    """
965

966
    def __init__(self, *args, **kwargs):
967
968
969
970
        warnings.warn(
            "The use of the transforms.RandomSizedCrop transform is deprecated, "
            + "please use transforms.RandomResizedCrop instead."
        )
971
972
973
        super(RandomSizedCrop, self).__init__(*args, **kwargs)


vfdev's avatar
vfdev committed
974
975
class FiveCrop(torch.nn.Module):
    """Crop the given image into four corners and the central crop.
976
    If the image is torch Tensor, it is expected
vfdev's avatar
vfdev committed
977
978
    to have [..., H, W] shape, where ... means an arbitrary number of leading
    dimensions
979
980
981
982
983
984
985
986
987

    .. Note::
         This transform returns a tuple of images and there may be a mismatch in the number of
         inputs and targets your Dataset returns. See below for an example of how to deal with
         this.

    Args:
         size (sequence or int): Desired output size of the crop. If size is an ``int``
            instead of sequence like (h, w), a square crop of size (size, size) is made.
988
            If provided a sequence of length 1, it will be interpreted as (size[0], size[0]).
989
990
991
992
993
994
995
996
997
998
999
1000
1001
1002

    Example:
         >>> transform = Compose([
         >>>    FiveCrop(size), # this is a list of PIL Images
         >>>    Lambda(lambda crops: torch.stack([ToTensor()(crop) for crop in crops])) # returns a 4D tensor
         >>> ])
         >>> #In your test loop you can do the following:
         >>> input, target = batch # input is a 5d tensor, target is 2d
         >>> bs, ncrops, c, h, w = input.size()
         >>> result = model(input.view(-1, c, h, w)) # fuse batch size and ncrops
         >>> result_avg = result.view(bs, ncrops, -1).mean(1) # avg over crops
    """

    def __init__(self, size):
vfdev's avatar
vfdev committed
1003
        super().__init__()
1004
        self.size = _setup_size(size, error_msg="Please provide only two dimensions (h, w) for size.")
1005

vfdev's avatar
vfdev committed
1006
1007
1008
1009
1010
1011
1012
1013
    def forward(self, img):
        """
        Args:
            img (PIL Image or Tensor): Image to be cropped.

        Returns:
            tuple of 5 images. Image can be PIL Image or Tensor
        """
1014
1015
        return F.five_crop(img, self.size)

1016
    def __repr__(self):
1017
        return self.__class__.__name__ + "(size={0})".format(self.size)
1018

1019

vfdev's avatar
vfdev committed
1020
1021
1022
class TenCrop(torch.nn.Module):
    """Crop the given image into four corners and the central crop plus the flipped version of
    these (horizontal flipping is used by default).
1023
    If the image is torch Tensor, it is expected
vfdev's avatar
vfdev committed
1024
1025
    to have [..., H, W] shape, where ... means an arbitrary number of leading
    dimensions
1026
1027
1028
1029
1030
1031
1032
1033
1034

    .. Note::
         This transform returns a tuple of images and there may be a mismatch in the number of
         inputs and targets your Dataset returns. See below for an example of how to deal with
         this.

    Args:
        size (sequence or int): Desired output size of the crop. If size is an
            int instead of sequence like (h, w), a square crop (size, size) is
1035
            made. If provided a sequence of length 1, it will be interpreted as (size[0], size[0]).
1036
        vertical_flip (bool): Use vertical flipping instead of horizontal
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050

    Example:
         >>> transform = Compose([
         >>>    TenCrop(size), # this is a list of PIL Images
         >>>    Lambda(lambda crops: torch.stack([ToTensor()(crop) for crop in crops])) # returns a 4D tensor
         >>> ])
         >>> #In your test loop you can do the following:
         >>> input, target = batch # input is a 5d tensor, target is 2d
         >>> bs, ncrops, c, h, w = input.size()
         >>> result = model(input.view(-1, c, h, w)) # fuse batch size and ncrops
         >>> result_avg = result.view(bs, ncrops, -1).mean(1) # avg over crops
    """

    def __init__(self, size, vertical_flip=False):
vfdev's avatar
vfdev committed
1051
        super().__init__()
1052
        self.size = _setup_size(size, error_msg="Please provide only two dimensions (h, w) for size.")
1053
1054
        self.vertical_flip = vertical_flip

vfdev's avatar
vfdev committed
1055
1056
1057
1058
1059
1060
1061
1062
    def forward(self, img):
        """
        Args:
            img (PIL Image or Tensor): Image to be cropped.

        Returns:
            tuple of 10 images. Image can be PIL Image or Tensor
        """
1063
1064
        return F.ten_crop(img, self.size, self.vertical_flip)

1065
    def __repr__(self):
1066
        return self.__class__.__name__ + "(size={0}, vertical_flip={1})".format(self.size, self.vertical_flip)
1067

1068

1069
class LinearTransformation(torch.nn.Module):
ekka's avatar
ekka committed
1070
    """Transform a tensor image with a square transformation matrix and a mean_vector computed
1071
    offline.
1072
    This transform does not support PIL Image.
ekka's avatar
ekka committed
1073
1074
1075
    Given transformation_matrix and mean_vector, will flatten the torch.*Tensor and
    subtract mean_vector from it which is then followed by computing the dot
    product with the transformation matrix and then reshaping the tensor to its
1076
    original shape.
1077

1078
    Applications:
1079
        whitening transformation: Suppose X is a column vector zero-centered data.
1080
1081
1082
        Then compute the data covariance matrix [D x D] with torch.mm(X.t(), X),
        perform SVD on this matrix and pass it as transformation_matrix.

1083
1084
    Args:
        transformation_matrix (Tensor): tensor [D x D], D = C x H x W
ekka's avatar
ekka committed
1085
        mean_vector (Tensor): tensor [D], D = C x H x W
1086
1087
    """

ekka's avatar
ekka committed
1088
    def __init__(self, transformation_matrix, mean_vector):
1089
        super().__init__()
1090
        if transformation_matrix.size(0) != transformation_matrix.size(1):
1091
1092
1093
1094
            raise ValueError(
                "transformation_matrix should be square. Got "
                + "[{} x {}] rectangular matrix.".format(*transformation_matrix.size())
            )
ekka's avatar
ekka committed
1095
1096

        if mean_vector.size(0) != transformation_matrix.size(0):
1097
1098
1099
1100
1101
1102
            raise ValueError(
                "mean_vector should have the same length {}".format(mean_vector.size(0))
                + " as any one of the dimensions of the transformation_matrix [{}]".format(
                    tuple(transformation_matrix.size())
                )
            )
ekka's avatar
ekka committed
1103

1104
        if transformation_matrix.device != mean_vector.device:
1105
1106
1107
1108
1109
            raise ValueError(
                "Input tensors should be on the same device. Got {} and {}".format(
                    transformation_matrix.device, mean_vector.device
                )
            )
1110

1111
        self.transformation_matrix = transformation_matrix
ekka's avatar
ekka committed
1112
        self.mean_vector = mean_vector
1113

1114
    def forward(self, tensor: Tensor) -> Tensor:
1115
1116
        """
        Args:
vfdev's avatar
vfdev committed
1117
            tensor (Tensor): Tensor image to be whitened.
1118
1119
1120
1121

        Returns:
            Tensor: Transformed image.
        """
1122
1123
1124
        shape = tensor.shape
        n = shape[-3] * shape[-2] * shape[-1]
        if n != self.transformation_matrix.shape[0]:
1125
1126
1127
1128
1129
            raise ValueError(
                "Input tensor and transformation matrix have incompatible shape."
                + "[{} x {} x {}] != ".format(shape[-3], shape[-2], shape[-1])
                + "{}".format(self.transformation_matrix.shape[0])
            )
1130
1131

        if tensor.device.type != self.mean_vector.device.type:
1132
1133
1134
1135
            raise ValueError(
                "Input tensor should be on the same device as transformation matrix and mean vector. "
                "Got {} vs {}".format(tensor.device, self.mean_vector.device)
            )
1136
1137

        flat_tensor = tensor.view(-1, n) - self.mean_vector
1138
        transformed_tensor = torch.mm(flat_tensor, self.transformation_matrix)
1139
        tensor = transformed_tensor.view(shape)
1140
1141
        return tensor

1142
    def __repr__(self):
1143
1144
1145
        format_string = self.__class__.__name__ + "(transformation_matrix="
        format_string += str(self.transformation_matrix.tolist()) + ")"
        format_string += ", (mean_vector=" + str(self.mean_vector.tolist()) + ")"
1146
1147
        return format_string

1148

1149
class ColorJitter(torch.nn.Module):
1150
    """Randomly change the brightness, contrast, saturation and hue of an image.
1151
    If the image is torch Tensor, it is expected
1152
1153
    to have [..., 1 or 3, H, W] shape, where ... means an arbitrary number of leading dimensions.
    If img is PIL Image, mode "1", "I", "F" and modes with transparency (alpha channel) are not supported.
1154
1155

    Args:
yaox12's avatar
yaox12 committed
1156
1157
1158
1159
1160
1161
1162
1163
1164
1165
1166
1167
        brightness (float or tuple of float (min, max)): How much to jitter brightness.
            brightness_factor is chosen uniformly from [max(0, 1 - brightness), 1 + brightness]
            or the given [min, max]. Should be non negative numbers.
        contrast (float or tuple of float (min, max)): How much to jitter contrast.
            contrast_factor is chosen uniformly from [max(0, 1 - contrast), 1 + contrast]
            or the given [min, max]. Should be non negative numbers.
        saturation (float or tuple of float (min, max)): How much to jitter saturation.
            saturation_factor is chosen uniformly from [max(0, 1 - saturation), 1 + saturation]
            or the given [min, max]. Should be non negative numbers.
        hue (float or tuple of float (min, max)): How much to jitter hue.
            hue_factor is chosen uniformly from [-hue, hue] or the given [min, max].
            Should have 0<= hue <= 0.5 or -0.5 <= min <= max <= 0.5.
1168
    """
1169

1170
    def __init__(self, brightness=0, contrast=0, saturation=0, hue=0):
1171
        super().__init__()
1172
1173
1174
1175
        self.brightness = self._check_input(brightness, "brightness")
        self.contrast = self._check_input(contrast, "contrast")
        self.saturation = self._check_input(saturation, "saturation")
        self.hue = self._check_input(hue, "hue", center=0, bound=(-0.5, 0.5), clip_first_on_zero=False)
yaox12's avatar
yaox12 committed
1176

1177
    @torch.jit.unused
1178
    def _check_input(self, value, name, center=1, bound=(0, float("inf")), clip_first_on_zero=True):
yaox12's avatar
yaox12 committed
1179
1180
1181
        if isinstance(value, numbers.Number):
            if value < 0:
                raise ValueError("If {} is a single number, it must be non negative.".format(name))
1182
            value = [center - float(value), center + float(value)]
yaox12's avatar
yaox12 committed
1183
            if clip_first_on_zero:
1184
                value[0] = max(value[0], 0.0)
yaox12's avatar
yaox12 committed
1185
1186
1187
1188
        elif isinstance(value, (tuple, list)) and len(value) == 2:
            if not bound[0] <= value[0] <= value[1] <= bound[1]:
                raise ValueError("{} values should be between {}".format(name, bound))
        else:
1189
            raise TypeError("{} should be a single number or a list/tuple with length 2.".format(name))
yaox12's avatar
yaox12 committed
1190
1191
1192
1193
1194
1195

        # if value is 0 or (1., 1.) for brightness/contrast/saturation
        # or (0., 0.) for hue, do nothing
        if value[0] == value[1] == center:
            value = None
        return value
1196
1197

    @staticmethod
1198
1199
1200
1201
1202
1203
    def get_params(
        brightness: Optional[List[float]],
        contrast: Optional[List[float]],
        saturation: Optional[List[float]],
        hue: Optional[List[float]],
    ) -> Tuple[Tensor, Optional[float], Optional[float], Optional[float], Optional[float]]:
1204
        """Get the parameters for the randomized transform to be applied on image.
1205

1206
1207
1208
1209
1210
1211
1212
1213
1214
        Args:
            brightness (tuple of float (min, max), optional): The range from which the brightness_factor is chosen
                uniformly. Pass None to turn off the transformation.
            contrast (tuple of float (min, max), optional): The range from which the contrast_factor is chosen
                uniformly. Pass None to turn off the transformation.
            saturation (tuple of float (min, max), optional): The range from which the saturation_factor is chosen
                uniformly. Pass None to turn off the transformation.
            hue (tuple of float (min, max), optional): The range from which the hue_factor is chosen uniformly.
                Pass None to turn off the transformation.
1215
1216

        Returns:
1217
1218
            tuple: The parameters used to apply the randomized transform
            along with their random order.
1219
        """
1220
        fn_idx = torch.randperm(4)
1221

1222
1223
1224
1225
        b = None if brightness is None else float(torch.empty(1).uniform_(brightness[0], brightness[1]))
        c = None if contrast is None else float(torch.empty(1).uniform_(contrast[0], contrast[1]))
        s = None if saturation is None else float(torch.empty(1).uniform_(saturation[0], saturation[1]))
        h = None if hue is None else float(torch.empty(1).uniform_(hue[0], hue[1]))
1226

1227
        return fn_idx, b, c, s, h
1228

1229
    def forward(self, img):
1230
1231
        """
        Args:
1232
            img (PIL Image or Tensor): Input image.
1233
1234

        Returns:
1235
1236
            PIL Image or Tensor: Color jittered image.
        """
1237
1238
1239
        fn_idx, brightness_factor, contrast_factor, saturation_factor, hue_factor = self.get_params(
            self.brightness, self.contrast, self.saturation, self.hue
        )
1240

1241
        for fn_id in fn_idx:
1242
            if fn_id == 0 and brightness_factor is not None:
1243
                img = F.adjust_brightness(img, brightness_factor)
1244
            elif fn_id == 1 and contrast_factor is not None:
1245
                img = F.adjust_contrast(img, contrast_factor)
1246
            elif fn_id == 2 and saturation_factor is not None:
1247
                img = F.adjust_saturation(img, saturation_factor)
1248
            elif fn_id == 3 and hue_factor is not None:
1249
1250
1251
                img = F.adjust_hue(img, hue_factor)

        return img
1252

1253
    def __repr__(self):
1254
1255
1256
1257
1258
        format_string = self.__class__.__name__ + "("
        format_string += "brightness={0}".format(self.brightness)
        format_string += ", contrast={0}".format(self.contrast)
        format_string += ", saturation={0}".format(self.saturation)
        format_string += ", hue={0})".format(self.hue)
1259
        return format_string
1260

1261

1262
class RandomRotation(torch.nn.Module):
1263
    """Rotate the image by angle.
1264
    If the image is torch Tensor, it is expected
1265
    to have [..., H, W] shape, where ... means an arbitrary number of leading dimensions.
1266
1267

    Args:
1268
        degrees (sequence or number): Range of degrees to select from.
1269
1270
            If degrees is a number instead of sequence like (min, max), the range of degrees
            will be (-degrees, +degrees).
1271
1272
1273
        interpolation (InterpolationMode): Desired interpolation enum defined by
            :class:`torchvision.transforms.InterpolationMode`. Default is ``InterpolationMode.NEAREST``.
            If input is Tensor, only ``InterpolationMode.NEAREST``, ``InterpolationMode.BILINEAR`` are supported.
1274
            For backward compatibility integer values (e.g. ``PIL.Image.NEAREST``) are still acceptable.
1275
1276
1277
1278
        expand (bool, optional): Optional expansion flag.
            If true, expands the output to make it large enough to hold the entire rotated image.
            If false or omitted, make the output image the same size as the input image.
            Note that the expand flag assumes rotation around the center and no translation.
1279
        center (sequence, optional): Optional center of rotation, (x, y). Origin is the upper left corner.
1280
            Default is the center of the image.
1281
1282
        fill (sequence or number): Pixel fill value for the area outside the rotated
            image. Default is ``0``. If given a number, the value is used for all bands respectively.
1283
        resample (int, optional): deprecated argument and will be removed since v0.10.0.
1284
            Please use the ``interpolation`` parameter instead.
1285
1286
1287

    .. _filters: https://pillow.readthedocs.io/en/latest/handbook/concepts.html#filters

1288
1289
    """

1290
    def __init__(
1291
        self, degrees, interpolation=InterpolationMode.NEAREST, expand=False, center=None, fill=0, resample=None
1292
    ):
1293
        super().__init__()
1294
1295
1296
1297
1298
1299
1300
1301
1302
        if resample is not None:
            warnings.warn(
                "Argument resample is deprecated and will be removed since v0.10.0. Please, use interpolation instead"
            )
            interpolation = _interpolation_modes_from_int(resample)

        # Backward compatibility with integer value
        if isinstance(interpolation, int):
            warnings.warn(
1303
1304
                "Argument interpolation should be of type InterpolationMode instead of int. "
                "Please, use InterpolationMode enum."
1305
1306
1307
            )
            interpolation = _interpolation_modes_from_int(interpolation)

1308
        self.degrees = _setup_angle(degrees, name="degrees", req_sizes=(2,))
1309
1310

        if center is not None:
1311
            _check_sequence_input(center, "center", req_sizes=(2,))
1312
1313

        self.center = center
1314

1315
        self.resample = self.interpolation = interpolation
1316
        self.expand = expand
1317
1318
1319
1320
1321
1322

        if fill is None:
            fill = 0
        elif not isinstance(fill, (Sequence, numbers.Number)):
            raise TypeError("Fill should be either a sequence or a number.")

1323
        self.fill = fill
1324
1325

    @staticmethod
1326
    def get_params(degrees: List[float]) -> float:
1327
1328
1329
        """Get parameters for ``rotate`` for a random rotation.

        Returns:
1330
            float: angle parameter to be passed to ``rotate`` for random rotation.
1331
        """
1332
        angle = float(torch.empty(1).uniform_(float(degrees[0]), float(degrees[1])).item())
1333
1334
        return angle

1335
    def forward(self, img):
1336
        """
1337
        Args:
1338
            img (PIL Image or Tensor): Image to be rotated.
1339
1340

        Returns:
1341
            PIL Image or Tensor: Rotated image.
1342
        """
1343
1344
1345
        fill = self.fill
        if isinstance(img, Tensor):
            if isinstance(fill, (int, float)):
1346
                fill = [float(fill)] * F.get_image_num_channels(img)
1347
1348
            else:
                fill = [float(f) for f in fill]
1349
        angle = self.get_params(self.degrees)
1350
1351

        return F.rotate(img, angle, self.resample, self.expand, self.center, fill)
1352

1353
    def __repr__(self):
1354
        interpolate_str = self.interpolation.value
1355
1356
1357
        format_string = self.__class__.__name__ + "(degrees={0}".format(self.degrees)
        format_string += ", interpolation={0}".format(interpolate_str)
        format_string += ", expand={0}".format(self.expand)
1358
        if self.center is not None:
1359
            format_string += ", center={0}".format(self.center)
1360
        if self.fill is not None:
1361
1362
            format_string += ", fill={0}".format(self.fill)
        format_string += ")"
1363
        return format_string
1364

1365

1366
1367
class RandomAffine(torch.nn.Module):
    """Random affine transformation of the image keeping center invariant.
1368
    If the image is torch Tensor, it is expected
1369
    to have [..., H, W] shape, where ... means an arbitrary number of leading dimensions.
1370
1371

    Args:
1372
        degrees (sequence or number): Range of degrees to select from.
1373
            If degrees is a number instead of sequence like (min, max), the range of degrees
1374
            will be (-degrees, +degrees). Set to 0 to deactivate rotations.
1375
1376
1377
1378
1379
1380
        translate (tuple, optional): tuple of maximum absolute fraction for horizontal
            and vertical translations. For example translate=(a, b), then horizontal shift
            is randomly sampled in the range -img_width * a < dx < img_width * a and vertical shift is
            randomly sampled in the range -img_height * b < dy < img_height * b. Will not translate by default.
        scale (tuple, optional): scaling factor interval, e.g (a, b), then scale is
            randomly sampled from the range a <= scale <= b. Will keep original scale by default.
1381
        shear (sequence or number, optional): Range of degrees to select from.
ptrblck's avatar
ptrblck committed
1382
            If shear is a number, a shear parallel to the x axis in the range (-shear, +shear)
1383
1384
            will be applied. Else if shear is a sequence of 2 values a shear parallel to the x axis in the
            range (shear[0], shear[1]) will be applied. Else if shear is a sequence of 4 values,
ptrblck's avatar
ptrblck committed
1385
            a x-axis shear in (shear[0], shear[1]) and y-axis shear in (shear[2], shear[3]) will be applied.
1386
            Will not apply shear by default.
1387
1388
1389
        interpolation (InterpolationMode): Desired interpolation enum defined by
            :class:`torchvision.transforms.InterpolationMode`. Default is ``InterpolationMode.NEAREST``.
            If input is Tensor, only ``InterpolationMode.NEAREST``, ``InterpolationMode.BILINEAR`` are supported.
1390
            For backward compatibility integer values (e.g. ``PIL.Image.NEAREST``) are still acceptable.
1391
1392
        fill (sequence or number): Pixel fill value for the area outside the transformed
            image. Default is ``0``. If given a number, the value is used for all bands respectively.
1393
        fillcolor (sequence or number, optional): deprecated argument and will be removed since v0.10.0.
1394
            Please use the ``fill`` parameter instead.
1395
        resample (int, optional): deprecated argument and will be removed since v0.10.0.
1396
            Please use the ``interpolation`` parameter instead.
1397
1398
1399

    .. _filters: https://pillow.readthedocs.io/en/latest/handbook/concepts.html#filters

1400
1401
    """

1402
    def __init__(
1403
1404
1405
1406
1407
1408
1409
1410
1411
        self,
        degrees,
        translate=None,
        scale=None,
        shear=None,
        interpolation=InterpolationMode.NEAREST,
        fill=0,
        fillcolor=None,
        resample=None,
1412
    ):
1413
        super().__init__()
1414
1415
1416
1417
1418
1419
1420
1421
1422
        if resample is not None:
            warnings.warn(
                "Argument resample is deprecated and will be removed since v0.10.0. Please, use interpolation instead"
            )
            interpolation = _interpolation_modes_from_int(resample)

        # Backward compatibility with integer value
        if isinstance(interpolation, int):
            warnings.warn(
1423
1424
                "Argument interpolation should be of type InterpolationMode instead of int. "
                "Please, use InterpolationMode enum."
1425
1426
1427
1428
1429
1430
1431
1432
1433
            )
            interpolation = _interpolation_modes_from_int(interpolation)

        if fillcolor is not None:
            warnings.warn(
                "Argument fillcolor is deprecated and will be removed since v0.10.0. Please, use fill instead"
            )
            fill = fillcolor

1434
        self.degrees = _setup_angle(degrees, name="degrees", req_sizes=(2,))
1435
1436

        if translate is not None:
1437
            _check_sequence_input(translate, "translate", req_sizes=(2,))
1438
1439
1440
1441
1442
1443
            for t in translate:
                if not (0.0 <= t <= 1.0):
                    raise ValueError("translation values should be between 0 and 1")
        self.translate = translate

        if scale is not None:
1444
            _check_sequence_input(scale, "scale", req_sizes=(2,))
1445
1446
1447
1448
1449
1450
            for s in scale:
                if s <= 0:
                    raise ValueError("scale values should be positive")
        self.scale = scale

        if shear is not None:
1451
            self.shear = _setup_angle(shear, name="shear", req_sizes=(2, 4))
1452
1453
1454
        else:
            self.shear = shear

1455
        self.resample = self.interpolation = interpolation
1456
1457
1458
1459
1460
1461

        if fill is None:
            fill = 0
        elif not isinstance(fill, (Sequence, numbers.Number)):
            raise TypeError("Fill should be either a sequence or a number.")

1462
        self.fillcolor = self.fill = fill
1463
1464

    @staticmethod
1465
    def get_params(
1466
1467
1468
1469
1470
        degrees: List[float],
        translate: Optional[List[float]],
        scale_ranges: Optional[List[float]],
        shears: Optional[List[float]],
        img_size: List[int],
1471
    ) -> Tuple[float, Tuple[int, int], float, Tuple[float, float]]:
1472
1473
1474
        """Get parameters for affine transformation

        Returns:
1475
            params to be passed to the affine transformation
1476
        """
1477
        angle = float(torch.empty(1).uniform_(float(degrees[0]), float(degrees[1])).item())
1478
        if translate is not None:
1479
1480
1481
1482
1483
            max_dx = float(translate[0] * img_size[0])
            max_dy = float(translate[1] * img_size[1])
            tx = int(round(torch.empty(1).uniform_(-max_dx, max_dx).item()))
            ty = int(round(torch.empty(1).uniform_(-max_dy, max_dy).item()))
            translations = (tx, ty)
1484
1485
1486
1487
        else:
            translations = (0, 0)

        if scale_ranges is not None:
1488
            scale = float(torch.empty(1).uniform_(scale_ranges[0], scale_ranges[1]).item())
1489
1490
1491
        else:
            scale = 1.0

1492
        shear_x = shear_y = 0.0
1493
        if shears is not None:
1494
1495
1496
1497
1498
            shear_x = float(torch.empty(1).uniform_(shears[0], shears[1]).item())
            if len(shears) == 4:
                shear_y = float(torch.empty(1).uniform_(shears[2], shears[3]).item())

        shear = (shear_x, shear_y)
1499
1500
1501

        return angle, translations, scale, shear

1502
    def forward(self, img):
1503
        """
1504
            img (PIL Image or Tensor): Image to be transformed.
1505
1506

        Returns:
1507
            PIL Image or Tensor: Affine transformed image.
1508
        """
1509
1510
1511
        fill = self.fill
        if isinstance(img, Tensor):
            if isinstance(fill, (int, float)):
1512
                fill = [float(fill)] * F.get_image_num_channels(img)
1513
1514
            else:
                fill = [float(f) for f in fill]
1515

1516
        img_size = F.get_image_size(img)
1517
1518

        ret = self.get_params(self.degrees, self.translate, self.scale, self.shear, img_size)
1519
1520

        return F.affine(img, *ret, interpolation=self.interpolation, fill=fill)
1521
1522

    def __repr__(self):
1523
        s = "{name}(degrees={degrees}"
1524
        if self.translate is not None:
1525
            s += ", translate={translate}"
1526
        if self.scale is not None:
1527
            s += ", scale={scale}"
1528
        if self.shear is not None:
1529
            s += ", shear={shear}"
1530
        if self.interpolation != InterpolationMode.NEAREST:
1531
            s += ", interpolation={interpolation}"
1532
        if self.fill != 0:
1533
1534
            s += ", fill={fill}"
        s += ")"
1535
        d = dict(self.__dict__)
1536
        d["interpolation"] = self.interpolation.value
1537
1538
1539
        return s.format(name=self.__class__.__name__, **d)


1540
class Grayscale(torch.nn.Module):
1541
    """Convert image to grayscale.
1542
1543
    If the image is torch Tensor, it is expected
    to have [..., 3, H, W] shape, where ... means an arbitrary number of leading dimensions
1544

1545
1546
1547
1548
    Args:
        num_output_channels (int): (1 or 3) number of channels desired for output image

    Returns:
1549
        PIL Image: Grayscale version of the input.
1550
1551
1552

        - If ``num_output_channels == 1`` : returned image is single channel
        - If ``num_output_channels == 3`` : returned image is 3 channel with r == g == b
1553
1554
1555
1556

    """

    def __init__(self, num_output_channels=1):
1557
        super().__init__()
1558
1559
        self.num_output_channels = num_output_channels

vfdev's avatar
vfdev committed
1560
    def forward(self, img):
1561
1562
        """
        Args:
1563
            img (PIL Image or Tensor): Image to be converted to grayscale.
1564
1565

        Returns:
1566
            PIL Image or Tensor: Grayscaled image.
1567
        """
1568
        return F.rgb_to_grayscale(img, num_output_channels=self.num_output_channels)
1569

1570
    def __repr__(self):
1571
        return self.__class__.__name__ + "(num_output_channels={0})".format(self.num_output_channels)
1572

1573

1574
class RandomGrayscale(torch.nn.Module):
1575
    """Randomly convert image to grayscale with a probability of p (default 0.1).
1576
1577
    If the image is torch Tensor, it is expected
    to have [..., 3, H, W] shape, where ... means an arbitrary number of leading dimensions
1578

1579
1580
1581
1582
    Args:
        p (float): probability that image should be converted to grayscale.

    Returns:
1583
        PIL Image or Tensor: Grayscale version of the input image with probability p and unchanged
1584
1585
1586
        with probability (1-p).
        - If input image is 1 channel: grayscale version is 1 channel
        - If input image is 3 channel: grayscale version is 3 channel with r == g == b
1587
1588
1589
1590

    """

    def __init__(self, p=0.1):
1591
        super().__init__()
1592
1593
        self.p = p

vfdev's avatar
vfdev committed
1594
    def forward(self, img):
1595
1596
        """
        Args:
1597
            img (PIL Image or Tensor): Image to be converted to grayscale.
1598
1599

        Returns:
1600
            PIL Image or Tensor: Randomly grayscaled image.
1601
        """
1602
        num_output_channels = F.get_image_num_channels(img)
1603
1604
        if torch.rand(1) < self.p:
            return F.rgb_to_grayscale(img, num_output_channels=num_output_channels)
1605
        return img
1606
1607

    def __repr__(self):
1608
        return self.__class__.__name__ + "(p={0})".format(self.p)
1609
1610


1611
class RandomErasing(torch.nn.Module):
1612
    """Randomly selects a rectangle region in an torch Tensor image and erases its pixels.
1613
    This transform does not support PIL Image.
vfdev's avatar
vfdev committed
1614
    'Random Erasing Data Augmentation' by Zhong et al. See https://arxiv.org/abs/1708.04896
1615

1616
1617
1618
1619
1620
1621
1622
1623
    Args:
         p: probability that the random erasing operation will be performed.
         scale: range of proportion of erased area against input image.
         ratio: range of aspect ratio of erased area.
         value: erasing value. Default is 0. If a single int, it is used to
            erase all pixels. If a tuple of length 3, it is used to erase
            R, G, B channels respectively.
            If a str of 'random', erasing each pixel with random values.
Zhun Zhong's avatar
Zhun Zhong committed
1624
         inplace: boolean to make this transform inplace. Default set to False.
1625

1626
1627
    Returns:
        Erased Image.
1628

vfdev's avatar
vfdev committed
1629
    Example:
1630
        >>> transform = transforms.Compose([
1631
        >>>   transforms.RandomHorizontalFlip(),
1632
1633
        >>>   transforms.PILToTensor(),
        >>>   transforms.ConvertImageDtype(torch.float),
1634
1635
        >>>   transforms.Normalize((0.485, 0.456, 0.406), (0.229, 0.224, 0.225)),
        >>>   transforms.RandomErasing(),
1636
1637
1638
        >>> ])
    """

Zhun Zhong's avatar
Zhun Zhong committed
1639
    def __init__(self, p=0.5, scale=(0.02, 0.33), ratio=(0.3, 3.3), value=0, inplace=False):
1640
1641
1642
1643
1644
1645
1646
1647
1648
        super().__init__()
        if not isinstance(value, (numbers.Number, str, tuple, list)):
            raise TypeError("Argument value should be either a number or str or a sequence")
        if isinstance(value, str) and value != "random":
            raise ValueError("If value is str, it should be 'random'")
        if not isinstance(scale, (tuple, list)):
            raise TypeError("Scale should be a sequence")
        if not isinstance(ratio, (tuple, list)):
            raise TypeError("Ratio should be a sequence")
1649
        if (scale[0] > scale[1]) or (ratio[0] > ratio[1]):
1650
            warnings.warn("Scale and ratio should be of kind (min, max)")
1651
        if scale[0] < 0 or scale[1] > 1:
1652
            raise ValueError("Scale should be between 0 and 1")
1653
        if p < 0 or p > 1:
1654
            raise ValueError("Random erasing probability should be between 0 and 1")
1655
1656
1657
1658
1659

        self.p = p
        self.scale = scale
        self.ratio = ratio
        self.value = value
1660
        self.inplace = inplace
1661
1662

    @staticmethod
1663
    def get_params(
1664
        img: Tensor, scale: Tuple[float, float], ratio: Tuple[float, float], value: Optional[List[float]] = None
1665
    ) -> Tuple[int, int, int, int, Tensor]:
1666
1667
1668
        """Get parameters for ``erase`` for a random erasing.

        Args:
vfdev's avatar
vfdev committed
1669
            img (Tensor): Tensor image to be erased.
1670
1671
            scale (sequence): range of proportion of erased area against input image.
            ratio (sequence): range of aspect ratio of erased area.
1672
1673
1674
            value (list, optional): erasing value. If None, it is interpreted as "random"
                (erasing each pixel with random values). If ``len(value)`` is 1, it is interpreted as a number,
                i.e. ``value[0]``.
1675
1676
1677
1678

        Returns:
            tuple: params (i, j, h, w, v) to be passed to ``erase`` for random erasing.
        """
vfdev's avatar
vfdev committed
1679
        img_c, img_h, img_w = img.shape[-3], img.shape[-2], img.shape[-1]
1680
        area = img_h * img_w
1681

1682
        log_ratio = torch.log(torch.tensor(ratio))
1683
        for _ in range(10):
1684
            erase_area = area * torch.empty(1).uniform_(scale[0], scale[1]).item()
1685
            aspect_ratio = torch.exp(torch.empty(1).uniform_(log_ratio[0], log_ratio[1])).item()
1686
1687
1688

            h = int(round(math.sqrt(erase_area * aspect_ratio)))
            w = int(round(math.sqrt(erase_area / aspect_ratio)))
1689
1690
1691
1692
1693
1694
1695
            if not (h < img_h and w < img_w):
                continue

            if value is None:
                v = torch.empty([img_c, h, w], dtype=torch.float32).normal_()
            else:
                v = torch.tensor(value)[:, None, None]
1696

1697
1698
            i = torch.randint(0, img_h - h + 1, size=(1,)).item()
            j = torch.randint(0, img_w - w + 1, size=(1,)).item()
1699
            return i, j, h, w, v
1700

Zhun Zhong's avatar
Zhun Zhong committed
1701
1702
1703
        # Return original image
        return 0, 0, img_h, img_w, img

1704
    def forward(self, img):
1705
1706
        """
        Args:
vfdev's avatar
vfdev committed
1707
            img (Tensor): Tensor image to be erased.
1708
1709
1710
1711

        Returns:
            img (Tensor): Erased Tensor image.
        """
1712
1713
1714
1715
        if torch.rand(1) < self.p:

            # cast self.value to script acceptable type
            if isinstance(self.value, (int, float)):
1716
1717
1718
                value = [
                    self.value,
                ]
1719
1720
1721
1722
1723
1724
1725
1726
1727
1728
1729
1730
1731
1732
            elif isinstance(self.value, str):
                value = None
            elif isinstance(self.value, tuple):
                value = list(self.value)
            else:
                value = self.value

            if value is not None and not (len(value) in (1, img.shape[-3])):
                raise ValueError(
                    "If value is a sequence, it should have either a single value or "
                    "{} (number of input channels)".format(img.shape[-3])
                )

            x, y, h, w, v = self.get_params(img, scale=self.scale, ratio=self.ratio, value=value)
1733
            return F.erase(img, x, y, h, w, v, self.inplace)
1734
        return img
1735

1736
    def __repr__(self):
1737
1738
1739
1740
1741
        s = "(p={}, ".format(self.p)
        s += "scale={}, ".format(self.scale)
        s += "ratio={}, ".format(self.ratio)
        s += "value={}, ".format(self.value)
        s += "inplace={})".format(self.inplace)
1742
1743
        return self.__class__.__name__ + s

1744

1745
1746
class GaussianBlur(torch.nn.Module):
    """Blurs image with randomly chosen Gaussian blur.
1747
1748
    If the image is torch Tensor, it is expected
    to have [..., C, H, W] shape, where ... means an arbitrary number of leading dimensions.
1749
1750
1751
1752
1753
1754
1755
1756
1757
1758
1759
1760
1761
1762
1763
1764
1765
1766
1767
1768
1769
1770
1771
1772
1773

    Args:
        kernel_size (int or sequence): Size of the Gaussian kernel.
        sigma (float or tuple of float (min, max)): Standard deviation to be used for
            creating kernel to perform blurring. If float, sigma is fixed. If it is tuple
            of float (min, max), sigma is chosen uniformly at random to lie in the
            given range.

    Returns:
        PIL Image or Tensor: Gaussian blurred version of the input image.

    """

    def __init__(self, kernel_size, sigma=(0.1, 2.0)):
        super().__init__()
        self.kernel_size = _setup_size(kernel_size, "Kernel size should be a tuple/list of two integers")
        for ks in self.kernel_size:
            if ks <= 0 or ks % 2 == 0:
                raise ValueError("Kernel size value should be an odd and positive number.")

        if isinstance(sigma, numbers.Number):
            if sigma <= 0:
                raise ValueError("If sigma is a single number, it must be positive.")
            sigma = (sigma, sigma)
        elif isinstance(sigma, Sequence) and len(sigma) == 2:
1774
            if not 0.0 < sigma[0] <= sigma[1]:
1775
1776
1777
1778
1779
1780
1781
1782
                raise ValueError("sigma values should be positive and of the form (min, max).")
        else:
            raise ValueError("sigma should be a single number or a list/tuple with length 2.")

        self.sigma = sigma

    @staticmethod
    def get_params(sigma_min: float, sigma_max: float) -> float:
vfdev's avatar
vfdev committed
1783
        """Choose sigma for random gaussian blurring.
1784
1785
1786
1787
1788
1789
1790
1791
1792
1793
1794
1795
1796

        Args:
            sigma_min (float): Minimum standard deviation that can be chosen for blurring kernel.
            sigma_max (float): Maximum standard deviation that can be chosen for blurring kernel.

        Returns:
            float: Standard deviation to be passed to calculate kernel for gaussian blurring.
        """
        return torch.empty(1).uniform_(sigma_min, sigma_max).item()

    def forward(self, img: Tensor) -> Tensor:
        """
        Args:
vfdev's avatar
vfdev committed
1797
            img (PIL Image or Tensor): image to be blurred.
1798
1799
1800
1801
1802
1803
1804
1805

        Returns:
            PIL Image or Tensor: Gaussian blurred image
        """
        sigma = self.get_params(self.sigma[0], self.sigma[1])
        return F.gaussian_blur(img, self.kernel_size, [sigma, sigma])

    def __repr__(self):
1806
1807
        s = "(kernel_size={}, ".format(self.kernel_size)
        s += "sigma={})".format(self.sigma)
1808
1809
1810
        return self.__class__.__name__ + s


1811
1812
1813
1814
1815
1816
1817
1818
1819
1820
1821
1822
1823
1824
1825
1826
1827
1828
1829
1830
1831
def _setup_size(size, error_msg):
    if isinstance(size, numbers.Number):
        return int(size), int(size)

    if isinstance(size, Sequence) and len(size) == 1:
        return size[0], size[0]

    if len(size) != 2:
        raise ValueError(error_msg)

    return size


def _check_sequence_input(x, name, req_sizes):
    msg = req_sizes[0] if len(req_sizes) < 2 else " or ".join([str(s) for s in req_sizes])
    if not isinstance(x, Sequence):
        raise TypeError("{} should be a sequence of length {}.".format(name, msg))
    if len(x) not in req_sizes:
        raise ValueError("{} should be sequence of length {}.".format(name, msg))


1832
def _setup_angle(x, name, req_sizes=(2,)):
1833
1834
1835
1836
1837
1838
1839
1840
    if isinstance(x, numbers.Number):
        if x < 0:
            raise ValueError("If {} is a single number, it must be positive.".format(name))
        x = [-x, x]
    else:
        _check_sequence_input(x, name, req_sizes)

    return [float(d) for d in x]
1841
1842
1843
1844


class RandomInvert(torch.nn.Module):
    """Inverts the colors of the given image randomly with a given probability.
1845
1846
1847
    If img is a Tensor, it is expected to be in [..., 1 or 3, H, W] format,
    where ... means it can have an arbitrary number of leading dimensions.
    If img is PIL Image, it is expected to be in mode "L" or "RGB".
1848
1849
1850
1851
1852
1853
1854
1855
1856
1857
1858
1859
1860
1861
1862
1863
1864
1865
1866
1867
1868
1869

    Args:
        p (float): probability of the image being color inverted. Default value is 0.5
    """

    def __init__(self, p=0.5):
        super().__init__()
        self.p = p

    def forward(self, img):
        """
        Args:
            img (PIL Image or Tensor): Image to be inverted.

        Returns:
            PIL Image or Tensor: Randomly color inverted image.
        """
        if torch.rand(1).item() < self.p:
            return F.invert(img)
        return img

    def __repr__(self):
1870
        return self.__class__.__name__ + "(p={})".format(self.p)
1871
1872
1873
1874


class RandomPosterize(torch.nn.Module):
    """Posterize the image randomly with a given probability by reducing the
1875
1876
1877
    number of bits for each color channel. If the image is torch Tensor, it should be of type torch.uint8,
    and it is expected to have [..., 1 or 3, H, W] shape, where ... means an arbitrary number of leading dimensions.
    If img is PIL Image, it is expected to be in mode "L" or "RGB".
1878
1879
1880
1881
1882
1883
1884
1885
1886
1887
1888
1889
1890
1891
1892
1893
1894
1895
1896
1897
1898
1899
1900
1901

    Args:
        bits (int): number of bits to keep for each channel (0-8)
        p (float): probability of the image being color inverted. Default value is 0.5
    """

    def __init__(self, bits, p=0.5):
        super().__init__()
        self.bits = bits
        self.p = p

    def forward(self, img):
        """
        Args:
            img (PIL Image or Tensor): Image to be posterized.

        Returns:
            PIL Image or Tensor: Randomly posterized image.
        """
        if torch.rand(1).item() < self.p:
            return F.posterize(img, self.bits)
        return img

    def __repr__(self):
1902
        return self.__class__.__name__ + "(bits={},p={})".format(self.bits, self.p)
1903
1904
1905
1906


class RandomSolarize(torch.nn.Module):
    """Solarize the image randomly with a given probability by inverting all pixel
1907
1908
1909
    values above a threshold. If img is a Tensor, it is expected to be in [..., 1 or 3, H, W] format,
    where ... means it can have an arbitrary number of leading dimensions.
    If img is PIL Image, it is expected to be in mode "L" or "RGB".
1910
1911
1912
1913
1914
1915
1916
1917
1918
1919
1920
1921
1922
1923
1924
1925
1926
1927
1928
1929
1930
1931
1932
1933

    Args:
        threshold (float): all pixels equal or above this value are inverted.
        p (float): probability of the image being color inverted. Default value is 0.5
    """

    def __init__(self, threshold, p=0.5):
        super().__init__()
        self.threshold = threshold
        self.p = p

    def forward(self, img):
        """
        Args:
            img (PIL Image or Tensor): Image to be solarized.

        Returns:
            PIL Image or Tensor: Randomly solarized image.
        """
        if torch.rand(1).item() < self.p:
            return F.solarize(img, self.threshold)
        return img

    def __repr__(self):
1934
        return self.__class__.__name__ + "(threshold={},p={})".format(self.threshold, self.p)
1935
1936
1937


class RandomAdjustSharpness(torch.nn.Module):
1938
1939
    """Adjust the sharpness of the image randomly with a given probability. If the image is torch Tensor,
    it is expected to have [..., 1 or 3, H, W] shape, where ... means an arbitrary number of leading dimensions.
1940
1941
1942
1943
1944
1945
1946
1947
1948
1949
1950
1951
1952
1953
1954
1955
1956
1957
1958
1959
1960
1961
1962
1963
1964
1965

    Args:
        sharpness_factor (float):  How much to adjust the sharpness. Can be
            any non negative number. 0 gives a blurred image, 1 gives the
            original image while 2 increases the sharpness by a factor of 2.
        p (float): probability of the image being color inverted. Default value is 0.5
    """

    def __init__(self, sharpness_factor, p=0.5):
        super().__init__()
        self.sharpness_factor = sharpness_factor
        self.p = p

    def forward(self, img):
        """
        Args:
            img (PIL Image or Tensor): Image to be sharpened.

        Returns:
            PIL Image or Tensor: Randomly sharpened image.
        """
        if torch.rand(1).item() < self.p:
            return F.adjust_sharpness(img, self.sharpness_factor)
        return img

    def __repr__(self):
1966
        return self.__class__.__name__ + "(sharpness_factor={},p={})".format(self.sharpness_factor, self.p)
1967
1968
1969
1970


class RandomAutocontrast(torch.nn.Module):
    """Autocontrast the pixels of the given image randomly with a given probability.
1971
1972
1973
    If the image is torch Tensor, it is expected
    to have [..., 1 or 3, H, W] shape, where ... means an arbitrary number of leading dimensions.
    If img is PIL Image, it is expected to be in mode "L" or "RGB".
1974
1975
1976
1977
1978
1979
1980
1981
1982
1983
1984
1985
1986
1987
1988
1989
1990
1991
1992
1993
1994
1995

    Args:
        p (float): probability of the image being autocontrasted. Default value is 0.5
    """

    def __init__(self, p=0.5):
        super().__init__()
        self.p = p

    def forward(self, img):
        """
        Args:
            img (PIL Image or Tensor): Image to be autocontrasted.

        Returns:
            PIL Image or Tensor: Randomly autocontrasted image.
        """
        if torch.rand(1).item() < self.p:
            return F.autocontrast(img)
        return img

    def __repr__(self):
1996
        return self.__class__.__name__ + "(p={})".format(self.p)
1997
1998
1999
2000


class RandomEqualize(torch.nn.Module):
    """Equalize the histogram of the given image randomly with a given probability.
2001
2002
2003
    If the image is torch Tensor, it is expected
    to have [..., 1 or 3, H, W] shape, where ... means an arbitrary number of leading dimensions.
    If img is PIL Image, it is expected to be in mode "P", "L" or "RGB".
2004
2005
2006
2007
2008
2009
2010
2011
2012
2013
2014
2015
2016
2017
2018
2019
2020
2021
2022
2023
2024
2025

    Args:
        p (float): probability of the image being equalized. Default value is 0.5
    """

    def __init__(self, p=0.5):
        super().__init__()
        self.p = p

    def forward(self, img):
        """
        Args:
            img (PIL Image or Tensor): Image to be equalized.

        Returns:
            PIL Image or Tensor: Randomly equalized image.
        """
        if torch.rand(1).item() < self.p:
            return F.equalize(img)
        return img

    def __repr__(self):
2026
        return self.__class__.__name__ + "(p={})".format(self.p)