transforms.py 67.7 KB
Newer Older
1
import math
vfdev's avatar
vfdev committed
2
import numbers
3
import random
vfdev's avatar
vfdev committed
4
import warnings
vfdev's avatar
vfdev committed
5
from collections.abc import Sequence
6
from typing import Tuple, List, Optional
vfdev's avatar
vfdev committed
7
8
9
10

import torch
from torch import Tensor

11
12
13
14
15
16
try:
    import accimage
except ImportError:
    accimage = None

from . import functional as F
17
from .functional import InterpolationMode, _interpolation_modes_from_int
18

19

20
21
22
23
__all__ = ["Compose", "ToTensor", "PILToTensor", "ConvertImageDtype", "ToPILImage", "Normalize", "Resize", "Scale",
           "CenterCrop", "Pad", "Lambda", "RandomApply", "RandomChoice", "RandomOrder", "RandomCrop",
           "RandomHorizontalFlip", "RandomVerticalFlip", "RandomResizedCrop", "RandomSizedCrop", "FiveCrop", "TenCrop",
           "LinearTransformation", "ColorJitter", "RandomRotation", "RandomAffine", "Grayscale", "RandomGrayscale",
24
           "RandomPerspective", "RandomErasing", "GaussianBlur", "InterpolationMode"]
25

26

27
class Compose:
28
29
    """Composes several transforms together. This transform does not support torchscript.
    Please, see the note below.
30
31
32
33
34
35
36
37
38

    Args:
        transforms (list of ``Transform`` objects): list of transforms to compose.

    Example:
        >>> transforms.Compose([
        >>>     transforms.CenterCrop(10),
        >>>     transforms.ToTensor(),
        >>> ])
39
40
41
42
43
44
45
46
47
48
49
50
51

    .. note::
        In order to script the transformations, please use ``torch.nn.Sequential`` as below.

        >>> transforms = torch.nn.Sequential(
        >>>     transforms.CenterCrop(10),
        >>>     transforms.Normalize((0.485, 0.456, 0.406), (0.229, 0.224, 0.225)),
        >>> )
        >>> scripted_transforms = torch.jit.script(transforms)

        Make sure to use only scriptable transformations, i.e. that work with ``torch.Tensor``, does not require
        `lambda` functions or ``PIL.Image``.

52
53
54
55
56
57
58
59
60
61
    """

    def __init__(self, transforms):
        self.transforms = transforms

    def __call__(self, img):
        for t in self.transforms:
            img = t(img)
        return img

62
63
64
65
66
67
68
69
    def __repr__(self):
        format_string = self.__class__.__name__ + '('
        for t in self.transforms:
            format_string += '\n'
            format_string += '    {0}'.format(t)
        format_string += '\n)'
        return format_string

70

71
class ToTensor:
72
    """Convert a ``PIL Image`` or ``numpy.ndarray`` to tensor. This transform does not support torchscript.
73
74

    Converts a PIL Image or numpy.ndarray (H x W x C) in the range
surgan12's avatar
surgan12 committed
75
76
77
78
79
    [0, 255] to a torch.FloatTensor of shape (C x H x W) in the range [0.0, 1.0]
    if the PIL Image belongs to one of the modes (L, LA, P, I, F, RGB, YCbCr, RGBA, CMYK, 1)
    or if the numpy.ndarray has dtype = np.uint8

    In the other cases, tensors are returned without scaling.
80
81
82
83
84
85

    .. note::
        Because the input image is scaled to [0.0, 1.0], this transformation should not be used when
        transforming target image masks. See the `references`_ for implementing the transforms for image masks.

    .. _references: https://github.com/pytorch/vision/tree/master/references/segmentation
86
87
88
89
90
91
92
93
94
95
96
97
    """

    def __call__(self, pic):
        """
        Args:
            pic (PIL Image or numpy.ndarray): Image to be converted to tensor.

        Returns:
            Tensor: Converted image.
        """
        return F.to_tensor(pic)

98
99
100
    def __repr__(self):
        return self.__class__.__name__ + '()'

101

102
class PILToTensor:
103
    """Convert a ``PIL Image`` to a tensor of the same type. This transform does not support torchscript.
104

vfdev's avatar
vfdev committed
105
    Converts a PIL Image (H x W x C) to a Tensor of shape (C x H x W).
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
    """

    def __call__(self, pic):
        """
        Args:
            pic (PIL Image): Image to be converted to tensor.

        Returns:
            Tensor: Converted image.
        """
        return F.pil_to_tensor(pic)

    def __repr__(self):
        return self.__class__.__name__ + '()'


122
class ConvertImageDtype(torch.nn.Module):
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
    """Convert a tensor image to the given ``dtype`` and scale the values accordingly

    Args:
        dtype (torch.dtype): Desired data type of the output

    .. note::

        When converting from a smaller to a larger integer ``dtype`` the maximum values are **not** mapped exactly.
        If converted back and forth, this mismatch has no effect.

    Raises:
        RuntimeError: When trying to cast :class:`torch.float32` to :class:`torch.int32` or :class:`torch.int64` as
            well as for trying to cast :class:`torch.float64` to :class:`torch.int64`. These conversions might lead to
            overflow errors since the floating point ``dtype`` cannot store consecutive integers over the whole range
            of the integer ``dtype``.
    """

    def __init__(self, dtype: torch.dtype) -> None:
141
        super().__init__()
142
143
        self.dtype = dtype

vfdev's avatar
vfdev committed
144
    def forward(self, image):
145
146
147
        return F.convert_image_dtype(image, self.dtype)


148
class ToPILImage:
149
    """Convert a tensor or an ndarray to PIL Image. This transform does not support torchscript.
150
151
152
153
154
155
156

    Converts a torch.*Tensor of shape C x H x W or a numpy ndarray of shape
    H x W x C to a PIL Image while preserving the value range.

    Args:
        mode (`PIL.Image mode`_): color space and pixel depth of input data (optional).
            If ``mode`` is ``None`` (default) there are some assumptions made about the input data:
vfdev's avatar
vfdev committed
157
158
159
160
161
            - If the input has 4 channels, the ``mode`` is assumed to be ``RGBA``.
            - If the input has 3 channels, the ``mode`` is assumed to be ``RGB``.
            - If the input has 2 channels, the ``mode`` is assumed to be ``LA``.
            - If the input has 1 channel, the ``mode`` is determined by the data type (i.e ``int``, ``float``,
            ``short``).
162

csukuangfj's avatar
csukuangfj committed
163
    .. _PIL.Image mode: https://pillow.readthedocs.io/en/latest/handbook/concepts.html#concept-modes
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
    """
    def __init__(self, mode=None):
        self.mode = mode

    def __call__(self, pic):
        """
        Args:
            pic (Tensor or numpy.ndarray): Image to be converted to PIL Image.

        Returns:
            PIL Image: Image converted to PIL Image.

        """
        return F.to_pil_image(pic, self.mode)

179
    def __repr__(self):
180
181
182
183
184
        format_string = self.__class__.__name__ + '('
        if self.mode is not None:
            format_string += 'mode={0}'.format(self.mode)
        format_string += ')'
        return format_string
185

186

187
class Normalize(torch.nn.Module):
Fang Gao's avatar
Fang Gao committed
188
    """Normalize a tensor image with mean and standard deviation.
189
190
191
    Given mean: ``(mean[1],...,mean[n])`` and std: ``(std[1],..,std[n])`` for ``n``
    channels, this transform will normalize each channel of the input
    ``torch.*Tensor`` i.e.,
abdjava's avatar
abdjava committed
192
    ``output[channel] = (input[channel] - mean[channel]) / std[channel]``
193

194
    .. note::
195
        This transform acts out of place, i.e., it does not mutate the input tensor.
196

197
198
199
    Args:
        mean (sequence): Sequence of means for each channel.
        std (sequence): Sequence of standard deviations for each channel.
200
201
        inplace(bool,optional): Bool to make this operation in-place.

202
203
    """

surgan12's avatar
surgan12 committed
204
    def __init__(self, mean, std, inplace=False):
205
        super().__init__()
206
207
        self.mean = mean
        self.std = std
surgan12's avatar
surgan12 committed
208
        self.inplace = inplace
209

210
    def forward(self, tensor: Tensor) -> Tensor:
211
212
        """
        Args:
vfdev's avatar
vfdev committed
213
            tensor (Tensor): Tensor image to be normalized.
214
215
216
217

        Returns:
            Tensor: Normalized Tensor image.
        """
surgan12's avatar
surgan12 committed
218
        return F.normalize(tensor, self.mean, self.std, self.inplace)
219

220
221
222
    def __repr__(self):
        return self.__class__.__name__ + '(mean={0}, std={1})'.format(self.mean, self.std)

223

vfdev's avatar
vfdev committed
224
225
226
227
class Resize(torch.nn.Module):
    """Resize the input image to the given size.
    The image can be a PIL Image or a torch Tensor, in which case it is expected
    to have [..., H, W] shape, where ... means an arbitrary number of leading dimensions
228
229
230
231
232
233

    Args:
        size (sequence or int): Desired output size. If size is a sequence like
            (h, w), output size will be matched to this. If size is an int,
            smaller edge of the image will be matched to this number.
            i.e, if height > width, then image will be rescaled to
vfdev's avatar
vfdev committed
234
235
236
            (size * height / width, size).
            In torchscript mode padding as single int is not supported, use a tuple or
            list of length 1: ``[size, ]``.
237
238
239
240
        interpolation (InterpolationMode): Desired interpolation enum defined by
            :class:`torchvision.transforms.InterpolationMode`. Default is ``InterpolationMode.BILINEAR``.
            If input is Tensor, only ``InterpolationMode.NEAREST``, ``InterpolationMode.BILINEAR`` and
            ``InterpolationMode.BICUBIC`` are supported.
241
242
            For backward compatibility integer values (e.g. ``PIL.Image.NEAREST``) are still acceptable.

243
244
    """

245
    def __init__(self, size, interpolation=InterpolationMode.BILINEAR):
vfdev's avatar
vfdev committed
246
        super().__init__()
247
248
249
250
251
        if not isinstance(size, (int, Sequence)):
            raise TypeError("Size should be int or sequence. Got {}".format(type(size)))
        if isinstance(size, Sequence) and len(size) not in (1, 2):
            raise ValueError("If size is a sequence, it should have 1 or 2 values")
        self.size = size
252
253
254
255

        # Backward compatibility with integer value
        if isinstance(interpolation, int):
            warnings.warn(
256
257
                "Argument interpolation should be of type InterpolationMode instead of int. "
                "Please, use InterpolationMode enum."
258
259
260
            )
            interpolation = _interpolation_modes_from_int(interpolation)

261
262
        self.interpolation = interpolation

vfdev's avatar
vfdev committed
263
    def forward(self, img):
264
265
        """
        Args:
vfdev's avatar
vfdev committed
266
            img (PIL Image or Tensor): Image to be scaled.
267
268

        Returns:
vfdev's avatar
vfdev committed
269
            PIL Image or Tensor: Rescaled image.
270
271
272
        """
        return F.resize(img, self.size, self.interpolation)

273
    def __repr__(self):
274
        interpolate_str = self.interpolation.value
275
        return self.__class__.__name__ + '(size={0}, interpolation={1})'.format(self.size, interpolate_str)
276

277
278
279
280
281
282
283
284
285
286
287

class Scale(Resize):
    """
    Note: This transform is deprecated in favor of Resize.
    """
    def __init__(self, *args, **kwargs):
        warnings.warn("The use of the transforms.Scale transform is deprecated, " +
                      "please use transforms.Resize instead.")
        super(Scale, self).__init__(*args, **kwargs)


vfdev's avatar
vfdev committed
288
289
290
291
class CenterCrop(torch.nn.Module):
    """Crops the given image at the center.
    The image can be a PIL Image or a torch Tensor, in which case it is expected
    to have [..., H, W] shape, where ... means an arbitrary number of leading dimensions
292
293
294
295

    Args:
        size (sequence or int): Desired output size of the crop. If size is an
            int instead of sequence like (h, w), a square crop (size, size) is
vfdev's avatar
vfdev committed
296
            made. If provided a tuple or list of length 1, it will be interpreted as (size[0], size[0]).
297
298
299
    """

    def __init__(self, size):
vfdev's avatar
vfdev committed
300
        super().__init__()
301
        self.size = _setup_size(size, error_msg="Please provide only two dimensions (h, w) for size.")
302

vfdev's avatar
vfdev committed
303
    def forward(self, img):
304
305
        """
        Args:
vfdev's avatar
vfdev committed
306
            img (PIL Image or Tensor): Image to be cropped.
307
308

        Returns:
vfdev's avatar
vfdev committed
309
            PIL Image or Tensor: Cropped image.
310
311
312
        """
        return F.center_crop(img, self.size)

313
314
315
    def __repr__(self):
        return self.__class__.__name__ + '(size={0})'.format(self.size)

316

317
318
319
320
class Pad(torch.nn.Module):
    """Pad the given image on all sides with the given "pad" value.
    The image can be a PIL Image or a torch Tensor, in which case it is expected
    to have [..., H, W] shape, where ... means an arbitrary number of leading dimensions
321
322

    Args:
323
        padding (int or tuple or list): Padding on each border. If a single int is provided this
324
325
            is used to pad all borders. If tuple of length 2 is provided this is the padding
            on left/right and top/bottom respectively. If a tuple of length 4 is provided
326
327
328
            this is the padding for the left, top, right and bottom borders respectively.
            In torchscript mode padding as single int is not supported, use a tuple or
            list of length 1: ``[padding, ]``.
329
        fill (int or tuple): Pixel fill value for constant fill. Default is 0. If a tuple of
330
            length 3, it is used to fill R, G, B channels respectively.
331
            This value is only used when the padding_mode is constant
332
        padding_mode (str): Type of padding. Should be: constant, edge, reflect or symmetric.
vfdev's avatar
vfdev committed
333
            Default is constant. Mode symmetric is not yet supported for Tensor inputs.
334
335
336
337
338
339
340
341

            - constant: pads with a constant value, this value is specified with fill

            - edge: pads with the last value at the edge of the image

            - reflect: pads with reflection of image without repeating the last value on the edge

                For example, padding [1, 2, 3, 4] with 2 elements on both sides in reflect mode
342
                will result in [3, 2, 1, 2, 3, 4, 3, 2]
343
344
345
346

            - symmetric: pads with reflection of image repeating the last value on the edge

                For example, padding [1, 2, 3, 4] with 2 elements on both sides in symmetric mode
347
                will result in [2, 1, 1, 2, 3, 4, 4, 3]
348
349
    """

350
351
352
353
354
355
356
357
358
359
360
361
362
    def __init__(self, padding, fill=0, padding_mode="constant"):
        super().__init__()
        if not isinstance(padding, (numbers.Number, tuple, list)):
            raise TypeError("Got inappropriate padding arg")

        if not isinstance(fill, (numbers.Number, str, tuple)):
            raise TypeError("Got inappropriate fill arg")

        if padding_mode not in ["constant", "edge", "reflect", "symmetric"]:
            raise ValueError("Padding mode should be either constant, edge, reflect or symmetric")

        if isinstance(padding, Sequence) and len(padding) not in [1, 2, 4]:
            raise ValueError("Padding must be an int or a 1, 2, or 4 element tuple, not a " +
363
364
365
366
                             "{} element tuple".format(len(padding)))

        self.padding = padding
        self.fill = fill
367
        self.padding_mode = padding_mode
368

369
    def forward(self, img):
370
371
        """
        Args:
372
            img (PIL Image or Tensor): Image to be padded.
373
374

        Returns:
375
            PIL Image or Tensor: Padded image.
376
        """
377
        return F.pad(img, self.padding, self.fill, self.padding_mode)
378

379
    def __repr__(self):
380
381
        return self.__class__.__name__ + '(padding={0}, fill={1}, padding_mode={2})'.\
            format(self.padding, self.fill, self.padding_mode)
382

383

384
class Lambda:
385
    """Apply a user-defined lambda as a transform. This transform does not support torchscript.
386
387
388
389
390
391

    Args:
        lambd (function): Lambda/function to be used for transform.
    """

    def __init__(self, lambd):
392
393
        if not callable(lambd):
            raise TypeError("Argument lambd should be callable, got {}".format(repr(type(lambd).__name__)))
394
395
396
397
398
        self.lambd = lambd

    def __call__(self, img):
        return self.lambd(img)

399
400
401
    def __repr__(self):
        return self.__class__.__name__ + '()'

402

403
class RandomTransforms:
404
405
406
407
408
409
410
    """Base class for a list of transformations with randomness

    Args:
        transforms (list or tuple): list of transformations
    """

    def __init__(self, transforms):
411
412
        if not isinstance(transforms, Sequence):
            raise TypeError("Argument transforms should be a sequence")
413
414
415
416
417
418
419
420
421
422
423
424
425
426
        self.transforms = transforms

    def __call__(self, *args, **kwargs):
        raise NotImplementedError()

    def __repr__(self):
        format_string = self.__class__.__name__ + '('
        for t in self.transforms:
            format_string += '\n'
            format_string += '    {0}'.format(t)
        format_string += '\n)'
        return format_string


427
class RandomApply(torch.nn.Module):
428
    """Apply randomly a list of transformations with a given probability.
429
430
431
432
433
434
435
436
437
438
439
440

    .. note::
        In order to script the transformation, please use ``torch.nn.ModuleList`` as input instead of list/tuple of
        transforms as shown below:

        >>> transforms = transforms.RandomApply(torch.nn.ModuleList([
        >>>     transforms.ColorJitter(),
        >>> ]), p=0.3)
        >>> scripted_transforms = torch.jit.script(transforms)

        Make sure to use only scriptable transformations, i.e. that work with ``torch.Tensor``, does not require
        `lambda` functions or ``PIL.Image``.
441
442

    Args:
443
        transforms (list or tuple or torch.nn.Module): list of transformations
444
445
446
447
        p (float): probability
    """

    def __init__(self, transforms, p=0.5):
448
449
        super().__init__()
        self.transforms = transforms
450
451
        self.p = p

452
453
    def forward(self, img):
        if self.p < torch.rand(1):
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
            return img
        for t in self.transforms:
            img = t(img)
        return img

    def __repr__(self):
        format_string = self.__class__.__name__ + '('
        format_string += '\n    p={}'.format(self.p)
        for t in self.transforms:
            format_string += '\n'
            format_string += '    {0}'.format(t)
        format_string += '\n)'
        return format_string


class RandomOrder(RandomTransforms):
470
    """Apply a list of transformations in a random order. This transform does not support torchscript.
471
472
473
474
475
476
477
478
479
480
    """
    def __call__(self, img):
        order = list(range(len(self.transforms)))
        random.shuffle(order)
        for i in order:
            img = self.transforms[i](img)
        return img


class RandomChoice(RandomTransforms):
481
    """Apply single transformation randomly picked from a list. This transform does not support torchscript.
482
483
484
485
486
487
    """
    def __call__(self, img):
        t = random.choice(self.transforms)
        return t(img)


vfdev's avatar
vfdev committed
488
489
490
491
492
class RandomCrop(torch.nn.Module):
    """Crop the given image at a random location.
    The image can be a PIL Image or a Tensor, in which case it is expected
    to have [..., H, W] shape, where ... means an arbitrary number of leading
    dimensions
493
494
495
496

    Args:
        size (sequence or int): Desired output size of the crop. If size is an
            int instead of sequence like (h, w), a square crop (size, size) is
vfdev's avatar
vfdev committed
497
            made. If provided a tuple or list of length 1, it will be interpreted as (size[0], size[0]).
498
        padding (int or sequence, optional): Optional padding on each border
vfdev's avatar
vfdev committed
499
500
501
502
503
504
            of the image. Default is None. If a single int is provided this
            is used to pad all borders. If tuple of length 2 is provided this is the padding
            on left/right and top/bottom respectively. If a tuple of length 4 is provided
            this is the padding for the left, top, right and bottom borders respectively.
            In torchscript mode padding as single int is not supported, use a tuple or
            list of length 1: ``[padding, ]``.
505
        pad_if_needed (boolean): It will pad the image if smaller than the
ekka's avatar
ekka committed
506
            desired size to avoid raising an exception. Since cropping is done
507
            after padding, the padding seems to be done at a random offset.
vfdev's avatar
vfdev committed
508
        fill (int or tuple): Pixel fill value for constant fill. Default is 0. If a tuple of
509
510
            length 3, it is used to fill R, G, B channels respectively.
            This value is only used when the padding_mode is constant
vfdev's avatar
vfdev committed
511
        padding_mode (str): Type of padding. Should be: constant, edge, reflect or symmetric. Default is constant.
vfdev's avatar
vfdev committed
512
            Mode symmetric is not yet supported for Tensor inputs.
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527

             - constant: pads with a constant value, this value is specified with fill

             - edge: pads with the last value on the edge of the image

             - reflect: pads with reflection of image (without repeating the last value on the edge)

                padding [1, 2, 3, 4] with 2 elements on both sides in reflect mode
                will result in [3, 2, 1, 2, 3, 4, 3, 2]

             - symmetric: pads with reflection of image (repeating the last value on the edge)

                padding [1, 2, 3, 4] with 2 elements on both sides in symmetric mode
                will result in [2, 1, 1, 2, 3, 4, 4, 3]

528
529
530
    """

    @staticmethod
vfdev's avatar
vfdev committed
531
    def get_params(img: Tensor, output_size: Tuple[int, int]) -> Tuple[int, int, int, int]:
532
533
534
        """Get parameters for ``crop`` for a random crop.

        Args:
vfdev's avatar
vfdev committed
535
            img (PIL Image or Tensor): Image to be cropped.
536
537
538
539
540
            output_size (tuple): Expected output size of the crop.

        Returns:
            tuple: params (i, j, h, w) to be passed to ``crop`` for random crop.
        """
vfdev's avatar
vfdev committed
541
        w, h = F._get_image_size(img)
542
        th, tw = output_size
vfdev's avatar
vfdev committed
543
544
545
546
547
548

        if h + 1 < th or w + 1 < tw:
            raise ValueError(
                "Required crop size {} is larger then input image size {}".format((th, tw), (h, w))
            )

549
550
551
        if w == tw and h == th:
            return 0, 0, h, w

552
553
        i = torch.randint(0, h - th + 1, size=(1, )).item()
        j = torch.randint(0, w - tw + 1, size=(1, )).item()
554
555
        return i, j, th, tw

vfdev's avatar
vfdev committed
556
557
558
    def __init__(self, size, padding=None, pad_if_needed=False, fill=0, padding_mode="constant"):
        super().__init__()

559
560
561
562
        self.size = tuple(_setup_size(
            size, error_msg="Please provide only two dimensions (h, w) for size."
        ))

vfdev's avatar
vfdev committed
563
564
565
566
567
568
        self.padding = padding
        self.pad_if_needed = pad_if_needed
        self.fill = fill
        self.padding_mode = padding_mode

    def forward(self, img):
569
570
        """
        Args:
vfdev's avatar
vfdev committed
571
            img (PIL Image or Tensor): Image to be cropped.
572
573

        Returns:
vfdev's avatar
vfdev committed
574
            PIL Image or Tensor: Cropped image.
575
        """
576
577
        if self.padding is not None:
            img = F.pad(img, self.padding, self.fill, self.padding_mode)
578

vfdev's avatar
vfdev committed
579
        width, height = F._get_image_size(img)
580
        # pad the width if needed
vfdev's avatar
vfdev committed
581
582
583
        if self.pad_if_needed and width < self.size[1]:
            padding = [self.size[1] - width, 0]
            img = F.pad(img, padding, self.fill, self.padding_mode)
584
        # pad the height if needed
vfdev's avatar
vfdev committed
585
586
587
        if self.pad_if_needed and height < self.size[0]:
            padding = [0, self.size[0] - height]
            img = F.pad(img, padding, self.fill, self.padding_mode)
588

589
590
591
592
        i, j, h, w = self.get_params(img, self.size)

        return F.crop(img, i, j, h, w)

593
    def __repr__(self):
vfdev's avatar
vfdev committed
594
        return self.__class__.__name__ + "(size={0}, padding={1})".format(self.size, self.padding)
595

596

597
598
599
600
601
class RandomHorizontalFlip(torch.nn.Module):
    """Horizontally flip the given image randomly with a given probability.
    The image can be a PIL Image or a torch Tensor, in which case it is expected
    to have [..., H, W] shape, where ... means an arbitrary number of leading
    dimensions
602
603
604
605
606
607

    Args:
        p (float): probability of the image being flipped. Default value is 0.5
    """

    def __init__(self, p=0.5):
608
        super().__init__()
609
        self.p = p
610

611
    def forward(self, img):
612
613
        """
        Args:
614
            img (PIL Image or Tensor): Image to be flipped.
615
616

        Returns:
617
            PIL Image or Tensor: Randomly flipped image.
618
        """
619
        if torch.rand(1) < self.p:
620
621
622
            return F.hflip(img)
        return img

623
    def __repr__(self):
624
        return self.__class__.__name__ + '(p={})'.format(self.p)
625

626

627
class RandomVerticalFlip(torch.nn.Module):
vfdev's avatar
vfdev committed
628
    """Vertically flip the given image randomly with a given probability.
629
630
631
    The image can be a PIL Image or a torch Tensor, in which case it is expected
    to have [..., H, W] shape, where ... means an arbitrary number of leading
    dimensions
632
633
634
635
636
637

    Args:
        p (float): probability of the image being flipped. Default value is 0.5
    """

    def __init__(self, p=0.5):
638
        super().__init__()
639
        self.p = p
640

641
    def forward(self, img):
642
643
        """
        Args:
644
            img (PIL Image or Tensor): Image to be flipped.
645
646

        Returns:
647
            PIL Image or Tensor: Randomly flipped image.
648
        """
649
        if torch.rand(1) < self.p:
650
651
652
            return F.vflip(img)
        return img

653
    def __repr__(self):
654
        return self.__class__.__name__ + '(p={})'.format(self.p)
655

656

657
658
659
660
class RandomPerspective(torch.nn.Module):
    """Performs a random perspective transformation of the given image with a given probability.
    The image can be a PIL Image or a Tensor, in which case it is expected
    to have [..., H, W] shape, where ... means an arbitrary number of leading dimensions.
661
662

    Args:
663
664
665
        distortion_scale (float): argument to control the degree of distortion and ranges from 0 to 1.
            Default is 0.5.
        p (float): probability of the image being transformed. Default is 0.5.
666
667
668
        interpolation (InterpolationMode): Desired interpolation enum defined by
            :class:`torchvision.transforms.InterpolationMode`. Default is ``InterpolationMode.BILINEAR``.
            If input is Tensor, only ``InterpolationMode.NEAREST``, ``InterpolationMode.BILINEAR`` are supported.
669
            For backward compatibility integer values (e.g. ``PIL.Image.NEAREST``) are still acceptable.
670
671
672
673
        fill (n-tuple or int or float): Pixel fill value for area outside the rotated
            image. If int or float, the value is used for all bands respectively. Default is 0.
            This option is only available for ``pillow>=5.0.0``. This option is not supported for Tensor
            input. Fill value for the area outside the transform in the output image is always 0.
674
675
    """

676
    def __init__(self, distortion_scale=0.5, p=0.5, interpolation=InterpolationMode.BILINEAR, fill=0):
677
        super().__init__()
678
        self.p = p
679
680
681
682

        # Backward compatibility with integer value
        if isinstance(interpolation, int):
            warnings.warn(
683
684
                "Argument interpolation should be of type InterpolationMode instead of int. "
                "Please, use InterpolationMode enum."
685
686
687
            )
            interpolation = _interpolation_modes_from_int(interpolation)

688
689
        self.interpolation = interpolation
        self.distortion_scale = distortion_scale
690
        self.fill = fill
691

692
    def forward(self, img):
693
694
        """
        Args:
695
            img (PIL Image or Tensor): Image to be Perspectively transformed.
696
697

        Returns:
698
            PIL Image or Tensor: Randomly transformed image.
699
        """
700
701
        if torch.rand(1) < self.p:
            width, height = F._get_image_size(img)
702
            startpoints, endpoints = self.get_params(width, height, self.distortion_scale)
703
            return F.perspective(img, startpoints, endpoints, self.interpolation, self.fill)
704
705
706
        return img

    @staticmethod
707
    def get_params(width: int, height: int, distortion_scale: float) -> Tuple[List[List[int]], List[List[int]]]:
708
709
710
        """Get parameters for ``perspective`` for a random perspective transform.

        Args:
711
712
713
            width (int): width of the image.
            height (int): height of the image.
            distortion_scale (float): argument to control the degree of distortion and ranges from 0 to 1.
714
715

        Returns:
716
            List containing [top-left, top-right, bottom-right, bottom-left] of the original image,
717
718
            List containing [top-left, top-right, bottom-right, bottom-left] of the transformed image.
        """
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
        half_height = height // 2
        half_width = width // 2
        topleft = [
            int(torch.randint(0, int(distortion_scale * half_width) + 1, size=(1, )).item()),
            int(torch.randint(0, int(distortion_scale * half_height) + 1, size=(1, )).item())
        ]
        topright = [
            int(torch.randint(width - int(distortion_scale * half_width) - 1, width, size=(1, )).item()),
            int(torch.randint(0, int(distortion_scale * half_height) + 1, size=(1, )).item())
        ]
        botright = [
            int(torch.randint(width - int(distortion_scale * half_width) - 1, width, size=(1, )).item()),
            int(torch.randint(height - int(distortion_scale * half_height) - 1, height, size=(1, )).item())
        ]
        botleft = [
            int(torch.randint(0, int(distortion_scale * half_width) + 1, size=(1, )).item()),
            int(torch.randint(height - int(distortion_scale * half_height) - 1, height, size=(1, )).item())
        ]
        startpoints = [[0, 0], [width - 1, 0], [width - 1, height - 1], [0, height - 1]]
738
739
740
741
742
743
744
        endpoints = [topleft, topright, botright, botleft]
        return startpoints, endpoints

    def __repr__(self):
        return self.__class__.__name__ + '(p={})'.format(self.p)


745
746
747
748
class RandomResizedCrop(torch.nn.Module):
    """Crop the given image to random size and aspect ratio.
    The image can be a PIL Image or a Tensor, in which case it is expected
    to have [..., H, W] shape, where ... means an arbitrary number of leading dimensions
749

750
751
    A crop of random size (default: of 0.08 to 1.0) of the original size and a random
    aspect ratio (default: of 3/4 to 4/3) of the original aspect ratio is made. This crop
752
753
754
755
    is finally resized to given size.
    This is popularly used to train the Inception networks.

    Args:
756
757
758
        size (int or sequence): expected output size of each edge. If size is an
            int instead of sequence like (h, w), a square output size ``(size, size)`` is
            made. If provided a tuple or list of length 1, it will be interpreted as (size[0], size[0]).
759
760
        scale (tuple of float): scale range of the cropped image before resizing, relatively to the origin image.
        ratio (tuple of float): aspect ratio range of the cropped image before resizing.
761
762
763
764
        interpolation (InterpolationMode): Desired interpolation enum defined by
            :class:`torchvision.transforms.InterpolationMode`. Default is ``InterpolationMode.BILINEAR``.
            If input is Tensor, only ``InterpolationMode.NEAREST``, ``InterpolationMode.BILINEAR`` and
            ``InterpolationMode.BICUBIC`` are supported.
765
766
            For backward compatibility integer values (e.g. ``PIL.Image.NEAREST``) are still acceptable.

767
768
    """

769
    def __init__(self, size, scale=(0.08, 1.0), ratio=(3. / 4., 4. / 3.), interpolation=InterpolationMode.BILINEAR):
770
        super().__init__()
771
        self.size = _setup_size(size, error_msg="Please provide only two dimensions (h, w) for size.")
772

773
        if not isinstance(scale, Sequence):
774
            raise TypeError("Scale should be a sequence")
775
        if not isinstance(ratio, Sequence):
776
            raise TypeError("Ratio should be a sequence")
777
        if (scale[0] > scale[1]) or (ratio[0] > ratio[1]):
778
            warnings.warn("Scale and ratio should be of kind (min, max)")
779

780
781
782
        # Backward compatibility with integer value
        if isinstance(interpolation, int):
            warnings.warn(
783
784
                "Argument interpolation should be of type InterpolationMode instead of int. "
                "Please, use InterpolationMode enum."
785
786
787
            )
            interpolation = _interpolation_modes_from_int(interpolation)

788
        self.interpolation = interpolation
789
790
        self.scale = scale
        self.ratio = ratio
791
792

    @staticmethod
793
    def get_params(
794
            img: Tensor, scale: List[float], ratio: List[float]
795
    ) -> Tuple[int, int, int, int]:
796
797
798
        """Get parameters for ``crop`` for a random sized crop.

        Args:
799
            img (PIL Image or Tensor): Input image.
800
801
            scale (list): range of scale of the origin size cropped
            ratio (list): range of aspect ratio of the origin aspect ratio cropped
802
803
804
805
806

        Returns:
            tuple: params (i, j, h, w) to be passed to ``crop`` for a random
                sized crop.
        """
vfdev's avatar
vfdev committed
807
        width, height = F._get_image_size(img)
Zhicheng Yan's avatar
Zhicheng Yan committed
808
        area = height * width
809

810
        for _ in range(10):
811
            target_area = area * torch.empty(1).uniform_(scale[0], scale[1]).item()
812
813
814
815
            log_ratio = torch.log(torch.tensor(ratio))
            aspect_ratio = torch.exp(
                torch.empty(1).uniform_(log_ratio[0], log_ratio[1])
            ).item()
816
817
818
819

            w = int(round(math.sqrt(target_area * aspect_ratio)))
            h = int(round(math.sqrt(target_area / aspect_ratio)))

Zhicheng Yan's avatar
Zhicheng Yan committed
820
            if 0 < w <= width and 0 < h <= height:
821
822
                i = torch.randint(0, height - h + 1, size=(1,)).item()
                j = torch.randint(0, width - w + 1, size=(1,)).item()
823
824
                return i, j, h, w

825
        # Fallback to central crop
Zhicheng Yan's avatar
Zhicheng Yan committed
826
        in_ratio = float(width) / float(height)
827
        if in_ratio < min(ratio):
Zhicheng Yan's avatar
Zhicheng Yan committed
828
            w = width
829
            h = int(round(w / min(ratio)))
830
        elif in_ratio > max(ratio):
Zhicheng Yan's avatar
Zhicheng Yan committed
831
            h = height
832
            w = int(round(h * max(ratio)))
833
        else:  # whole image
Zhicheng Yan's avatar
Zhicheng Yan committed
834
835
836
837
            w = width
            h = height
        i = (height - h) // 2
        j = (width - w) // 2
838
        return i, j, h, w
839

840
    def forward(self, img):
841
842
        """
        Args:
843
            img (PIL Image or Tensor): Image to be cropped and resized.
844
845

        Returns:
846
            PIL Image or Tensor: Randomly cropped and resized image.
847
        """
848
        i, j, h, w = self.get_params(img, self.scale, self.ratio)
849
850
        return F.resized_crop(img, i, j, h, w, self.size, self.interpolation)

851
    def __repr__(self):
852
        interpolate_str = self.interpolation.value
853
        format_string = self.__class__.__name__ + '(size={0}'.format(self.size)
854
855
        format_string += ', scale={0}'.format(tuple(round(s, 4) for s in self.scale))
        format_string += ', ratio={0}'.format(tuple(round(r, 4) for r in self.ratio))
856
857
        format_string += ', interpolation={0})'.format(interpolate_str)
        return format_string
858

859
860
861
862
863
864
865
866
867
868
869

class RandomSizedCrop(RandomResizedCrop):
    """
    Note: This transform is deprecated in favor of RandomResizedCrop.
    """
    def __init__(self, *args, **kwargs):
        warnings.warn("The use of the transforms.RandomSizedCrop transform is deprecated, " +
                      "please use transforms.RandomResizedCrop instead.")
        super(RandomSizedCrop, self).__init__(*args, **kwargs)


vfdev's avatar
vfdev committed
870
871
872
873
874
class FiveCrop(torch.nn.Module):
    """Crop the given image into four corners and the central crop.
    The image can be a PIL Image or a Tensor, in which case it is expected
    to have [..., H, W] shape, where ... means an arbitrary number of leading
    dimensions
875
876
877
878
879
880
881
882
883

    .. Note::
         This transform returns a tuple of images and there may be a mismatch in the number of
         inputs and targets your Dataset returns. See below for an example of how to deal with
         this.

    Args:
         size (sequence or int): Desired output size of the crop. If size is an ``int``
            instead of sequence like (h, w), a square crop of size (size, size) is made.
vfdev's avatar
vfdev committed
884
            If provided a tuple or list of length 1, it will be interpreted as (size[0], size[0]).
885
886
887
888
889
890
891
892
893
894
895
896
897
898

    Example:
         >>> transform = Compose([
         >>>    FiveCrop(size), # this is a list of PIL Images
         >>>    Lambda(lambda crops: torch.stack([ToTensor()(crop) for crop in crops])) # returns a 4D tensor
         >>> ])
         >>> #In your test loop you can do the following:
         >>> input, target = batch # input is a 5d tensor, target is 2d
         >>> bs, ncrops, c, h, w = input.size()
         >>> result = model(input.view(-1, c, h, w)) # fuse batch size and ncrops
         >>> result_avg = result.view(bs, ncrops, -1).mean(1) # avg over crops
    """

    def __init__(self, size):
vfdev's avatar
vfdev committed
899
        super().__init__()
900
        self.size = _setup_size(size, error_msg="Please provide only two dimensions (h, w) for size.")
901

vfdev's avatar
vfdev committed
902
903
904
905
906
907
908
909
    def forward(self, img):
        """
        Args:
            img (PIL Image or Tensor): Image to be cropped.

        Returns:
            tuple of 5 images. Image can be PIL Image or Tensor
        """
910
911
        return F.five_crop(img, self.size)

912
913
914
    def __repr__(self):
        return self.__class__.__name__ + '(size={0})'.format(self.size)

915

vfdev's avatar
vfdev committed
916
917
918
919
920
921
class TenCrop(torch.nn.Module):
    """Crop the given image into four corners and the central crop plus the flipped version of
    these (horizontal flipping is used by default).
    The image can be a PIL Image or a Tensor, in which case it is expected
    to have [..., H, W] shape, where ... means an arbitrary number of leading
    dimensions
922
923
924
925
926
927
928
929
930

    .. Note::
         This transform returns a tuple of images and there may be a mismatch in the number of
         inputs and targets your Dataset returns. See below for an example of how to deal with
         this.

    Args:
        size (sequence or int): Desired output size of the crop. If size is an
            int instead of sequence like (h, w), a square crop (size, size) is
vfdev's avatar
vfdev committed
931
            made. If provided a tuple or list of length 1, it will be interpreted as (size[0], size[0]).
932
        vertical_flip (bool): Use vertical flipping instead of horizontal
933
934
935
936
937
938
939
940
941
942
943
944
945
946

    Example:
         >>> transform = Compose([
         >>>    TenCrop(size), # this is a list of PIL Images
         >>>    Lambda(lambda crops: torch.stack([ToTensor()(crop) for crop in crops])) # returns a 4D tensor
         >>> ])
         >>> #In your test loop you can do the following:
         >>> input, target = batch # input is a 5d tensor, target is 2d
         >>> bs, ncrops, c, h, w = input.size()
         >>> result = model(input.view(-1, c, h, w)) # fuse batch size and ncrops
         >>> result_avg = result.view(bs, ncrops, -1).mean(1) # avg over crops
    """

    def __init__(self, size, vertical_flip=False):
vfdev's avatar
vfdev committed
947
        super().__init__()
948
        self.size = _setup_size(size, error_msg="Please provide only two dimensions (h, w) for size.")
949
950
        self.vertical_flip = vertical_flip

vfdev's avatar
vfdev committed
951
952
953
954
955
956
957
958
    def forward(self, img):
        """
        Args:
            img (PIL Image or Tensor): Image to be cropped.

        Returns:
            tuple of 10 images. Image can be PIL Image or Tensor
        """
959
960
        return F.ten_crop(img, self.size, self.vertical_flip)

961
    def __repr__(self):
962
        return self.__class__.__name__ + '(size={0}, vertical_flip={1})'.format(self.size, self.vertical_flip)
963

964

965
class LinearTransformation(torch.nn.Module):
ekka's avatar
ekka committed
966
    """Transform a tensor image with a square transformation matrix and a mean_vector computed
967
    offline.
ekka's avatar
ekka committed
968
969
970
    Given transformation_matrix and mean_vector, will flatten the torch.*Tensor and
    subtract mean_vector from it which is then followed by computing the dot
    product with the transformation matrix and then reshaping the tensor to its
971
    original shape.
972

973
    Applications:
974
        whitening transformation: Suppose X is a column vector zero-centered data.
975
976
977
        Then compute the data covariance matrix [D x D] with torch.mm(X.t(), X),
        perform SVD on this matrix and pass it as transformation_matrix.

978
979
    Args:
        transformation_matrix (Tensor): tensor [D x D], D = C x H x W
ekka's avatar
ekka committed
980
        mean_vector (Tensor): tensor [D], D = C x H x W
981
982
    """

ekka's avatar
ekka committed
983
    def __init__(self, transformation_matrix, mean_vector):
984
        super().__init__()
985
986
987
        if transformation_matrix.size(0) != transformation_matrix.size(1):
            raise ValueError("transformation_matrix should be square. Got " +
                             "[{} x {}] rectangular matrix.".format(*transformation_matrix.size()))
ekka's avatar
ekka committed
988
989
990

        if mean_vector.size(0) != transformation_matrix.size(0):
            raise ValueError("mean_vector should have the same length {}".format(mean_vector.size(0)) +
Francisco Massa's avatar
Francisco Massa committed
991
992
                             " as any one of the dimensions of the transformation_matrix [{}]"
                             .format(tuple(transformation_matrix.size())))
ekka's avatar
ekka committed
993

994
995
996
997
        if transformation_matrix.device != mean_vector.device:
            raise ValueError("Input tensors should be on the same device. Got {} and {}"
                             .format(transformation_matrix.device, mean_vector.device))

998
        self.transformation_matrix = transformation_matrix
ekka's avatar
ekka committed
999
        self.mean_vector = mean_vector
1000

1001
    def forward(self, tensor: Tensor) -> Tensor:
1002
1003
        """
        Args:
vfdev's avatar
vfdev committed
1004
            tensor (Tensor): Tensor image to be whitened.
1005
1006
1007
1008

        Returns:
            Tensor: Transformed image.
        """
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
        shape = tensor.shape
        n = shape[-3] * shape[-2] * shape[-1]
        if n != self.transformation_matrix.shape[0]:
            raise ValueError("Input tensor and transformation matrix have incompatible shape." +
                             "[{} x {} x {}] != ".format(shape[-3], shape[-2], shape[-1]) +
                             "{}".format(self.transformation_matrix.shape[0]))

        if tensor.device.type != self.mean_vector.device.type:
            raise ValueError("Input tensor should be on the same device as transformation matrix and mean vector. "
                             "Got {} vs {}".format(tensor.device, self.mean_vector.device))

        flat_tensor = tensor.view(-1, n) - self.mean_vector
1021
        transformed_tensor = torch.mm(flat_tensor, self.transformation_matrix)
1022
        tensor = transformed_tensor.view(shape)
1023
1024
        return tensor

1025
    def __repr__(self):
ekka's avatar
ekka committed
1026
1027
1028
        format_string = self.__class__.__name__ + '(transformation_matrix='
        format_string += (str(self.transformation_matrix.tolist()) + ')')
        format_string += (", (mean_vector=" + str(self.mean_vector.tolist()) + ')')
1029
1030
        return format_string

1031

1032
class ColorJitter(torch.nn.Module):
1033
1034
1035
    """Randomly change the brightness, contrast and saturation of an image.

    Args:
yaox12's avatar
yaox12 committed
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
        brightness (float or tuple of float (min, max)): How much to jitter brightness.
            brightness_factor is chosen uniformly from [max(0, 1 - brightness), 1 + brightness]
            or the given [min, max]. Should be non negative numbers.
        contrast (float or tuple of float (min, max)): How much to jitter contrast.
            contrast_factor is chosen uniformly from [max(0, 1 - contrast), 1 + contrast]
            or the given [min, max]. Should be non negative numbers.
        saturation (float or tuple of float (min, max)): How much to jitter saturation.
            saturation_factor is chosen uniformly from [max(0, 1 - saturation), 1 + saturation]
            or the given [min, max]. Should be non negative numbers.
        hue (float or tuple of float (min, max)): How much to jitter hue.
            hue_factor is chosen uniformly from [-hue, hue] or the given [min, max].
            Should have 0<= hue <= 0.5 or -0.5 <= min <= max <= 0.5.
1048
    """
1049

1050
    def __init__(self, brightness=0, contrast=0, saturation=0, hue=0):
1051
        super().__init__()
yaox12's avatar
yaox12 committed
1052
1053
1054
1055
1056
1057
        self.brightness = self._check_input(brightness, 'brightness')
        self.contrast = self._check_input(contrast, 'contrast')
        self.saturation = self._check_input(saturation, 'saturation')
        self.hue = self._check_input(hue, 'hue', center=0, bound=(-0.5, 0.5),
                                     clip_first_on_zero=False)

1058
    @torch.jit.unused
yaox12's avatar
yaox12 committed
1059
1060
1061
1062
    def _check_input(self, value, name, center=1, bound=(0, float('inf')), clip_first_on_zero=True):
        if isinstance(value, numbers.Number):
            if value < 0:
                raise ValueError("If {} is a single number, it must be non negative.".format(name))
1063
            value = [center - float(value), center + float(value)]
yaox12's avatar
yaox12 committed
1064
            if clip_first_on_zero:
1065
                value[0] = max(value[0], 0.0)
yaox12's avatar
yaox12 committed
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
        elif isinstance(value, (tuple, list)) and len(value) == 2:
            if not bound[0] <= value[0] <= value[1] <= bound[1]:
                raise ValueError("{} values should be between {}".format(name, bound))
        else:
            raise TypeError("{} should be a single number or a list/tuple with lenght 2.".format(name))

        # if value is 0 or (1., 1.) for brightness/contrast/saturation
        # or (0., 0.) for hue, do nothing
        if value[0] == value[1] == center:
            value = None
        return value
1077
1078

    @staticmethod
1079
1080
1081
1082
1083
1084
    def get_params(brightness: Optional[List[float]],
                   contrast: Optional[List[float]],
                   saturation: Optional[List[float]],
                   hue: Optional[List[float]]
                   ) -> Tuple[Tensor, Optional[float], Optional[float], Optional[float], Optional[float]]:
        """Get the parameters for the randomized transform to be applied on image.
1085

1086
1087
1088
1089
1090
1091
1092
1093
1094
        Args:
            brightness (tuple of float (min, max), optional): The range from which the brightness_factor is chosen
                uniformly. Pass None to turn off the transformation.
            contrast (tuple of float (min, max), optional): The range from which the contrast_factor is chosen
                uniformly. Pass None to turn off the transformation.
            saturation (tuple of float (min, max), optional): The range from which the saturation_factor is chosen
                uniformly. Pass None to turn off the transformation.
            hue (tuple of float (min, max), optional): The range from which the hue_factor is chosen uniformly.
                Pass None to turn off the transformation.
1095
1096

        Returns:
1097
1098
            tuple: The parameters used to apply the randomized transform
            along with their random order.
1099
        """
1100
        fn_idx = torch.randperm(4)
1101

1102
1103
1104
1105
        b = None if brightness is None else float(torch.empty(1).uniform_(brightness[0], brightness[1]))
        c = None if contrast is None else float(torch.empty(1).uniform_(contrast[0], contrast[1]))
        s = None if saturation is None else float(torch.empty(1).uniform_(saturation[0], saturation[1]))
        h = None if hue is None else float(torch.empty(1).uniform_(hue[0], hue[1]))
1106

1107
        return fn_idx, b, c, s, h
1108

1109
    def forward(self, img):
1110
1111
        """
        Args:
1112
            img (PIL Image or Tensor): Input image.
1113
1114

        Returns:
1115
1116
            PIL Image or Tensor: Color jittered image.
        """
1117
1118
1119
        fn_idx, brightness_factor, contrast_factor, saturation_factor, hue_factor = \
            self.get_params(self.brightness, self.contrast, self.saturation, self.hue)

1120
        for fn_id in fn_idx:
1121
            if fn_id == 0 and brightness_factor is not None:
1122
                img = F.adjust_brightness(img, brightness_factor)
1123
            elif fn_id == 1 and contrast_factor is not None:
1124
                img = F.adjust_contrast(img, contrast_factor)
1125
            elif fn_id == 2 and saturation_factor is not None:
1126
                img = F.adjust_saturation(img, saturation_factor)
1127
            elif fn_id == 3 and hue_factor is not None:
1128
1129
1130
                img = F.adjust_hue(img, hue_factor)

        return img
1131

1132
    def __repr__(self):
1133
1134
1135
1136
1137
1138
        format_string = self.__class__.__name__ + '('
        format_string += 'brightness={0}'.format(self.brightness)
        format_string += ', contrast={0}'.format(self.contrast)
        format_string += ', saturation={0}'.format(self.saturation)
        format_string += ', hue={0})'.format(self.hue)
        return format_string
1139

1140

1141
class RandomRotation(torch.nn.Module):
1142
    """Rotate the image by angle.
1143
1144
    The image can be a PIL Image or a Tensor, in which case it is expected
    to have [..., H, W] shape, where ... means an arbitrary number of leading dimensions.
1145
1146
1147
1148
1149

    Args:
        degrees (sequence or float or int): Range of degrees to select from.
            If degrees is a number instead of sequence like (min, max), the range of degrees
            will be (-degrees, +degrees).
1150
1151
1152
        interpolation (InterpolationMode): Desired interpolation enum defined by
            :class:`torchvision.transforms.InterpolationMode`. Default is ``InterpolationMode.NEAREST``.
            If input is Tensor, only ``InterpolationMode.NEAREST``, ``InterpolationMode.BILINEAR`` are supported.
1153
            For backward compatibility integer values (e.g. ``PIL.Image.NEAREST``) are still acceptable.
1154
1155
1156
1157
        expand (bool, optional): Optional expansion flag.
            If true, expands the output to make it large enough to hold the entire rotated image.
            If false or omitted, make the output image the same size as the input image.
            Note that the expand flag assumes rotation around the center and no translation.
1158
        center (list or tuple, optional): Optional center of rotation, (x, y). Origin is the upper left corner.
1159
            Default is the center of the image.
Philip Meier's avatar
Philip Meier committed
1160
1161
        fill (n-tuple or int or float): Pixel fill value for area outside the rotated
            image. If int or float, the value is used for all bands respectively.
1162
1163
1164
            Defaults to 0 for all bands. This option is only available for Pillow>=5.2.0.
            This option is not supported for Tensor input. Fill value for the area outside the transform in the output
            image is always 0.
1165
1166
        resample (int, optional): deprecated argument and will be removed since v0.10.0.
            Please use `arg`:interpolation: instead.
1167
1168
1169

    .. _filters: https://pillow.readthedocs.io/en/latest/handbook/concepts.html#filters

1170
1171
    """

1172
    def __init__(
1173
        self, degrees, interpolation=InterpolationMode.NEAREST, expand=False, center=None, fill=None, resample=None
1174
    ):
1175
        super().__init__()
1176
1177
1178
1179
1180
1181
1182
1183
1184
        if resample is not None:
            warnings.warn(
                "Argument resample is deprecated and will be removed since v0.10.0. Please, use interpolation instead"
            )
            interpolation = _interpolation_modes_from_int(resample)

        # Backward compatibility with integer value
        if isinstance(interpolation, int):
            warnings.warn(
1185
1186
                "Argument interpolation should be of type InterpolationMode instead of int. "
                "Please, use InterpolationMode enum."
1187
1188
1189
            )
            interpolation = _interpolation_modes_from_int(interpolation)

1190
        self.degrees = _setup_angle(degrees, name="degrees", req_sizes=(2, ))
1191
1192

        if center is not None:
1193
            _check_sequence_input(center, "center", req_sizes=(2, ))
1194
1195

        self.center = center
1196

1197
        self.resample = self.interpolation = interpolation
1198
        self.expand = expand
1199
        self.fill = fill
1200
1201

    @staticmethod
1202
    def get_params(degrees: List[float]) -> float:
1203
1204
1205
        """Get parameters for ``rotate`` for a random rotation.

        Returns:
1206
            float: angle parameter to be passed to ``rotate`` for random rotation.
1207
        """
1208
        angle = float(torch.empty(1).uniform_(float(degrees[0]), float(degrees[1])).item())
1209
1210
        return angle

1211
    def forward(self, img):
1212
        """
1213
        Args:
1214
            img (PIL Image or Tensor): Image to be rotated.
1215
1216

        Returns:
1217
            PIL Image or Tensor: Rotated image.
1218
1219
        """
        angle = self.get_params(self.degrees)
1220
        return F.rotate(img, angle, self.interpolation, self.expand, self.center, self.fill)
1221

1222
    def __repr__(self):
1223
        interpolate_str = self.interpolation.value
1224
        format_string = self.__class__.__name__ + '(degrees={0}'.format(self.degrees)
1225
        format_string += ', interpolation={0}'.format(interpolate_str)
1226
1227
1228
        format_string += ', expand={0}'.format(self.expand)
        if self.center is not None:
            format_string += ', center={0}'.format(self.center)
1229
1230
        if self.fill is not None:
            format_string += ', fill={0}'.format(self.fill)
1231
1232
        format_string += ')'
        return format_string
1233

1234

1235
1236
1237
1238
class RandomAffine(torch.nn.Module):
    """Random affine transformation of the image keeping center invariant.
    The image can be a PIL Image or a Tensor, in which case it is expected
    to have [..., H, W] shape, where ... means an arbitrary number of leading dimensions.
1239
1240
1241
1242

    Args:
        degrees (sequence or float or int): Range of degrees to select from.
            If degrees is a number instead of sequence like (min, max), the range of degrees
1243
            will be (-degrees, +degrees). Set to 0 to deactivate rotations.
1244
1245
1246
1247
1248
1249
1250
        translate (tuple, optional): tuple of maximum absolute fraction for horizontal
            and vertical translations. For example translate=(a, b), then horizontal shift
            is randomly sampled in the range -img_width * a < dx < img_width * a and vertical shift is
            randomly sampled in the range -img_height * b < dy < img_height * b. Will not translate by default.
        scale (tuple, optional): scaling factor interval, e.g (a, b), then scale is
            randomly sampled from the range a <= scale <= b. Will keep original scale by default.
        shear (sequence or float or int, optional): Range of degrees to select from.
ptrblck's avatar
ptrblck committed
1251
            If shear is a number, a shear parallel to the x axis in the range (-shear, +shear)
1252
            will be applied. Else if shear is a tuple or list of 2 values a shear parallel to the x axis in the
ptrblck's avatar
ptrblck committed
1253
1254
            range (shear[0], shear[1]) will be applied. Else if shear is a tuple or list of 4 values,
            a x-axis shear in (shear[0], shear[1]) and y-axis shear in (shear[2], shear[3]) will be applied.
1255
            Will not apply shear by default.
1256
1257
1258
        interpolation (InterpolationMode): Desired interpolation enum defined by
            :class:`torchvision.transforms.InterpolationMode`. Default is ``InterpolationMode.NEAREST``.
            If input is Tensor, only ``InterpolationMode.NEAREST``, ``InterpolationMode.BILINEAR`` are supported.
1259
1260
            For backward compatibility integer values (e.g. ``PIL.Image.NEAREST``) are still acceptable.
        fill (tuple or int): Optional fill color (Tuple for RGB Image and int for grayscale) for the area
1261
1262
            outside the transform in the output image (Pillow>=5.0.0). This option is not supported for Tensor
            input. Fill value for the area outside the transform in the output image is always 0.
1263
1264
1265
1266
        fillcolor (tuple or int, optional): deprecated argument and will be removed since v0.10.0.
            Please use `arg`:fill: instead.
        resample (int, optional): deprecated argument and will be removed since v0.10.0.
            Please use `arg`:interpolation: instead.
1267
1268
1269

    .. _filters: https://pillow.readthedocs.io/en/latest/handbook/concepts.html#filters

1270
1271
    """

1272
    def __init__(
1273
        self, degrees, translate=None, scale=None, shear=None, interpolation=InterpolationMode.NEAREST, fill=0,
1274
1275
        fillcolor=None, resample=None
    ):
1276
        super().__init__()
1277
1278
1279
1280
1281
1282
1283
1284
1285
        if resample is not None:
            warnings.warn(
                "Argument resample is deprecated and will be removed since v0.10.0. Please, use interpolation instead"
            )
            interpolation = _interpolation_modes_from_int(resample)

        # Backward compatibility with integer value
        if isinstance(interpolation, int):
            warnings.warn(
1286
1287
                "Argument interpolation should be of type InterpolationMode instead of int. "
                "Please, use InterpolationMode enum."
1288
1289
1290
1291
1292
1293
1294
1295
1296
            )
            interpolation = _interpolation_modes_from_int(interpolation)

        if fillcolor is not None:
            warnings.warn(
                "Argument fillcolor is deprecated and will be removed since v0.10.0. Please, use fill instead"
            )
            fill = fillcolor

1297
        self.degrees = _setup_angle(degrees, name="degrees", req_sizes=(2, ))
1298
1299

        if translate is not None:
1300
            _check_sequence_input(translate, "translate", req_sizes=(2, ))
1301
1302
1303
1304
1305
1306
            for t in translate:
                if not (0.0 <= t <= 1.0):
                    raise ValueError("translation values should be between 0 and 1")
        self.translate = translate

        if scale is not None:
1307
            _check_sequence_input(scale, "scale", req_sizes=(2, ))
1308
1309
1310
1311
1312
1313
            for s in scale:
                if s <= 0:
                    raise ValueError("scale values should be positive")
        self.scale = scale

        if shear is not None:
1314
            self.shear = _setup_angle(shear, name="shear", req_sizes=(2, 4))
1315
1316
1317
        else:
            self.shear = shear

1318
1319
        self.resample = self.interpolation = interpolation
        self.fillcolor = self.fill = fill
1320
1321

    @staticmethod
1322
1323
1324
1325
1326
1327
1328
    def get_params(
            degrees: List[float],
            translate: Optional[List[float]],
            scale_ranges: Optional[List[float]],
            shears: Optional[List[float]],
            img_size: List[int]
    ) -> Tuple[float, Tuple[int, int], float, Tuple[float, float]]:
1329
1330
1331
        """Get parameters for affine transformation

        Returns:
1332
            params to be passed to the affine transformation
1333
        """
1334
        angle = float(torch.empty(1).uniform_(float(degrees[0]), float(degrees[1])).item())
1335
        if translate is not None:
1336
1337
1338
1339
1340
            max_dx = float(translate[0] * img_size[0])
            max_dy = float(translate[1] * img_size[1])
            tx = int(round(torch.empty(1).uniform_(-max_dx, max_dx).item()))
            ty = int(round(torch.empty(1).uniform_(-max_dy, max_dy).item()))
            translations = (tx, ty)
1341
1342
1343
1344
        else:
            translations = (0, 0)

        if scale_ranges is not None:
1345
            scale = float(torch.empty(1).uniform_(scale_ranges[0], scale_ranges[1]).item())
1346
1347
1348
        else:
            scale = 1.0

1349
        shear_x = shear_y = 0.0
1350
        if shears is not None:
1351
1352
1353
1354
1355
            shear_x = float(torch.empty(1).uniform_(shears[0], shears[1]).item())
            if len(shears) == 4:
                shear_y = float(torch.empty(1).uniform_(shears[2], shears[3]).item())

        shear = (shear_x, shear_y)
1356
1357
1358

        return angle, translations, scale, shear

1359
    def forward(self, img):
1360
        """
1361
            img (PIL Image or Tensor): Image to be transformed.
1362
1363

        Returns:
1364
            PIL Image or Tensor: Affine transformed image.
1365
        """
1366
1367
1368
1369

        img_size = F._get_image_size(img)

        ret = self.get_params(self.degrees, self.translate, self.scale, self.shear, img_size)
1370
        return F.affine(img, *ret, interpolation=self.interpolation, fill=self.fill)
1371
1372
1373
1374
1375
1376
1377
1378
1379

    def __repr__(self):
        s = '{name}(degrees={degrees}'
        if self.translate is not None:
            s += ', translate={translate}'
        if self.scale is not None:
            s += ', scale={scale}'
        if self.shear is not None:
            s += ', shear={shear}'
1380
        if self.interpolation != InterpolationMode.NEAREST:
1381
1382
1383
            s += ', interpolation={interpolation}'
        if self.fill != 0:
            s += ', fill={fill}'
1384
1385
        s += ')'
        d = dict(self.__dict__)
1386
        d['interpolation'] = self.interpolation.value
1387
1388
1389
        return s.format(name=self.__class__.__name__, **d)


1390
class Grayscale(torch.nn.Module):
1391
    """Convert image to grayscale.
1392
1393
1394
    The image can be a PIL Image or a Tensor, in which case it is expected
    to have [..., 3, H, W] shape, where ... means an arbitrary number of leading
    dimensions
1395

1396
1397
1398
1399
    Args:
        num_output_channels (int): (1 or 3) number of channels desired for output image

    Returns:
1400
        PIL Image: Grayscale version of the input.
1401
1402
         - If ``num_output_channels == 1`` : returned image is single channel
         - If ``num_output_channels == 3`` : returned image is 3 channel with r == g == b
1403
1404
1405
1406

    """

    def __init__(self, num_output_channels=1):
1407
        super().__init__()
1408
1409
        self.num_output_channels = num_output_channels

vfdev's avatar
vfdev committed
1410
    def forward(self, img):
1411
1412
        """
        Args:
1413
            img (PIL Image or Tensor): Image to be converted to grayscale.
1414
1415

        Returns:
1416
            PIL Image or Tensor: Grayscaled image.
1417
        """
1418
        return F.rgb_to_grayscale(img, num_output_channels=self.num_output_channels)
1419

1420
    def __repr__(self):
1421
        return self.__class__.__name__ + '(num_output_channels={0})'.format(self.num_output_channels)
1422

1423

1424
class RandomGrayscale(torch.nn.Module):
1425
    """Randomly convert image to grayscale with a probability of p (default 0.1).
1426
1427
1428
    The image can be a PIL Image or a Tensor, in which case it is expected
    to have [..., 3, H, W] shape, where ... means an arbitrary number of leading
    dimensions
1429

1430
1431
1432
1433
    Args:
        p (float): probability that image should be converted to grayscale.

    Returns:
1434
        PIL Image or Tensor: Grayscale version of the input image with probability p and unchanged
1435
1436
1437
        with probability (1-p).
        - If input image is 1 channel: grayscale version is 1 channel
        - If input image is 3 channel: grayscale version is 3 channel with r == g == b
1438
1439
1440
1441

    """

    def __init__(self, p=0.1):
1442
        super().__init__()
1443
1444
        self.p = p

vfdev's avatar
vfdev committed
1445
    def forward(self, img):
1446
1447
        """
        Args:
1448
            img (PIL Image or Tensor): Image to be converted to grayscale.
1449
1450

        Returns:
1451
            PIL Image or Tensor: Randomly grayscaled image.
1452
        """
1453
1454
1455
        num_output_channels = F._get_image_num_channels(img)
        if torch.rand(1) < self.p:
            return F.rgb_to_grayscale(img, num_output_channels=num_output_channels)
1456
        return img
1457
1458

    def __repr__(self):
1459
        return self.__class__.__name__ + '(p={0})'.format(self.p)
1460
1461


1462
class RandomErasing(torch.nn.Module):
1463
    """ Randomly selects a rectangle region in an image and erases its pixels.
vfdev's avatar
vfdev committed
1464
    'Random Erasing Data Augmentation' by Zhong et al. See https://arxiv.org/abs/1708.04896
1465

1466
1467
1468
1469
1470
1471
1472
1473
    Args:
         p: probability that the random erasing operation will be performed.
         scale: range of proportion of erased area against input image.
         ratio: range of aspect ratio of erased area.
         value: erasing value. Default is 0. If a single int, it is used to
            erase all pixels. If a tuple of length 3, it is used to erase
            R, G, B channels respectively.
            If a str of 'random', erasing each pixel with random values.
Zhun Zhong's avatar
Zhun Zhong committed
1474
         inplace: boolean to make this transform inplace. Default set to False.
1475

1476
1477
    Returns:
        Erased Image.
1478

vfdev's avatar
vfdev committed
1479
    Example:
1480
        >>> transform = transforms.Compose([
1481
1482
1483
1484
        >>>   transforms.RandomHorizontalFlip(),
        >>>   transforms.ToTensor(),
        >>>   transforms.Normalize((0.485, 0.456, 0.406), (0.229, 0.224, 0.225)),
        >>>   transforms.RandomErasing(),
1485
1486
1487
        >>> ])
    """

Zhun Zhong's avatar
Zhun Zhong committed
1488
    def __init__(self, p=0.5, scale=(0.02, 0.33), ratio=(0.3, 3.3), value=0, inplace=False):
1489
1490
1491
1492
1493
1494
1495
1496
1497
        super().__init__()
        if not isinstance(value, (numbers.Number, str, tuple, list)):
            raise TypeError("Argument value should be either a number or str or a sequence")
        if isinstance(value, str) and value != "random":
            raise ValueError("If value is str, it should be 'random'")
        if not isinstance(scale, (tuple, list)):
            raise TypeError("Scale should be a sequence")
        if not isinstance(ratio, (tuple, list)):
            raise TypeError("Ratio should be a sequence")
1498
        if (scale[0] > scale[1]) or (ratio[0] > ratio[1]):
1499
            warnings.warn("Scale and ratio should be of kind (min, max)")
1500
        if scale[0] < 0 or scale[1] > 1:
1501
            raise ValueError("Scale should be between 0 and 1")
1502
        if p < 0 or p > 1:
1503
            raise ValueError("Random erasing probability should be between 0 and 1")
1504
1505
1506
1507
1508

        self.p = p
        self.scale = scale
        self.ratio = ratio
        self.value = value
1509
        self.inplace = inplace
1510
1511

    @staticmethod
1512
1513
1514
    def get_params(
            img: Tensor, scale: Tuple[float, float], ratio: Tuple[float, float], value: Optional[List[float]] = None
    ) -> Tuple[int, int, int, int, Tensor]:
1515
1516
1517
        """Get parameters for ``erase`` for a random erasing.

        Args:
vfdev's avatar
vfdev committed
1518
            img (Tensor): Tensor image to be erased.
1519
1520
1521
1522
1523
            scale (tuple or list): range of proportion of erased area against input image.
            ratio (tuple or list): range of aspect ratio of erased area.
            value (list, optional): erasing value. If None, it is interpreted as "random"
                (erasing each pixel with random values). If ``len(value)`` is 1, it is interpreted as a number,
                i.e. ``value[0]``.
1524
1525
1526
1527

        Returns:
            tuple: params (i, j, h, w, v) to be passed to ``erase`` for random erasing.
        """
vfdev's avatar
vfdev committed
1528
        img_c, img_h, img_w = img.shape[-3], img.shape[-2], img.shape[-1]
1529
        area = img_h * img_w
1530

1531
        for _ in range(10):
1532
1533
            erase_area = area * torch.empty(1).uniform_(scale[0], scale[1]).item()
            aspect_ratio = torch.empty(1).uniform_(ratio[0], ratio[1]).item()
1534
1535
1536

            h = int(round(math.sqrt(erase_area * aspect_ratio)))
            w = int(round(math.sqrt(erase_area / aspect_ratio)))
1537
1538
1539
1540
1541
1542
1543
            if not (h < img_h and w < img_w):
                continue

            if value is None:
                v = torch.empty([img_c, h, w], dtype=torch.float32).normal_()
            else:
                v = torch.tensor(value)[:, None, None]
1544

1545
1546
            i = torch.randint(0, img_h - h + 1, size=(1, )).item()
            j = torch.randint(0, img_w - w + 1, size=(1, )).item()
1547
            return i, j, h, w, v
1548

Zhun Zhong's avatar
Zhun Zhong committed
1549
1550
1551
        # Return original image
        return 0, 0, img_h, img_w, img

1552
    def forward(self, img):
1553
1554
        """
        Args:
vfdev's avatar
vfdev committed
1555
            img (Tensor): Tensor image to be erased.
1556
1557
1558
1559

        Returns:
            img (Tensor): Erased Tensor image.
        """
1560
1561
1562
1563
1564
1565
1566
1567
1568
1569
1570
1571
1572
1573
1574
1575
1576
1577
1578
        if torch.rand(1) < self.p:

            # cast self.value to script acceptable type
            if isinstance(self.value, (int, float)):
                value = [self.value, ]
            elif isinstance(self.value, str):
                value = None
            elif isinstance(self.value, tuple):
                value = list(self.value)
            else:
                value = self.value

            if value is not None and not (len(value) in (1, img.shape[-3])):
                raise ValueError(
                    "If value is a sequence, it should have either a single value or "
                    "{} (number of input channels)".format(img.shape[-3])
                )

            x, y, h, w, v = self.get_params(img, scale=self.scale, ratio=self.ratio, value=value)
1579
            return F.erase(img, x, y, h, w, v, self.inplace)
1580
        return img
1581
1582


1583
1584
1585
class GaussianBlur(torch.nn.Module):
    """Blurs image with randomly chosen Gaussian blur.
    The image can be a PIL Image or a Tensor, in which case it is expected
vfdev's avatar
vfdev committed
1586
    to have [..., C, H, W] shape, where ... means an arbitrary number of leading
1587
1588
1589
1590
1591
1592
1593
1594
1595
1596
1597
1598
1599
1600
1601
1602
1603
1604
1605
1606
1607
1608
1609
1610
1611
1612
1613
1614
1615
1616
1617
1618
1619
1620
1621
    dimensions

    Args:
        kernel_size (int or sequence): Size of the Gaussian kernel.
        sigma (float or tuple of float (min, max)): Standard deviation to be used for
            creating kernel to perform blurring. If float, sigma is fixed. If it is tuple
            of float (min, max), sigma is chosen uniformly at random to lie in the
            given range.

    Returns:
        PIL Image or Tensor: Gaussian blurred version of the input image.

    """

    def __init__(self, kernel_size, sigma=(0.1, 2.0)):
        super().__init__()
        self.kernel_size = _setup_size(kernel_size, "Kernel size should be a tuple/list of two integers")
        for ks in self.kernel_size:
            if ks <= 0 or ks % 2 == 0:
                raise ValueError("Kernel size value should be an odd and positive number.")

        if isinstance(sigma, numbers.Number):
            if sigma <= 0:
                raise ValueError("If sigma is a single number, it must be positive.")
            sigma = (sigma, sigma)
        elif isinstance(sigma, Sequence) and len(sigma) == 2:
            if not 0. < sigma[0] <= sigma[1]:
                raise ValueError("sigma values should be positive and of the form (min, max).")
        else:
            raise ValueError("sigma should be a single number or a list/tuple with length 2.")

        self.sigma = sigma

    @staticmethod
    def get_params(sigma_min: float, sigma_max: float) -> float:
vfdev's avatar
vfdev committed
1622
        """Choose sigma for random gaussian blurring.
1623
1624
1625
1626
1627
1628
1629
1630
1631
1632
1633
1634
1635

        Args:
            sigma_min (float): Minimum standard deviation that can be chosen for blurring kernel.
            sigma_max (float): Maximum standard deviation that can be chosen for blurring kernel.

        Returns:
            float: Standard deviation to be passed to calculate kernel for gaussian blurring.
        """
        return torch.empty(1).uniform_(sigma_min, sigma_max).item()

    def forward(self, img: Tensor) -> Tensor:
        """
        Args:
vfdev's avatar
vfdev committed
1636
            img (PIL Image or Tensor): image to be blurred.
1637
1638
1639
1640
1641
1642
1643
1644
1645
1646
1647
1648
1649

        Returns:
            PIL Image or Tensor: Gaussian blurred image
        """
        sigma = self.get_params(self.sigma[0], self.sigma[1])
        return F.gaussian_blur(img, self.kernel_size, [sigma, sigma])

    def __repr__(self):
        s = '(kernel_size={}, '.format(self.kernel_size)
        s += 'sigma={})'.format(self.sigma)
        return self.__class__.__name__ + s


1650
1651
1652
1653
1654
1655
1656
1657
1658
1659
1660
1661
1662
1663
1664
1665
1666
1667
1668
1669
1670
1671
1672
1673
1674
1675
1676
1677
1678
1679
def _setup_size(size, error_msg):
    if isinstance(size, numbers.Number):
        return int(size), int(size)

    if isinstance(size, Sequence) and len(size) == 1:
        return size[0], size[0]

    if len(size) != 2:
        raise ValueError(error_msg)

    return size


def _check_sequence_input(x, name, req_sizes):
    msg = req_sizes[0] if len(req_sizes) < 2 else " or ".join([str(s) for s in req_sizes])
    if not isinstance(x, Sequence):
        raise TypeError("{} should be a sequence of length {}.".format(name, msg))
    if len(x) not in req_sizes:
        raise ValueError("{} should be sequence of length {}.".format(name, msg))


def _setup_angle(x, name, req_sizes=(2, )):
    if isinstance(x, numbers.Number):
        if x < 0:
            raise ValueError("If {} is a single number, it must be positive.".format(name))
        x = [-x, x]
    else:
        _check_sequence_input(x, name, req_sizes)

    return [float(d) for d in x]