transforms.py 77.3 KB
Newer Older
1
import math
vfdev's avatar
vfdev committed
2
import numbers
3
import random
vfdev's avatar
vfdev committed
4
import warnings
vfdev's avatar
vfdev committed
5
from collections.abc import Sequence
6
from typing import Tuple, List, Optional
vfdev's avatar
vfdev committed
7
8
9
10

import torch
from torch import Tensor

11
12
13
14
15
16
try:
    import accimage
except ImportError:
    accimage = None

from . import functional as F
17
from .functional import InterpolationMode, _interpolation_modes_from_int
18

19

20
21
22
23
__all__ = ["Compose", "ToTensor", "PILToTensor", "ConvertImageDtype", "ToPILImage", "Normalize", "Resize", "Scale",
           "CenterCrop", "Pad", "Lambda", "RandomApply", "RandomChoice", "RandomOrder", "RandomCrop",
           "RandomHorizontalFlip", "RandomVerticalFlip", "RandomResizedCrop", "RandomSizedCrop", "FiveCrop", "TenCrop",
           "LinearTransformation", "ColorJitter", "RandomRotation", "RandomAffine", "Grayscale", "RandomGrayscale",
24
25
           "RandomPerspective", "RandomErasing", "GaussianBlur", "InterpolationMode", "RandomInvert", "RandomPosterize",
           "RandomSolarize", "RandomAdjustSharpness", "RandomAutocontrast", "RandomEqualize"]
26

27

28
class Compose:
29
30
    """Composes several transforms together. This transform does not support torchscript.
    Please, see the note below.
31
32
33
34
35
36
37
38
39

    Args:
        transforms (list of ``Transform`` objects): list of transforms to compose.

    Example:
        >>> transforms.Compose([
        >>>     transforms.CenterCrop(10),
        >>>     transforms.ToTensor(),
        >>> ])
40
41
42
43
44
45
46
47
48
49
50
51
52

    .. note::
        In order to script the transformations, please use ``torch.nn.Sequential`` as below.

        >>> transforms = torch.nn.Sequential(
        >>>     transforms.CenterCrop(10),
        >>>     transforms.Normalize((0.485, 0.456, 0.406), (0.229, 0.224, 0.225)),
        >>> )
        >>> scripted_transforms = torch.jit.script(transforms)

        Make sure to use only scriptable transformations, i.e. that work with ``torch.Tensor``, does not require
        `lambda` functions or ``PIL.Image``.

53
54
55
56
57
58
59
60
61
62
    """

    def __init__(self, transforms):
        self.transforms = transforms

    def __call__(self, img):
        for t in self.transforms:
            img = t(img)
        return img

63
64
65
66
67
68
69
70
    def __repr__(self):
        format_string = self.__class__.__name__ + '('
        for t in self.transforms:
            format_string += '\n'
            format_string += '    {0}'.format(t)
        format_string += '\n)'
        return format_string

71

72
class ToTensor:
73
    """Convert a ``PIL Image`` or ``numpy.ndarray`` to tensor. This transform does not support torchscript.
74
75

    Converts a PIL Image or numpy.ndarray (H x W x C) in the range
surgan12's avatar
surgan12 committed
76
77
78
79
80
    [0, 255] to a torch.FloatTensor of shape (C x H x W) in the range [0.0, 1.0]
    if the PIL Image belongs to one of the modes (L, LA, P, I, F, RGB, YCbCr, RGBA, CMYK, 1)
    or if the numpy.ndarray has dtype = np.uint8

    In the other cases, tensors are returned without scaling.
81
82
83
84
85
86

    .. note::
        Because the input image is scaled to [0.0, 1.0], this transformation should not be used when
        transforming target image masks. See the `references`_ for implementing the transforms for image masks.

    .. _references: https://github.com/pytorch/vision/tree/master/references/segmentation
87
88
89
90
91
92
93
94
95
96
97
98
    """

    def __call__(self, pic):
        """
        Args:
            pic (PIL Image or numpy.ndarray): Image to be converted to tensor.

        Returns:
            Tensor: Converted image.
        """
        return F.to_tensor(pic)

99
100
101
    def __repr__(self):
        return self.__class__.__name__ + '()'

102

103
class PILToTensor:
104
    """Convert a ``PIL Image`` to a tensor of the same type. This transform does not support torchscript.
105

vfdev's avatar
vfdev committed
106
    Converts a PIL Image (H x W x C) to a Tensor of shape (C x H x W).
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
    """

    def __call__(self, pic):
        """
        Args:
            pic (PIL Image): Image to be converted to tensor.

        Returns:
            Tensor: Converted image.
        """
        return F.pil_to_tensor(pic)

    def __repr__(self):
        return self.__class__.__name__ + '()'


123
class ConvertImageDtype(torch.nn.Module):
124
    """Convert a tensor image to the given ``dtype`` and scale the values accordingly
125
    This function does not support PIL Image.
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142

    Args:
        dtype (torch.dtype): Desired data type of the output

    .. note::

        When converting from a smaller to a larger integer ``dtype`` the maximum values are **not** mapped exactly.
        If converted back and forth, this mismatch has no effect.

    Raises:
        RuntimeError: When trying to cast :class:`torch.float32` to :class:`torch.int32` or :class:`torch.int64` as
            well as for trying to cast :class:`torch.float64` to :class:`torch.int64`. These conversions might lead to
            overflow errors since the floating point ``dtype`` cannot store consecutive integers over the whole range
            of the integer ``dtype``.
    """

    def __init__(self, dtype: torch.dtype) -> None:
143
        super().__init__()
144
145
        self.dtype = dtype

vfdev's avatar
vfdev committed
146
    def forward(self, image):
147
148
149
        return F.convert_image_dtype(image, self.dtype)


150
class ToPILImage:
151
    """Convert a tensor or an ndarray to PIL Image. This transform does not support torchscript.
152
153
154
155
156
157
158

    Converts a torch.*Tensor of shape C x H x W or a numpy ndarray of shape
    H x W x C to a PIL Image while preserving the value range.

    Args:
        mode (`PIL.Image mode`_): color space and pixel depth of input data (optional).
            If ``mode`` is ``None`` (default) there are some assumptions made about the input data:
vfdev's avatar
vfdev committed
159
160
161
162
163
            - If the input has 4 channels, the ``mode`` is assumed to be ``RGBA``.
            - If the input has 3 channels, the ``mode`` is assumed to be ``RGB``.
            - If the input has 2 channels, the ``mode`` is assumed to be ``LA``.
            - If the input has 1 channel, the ``mode`` is determined by the data type (i.e ``int``, ``float``,
            ``short``).
164

csukuangfj's avatar
csukuangfj committed
165
    .. _PIL.Image mode: https://pillow.readthedocs.io/en/latest/handbook/concepts.html#concept-modes
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
    """
    def __init__(self, mode=None):
        self.mode = mode

    def __call__(self, pic):
        """
        Args:
            pic (Tensor or numpy.ndarray): Image to be converted to PIL Image.

        Returns:
            PIL Image: Image converted to PIL Image.

        """
        return F.to_pil_image(pic, self.mode)

181
    def __repr__(self):
182
183
184
185
186
        format_string = self.__class__.__name__ + '('
        if self.mode is not None:
            format_string += 'mode={0}'.format(self.mode)
        format_string += ')'
        return format_string
187

188

189
class Normalize(torch.nn.Module):
Fang Gao's avatar
Fang Gao committed
190
    """Normalize a tensor image with mean and standard deviation.
191
    This transform does not support PIL Image.
192
193
194
    Given mean: ``(mean[1],...,mean[n])`` and std: ``(std[1],..,std[n])`` for ``n``
    channels, this transform will normalize each channel of the input
    ``torch.*Tensor`` i.e.,
abdjava's avatar
abdjava committed
195
    ``output[channel] = (input[channel] - mean[channel]) / std[channel]``
196

197
    .. note::
198
        This transform acts out of place, i.e., it does not mutate the input tensor.
199

200
201
202
    Args:
        mean (sequence): Sequence of means for each channel.
        std (sequence): Sequence of standard deviations for each channel.
203
204
        inplace(bool,optional): Bool to make this operation in-place.

205
206
    """

surgan12's avatar
surgan12 committed
207
    def __init__(self, mean, std, inplace=False):
208
        super().__init__()
209
210
        self.mean = mean
        self.std = std
surgan12's avatar
surgan12 committed
211
        self.inplace = inplace
212

213
    def forward(self, tensor: Tensor) -> Tensor:
214
215
        """
        Args:
vfdev's avatar
vfdev committed
216
            tensor (Tensor): Tensor image to be normalized.
217
218
219
220

        Returns:
            Tensor: Normalized Tensor image.
        """
surgan12's avatar
surgan12 committed
221
        return F.normalize(tensor, self.mean, self.std, self.inplace)
222

223
224
225
    def __repr__(self):
        return self.__class__.__name__ + '(mean={0}, std={1})'.format(self.mean, self.std)

226

vfdev's avatar
vfdev committed
227
228
class Resize(torch.nn.Module):
    """Resize the input image to the given size.
229
    If the image is torch Tensor, it is expected
vfdev's avatar
vfdev committed
230
    to have [..., H, W] shape, where ... means an arbitrary number of leading dimensions
231

232
233
234
235
236
237
    .. warning::
        The output image might be different depending on its type: when downsampling, the interpolation of PIL images
        and tensors is slightly different, because PIL applies antialiasing. This may lead to significant differences
        in the performance of a network. Therefore, it is preferable to train and serve a model with the same input
        types.

238
239
240
241
242
    Args:
        size (sequence or int): Desired output size. If size is a sequence like
            (h, w), output size will be matched to this. If size is an int,
            smaller edge of the image will be matched to this number.
            i.e, if height > width, then image will be rescaled to
vfdev's avatar
vfdev committed
243
            (size * height / width, size).
244
245
246

            .. note::
                In torchscript mode size as single int is not supported, use a sequence of length 1: ``[size, ]``.
247
248
249
250
        interpolation (InterpolationMode): Desired interpolation enum defined by
            :class:`torchvision.transforms.InterpolationMode`. Default is ``InterpolationMode.BILINEAR``.
            If input is Tensor, only ``InterpolationMode.NEAREST``, ``InterpolationMode.BILINEAR`` and
            ``InterpolationMode.BICUBIC`` are supported.
251
            For backward compatibility integer values (e.g. ``PIL.Image.NEAREST``) are still acceptable.
252
253
254
255
        max_size (int, optional): The maximum allowed for the longer edge of
            the resized image: if the longer edge of the image is greater
            than ``max_size`` after being resized according to ``size``, then
            the image is resized again so that the longer edge is equal to
256
            ``max_size``. As a result, ``size`` might be overruled, i.e the
257
258
259
            smaller edge may be shorter than ``size``. This is only supported
            if ``size`` is an int (or a sequence of length 1 in torchscript
            mode).
260

261
262
    """

263
    def __init__(self, size, interpolation=InterpolationMode.BILINEAR, max_size=None):
vfdev's avatar
vfdev committed
264
        super().__init__()
265
266
267
268
269
        if not isinstance(size, (int, Sequence)):
            raise TypeError("Size should be int or sequence. Got {}".format(type(size)))
        if isinstance(size, Sequence) and len(size) not in (1, 2):
            raise ValueError("If size is a sequence, it should have 1 or 2 values")
        self.size = size
270
        self.max_size = max_size
271
272
273
274

        # Backward compatibility with integer value
        if isinstance(interpolation, int):
            warnings.warn(
275
276
                "Argument interpolation should be of type InterpolationMode instead of int. "
                "Please, use InterpolationMode enum."
277
278
279
            )
            interpolation = _interpolation_modes_from_int(interpolation)

280
281
        self.interpolation = interpolation

vfdev's avatar
vfdev committed
282
    def forward(self, img):
283
284
        """
        Args:
vfdev's avatar
vfdev committed
285
            img (PIL Image or Tensor): Image to be scaled.
286
287

        Returns:
vfdev's avatar
vfdev committed
288
            PIL Image or Tensor: Rescaled image.
289
        """
290
        return F.resize(img, self.size, self.interpolation, self.max_size)
291

292
    def __repr__(self):
293
        interpolate_str = self.interpolation.value
294
295
        return self.__class__.__name__ + '(size={0}, interpolation={1}, max_size={2})'.format(
            self.size, interpolate_str, self.max_size)
296

297
298
299
300
301
302
303
304
305
306
307

class Scale(Resize):
    """
    Note: This transform is deprecated in favor of Resize.
    """
    def __init__(self, *args, **kwargs):
        warnings.warn("The use of the transforms.Scale transform is deprecated, " +
                      "please use transforms.Resize instead.")
        super(Scale, self).__init__(*args, **kwargs)


vfdev's avatar
vfdev committed
308
309
class CenterCrop(torch.nn.Module):
    """Crops the given image at the center.
310
    If the image is torch Tensor, it is expected
311
312
    to have [..., H, W] shape, where ... means an arbitrary number of leading dimensions.
    If image size is smaller than output size along any edge, image is padded with 0 and then center cropped.
313
314
315
316

    Args:
        size (sequence or int): Desired output size of the crop. If size is an
            int instead of sequence like (h, w), a square crop (size, size) is
317
            made. If provided a sequence of length 1, it will be interpreted as (size[0], size[0]).
318
319
320
    """

    def __init__(self, size):
vfdev's avatar
vfdev committed
321
        super().__init__()
322
        self.size = _setup_size(size, error_msg="Please provide only two dimensions (h, w) for size.")
323

vfdev's avatar
vfdev committed
324
    def forward(self, img):
325
326
        """
        Args:
vfdev's avatar
vfdev committed
327
            img (PIL Image or Tensor): Image to be cropped.
328
329

        Returns:
vfdev's avatar
vfdev committed
330
            PIL Image or Tensor: Cropped image.
331
332
333
        """
        return F.center_crop(img, self.size)

334
335
336
    def __repr__(self):
        return self.__class__.__name__ + '(size={0})'.format(self.size)

337

338
339
class Pad(torch.nn.Module):
    """Pad the given image on all sides with the given "pad" value.
340
    If the image is torch Tensor, it is expected
341
342
343
    to have [..., H, W] shape, where ... means at most 2 leading dimensions for mode reflect and symmetric,
    at most 3 leading dimensions for mode edge,
    and an arbitrary number of leading dimensions for mode constant
344
345

    Args:
346
347
348
        padding (int or sequence): Padding on each border. If a single int is provided this
            is used to pad all borders. If sequence of length 2 is provided this is the padding
            on left/right and top/bottom respectively. If a sequence of length 4 is provided
349
            this is the padding for the left, top, right and bottom borders respectively.
350
351
352
353

            .. note::
                In torchscript mode padding as single int is not supported, use a sequence of
                length 1: ``[padding, ]``.
354
        fill (number or str or tuple): Pixel fill value for constant fill. Default is 0. If a tuple of
355
            length 3, it is used to fill R, G, B channels respectively.
356
357
358
            This value is only used when the padding_mode is constant.
            Only number is supported for torch Tensor.
            Only int or str or tuple value is supported for PIL Image.
359
        padding_mode (str): Type of padding. Should be: constant, edge, reflect or symmetric.
360
            Default is constant.
361
362
363

            - constant: pads with a constant value, this value is specified with fill

364
365
            - edge: pads with the last value at the edge of the image.
              If input a 5D torch Tensor, the last 3 dimensions will be padded instead of the last 2
366

367
368
369
            - reflect: pads with reflection of image without repeating the last value on the edge.
              For example, padding [1, 2, 3, 4] with 2 elements on both sides in reflect mode
              will result in [3, 2, 1, 2, 3, 4, 3, 2]
370

371
372
373
            - symmetric: pads with reflection of image repeating the last value on the edge.
              For example, padding [1, 2, 3, 4] with 2 elements on both sides in symmetric mode
              will result in [2, 1, 1, 2, 3, 4, 4, 3]
374
375
    """

376
377
378
379
380
381
382
383
384
385
386
387
388
    def __init__(self, padding, fill=0, padding_mode="constant"):
        super().__init__()
        if not isinstance(padding, (numbers.Number, tuple, list)):
            raise TypeError("Got inappropriate padding arg")

        if not isinstance(fill, (numbers.Number, str, tuple)):
            raise TypeError("Got inappropriate fill arg")

        if padding_mode not in ["constant", "edge", "reflect", "symmetric"]:
            raise ValueError("Padding mode should be either constant, edge, reflect or symmetric")

        if isinstance(padding, Sequence) and len(padding) not in [1, 2, 4]:
            raise ValueError("Padding must be an int or a 1, 2, or 4 element tuple, not a " +
389
390
391
392
                             "{} element tuple".format(len(padding)))

        self.padding = padding
        self.fill = fill
393
        self.padding_mode = padding_mode
394

395
    def forward(self, img):
396
397
        """
        Args:
398
            img (PIL Image or Tensor): Image to be padded.
399
400

        Returns:
401
            PIL Image or Tensor: Padded image.
402
        """
403
        return F.pad(img, self.padding, self.fill, self.padding_mode)
404

405
    def __repr__(self):
406
407
        return self.__class__.__name__ + '(padding={0}, fill={1}, padding_mode={2})'.\
            format(self.padding, self.fill, self.padding_mode)
408

409

410
class Lambda:
411
    """Apply a user-defined lambda as a transform. This transform does not support torchscript.
412
413
414
415
416
417

    Args:
        lambd (function): Lambda/function to be used for transform.
    """

    def __init__(self, lambd):
418
419
        if not callable(lambd):
            raise TypeError("Argument lambd should be callable, got {}".format(repr(type(lambd).__name__)))
420
421
422
423
424
        self.lambd = lambd

    def __call__(self, img):
        return self.lambd(img)

425
426
427
    def __repr__(self):
        return self.__class__.__name__ + '()'

428

429
class RandomTransforms:
430
431
432
    """Base class for a list of transformations with randomness

    Args:
433
        transforms (sequence): list of transformations
434
435
436
    """

    def __init__(self, transforms):
437
438
        if not isinstance(transforms, Sequence):
            raise TypeError("Argument transforms should be a sequence")
439
440
441
442
443
444
445
446
447
448
449
450
451
452
        self.transforms = transforms

    def __call__(self, *args, **kwargs):
        raise NotImplementedError()

    def __repr__(self):
        format_string = self.__class__.__name__ + '('
        for t in self.transforms:
            format_string += '\n'
            format_string += '    {0}'.format(t)
        format_string += '\n)'
        return format_string


453
class RandomApply(torch.nn.Module):
454
    """Apply randomly a list of transformations with a given probability.
455
456
457
458
459
460
461
462
463
464
465
466

    .. note::
        In order to script the transformation, please use ``torch.nn.ModuleList`` as input instead of list/tuple of
        transforms as shown below:

        >>> transforms = transforms.RandomApply(torch.nn.ModuleList([
        >>>     transforms.ColorJitter(),
        >>> ]), p=0.3)
        >>> scripted_transforms = torch.jit.script(transforms)

        Make sure to use only scriptable transformations, i.e. that work with ``torch.Tensor``, does not require
        `lambda` functions or ``PIL.Image``.
467
468

    Args:
469
        transforms (sequence or torch.nn.Module): list of transformations
470
471
472
473
        p (float): probability
    """

    def __init__(self, transforms, p=0.5):
474
475
        super().__init__()
        self.transforms = transforms
476
477
        self.p = p

478
479
    def forward(self, img):
        if self.p < torch.rand(1):
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
            return img
        for t in self.transforms:
            img = t(img)
        return img

    def __repr__(self):
        format_string = self.__class__.__name__ + '('
        format_string += '\n    p={}'.format(self.p)
        for t in self.transforms:
            format_string += '\n'
            format_string += '    {0}'.format(t)
        format_string += '\n)'
        return format_string


class RandomOrder(RandomTransforms):
496
    """Apply a list of transformations in a random order. This transform does not support torchscript.
497
498
499
500
501
502
503
504
505
506
    """
    def __call__(self, img):
        order = list(range(len(self.transforms)))
        random.shuffle(order)
        for i in order:
            img = self.transforms[i](img)
        return img


class RandomChoice(RandomTransforms):
507
    """Apply single transformation randomly picked from a list. This transform does not support torchscript.
508
509
510
511
512
513
    """
    def __call__(self, img):
        t = random.choice(self.transforms)
        return t(img)


vfdev's avatar
vfdev committed
514
515
class RandomCrop(torch.nn.Module):
    """Crop the given image at a random location.
516
    If the image is torch Tensor, it is expected
517
518
    to have [..., H, W] shape, where ... means an arbitrary number of leading dimensions,
    but if non-constant padding is used, the input is expected to have at most 2 leading dimensions
519
520
521
522

    Args:
        size (sequence or int): Desired output size of the crop. If size is an
            int instead of sequence like (h, w), a square crop (size, size) is
523
            made. If provided a sequence of length 1, it will be interpreted as (size[0], size[0]).
524
        padding (int or sequence, optional): Optional padding on each border
vfdev's avatar
vfdev committed
525
            of the image. Default is None. If a single int is provided this
526
527
            is used to pad all borders. If sequence of length 2 is provided this is the padding
            on left/right and top/bottom respectively. If a sequence of length 4 is provided
vfdev's avatar
vfdev committed
528
            this is the padding for the left, top, right and bottom borders respectively.
529
530
531
532

            .. note::
                In torchscript mode padding as single int is not supported, use a sequence of
                length 1: ``[padding, ]``.
533
        pad_if_needed (boolean): It will pad the image if smaller than the
ekka's avatar
ekka committed
534
            desired size to avoid raising an exception. Since cropping is done
535
            after padding, the padding seems to be done at a random offset.
536
        fill (number or str or tuple): Pixel fill value for constant fill. Default is 0. If a tuple of
537
            length 3, it is used to fill R, G, B channels respectively.
538
539
540
            This value is only used when the padding_mode is constant.
            Only number is supported for torch Tensor.
            Only int or str or tuple value is supported for PIL Image.
541
542
        padding_mode (str): Type of padding. Should be: constant, edge, reflect or symmetric.
            Default is constant.
543

544
            - constant: pads with a constant value, this value is specified with fill
545

546
547
            - edge: pads with the last value at the edge of the image.
              If input a 5D torch Tensor, the last 3 dimensions will be padded instead of the last 2
548

549
550
551
            - reflect: pads with reflection of image without repeating the last value on the edge.
              For example, padding [1, 2, 3, 4] with 2 elements on both sides in reflect mode
              will result in [3, 2, 1, 2, 3, 4, 3, 2]
552

553
554
555
            - symmetric: pads with reflection of image repeating the last value on the edge.
              For example, padding [1, 2, 3, 4] with 2 elements on both sides in symmetric mode
              will result in [2, 1, 1, 2, 3, 4, 4, 3]
556
557
558
    """

    @staticmethod
vfdev's avatar
vfdev committed
559
    def get_params(img: Tensor, output_size: Tuple[int, int]) -> Tuple[int, int, int, int]:
560
561
562
        """Get parameters for ``crop`` for a random crop.

        Args:
vfdev's avatar
vfdev committed
563
            img (PIL Image or Tensor): Image to be cropped.
564
565
566
567
568
            output_size (tuple): Expected output size of the crop.

        Returns:
            tuple: params (i, j, h, w) to be passed to ``crop`` for random crop.
        """
vfdev's avatar
vfdev committed
569
        w, h = F._get_image_size(img)
570
        th, tw = output_size
vfdev's avatar
vfdev committed
571
572
573
574
575
576

        if h + 1 < th or w + 1 < tw:
            raise ValueError(
                "Required crop size {} is larger then input image size {}".format((th, tw), (h, w))
            )

577
578
579
        if w == tw and h == th:
            return 0, 0, h, w

580
581
        i = torch.randint(0, h - th + 1, size=(1, )).item()
        j = torch.randint(0, w - tw + 1, size=(1, )).item()
582
583
        return i, j, th, tw

vfdev's avatar
vfdev committed
584
585
586
    def __init__(self, size, padding=None, pad_if_needed=False, fill=0, padding_mode="constant"):
        super().__init__()

587
588
589
590
        self.size = tuple(_setup_size(
            size, error_msg="Please provide only two dimensions (h, w) for size."
        ))

vfdev's avatar
vfdev committed
591
592
593
594
595
596
        self.padding = padding
        self.pad_if_needed = pad_if_needed
        self.fill = fill
        self.padding_mode = padding_mode

    def forward(self, img):
597
598
        """
        Args:
vfdev's avatar
vfdev committed
599
            img (PIL Image or Tensor): Image to be cropped.
600
601

        Returns:
vfdev's avatar
vfdev committed
602
            PIL Image or Tensor: Cropped image.
603
        """
604
605
        if self.padding is not None:
            img = F.pad(img, self.padding, self.fill, self.padding_mode)
606

vfdev's avatar
vfdev committed
607
        width, height = F._get_image_size(img)
608
        # pad the width if needed
vfdev's avatar
vfdev committed
609
610
611
        if self.pad_if_needed and width < self.size[1]:
            padding = [self.size[1] - width, 0]
            img = F.pad(img, padding, self.fill, self.padding_mode)
612
        # pad the height if needed
vfdev's avatar
vfdev committed
613
614
615
        if self.pad_if_needed and height < self.size[0]:
            padding = [0, self.size[0] - height]
            img = F.pad(img, padding, self.fill, self.padding_mode)
616

617
618
619
620
        i, j, h, w = self.get_params(img, self.size)

        return F.crop(img, i, j, h, w)

621
    def __repr__(self):
vfdev's avatar
vfdev committed
622
        return self.__class__.__name__ + "(size={0}, padding={1})".format(self.size, self.padding)
623

624

625
626
class RandomHorizontalFlip(torch.nn.Module):
    """Horizontally flip the given image randomly with a given probability.
627
    If the image is torch Tensor, it is expected
628
629
    to have [..., H, W] shape, where ... means an arbitrary number of leading
    dimensions
630
631
632
633
634
635

    Args:
        p (float): probability of the image being flipped. Default value is 0.5
    """

    def __init__(self, p=0.5):
636
        super().__init__()
637
        self.p = p
638

639
    def forward(self, img):
640
641
        """
        Args:
642
            img (PIL Image or Tensor): Image to be flipped.
643
644

        Returns:
645
            PIL Image or Tensor: Randomly flipped image.
646
        """
647
        if torch.rand(1) < self.p:
648
649
650
            return F.hflip(img)
        return img

651
    def __repr__(self):
652
        return self.__class__.__name__ + '(p={})'.format(self.p)
653

654

655
class RandomVerticalFlip(torch.nn.Module):
vfdev's avatar
vfdev committed
656
    """Vertically flip the given image randomly with a given probability.
657
    If the image is torch Tensor, it is expected
658
659
    to have [..., H, W] shape, where ... means an arbitrary number of leading
    dimensions
660
661
662
663
664
665

    Args:
        p (float): probability of the image being flipped. Default value is 0.5
    """

    def __init__(self, p=0.5):
666
        super().__init__()
667
        self.p = p
668

669
    def forward(self, img):
670
671
        """
        Args:
672
            img (PIL Image or Tensor): Image to be flipped.
673
674

        Returns:
675
            PIL Image or Tensor: Randomly flipped image.
676
        """
677
        if torch.rand(1) < self.p:
678
679
680
            return F.vflip(img)
        return img

681
    def __repr__(self):
682
        return self.__class__.__name__ + '(p={})'.format(self.p)
683

684

685
686
class RandomPerspective(torch.nn.Module):
    """Performs a random perspective transformation of the given image with a given probability.
687
    If the image is torch Tensor, it is expected
688
    to have [..., H, W] shape, where ... means an arbitrary number of leading dimensions.
689
690

    Args:
691
692
693
        distortion_scale (float): argument to control the degree of distortion and ranges from 0 to 1.
            Default is 0.5.
        p (float): probability of the image being transformed. Default is 0.5.
694
695
696
        interpolation (InterpolationMode): Desired interpolation enum defined by
            :class:`torchvision.transforms.InterpolationMode`. Default is ``InterpolationMode.BILINEAR``.
            If input is Tensor, only ``InterpolationMode.NEAREST``, ``InterpolationMode.BILINEAR`` are supported.
697
            For backward compatibility integer values (e.g. ``PIL.Image.NEAREST``) are still acceptable.
698
699
        fill (sequence or number): Pixel fill value for the area outside the transformed
            image. Default is ``0``. If given a number, the value is used for all bands respectively.
700
            If input is PIL Image, the options is only available for ``Pillow>=5.0.0``.
701
702
    """

703
    def __init__(self, distortion_scale=0.5, p=0.5, interpolation=InterpolationMode.BILINEAR, fill=0):
704
        super().__init__()
705
        self.p = p
706
707
708
709

        # Backward compatibility with integer value
        if isinstance(interpolation, int):
            warnings.warn(
710
711
                "Argument interpolation should be of type InterpolationMode instead of int. "
                "Please, use InterpolationMode enum."
712
713
714
            )
            interpolation = _interpolation_modes_from_int(interpolation)

715
716
        self.interpolation = interpolation
        self.distortion_scale = distortion_scale
717
718
719
720
721
722

        if fill is None:
            fill = 0
        elif not isinstance(fill, (Sequence, numbers.Number)):
            raise TypeError("Fill should be either a sequence or a number.")

723
        self.fill = fill
724

725
    def forward(self, img):
726
727
        """
        Args:
728
            img (PIL Image or Tensor): Image to be Perspectively transformed.
729
730

        Returns:
731
            PIL Image or Tensor: Randomly transformed image.
732
        """
733
734
735
736
737
738
739
740

        fill = self.fill
        if isinstance(img, Tensor):
            if isinstance(fill, (int, float)):
                fill = [float(fill)] * F._get_image_num_channels(img)
            else:
                fill = [float(f) for f in fill]

741
742
        if torch.rand(1) < self.p:
            width, height = F._get_image_size(img)
743
            startpoints, endpoints = self.get_params(width, height, self.distortion_scale)
744
            return F.perspective(img, startpoints, endpoints, self.interpolation, fill)
745
746
747
        return img

    @staticmethod
748
    def get_params(width: int, height: int, distortion_scale: float) -> Tuple[List[List[int]], List[List[int]]]:
749
750
751
        """Get parameters for ``perspective`` for a random perspective transform.

        Args:
752
753
754
            width (int): width of the image.
            height (int): height of the image.
            distortion_scale (float): argument to control the degree of distortion and ranges from 0 to 1.
755
756

        Returns:
757
            List containing [top-left, top-right, bottom-right, bottom-left] of the original image,
758
759
            List containing [top-left, top-right, bottom-right, bottom-left] of the transformed image.
        """
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
        half_height = height // 2
        half_width = width // 2
        topleft = [
            int(torch.randint(0, int(distortion_scale * half_width) + 1, size=(1, )).item()),
            int(torch.randint(0, int(distortion_scale * half_height) + 1, size=(1, )).item())
        ]
        topright = [
            int(torch.randint(width - int(distortion_scale * half_width) - 1, width, size=(1, )).item()),
            int(torch.randint(0, int(distortion_scale * half_height) + 1, size=(1, )).item())
        ]
        botright = [
            int(torch.randint(width - int(distortion_scale * half_width) - 1, width, size=(1, )).item()),
            int(torch.randint(height - int(distortion_scale * half_height) - 1, height, size=(1, )).item())
        ]
        botleft = [
            int(torch.randint(0, int(distortion_scale * half_width) + 1, size=(1, )).item()),
            int(torch.randint(height - int(distortion_scale * half_height) - 1, height, size=(1, )).item())
        ]
        startpoints = [[0, 0], [width - 1, 0], [width - 1, height - 1], [0, height - 1]]
779
780
781
782
783
784
785
        endpoints = [topleft, topright, botright, botleft]
        return startpoints, endpoints

    def __repr__(self):
        return self.__class__.__name__ + '(p={})'.format(self.p)


786
class RandomResizedCrop(torch.nn.Module):
787
788
    """Crop a random portion of image and resize it to a given size.

789
    If the image is torch Tensor, it is expected
790
    to have [..., H, W] shape, where ... means an arbitrary number of leading dimensions
791

792
793
794
    A crop of the original image is made: the crop has a random area (H * W)
    and a random aspect ratio. This crop is finally resized to the given
    size. This is popularly used to train the Inception networks.
795
796

    Args:
797
        size (int or sequence): expected output size of the crop, for each edge. If size is an
798
            int instead of sequence like (h, w), a square output size ``(size, size)`` is
799
            made. If provided a sequence of length 1, it will be interpreted as (size[0], size[0]).
800
801
802

            .. note::
                In torchscript mode size as single int is not supported, use a sequence of length 1: ``[size, ]``.
Nicolas Hug's avatar
Nicolas Hug committed
803
804
        scale (tuple of float): Specifies the lower and upper bounds for the random area of the crop,
            before resizing. The scale is defined with respect to the area of the original image.
805
806
        ratio (tuple of float): lower and upper bounds for the random aspect ratio of the crop, before
            resizing.
807
808
809
810
        interpolation (InterpolationMode): Desired interpolation enum defined by
            :class:`torchvision.transforms.InterpolationMode`. Default is ``InterpolationMode.BILINEAR``.
            If input is Tensor, only ``InterpolationMode.NEAREST``, ``InterpolationMode.BILINEAR`` and
            ``InterpolationMode.BICUBIC`` are supported.
811
812
            For backward compatibility integer values (e.g. ``PIL.Image.NEAREST``) are still acceptable.

813
814
    """

815
    def __init__(self, size, scale=(0.08, 1.0), ratio=(3. / 4., 4. / 3.), interpolation=InterpolationMode.BILINEAR):
816
        super().__init__()
817
        self.size = _setup_size(size, error_msg="Please provide only two dimensions (h, w) for size.")
818

819
        if not isinstance(scale, Sequence):
820
            raise TypeError("Scale should be a sequence")
821
        if not isinstance(ratio, Sequence):
822
            raise TypeError("Ratio should be a sequence")
823
        if (scale[0] > scale[1]) or (ratio[0] > ratio[1]):
824
            warnings.warn("Scale and ratio should be of kind (min, max)")
825

826
827
828
        # Backward compatibility with integer value
        if isinstance(interpolation, int):
            warnings.warn(
829
830
                "Argument interpolation should be of type InterpolationMode instead of int. "
                "Please, use InterpolationMode enum."
831
832
833
            )
            interpolation = _interpolation_modes_from_int(interpolation)

834
        self.interpolation = interpolation
835
836
        self.scale = scale
        self.ratio = ratio
837
838

    @staticmethod
839
    def get_params(
840
            img: Tensor, scale: List[float], ratio: List[float]
841
    ) -> Tuple[int, int, int, int]:
842
843
844
        """Get parameters for ``crop`` for a random sized crop.

        Args:
845
            img (PIL Image or Tensor): Input image.
846
847
            scale (list): range of scale of the origin size cropped
            ratio (list): range of aspect ratio of the origin aspect ratio cropped
848
849
850

        Returns:
            tuple: params (i, j, h, w) to be passed to ``crop`` for a random
851
            sized crop.
852
        """
vfdev's avatar
vfdev committed
853
        width, height = F._get_image_size(img)
Zhicheng Yan's avatar
Zhicheng Yan committed
854
        area = height * width
855

856
        log_ratio = torch.log(torch.tensor(ratio))
857
        for _ in range(10):
858
            target_area = area * torch.empty(1).uniform_(scale[0], scale[1]).item()
859
860
861
            aspect_ratio = torch.exp(
                torch.empty(1).uniform_(log_ratio[0], log_ratio[1])
            ).item()
862
863
864
865

            w = int(round(math.sqrt(target_area * aspect_ratio)))
            h = int(round(math.sqrt(target_area / aspect_ratio)))

Zhicheng Yan's avatar
Zhicheng Yan committed
866
            if 0 < w <= width and 0 < h <= height:
867
868
                i = torch.randint(0, height - h + 1, size=(1,)).item()
                j = torch.randint(0, width - w + 1, size=(1,)).item()
869
870
                return i, j, h, w

871
        # Fallback to central crop
Zhicheng Yan's avatar
Zhicheng Yan committed
872
        in_ratio = float(width) / float(height)
873
        if in_ratio < min(ratio):
Zhicheng Yan's avatar
Zhicheng Yan committed
874
            w = width
875
            h = int(round(w / min(ratio)))
876
        elif in_ratio > max(ratio):
Zhicheng Yan's avatar
Zhicheng Yan committed
877
            h = height
878
            w = int(round(h * max(ratio)))
879
        else:  # whole image
Zhicheng Yan's avatar
Zhicheng Yan committed
880
881
882
883
            w = width
            h = height
        i = (height - h) // 2
        j = (width - w) // 2
884
        return i, j, h, w
885

886
    def forward(self, img):
887
888
        """
        Args:
889
            img (PIL Image or Tensor): Image to be cropped and resized.
890
891

        Returns:
892
            PIL Image or Tensor: Randomly cropped and resized image.
893
        """
894
        i, j, h, w = self.get_params(img, self.scale, self.ratio)
895
896
        return F.resized_crop(img, i, j, h, w, self.size, self.interpolation)

897
    def __repr__(self):
898
        interpolate_str = self.interpolation.value
899
        format_string = self.__class__.__name__ + '(size={0}'.format(self.size)
900
901
        format_string += ', scale={0}'.format(tuple(round(s, 4) for s in self.scale))
        format_string += ', ratio={0}'.format(tuple(round(r, 4) for r in self.ratio))
902
903
        format_string += ', interpolation={0})'.format(interpolate_str)
        return format_string
904

905
906
907
908
909
910
911
912
913
914
915

class RandomSizedCrop(RandomResizedCrop):
    """
    Note: This transform is deprecated in favor of RandomResizedCrop.
    """
    def __init__(self, *args, **kwargs):
        warnings.warn("The use of the transforms.RandomSizedCrop transform is deprecated, " +
                      "please use transforms.RandomResizedCrop instead.")
        super(RandomSizedCrop, self).__init__(*args, **kwargs)


vfdev's avatar
vfdev committed
916
917
class FiveCrop(torch.nn.Module):
    """Crop the given image into four corners and the central crop.
918
    If the image is torch Tensor, it is expected
vfdev's avatar
vfdev committed
919
920
    to have [..., H, W] shape, where ... means an arbitrary number of leading
    dimensions
921
922
923
924
925
926
927
928
929

    .. Note::
         This transform returns a tuple of images and there may be a mismatch in the number of
         inputs and targets your Dataset returns. See below for an example of how to deal with
         this.

    Args:
         size (sequence or int): Desired output size of the crop. If size is an ``int``
            instead of sequence like (h, w), a square crop of size (size, size) is made.
930
            If provided a sequence of length 1, it will be interpreted as (size[0], size[0]).
931
932
933
934
935
936
937
938
939
940
941
942
943
944

    Example:
         >>> transform = Compose([
         >>>    FiveCrop(size), # this is a list of PIL Images
         >>>    Lambda(lambda crops: torch.stack([ToTensor()(crop) for crop in crops])) # returns a 4D tensor
         >>> ])
         >>> #In your test loop you can do the following:
         >>> input, target = batch # input is a 5d tensor, target is 2d
         >>> bs, ncrops, c, h, w = input.size()
         >>> result = model(input.view(-1, c, h, w)) # fuse batch size and ncrops
         >>> result_avg = result.view(bs, ncrops, -1).mean(1) # avg over crops
    """

    def __init__(self, size):
vfdev's avatar
vfdev committed
945
        super().__init__()
946
        self.size = _setup_size(size, error_msg="Please provide only two dimensions (h, w) for size.")
947

vfdev's avatar
vfdev committed
948
949
950
951
952
953
954
955
    def forward(self, img):
        """
        Args:
            img (PIL Image or Tensor): Image to be cropped.

        Returns:
            tuple of 5 images. Image can be PIL Image or Tensor
        """
956
957
        return F.five_crop(img, self.size)

958
959
960
    def __repr__(self):
        return self.__class__.__name__ + '(size={0})'.format(self.size)

961

vfdev's avatar
vfdev committed
962
963
964
class TenCrop(torch.nn.Module):
    """Crop the given image into four corners and the central crop plus the flipped version of
    these (horizontal flipping is used by default).
965
    If the image is torch Tensor, it is expected
vfdev's avatar
vfdev committed
966
967
    to have [..., H, W] shape, where ... means an arbitrary number of leading
    dimensions
968
969
970
971
972
973
974
975
976

    .. Note::
         This transform returns a tuple of images and there may be a mismatch in the number of
         inputs and targets your Dataset returns. See below for an example of how to deal with
         this.

    Args:
        size (sequence or int): Desired output size of the crop. If size is an
            int instead of sequence like (h, w), a square crop (size, size) is
977
            made. If provided a sequence of length 1, it will be interpreted as (size[0], size[0]).
978
        vertical_flip (bool): Use vertical flipping instead of horizontal
979
980
981
982
983
984
985
986
987
988
989
990
991
992

    Example:
         >>> transform = Compose([
         >>>    TenCrop(size), # this is a list of PIL Images
         >>>    Lambda(lambda crops: torch.stack([ToTensor()(crop) for crop in crops])) # returns a 4D tensor
         >>> ])
         >>> #In your test loop you can do the following:
         >>> input, target = batch # input is a 5d tensor, target is 2d
         >>> bs, ncrops, c, h, w = input.size()
         >>> result = model(input.view(-1, c, h, w)) # fuse batch size and ncrops
         >>> result_avg = result.view(bs, ncrops, -1).mean(1) # avg over crops
    """

    def __init__(self, size, vertical_flip=False):
vfdev's avatar
vfdev committed
993
        super().__init__()
994
        self.size = _setup_size(size, error_msg="Please provide only two dimensions (h, w) for size.")
995
996
        self.vertical_flip = vertical_flip

vfdev's avatar
vfdev committed
997
998
999
1000
1001
1002
1003
1004
    def forward(self, img):
        """
        Args:
            img (PIL Image or Tensor): Image to be cropped.

        Returns:
            tuple of 10 images. Image can be PIL Image or Tensor
        """
1005
1006
        return F.ten_crop(img, self.size, self.vertical_flip)

1007
    def __repr__(self):
1008
        return self.__class__.__name__ + '(size={0}, vertical_flip={1})'.format(self.size, self.vertical_flip)
1009

1010

1011
class LinearTransformation(torch.nn.Module):
ekka's avatar
ekka committed
1012
    """Transform a tensor image with a square transformation matrix and a mean_vector computed
1013
    offline.
1014
    This transform does not support PIL Image.
ekka's avatar
ekka committed
1015
1016
1017
    Given transformation_matrix and mean_vector, will flatten the torch.*Tensor and
    subtract mean_vector from it which is then followed by computing the dot
    product with the transformation matrix and then reshaping the tensor to its
1018
    original shape.
1019

1020
    Applications:
1021
        whitening transformation: Suppose X is a column vector zero-centered data.
1022
1023
1024
        Then compute the data covariance matrix [D x D] with torch.mm(X.t(), X),
        perform SVD on this matrix and pass it as transformation_matrix.

1025
1026
    Args:
        transformation_matrix (Tensor): tensor [D x D], D = C x H x W
ekka's avatar
ekka committed
1027
        mean_vector (Tensor): tensor [D], D = C x H x W
1028
1029
    """

ekka's avatar
ekka committed
1030
    def __init__(self, transformation_matrix, mean_vector):
1031
        super().__init__()
1032
1033
1034
        if transformation_matrix.size(0) != transformation_matrix.size(1):
            raise ValueError("transformation_matrix should be square. Got " +
                             "[{} x {}] rectangular matrix.".format(*transformation_matrix.size()))
ekka's avatar
ekka committed
1035
1036
1037

        if mean_vector.size(0) != transformation_matrix.size(0):
            raise ValueError("mean_vector should have the same length {}".format(mean_vector.size(0)) +
Francisco Massa's avatar
Francisco Massa committed
1038
1039
                             " as any one of the dimensions of the transformation_matrix [{}]"
                             .format(tuple(transformation_matrix.size())))
ekka's avatar
ekka committed
1040

1041
1042
1043
1044
        if transformation_matrix.device != mean_vector.device:
            raise ValueError("Input tensors should be on the same device. Got {} and {}"
                             .format(transformation_matrix.device, mean_vector.device))

1045
        self.transformation_matrix = transformation_matrix
ekka's avatar
ekka committed
1046
        self.mean_vector = mean_vector
1047

1048
    def forward(self, tensor: Tensor) -> Tensor:
1049
1050
        """
        Args:
vfdev's avatar
vfdev committed
1051
            tensor (Tensor): Tensor image to be whitened.
1052
1053
1054
1055

        Returns:
            Tensor: Transformed image.
        """
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
        shape = tensor.shape
        n = shape[-3] * shape[-2] * shape[-1]
        if n != self.transformation_matrix.shape[0]:
            raise ValueError("Input tensor and transformation matrix have incompatible shape." +
                             "[{} x {} x {}] != ".format(shape[-3], shape[-2], shape[-1]) +
                             "{}".format(self.transformation_matrix.shape[0]))

        if tensor.device.type != self.mean_vector.device.type:
            raise ValueError("Input tensor should be on the same device as transformation matrix and mean vector. "
                             "Got {} vs {}".format(tensor.device, self.mean_vector.device))

        flat_tensor = tensor.view(-1, n) - self.mean_vector
1068
        transformed_tensor = torch.mm(flat_tensor, self.transformation_matrix)
1069
        tensor = transformed_tensor.view(shape)
1070
1071
        return tensor

1072
    def __repr__(self):
ekka's avatar
ekka committed
1073
1074
1075
        format_string = self.__class__.__name__ + '(transformation_matrix='
        format_string += (str(self.transformation_matrix.tolist()) + ')')
        format_string += (", (mean_vector=" + str(self.mean_vector.tolist()) + ')')
1076
1077
        return format_string

1078

1079
class ColorJitter(torch.nn.Module):
1080
    """Randomly change the brightness, contrast, saturation and hue of an image.
1081
    If the image is torch Tensor, it is expected
1082
1083
    to have [..., 3, H, W] shape, where ... means an arbitrary number of leading dimensions.
    If img is PIL Image, mode "1", "L", "I", "F" and modes with transparency (alpha channel) are not supported.
1084
1085

    Args:
yaox12's avatar
yaox12 committed
1086
1087
1088
1089
1090
1091
1092
1093
1094
1095
1096
1097
        brightness (float or tuple of float (min, max)): How much to jitter brightness.
            brightness_factor is chosen uniformly from [max(0, 1 - brightness), 1 + brightness]
            or the given [min, max]. Should be non negative numbers.
        contrast (float or tuple of float (min, max)): How much to jitter contrast.
            contrast_factor is chosen uniformly from [max(0, 1 - contrast), 1 + contrast]
            or the given [min, max]. Should be non negative numbers.
        saturation (float or tuple of float (min, max)): How much to jitter saturation.
            saturation_factor is chosen uniformly from [max(0, 1 - saturation), 1 + saturation]
            or the given [min, max]. Should be non negative numbers.
        hue (float or tuple of float (min, max)): How much to jitter hue.
            hue_factor is chosen uniformly from [-hue, hue] or the given [min, max].
            Should have 0<= hue <= 0.5 or -0.5 <= min <= max <= 0.5.
1098
    """
1099

1100
    def __init__(self, brightness=0, contrast=0, saturation=0, hue=0):
1101
        super().__init__()
yaox12's avatar
yaox12 committed
1102
1103
1104
1105
1106
1107
        self.brightness = self._check_input(brightness, 'brightness')
        self.contrast = self._check_input(contrast, 'contrast')
        self.saturation = self._check_input(saturation, 'saturation')
        self.hue = self._check_input(hue, 'hue', center=0, bound=(-0.5, 0.5),
                                     clip_first_on_zero=False)

1108
    @torch.jit.unused
yaox12's avatar
yaox12 committed
1109
1110
1111
1112
    def _check_input(self, value, name, center=1, bound=(0, float('inf')), clip_first_on_zero=True):
        if isinstance(value, numbers.Number):
            if value < 0:
                raise ValueError("If {} is a single number, it must be non negative.".format(name))
1113
            value = [center - float(value), center + float(value)]
yaox12's avatar
yaox12 committed
1114
            if clip_first_on_zero:
1115
                value[0] = max(value[0], 0.0)
yaox12's avatar
yaox12 committed
1116
1117
1118
1119
        elif isinstance(value, (tuple, list)) and len(value) == 2:
            if not bound[0] <= value[0] <= value[1] <= bound[1]:
                raise ValueError("{} values should be between {}".format(name, bound))
        else:
1120
            raise TypeError("{} should be a single number or a list/tuple with length 2.".format(name))
yaox12's avatar
yaox12 committed
1121
1122
1123
1124
1125
1126

        # if value is 0 or (1., 1.) for brightness/contrast/saturation
        # or (0., 0.) for hue, do nothing
        if value[0] == value[1] == center:
            value = None
        return value
1127
1128

    @staticmethod
1129
1130
1131
1132
1133
1134
    def get_params(brightness: Optional[List[float]],
                   contrast: Optional[List[float]],
                   saturation: Optional[List[float]],
                   hue: Optional[List[float]]
                   ) -> Tuple[Tensor, Optional[float], Optional[float], Optional[float], Optional[float]]:
        """Get the parameters for the randomized transform to be applied on image.
1135

1136
1137
1138
1139
1140
1141
1142
1143
1144
        Args:
            brightness (tuple of float (min, max), optional): The range from which the brightness_factor is chosen
                uniformly. Pass None to turn off the transformation.
            contrast (tuple of float (min, max), optional): The range from which the contrast_factor is chosen
                uniformly. Pass None to turn off the transformation.
            saturation (tuple of float (min, max), optional): The range from which the saturation_factor is chosen
                uniformly. Pass None to turn off the transformation.
            hue (tuple of float (min, max), optional): The range from which the hue_factor is chosen uniformly.
                Pass None to turn off the transformation.
1145
1146

        Returns:
1147
1148
            tuple: The parameters used to apply the randomized transform
            along with their random order.
1149
        """
1150
        fn_idx = torch.randperm(4)
1151

1152
1153
1154
1155
        b = None if brightness is None else float(torch.empty(1).uniform_(brightness[0], brightness[1]))
        c = None if contrast is None else float(torch.empty(1).uniform_(contrast[0], contrast[1]))
        s = None if saturation is None else float(torch.empty(1).uniform_(saturation[0], saturation[1]))
        h = None if hue is None else float(torch.empty(1).uniform_(hue[0], hue[1]))
1156

1157
        return fn_idx, b, c, s, h
1158

1159
    def forward(self, img):
1160
1161
        """
        Args:
1162
            img (PIL Image or Tensor): Input image.
1163
1164

        Returns:
1165
1166
            PIL Image or Tensor: Color jittered image.
        """
1167
1168
1169
        fn_idx, brightness_factor, contrast_factor, saturation_factor, hue_factor = \
            self.get_params(self.brightness, self.contrast, self.saturation, self.hue)

1170
        for fn_id in fn_idx:
1171
            if fn_id == 0 and brightness_factor is not None:
1172
                img = F.adjust_brightness(img, brightness_factor)
1173
            elif fn_id == 1 and contrast_factor is not None:
1174
                img = F.adjust_contrast(img, contrast_factor)
1175
            elif fn_id == 2 and saturation_factor is not None:
1176
                img = F.adjust_saturation(img, saturation_factor)
1177
            elif fn_id == 3 and hue_factor is not None:
1178
1179
1180
                img = F.adjust_hue(img, hue_factor)

        return img
1181

1182
    def __repr__(self):
1183
1184
1185
1186
1187
1188
        format_string = self.__class__.__name__ + '('
        format_string += 'brightness={0}'.format(self.brightness)
        format_string += ', contrast={0}'.format(self.contrast)
        format_string += ', saturation={0}'.format(self.saturation)
        format_string += ', hue={0})'.format(self.hue)
        return format_string
1189

1190

1191
class RandomRotation(torch.nn.Module):
1192
    """Rotate the image by angle.
1193
    If the image is torch Tensor, it is expected
1194
    to have [..., H, W] shape, where ... means an arbitrary number of leading dimensions.
1195
1196

    Args:
1197
        degrees (sequence or number): Range of degrees to select from.
1198
1199
            If degrees is a number instead of sequence like (min, max), the range of degrees
            will be (-degrees, +degrees).
1200
1201
1202
        interpolation (InterpolationMode): Desired interpolation enum defined by
            :class:`torchvision.transforms.InterpolationMode`. Default is ``InterpolationMode.NEAREST``.
            If input is Tensor, only ``InterpolationMode.NEAREST``, ``InterpolationMode.BILINEAR`` are supported.
1203
            For backward compatibility integer values (e.g. ``PIL.Image.NEAREST``) are still acceptable.
1204
1205
1206
1207
        expand (bool, optional): Optional expansion flag.
            If true, expands the output to make it large enough to hold the entire rotated image.
            If false or omitted, make the output image the same size as the input image.
            Note that the expand flag assumes rotation around the center and no translation.
1208
        center (sequence, optional): Optional center of rotation, (x, y). Origin is the upper left corner.
1209
            Default is the center of the image.
1210
1211
        fill (sequence or number): Pixel fill value for the area outside the rotated
            image. Default is ``0``. If given a number, the value is used for all bands respectively.
1212
            If input is PIL Image, the options is only available for ``Pillow>=5.2.0``.
1213
        resample (int, optional): deprecated argument and will be removed since v0.10.0.
1214
            Please use the ``interpolation`` parameter instead.
1215
1216
1217

    .. _filters: https://pillow.readthedocs.io/en/latest/handbook/concepts.html#filters

1218
1219
    """

1220
    def __init__(
1221
        self, degrees, interpolation=InterpolationMode.NEAREST, expand=False, center=None, fill=0, resample=None
1222
    ):
1223
        super().__init__()
1224
1225
1226
1227
1228
1229
1230
1231
1232
        if resample is not None:
            warnings.warn(
                "Argument resample is deprecated and will be removed since v0.10.0. Please, use interpolation instead"
            )
            interpolation = _interpolation_modes_from_int(resample)

        # Backward compatibility with integer value
        if isinstance(interpolation, int):
            warnings.warn(
1233
1234
                "Argument interpolation should be of type InterpolationMode instead of int. "
                "Please, use InterpolationMode enum."
1235
1236
1237
            )
            interpolation = _interpolation_modes_from_int(interpolation)

1238
        self.degrees = _setup_angle(degrees, name="degrees", req_sizes=(2, ))
1239
1240

        if center is not None:
1241
            _check_sequence_input(center, "center", req_sizes=(2, ))
1242
1243

        self.center = center
1244

1245
        self.resample = self.interpolation = interpolation
1246
        self.expand = expand
1247
1248
1249
1250
1251
1252

        if fill is None:
            fill = 0
        elif not isinstance(fill, (Sequence, numbers.Number)):
            raise TypeError("Fill should be either a sequence or a number.")

1253
        self.fill = fill
1254
1255

    @staticmethod
1256
    def get_params(degrees: List[float]) -> float:
1257
1258
1259
        """Get parameters for ``rotate`` for a random rotation.

        Returns:
1260
            float: angle parameter to be passed to ``rotate`` for random rotation.
1261
        """
1262
        angle = float(torch.empty(1).uniform_(float(degrees[0]), float(degrees[1])).item())
1263
1264
        return angle

1265
    def forward(self, img):
1266
        """
1267
        Args:
1268
            img (PIL Image or Tensor): Image to be rotated.
1269
1270

        Returns:
1271
            PIL Image or Tensor: Rotated image.
1272
        """
1273
1274
1275
1276
1277
1278
        fill = self.fill
        if isinstance(img, Tensor):
            if isinstance(fill, (int, float)):
                fill = [float(fill)] * F._get_image_num_channels(img)
            else:
                fill = [float(f) for f in fill]
1279
        angle = self.get_params(self.degrees)
1280
1281

        return F.rotate(img, angle, self.resample, self.expand, self.center, fill)
1282

1283
    def __repr__(self):
1284
        interpolate_str = self.interpolation.value
1285
        format_string = self.__class__.__name__ + '(degrees={0}'.format(self.degrees)
1286
        format_string += ', interpolation={0}'.format(interpolate_str)
1287
1288
1289
        format_string += ', expand={0}'.format(self.expand)
        if self.center is not None:
            format_string += ', center={0}'.format(self.center)
1290
1291
        if self.fill is not None:
            format_string += ', fill={0}'.format(self.fill)
1292
1293
        format_string += ')'
        return format_string
1294

1295

1296
1297
class RandomAffine(torch.nn.Module):
    """Random affine transformation of the image keeping center invariant.
1298
    If the image is torch Tensor, it is expected
1299
    to have [..., H, W] shape, where ... means an arbitrary number of leading dimensions.
1300
1301

    Args:
1302
        degrees (sequence or number): Range of degrees to select from.
1303
            If degrees is a number instead of sequence like (min, max), the range of degrees
1304
            will be (-degrees, +degrees). Set to 0 to deactivate rotations.
1305
1306
1307
1308
1309
1310
        translate (tuple, optional): tuple of maximum absolute fraction for horizontal
            and vertical translations. For example translate=(a, b), then horizontal shift
            is randomly sampled in the range -img_width * a < dx < img_width * a and vertical shift is
            randomly sampled in the range -img_height * b < dy < img_height * b. Will not translate by default.
        scale (tuple, optional): scaling factor interval, e.g (a, b), then scale is
            randomly sampled from the range a <= scale <= b. Will keep original scale by default.
1311
        shear (sequence or number, optional): Range of degrees to select from.
ptrblck's avatar
ptrblck committed
1312
            If shear is a number, a shear parallel to the x axis in the range (-shear, +shear)
1313
1314
            will be applied. Else if shear is a sequence of 2 values a shear parallel to the x axis in the
            range (shear[0], shear[1]) will be applied. Else if shear is a sequence of 4 values,
ptrblck's avatar
ptrblck committed
1315
            a x-axis shear in (shear[0], shear[1]) and y-axis shear in (shear[2], shear[3]) will be applied.
1316
            Will not apply shear by default.
1317
1318
1319
        interpolation (InterpolationMode): Desired interpolation enum defined by
            :class:`torchvision.transforms.InterpolationMode`. Default is ``InterpolationMode.NEAREST``.
            If input is Tensor, only ``InterpolationMode.NEAREST``, ``InterpolationMode.BILINEAR`` are supported.
1320
            For backward compatibility integer values (e.g. ``PIL.Image.NEAREST``) are still acceptable.
1321
1322
        fill (sequence or number): Pixel fill value for the area outside the transformed
            image. Default is ``0``. If given a number, the value is used for all bands respectively.
1323
            If input is PIL Image, the options is only available for ``Pillow>=5.0.0``.
1324
        fillcolor (sequence or number, optional): deprecated argument and will be removed since v0.10.0.
1325
            Please use the ``fill`` parameter instead.
1326
        resample (int, optional): deprecated argument and will be removed since v0.10.0.
1327
            Please use the ``interpolation`` parameter instead.
1328
1329
1330

    .. _filters: https://pillow.readthedocs.io/en/latest/handbook/concepts.html#filters

1331
1332
    """

1333
    def __init__(
1334
        self, degrees, translate=None, scale=None, shear=None, interpolation=InterpolationMode.NEAREST, fill=0,
1335
1336
        fillcolor=None, resample=None
    ):
1337
        super().__init__()
1338
1339
1340
1341
1342
1343
1344
1345
1346
        if resample is not None:
            warnings.warn(
                "Argument resample is deprecated and will be removed since v0.10.0. Please, use interpolation instead"
            )
            interpolation = _interpolation_modes_from_int(resample)

        # Backward compatibility with integer value
        if isinstance(interpolation, int):
            warnings.warn(
1347
1348
                "Argument interpolation should be of type InterpolationMode instead of int. "
                "Please, use InterpolationMode enum."
1349
1350
1351
1352
1353
1354
1355
1356
1357
            )
            interpolation = _interpolation_modes_from_int(interpolation)

        if fillcolor is not None:
            warnings.warn(
                "Argument fillcolor is deprecated and will be removed since v0.10.0. Please, use fill instead"
            )
            fill = fillcolor

1358
        self.degrees = _setup_angle(degrees, name="degrees", req_sizes=(2, ))
1359
1360

        if translate is not None:
1361
            _check_sequence_input(translate, "translate", req_sizes=(2, ))
1362
1363
1364
1365
1366
1367
            for t in translate:
                if not (0.0 <= t <= 1.0):
                    raise ValueError("translation values should be between 0 and 1")
        self.translate = translate

        if scale is not None:
1368
            _check_sequence_input(scale, "scale", req_sizes=(2, ))
1369
1370
1371
1372
1373
1374
            for s in scale:
                if s <= 0:
                    raise ValueError("scale values should be positive")
        self.scale = scale

        if shear is not None:
1375
            self.shear = _setup_angle(shear, name="shear", req_sizes=(2, 4))
1376
1377
1378
        else:
            self.shear = shear

1379
        self.resample = self.interpolation = interpolation
1380
1381
1382
1383
1384
1385

        if fill is None:
            fill = 0
        elif not isinstance(fill, (Sequence, numbers.Number)):
            raise TypeError("Fill should be either a sequence or a number.")

1386
        self.fillcolor = self.fill = fill
1387
1388

    @staticmethod
1389
1390
1391
1392
1393
1394
1395
    def get_params(
            degrees: List[float],
            translate: Optional[List[float]],
            scale_ranges: Optional[List[float]],
            shears: Optional[List[float]],
            img_size: List[int]
    ) -> Tuple[float, Tuple[int, int], float, Tuple[float, float]]:
1396
1397
1398
        """Get parameters for affine transformation

        Returns:
1399
            params to be passed to the affine transformation
1400
        """
1401
        angle = float(torch.empty(1).uniform_(float(degrees[0]), float(degrees[1])).item())
1402
        if translate is not None:
1403
1404
1405
1406
1407
            max_dx = float(translate[0] * img_size[0])
            max_dy = float(translate[1] * img_size[1])
            tx = int(round(torch.empty(1).uniform_(-max_dx, max_dx).item()))
            ty = int(round(torch.empty(1).uniform_(-max_dy, max_dy).item()))
            translations = (tx, ty)
1408
1409
1410
1411
        else:
            translations = (0, 0)

        if scale_ranges is not None:
1412
            scale = float(torch.empty(1).uniform_(scale_ranges[0], scale_ranges[1]).item())
1413
1414
1415
        else:
            scale = 1.0

1416
        shear_x = shear_y = 0.0
1417
        if shears is not None:
1418
1419
1420
1421
1422
            shear_x = float(torch.empty(1).uniform_(shears[0], shears[1]).item())
            if len(shears) == 4:
                shear_y = float(torch.empty(1).uniform_(shears[2], shears[3]).item())

        shear = (shear_x, shear_y)
1423
1424
1425

        return angle, translations, scale, shear

1426
    def forward(self, img):
1427
        """
1428
            img (PIL Image or Tensor): Image to be transformed.
1429
1430

        Returns:
1431
            PIL Image or Tensor: Affine transformed image.
1432
        """
1433
1434
1435
1436
1437
1438
        fill = self.fill
        if isinstance(img, Tensor):
            if isinstance(fill, (int, float)):
                fill = [float(fill)] * F._get_image_num_channels(img)
            else:
                fill = [float(f) for f in fill]
1439
1440
1441
1442

        img_size = F._get_image_size(img)

        ret = self.get_params(self.degrees, self.translate, self.scale, self.shear, img_size)
1443
1444

        return F.affine(img, *ret, interpolation=self.interpolation, fill=fill)
1445
1446
1447
1448
1449
1450
1451
1452
1453

    def __repr__(self):
        s = '{name}(degrees={degrees}'
        if self.translate is not None:
            s += ', translate={translate}'
        if self.scale is not None:
            s += ', scale={scale}'
        if self.shear is not None:
            s += ', shear={shear}'
1454
        if self.interpolation != InterpolationMode.NEAREST:
1455
1456
1457
            s += ', interpolation={interpolation}'
        if self.fill != 0:
            s += ', fill={fill}'
1458
1459
        s += ')'
        d = dict(self.__dict__)
1460
        d['interpolation'] = self.interpolation.value
1461
1462
1463
        return s.format(name=self.__class__.__name__, **d)


1464
class Grayscale(torch.nn.Module):
1465
    """Convert image to grayscale.
1466
1467
    If the image is torch Tensor, it is expected
    to have [..., 3, H, W] shape, where ... means an arbitrary number of leading dimensions
1468

1469
1470
1471
1472
    Args:
        num_output_channels (int): (1 or 3) number of channels desired for output image

    Returns:
1473
        PIL Image: Grayscale version of the input.
1474
1475
1476

        - If ``num_output_channels == 1`` : returned image is single channel
        - If ``num_output_channels == 3`` : returned image is 3 channel with r == g == b
1477
1478
1479
1480

    """

    def __init__(self, num_output_channels=1):
1481
        super().__init__()
1482
1483
        self.num_output_channels = num_output_channels

vfdev's avatar
vfdev committed
1484
    def forward(self, img):
1485
1486
        """
        Args:
1487
            img (PIL Image or Tensor): Image to be converted to grayscale.
1488
1489

        Returns:
1490
            PIL Image or Tensor: Grayscaled image.
1491
        """
1492
        return F.rgb_to_grayscale(img, num_output_channels=self.num_output_channels)
1493

1494
    def __repr__(self):
1495
        return self.__class__.__name__ + '(num_output_channels={0})'.format(self.num_output_channels)
1496

1497

1498
class RandomGrayscale(torch.nn.Module):
1499
    """Randomly convert image to grayscale with a probability of p (default 0.1).
1500
1501
    If the image is torch Tensor, it is expected
    to have [..., 3, H, W] shape, where ... means an arbitrary number of leading dimensions
1502

1503
1504
1505
1506
    Args:
        p (float): probability that image should be converted to grayscale.

    Returns:
1507
        PIL Image or Tensor: Grayscale version of the input image with probability p and unchanged
1508
1509
1510
        with probability (1-p).
        - If input image is 1 channel: grayscale version is 1 channel
        - If input image is 3 channel: grayscale version is 3 channel with r == g == b
1511
1512
1513
1514

    """

    def __init__(self, p=0.1):
1515
        super().__init__()
1516
1517
        self.p = p

vfdev's avatar
vfdev committed
1518
    def forward(self, img):
1519
1520
        """
        Args:
1521
            img (PIL Image or Tensor): Image to be converted to grayscale.
1522
1523

        Returns:
1524
            PIL Image or Tensor: Randomly grayscaled image.
1525
        """
1526
1527
1528
        num_output_channels = F._get_image_num_channels(img)
        if torch.rand(1) < self.p:
            return F.rgb_to_grayscale(img, num_output_channels=num_output_channels)
1529
        return img
1530
1531

    def __repr__(self):
1532
        return self.__class__.__name__ + '(p={0})'.format(self.p)
1533
1534


1535
class RandomErasing(torch.nn.Module):
1536
1537
    """ Randomly selects a rectangle region in an torch Tensor image and erases its pixels.
    This transform does not support PIL Image.
vfdev's avatar
vfdev committed
1538
    'Random Erasing Data Augmentation' by Zhong et al. See https://arxiv.org/abs/1708.04896
1539

1540
1541
1542
1543
1544
1545
1546
1547
    Args:
         p: probability that the random erasing operation will be performed.
         scale: range of proportion of erased area against input image.
         ratio: range of aspect ratio of erased area.
         value: erasing value. Default is 0. If a single int, it is used to
            erase all pixels. If a tuple of length 3, it is used to erase
            R, G, B channels respectively.
            If a str of 'random', erasing each pixel with random values.
Zhun Zhong's avatar
Zhun Zhong committed
1548
         inplace: boolean to make this transform inplace. Default set to False.
1549

1550
1551
    Returns:
        Erased Image.
1552

vfdev's avatar
vfdev committed
1553
    Example:
1554
        >>> transform = transforms.Compose([
1555
1556
1557
1558
        >>>   transforms.RandomHorizontalFlip(),
        >>>   transforms.ToTensor(),
        >>>   transforms.Normalize((0.485, 0.456, 0.406), (0.229, 0.224, 0.225)),
        >>>   transforms.RandomErasing(),
1559
1560
1561
        >>> ])
    """

Zhun Zhong's avatar
Zhun Zhong committed
1562
    def __init__(self, p=0.5, scale=(0.02, 0.33), ratio=(0.3, 3.3), value=0, inplace=False):
1563
1564
1565
1566
1567
1568
1569
1570
1571
        super().__init__()
        if not isinstance(value, (numbers.Number, str, tuple, list)):
            raise TypeError("Argument value should be either a number or str or a sequence")
        if isinstance(value, str) and value != "random":
            raise ValueError("If value is str, it should be 'random'")
        if not isinstance(scale, (tuple, list)):
            raise TypeError("Scale should be a sequence")
        if not isinstance(ratio, (tuple, list)):
            raise TypeError("Ratio should be a sequence")
1572
        if (scale[0] > scale[1]) or (ratio[0] > ratio[1]):
1573
            warnings.warn("Scale and ratio should be of kind (min, max)")
1574
        if scale[0] < 0 or scale[1] > 1:
1575
            raise ValueError("Scale should be between 0 and 1")
1576
        if p < 0 or p > 1:
1577
            raise ValueError("Random erasing probability should be between 0 and 1")
1578
1579
1580
1581
1582

        self.p = p
        self.scale = scale
        self.ratio = ratio
        self.value = value
1583
        self.inplace = inplace
1584
1585

    @staticmethod
1586
1587
1588
    def get_params(
            img: Tensor, scale: Tuple[float, float], ratio: Tuple[float, float], value: Optional[List[float]] = None
    ) -> Tuple[int, int, int, int, Tensor]:
1589
1590
1591
        """Get parameters for ``erase`` for a random erasing.

        Args:
vfdev's avatar
vfdev committed
1592
            img (Tensor): Tensor image to be erased.
1593
1594
            scale (sequence): range of proportion of erased area against input image.
            ratio (sequence): range of aspect ratio of erased area.
1595
1596
1597
            value (list, optional): erasing value. If None, it is interpreted as "random"
                (erasing each pixel with random values). If ``len(value)`` is 1, it is interpreted as a number,
                i.e. ``value[0]``.
1598
1599
1600
1601

        Returns:
            tuple: params (i, j, h, w, v) to be passed to ``erase`` for random erasing.
        """
vfdev's avatar
vfdev committed
1602
        img_c, img_h, img_w = img.shape[-3], img.shape[-2], img.shape[-1]
1603
        area = img_h * img_w
1604

1605
        log_ratio = torch.log(torch.tensor(ratio))
1606
        for _ in range(10):
1607
            erase_area = area * torch.empty(1).uniform_(scale[0], scale[1]).item()
1608
1609
1610
            aspect_ratio = torch.exp(
                torch.empty(1).uniform_(log_ratio[0], log_ratio[1])
            ).item()
1611
1612
1613

            h = int(round(math.sqrt(erase_area * aspect_ratio)))
            w = int(round(math.sqrt(erase_area / aspect_ratio)))
1614
1615
1616
1617
1618
1619
1620
            if not (h < img_h and w < img_w):
                continue

            if value is None:
                v = torch.empty([img_c, h, w], dtype=torch.float32).normal_()
            else:
                v = torch.tensor(value)[:, None, None]
1621

1622
1623
            i = torch.randint(0, img_h - h + 1, size=(1, )).item()
            j = torch.randint(0, img_w - w + 1, size=(1, )).item()
1624
            return i, j, h, w, v
1625

Zhun Zhong's avatar
Zhun Zhong committed
1626
1627
1628
        # Return original image
        return 0, 0, img_h, img_w, img

1629
    def forward(self, img):
1630
1631
        """
        Args:
vfdev's avatar
vfdev committed
1632
            img (Tensor): Tensor image to be erased.
1633
1634
1635
1636

        Returns:
            img (Tensor): Erased Tensor image.
        """
1637
1638
1639
1640
1641
1642
1643
1644
1645
1646
1647
1648
1649
1650
1651
1652
1653
1654
1655
        if torch.rand(1) < self.p:

            # cast self.value to script acceptable type
            if isinstance(self.value, (int, float)):
                value = [self.value, ]
            elif isinstance(self.value, str):
                value = None
            elif isinstance(self.value, tuple):
                value = list(self.value)
            else:
                value = self.value

            if value is not None and not (len(value) in (1, img.shape[-3])):
                raise ValueError(
                    "If value is a sequence, it should have either a single value or "
                    "{} (number of input channels)".format(img.shape[-3])
                )

            x, y, h, w, v = self.get_params(img, scale=self.scale, ratio=self.ratio, value=value)
1656
            return F.erase(img, x, y, h, w, v, self.inplace)
1657
        return img
1658

1659
1660
1661
1662
1663
1664
1665
1666
    def __repr__(self):
        s = '(p={}, '.format(self.p)
        s += 'scale={}, '.format(self.scale)
        s += 'ratio={}, '.format(self.ratio)
        s += 'value={}, '.format(self.value)
        s += 'inplace={})'.format(self.inplace)
        return self.__class__.__name__ + s

1667

1668
1669
class GaussianBlur(torch.nn.Module):
    """Blurs image with randomly chosen Gaussian blur.
1670
1671
    If the image is torch Tensor, it is expected
    to have [..., C, H, W] shape, where ... means an arbitrary number of leading dimensions.
1672
1673
1674
1675
1676
1677
1678
1679
1680
1681
1682
1683
1684
1685
1686
1687
1688
1689
1690
1691
1692
1693
1694
1695
1696
1697
1698
1699
1700
1701
1702
1703
1704
1705

    Args:
        kernel_size (int or sequence): Size of the Gaussian kernel.
        sigma (float or tuple of float (min, max)): Standard deviation to be used for
            creating kernel to perform blurring. If float, sigma is fixed. If it is tuple
            of float (min, max), sigma is chosen uniformly at random to lie in the
            given range.

    Returns:
        PIL Image or Tensor: Gaussian blurred version of the input image.

    """

    def __init__(self, kernel_size, sigma=(0.1, 2.0)):
        super().__init__()
        self.kernel_size = _setup_size(kernel_size, "Kernel size should be a tuple/list of two integers")
        for ks in self.kernel_size:
            if ks <= 0 or ks % 2 == 0:
                raise ValueError("Kernel size value should be an odd and positive number.")

        if isinstance(sigma, numbers.Number):
            if sigma <= 0:
                raise ValueError("If sigma is a single number, it must be positive.")
            sigma = (sigma, sigma)
        elif isinstance(sigma, Sequence) and len(sigma) == 2:
            if not 0. < sigma[0] <= sigma[1]:
                raise ValueError("sigma values should be positive and of the form (min, max).")
        else:
            raise ValueError("sigma should be a single number or a list/tuple with length 2.")

        self.sigma = sigma

    @staticmethod
    def get_params(sigma_min: float, sigma_max: float) -> float:
vfdev's avatar
vfdev committed
1706
        """Choose sigma for random gaussian blurring.
1707
1708
1709
1710
1711
1712
1713
1714
1715
1716
1717
1718
1719

        Args:
            sigma_min (float): Minimum standard deviation that can be chosen for blurring kernel.
            sigma_max (float): Maximum standard deviation that can be chosen for blurring kernel.

        Returns:
            float: Standard deviation to be passed to calculate kernel for gaussian blurring.
        """
        return torch.empty(1).uniform_(sigma_min, sigma_max).item()

    def forward(self, img: Tensor) -> Tensor:
        """
        Args:
vfdev's avatar
vfdev committed
1720
            img (PIL Image or Tensor): image to be blurred.
1721
1722
1723
1724
1725
1726
1727
1728
1729
1730
1731
1732
1733

        Returns:
            PIL Image or Tensor: Gaussian blurred image
        """
        sigma = self.get_params(self.sigma[0], self.sigma[1])
        return F.gaussian_blur(img, self.kernel_size, [sigma, sigma])

    def __repr__(self):
        s = '(kernel_size={}, '.format(self.kernel_size)
        s += 'sigma={})'.format(self.sigma)
        return self.__class__.__name__ + s


1734
1735
1736
1737
1738
1739
1740
1741
1742
1743
1744
1745
1746
1747
1748
1749
1750
1751
1752
1753
1754
1755
1756
1757
1758
1759
1760
1761
1762
1763
def _setup_size(size, error_msg):
    if isinstance(size, numbers.Number):
        return int(size), int(size)

    if isinstance(size, Sequence) and len(size) == 1:
        return size[0], size[0]

    if len(size) != 2:
        raise ValueError(error_msg)

    return size


def _check_sequence_input(x, name, req_sizes):
    msg = req_sizes[0] if len(req_sizes) < 2 else " or ".join([str(s) for s in req_sizes])
    if not isinstance(x, Sequence):
        raise TypeError("{} should be a sequence of length {}.".format(name, msg))
    if len(x) not in req_sizes:
        raise ValueError("{} should be sequence of length {}.".format(name, msg))


def _setup_angle(x, name, req_sizes=(2, )):
    if isinstance(x, numbers.Number):
        if x < 0:
            raise ValueError("If {} is a single number, it must be positive.".format(name))
        x = [-x, x]
    else:
        _check_sequence_input(x, name, req_sizes)

    return [float(d) for d in x]
1764
1765
1766
1767


class RandomInvert(torch.nn.Module):
    """Inverts the colors of the given image randomly with a given probability.
1768
1769
1770
    If img is a Tensor, it is expected to be in [..., 1 or 3, H, W] format,
    where ... means it can have an arbitrary number of leading dimensions.
    If img is PIL Image, it is expected to be in mode "L" or "RGB".
1771
1772
1773
1774
1775
1776
1777
1778
1779
1780
1781
1782
1783
1784
1785
1786
1787
1788
1789
1790
1791
1792
1793
1794
1795
1796
1797

    Args:
        p (float): probability of the image being color inverted. Default value is 0.5
    """

    def __init__(self, p=0.5):
        super().__init__()
        self.p = p

    def forward(self, img):
        """
        Args:
            img (PIL Image or Tensor): Image to be inverted.

        Returns:
            PIL Image or Tensor: Randomly color inverted image.
        """
        if torch.rand(1).item() < self.p:
            return F.invert(img)
        return img

    def __repr__(self):
        return self.__class__.__name__ + '(p={})'.format(self.p)


class RandomPosterize(torch.nn.Module):
    """Posterize the image randomly with a given probability by reducing the
1798
1799
1800
    number of bits for each color channel. If the image is torch Tensor, it should be of type torch.uint8,
    and it is expected to have [..., 1 or 3, H, W] shape, where ... means an arbitrary number of leading dimensions.
    If img is PIL Image, it is expected to be in mode "L" or "RGB".
1801
1802
1803
1804
1805
1806
1807
1808
1809
1810
1811
1812
1813
1814
1815
1816
1817
1818
1819
1820
1821
1822
1823
1824
1825
1826
1827
1828
1829

    Args:
        bits (int): number of bits to keep for each channel (0-8)
        p (float): probability of the image being color inverted. Default value is 0.5
    """

    def __init__(self, bits, p=0.5):
        super().__init__()
        self.bits = bits
        self.p = p

    def forward(self, img):
        """
        Args:
            img (PIL Image or Tensor): Image to be posterized.

        Returns:
            PIL Image or Tensor: Randomly posterized image.
        """
        if torch.rand(1).item() < self.p:
            return F.posterize(img, self.bits)
        return img

    def __repr__(self):
        return self.__class__.__name__ + '(bits={},p={})'.format(self.bits, self.p)


class RandomSolarize(torch.nn.Module):
    """Solarize the image randomly with a given probability by inverting all pixel
1830
1831
1832
    values above a threshold. If img is a Tensor, it is expected to be in [..., 1 or 3, H, W] format,
    where ... means it can have an arbitrary number of leading dimensions.
    If img is PIL Image, it is expected to be in mode "L" or "RGB".
1833
1834
1835
1836
1837
1838
1839
1840
1841
1842
1843
1844
1845
1846
1847
1848
1849
1850
1851
1852
1853
1854
1855
1856
1857
1858
1859
1860

    Args:
        threshold (float): all pixels equal or above this value are inverted.
        p (float): probability of the image being color inverted. Default value is 0.5
    """

    def __init__(self, threshold, p=0.5):
        super().__init__()
        self.threshold = threshold
        self.p = p

    def forward(self, img):
        """
        Args:
            img (PIL Image or Tensor): Image to be solarized.

        Returns:
            PIL Image or Tensor: Randomly solarized image.
        """
        if torch.rand(1).item() < self.p:
            return F.solarize(img, self.threshold)
        return img

    def __repr__(self):
        return self.__class__.__name__ + '(threshold={},p={})'.format(self.threshold, self.p)


class RandomAdjustSharpness(torch.nn.Module):
1861
1862
    """Adjust the sharpness of the image randomly with a given probability. If the image is torch Tensor,
    it is expected to have [..., 1 or 3, H, W] shape, where ... means an arbitrary number of leading dimensions.
1863
1864
1865
1866
1867
1868
1869
1870
1871
1872
1873
1874
1875
1876
1877
1878
1879
1880
1881
1882
1883
1884
1885
1886
1887
1888
1889
1890
1891
1892
1893

    Args:
        sharpness_factor (float):  How much to adjust the sharpness. Can be
            any non negative number. 0 gives a blurred image, 1 gives the
            original image while 2 increases the sharpness by a factor of 2.
        p (float): probability of the image being color inverted. Default value is 0.5
    """

    def __init__(self, sharpness_factor, p=0.5):
        super().__init__()
        self.sharpness_factor = sharpness_factor
        self.p = p

    def forward(self, img):
        """
        Args:
            img (PIL Image or Tensor): Image to be sharpened.

        Returns:
            PIL Image or Tensor: Randomly sharpened image.
        """
        if torch.rand(1).item() < self.p:
            return F.adjust_sharpness(img, self.sharpness_factor)
        return img

    def __repr__(self):
        return self.__class__.__name__ + '(sharpness_factor={},p={})'.format(self.sharpness_factor, self.p)


class RandomAutocontrast(torch.nn.Module):
    """Autocontrast the pixels of the given image randomly with a given probability.
1894
1895
1896
    If the image is torch Tensor, it is expected
    to have [..., 1 or 3, H, W] shape, where ... means an arbitrary number of leading dimensions.
    If img is PIL Image, it is expected to be in mode "L" or "RGB".
1897
1898
1899
1900
1901
1902
1903
1904
1905
1906
1907
1908
1909
1910
1911
1912
1913
1914
1915
1916
1917
1918
1919
1920
1921
1922
1923

    Args:
        p (float): probability of the image being autocontrasted. Default value is 0.5
    """

    def __init__(self, p=0.5):
        super().__init__()
        self.p = p

    def forward(self, img):
        """
        Args:
            img (PIL Image or Tensor): Image to be autocontrasted.

        Returns:
            PIL Image or Tensor: Randomly autocontrasted image.
        """
        if torch.rand(1).item() < self.p:
            return F.autocontrast(img)
        return img

    def __repr__(self):
        return self.__class__.__name__ + '(p={})'.format(self.p)


class RandomEqualize(torch.nn.Module):
    """Equalize the histogram of the given image randomly with a given probability.
1924
1925
1926
    If the image is torch Tensor, it is expected
    to have [..., 1 or 3, H, W] shape, where ... means an arbitrary number of leading dimensions.
    If img is PIL Image, it is expected to be in mode "P", "L" or "RGB".
1927
1928
1929
1930
1931
1932
1933
1934
1935
1936
1937
1938
1939
1940
1941
1942
1943
1944
1945
1946
1947
1948
1949

    Args:
        p (float): probability of the image being equalized. Default value is 0.5
    """

    def __init__(self, p=0.5):
        super().__init__()
        self.p = p

    def forward(self, img):
        """
        Args:
            img (PIL Image or Tensor): Image to be equalized.

        Returns:
            PIL Image or Tensor: Randomly equalized image.
        """
        if torch.rand(1).item() < self.p:
            return F.equalize(img)
        return img

    def __repr__(self):
        return self.__class__.__name__ + '(p={})'.format(self.p)