transforms.py 47.9 KB
Newer Older
1
2
3
from __future__ import division
import torch
import math
Tongzhou Wang's avatar
Tongzhou Wang committed
4
import sys
5
import random
6
from PIL import Image
7
8
9
10
11
12
13
14
15
16
17
18
try:
    import accimage
except ImportError:
    accimage = None
import numpy as np
import numbers
import types
import collections
import warnings

from . import functional as F

Tongzhou Wang's avatar
Tongzhou Wang committed
19
20
21
22
23
24
25
26
if sys.version_info < (3, 3):
    Sequence = collections.Sequence
    Iterable = collections.Iterable
else:
    Sequence = collections.abc.Sequence
    Iterable = collections.abc.Iterable


27
__all__ = ["Compose", "ToTensor", "ToPILImage", "Normalize", "Resize", "Scale", "CenterCrop", "Pad",
28
29
           "Lambda", "RandomApply", "RandomChoice", "RandomOrder", "RandomCrop", "RandomHorizontalFlip",
           "RandomVerticalFlip", "RandomResizedCrop", "RandomSizedCrop", "FiveCrop", "TenCrop", "LinearTransformation",
30
           "ColorJitter", "RandomRotation", "RandomAffine", "Grayscale", "RandomGrayscale",
31
           "RandomPerspective", "RandomErasing"]
32

33
34
35
36
37
_pil_interpolation_to_str = {
    Image.NEAREST: 'PIL.Image.NEAREST',
    Image.BILINEAR: 'PIL.Image.BILINEAR',
    Image.BICUBIC: 'PIL.Image.BICUBIC',
    Image.LANCZOS: 'PIL.Image.LANCZOS',
surgan12's avatar
surgan12 committed
38
39
    Image.HAMMING: 'PIL.Image.HAMMING',
    Image.BOX: 'PIL.Image.BOX',
40
41
}

42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63

class Compose(object):
    """Composes several transforms together.

    Args:
        transforms (list of ``Transform`` objects): list of transforms to compose.

    Example:
        >>> transforms.Compose([
        >>>     transforms.CenterCrop(10),
        >>>     transforms.ToTensor(),
        >>> ])
    """

    def __init__(self, transforms):
        self.transforms = transforms

    def __call__(self, img):
        for t in self.transforms:
            img = t(img)
        return img

64
65
66
67
68
69
70
71
    def __repr__(self):
        format_string = self.__class__.__name__ + '('
        for t in self.transforms:
            format_string += '\n'
            format_string += '    {0}'.format(t)
        format_string += '\n)'
        return format_string

72
73
74
75
76

class ToTensor(object):
    """Convert a ``PIL Image`` or ``numpy.ndarray`` to tensor.

    Converts a PIL Image or numpy.ndarray (H x W x C) in the range
surgan12's avatar
surgan12 committed
77
78
79
80
81
    [0, 255] to a torch.FloatTensor of shape (C x H x W) in the range [0.0, 1.0]
    if the PIL Image belongs to one of the modes (L, LA, P, I, F, RGB, YCbCr, RGBA, CMYK, 1)
    or if the numpy.ndarray has dtype = np.uint8

    In the other cases, tensors are returned without scaling.
82
83
84
85
86
87
88
89
90
91
92
93
    """

    def __call__(self, pic):
        """
        Args:
            pic (PIL Image or numpy.ndarray): Image to be converted to tensor.

        Returns:
            Tensor: Converted image.
        """
        return F.to_tensor(pic)

94
95
96
    def __repr__(self):
        return self.__class__.__name__ + '()'

97
98
99
100
101
102
103
104
105
106

class ToPILImage(object):
    """Convert a tensor or an ndarray to PIL Image.

    Converts a torch.*Tensor of shape C x H x W or a numpy ndarray of shape
    H x W x C to a PIL Image while preserving the value range.

    Args:
        mode (`PIL.Image mode`_): color space and pixel depth of input data (optional).
            If ``mode`` is ``None`` (default) there are some assumptions made about the input data:
surgan12's avatar
surgan12 committed
107
108
109
110
             - If the input has 4 channels, the ``mode`` is assumed to be ``RGBA``.
             - If the input has 3 channels, the ``mode`` is assumed to be ``RGB``.
             - If the input has 2 channels, the ``mode`` is assumed to be ``LA``.
             - If the input has 1 channel, the ``mode`` is determined by the data type (i.e ``int``, ``float``,
111
               ``short``).
112

csukuangfj's avatar
csukuangfj committed
113
    .. _PIL.Image mode: https://pillow.readthedocs.io/en/latest/handbook/concepts.html#concept-modes
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
    """
    def __init__(self, mode=None):
        self.mode = mode

    def __call__(self, pic):
        """
        Args:
            pic (Tensor or numpy.ndarray): Image to be converted to PIL Image.

        Returns:
            PIL Image: Image converted to PIL Image.

        """
        return F.to_pil_image(pic, self.mode)

129
    def __repr__(self):
130
131
132
133
134
        format_string = self.__class__.__name__ + '('
        if self.mode is not None:
            format_string += 'mode={0}'.format(self.mode)
        format_string += ')'
        return format_string
135

136
137

class Normalize(object):
Fang Gao's avatar
Fang Gao committed
138
    """Normalize a tensor image with mean and standard deviation.
139
    Given mean: ``(M1,...,Mn)`` and std: ``(S1,..,Sn)`` for ``n`` channels, this transform
140
141
142
    will normalize each channel of the input ``torch.*Tensor`` i.e.
    ``input[channel] = (input[channel] - mean[channel]) / std[channel]``

143
    .. note::
surgan12's avatar
surgan12 committed
144
        This transform acts out of place, i.e., it does not mutates the input tensor.
145

146
147
148
    Args:
        mean (sequence): Sequence of means for each channel.
        std (sequence): Sequence of standard deviations for each channel.
149
150
        inplace(bool,optional): Bool to make this operation in-place.

151
152
    """

surgan12's avatar
surgan12 committed
153
    def __init__(self, mean, std, inplace=False):
154
155
        self.mean = mean
        self.std = std
surgan12's avatar
surgan12 committed
156
        self.inplace = inplace
157
158
159
160
161
162
163
164
165

    def __call__(self, tensor):
        """
        Args:
            tensor (Tensor): Tensor image of size (C, H, W) to be normalized.

        Returns:
            Tensor: Normalized Tensor image.
        """
surgan12's avatar
surgan12 committed
166
        return F.normalize(tensor, self.mean, self.std, self.inplace)
167

168
169
170
    def __repr__(self):
        return self.__class__.__name__ + '(mean={0}, std={1})'.format(self.mean, self.std)

171
172
173
174
175
176
177
178
179
180
181
182
183
184
185

class Resize(object):
    """Resize the input PIL Image to the given size.

    Args:
        size (sequence or int): Desired output size. If size is a sequence like
            (h, w), output size will be matched to this. If size is an int,
            smaller edge of the image will be matched to this number.
            i.e, if height > width, then image will be rescaled to
            (size * height / width, size)
        interpolation (int, optional): Desired interpolation. Default is
            ``PIL.Image.BILINEAR``
    """

    def __init__(self, size, interpolation=Image.BILINEAR):
Tongzhou Wang's avatar
Tongzhou Wang committed
186
        assert isinstance(size, int) or (isinstance(size, Iterable) and len(size) == 2)
187
188
189
190
191
192
193
194
195
196
197
198
199
        self.size = size
        self.interpolation = interpolation

    def __call__(self, img):
        """
        Args:
            img (PIL Image): Image to be scaled.

        Returns:
            PIL Image: Rescaled image.
        """
        return F.resize(img, self.size, self.interpolation)

200
    def __repr__(self):
201
202
        interpolate_str = _pil_interpolation_to_str[self.interpolation]
        return self.__class__.__name__ + '(size={0}, interpolation={1})'.format(self.size, interpolate_str)
203

204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239

class Scale(Resize):
    """
    Note: This transform is deprecated in favor of Resize.
    """
    def __init__(self, *args, **kwargs):
        warnings.warn("The use of the transforms.Scale transform is deprecated, " +
                      "please use transforms.Resize instead.")
        super(Scale, self).__init__(*args, **kwargs)


class CenterCrop(object):
    """Crops the given PIL Image at the center.

    Args:
        size (sequence or int): Desired output size of the crop. If size is an
            int instead of sequence like (h, w), a square crop (size, size) is
            made.
    """

    def __init__(self, size):
        if isinstance(size, numbers.Number):
            self.size = (int(size), int(size))
        else:
            self.size = size

    def __call__(self, img):
        """
        Args:
            img (PIL Image): Image to be cropped.

        Returns:
            PIL Image: Cropped image.
        """
        return F.center_crop(img, self.size)

240
241
242
    def __repr__(self):
        return self.__class__.__name__ + '(size={0})'.format(self.size)

243
244
245
246
247
248
249
250
251
252

class Pad(object):
    """Pad the given PIL Image on all sides with the given "pad" value.

    Args:
        padding (int or tuple): Padding on each border. If a single int is provided this
            is used to pad all borders. If tuple of length 2 is provided this is the padding
            on left/right and top/bottom respectively. If a tuple of length 4 is provided
            this is the padding for the left, top, right and bottom borders
            respectively.
253
        fill (int or tuple): Pixel fill value for constant fill. Default is 0. If a tuple of
254
            length 3, it is used to fill R, G, B channels respectively.
255
            This value is only used when the padding_mode is constant
256
257
258
259
260
261
262
263
264
265
        padding_mode (str): Type of padding. Should be: constant, edge, reflect or symmetric.
            Default is constant.

            - constant: pads with a constant value, this value is specified with fill

            - edge: pads with the last value at the edge of the image

            - reflect: pads with reflection of image without repeating the last value on the edge

                For example, padding [1, 2, 3, 4] with 2 elements on both sides in reflect mode
266
                will result in [3, 2, 1, 2, 3, 4, 3, 2]
267
268
269
270

            - symmetric: pads with reflection of image repeating the last value on the edge

                For example, padding [1, 2, 3, 4] with 2 elements on both sides in symmetric mode
271
                will result in [2, 1, 1, 2, 3, 4, 4, 3]
272
273
    """

274
    def __init__(self, padding, fill=0, padding_mode='constant'):
275
276
        assert isinstance(padding, (numbers.Number, tuple))
        assert isinstance(fill, (numbers.Number, str, tuple))
277
        assert padding_mode in ['constant', 'edge', 'reflect', 'symmetric']
Tongzhou Wang's avatar
Tongzhou Wang committed
278
        if isinstance(padding, Sequence) and len(padding) not in [2, 4]:
279
280
281
282
283
            raise ValueError("Padding must be an int or a 2, or 4 element tuple, not a " +
                             "{} element tuple".format(len(padding)))

        self.padding = padding
        self.fill = fill
284
        self.padding_mode = padding_mode
285
286
287
288
289
290
291
292
293

    def __call__(self, img):
        """
        Args:
            img (PIL Image): Image to be padded.

        Returns:
            PIL Image: Padded image.
        """
294
        return F.pad(img, self.padding, self.fill, self.padding_mode)
295

296
    def __repr__(self):
297
298
        return self.__class__.__name__ + '(padding={0}, fill={1}, padding_mode={2})'.\
            format(self.padding, self.fill, self.padding_mode)
299

300
301
302
303
304
305
306
307
308

class Lambda(object):
    """Apply a user-defined lambda as a transform.

    Args:
        lambd (function): Lambda/function to be used for transform.
    """

    def __init__(self, lambd):
309
        assert callable(lambd), repr(type(lambd).__name__) + " object is not callable"
310
311
312
313
314
        self.lambd = lambd

    def __call__(self, img):
        return self.lambd(img)

315
316
317
    def __repr__(self):
        return self.__class__.__name__ + '()'

318

319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
class RandomTransforms(object):
    """Base class for a list of transformations with randomness

    Args:
        transforms (list or tuple): list of transformations
    """

    def __init__(self, transforms):
        assert isinstance(transforms, (list, tuple))
        self.transforms = transforms

    def __call__(self, *args, **kwargs):
        raise NotImplementedError()

    def __repr__(self):
        format_string = self.__class__.__name__ + '('
        for t in self.transforms:
            format_string += '\n'
            format_string += '    {0}'.format(t)
        format_string += '\n)'
        return format_string


class RandomApply(RandomTransforms):
    """Apply randomly a list of transformations with a given probability

    Args:
        transforms (list or tuple): list of transformations
        p (float): probability
    """

    def __init__(self, transforms, p=0.5):
        super(RandomApply, self).__init__(transforms)
        self.p = p

    def __call__(self, img):
        if self.p < random.random():
            return img
        for t in self.transforms:
            img = t(img)
        return img

    def __repr__(self):
        format_string = self.__class__.__name__ + '('
        format_string += '\n    p={}'.format(self.p)
        for t in self.transforms:
            format_string += '\n'
            format_string += '    {0}'.format(t)
        format_string += '\n)'
        return format_string


class RandomOrder(RandomTransforms):
    """Apply a list of transformations in a random order
    """
    def __call__(self, img):
        order = list(range(len(self.transforms)))
        random.shuffle(order)
        for i in order:
            img = self.transforms[i](img)
        return img


class RandomChoice(RandomTransforms):
    """Apply single transformation randomly picked from a list
    """
    def __call__(self, img):
        t = random.choice(self.transforms)
        return t(img)


390
391
392
393
394
395
396
397
class RandomCrop(object):
    """Crop the given PIL Image at a random location.

    Args:
        size (sequence or int): Desired output size of the crop. If size is an
            int instead of sequence like (h, w), a square crop (size, size) is
            made.
        padding (int or sequence, optional): Optional padding on each border
398
            of the image. Default is None, i.e no padding. If a sequence of length
399
            4 is provided, it is used to pad left, top, right, bottom borders
400
401
            respectively. If a sequence of length 2 is provided, it is used to
            pad left/right, top/bottom borders, respectively.
402
        pad_if_needed (boolean): It will pad the image if smaller than the
ekka's avatar
ekka committed
403
            desired size to avoid raising an exception. Since cropping is done
404
            after padding, the padding seems to be done at a random offset.
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
        fill: Pixel fill value for constant fill. Default is 0. If a tuple of
            length 3, it is used to fill R, G, B channels respectively.
            This value is only used when the padding_mode is constant
        padding_mode: Type of padding. Should be: constant, edge, reflect or symmetric. Default is constant.

             - constant: pads with a constant value, this value is specified with fill

             - edge: pads with the last value on the edge of the image

             - reflect: pads with reflection of image (without repeating the last value on the edge)

                padding [1, 2, 3, 4] with 2 elements on both sides in reflect mode
                will result in [3, 2, 1, 2, 3, 4, 3, 2]

             - symmetric: pads with reflection of image (repeating the last value on the edge)

                padding [1, 2, 3, 4] with 2 elements on both sides in symmetric mode
                will result in [2, 1, 1, 2, 3, 4, 4, 3]

424
425
    """

426
    def __init__(self, size, padding=None, pad_if_needed=False, fill=0, padding_mode='constant'):
427
428
429
430
431
        if isinstance(size, numbers.Number):
            self.size = (int(size), int(size))
        else:
            self.size = size
        self.padding = padding
432
        self.pad_if_needed = pad_if_needed
433
434
        self.fill = fill
        self.padding_mode = padding_mode
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463

    @staticmethod
    def get_params(img, output_size):
        """Get parameters for ``crop`` for a random crop.

        Args:
            img (PIL Image): Image to be cropped.
            output_size (tuple): Expected output size of the crop.

        Returns:
            tuple: params (i, j, h, w) to be passed to ``crop`` for random crop.
        """
        w, h = img.size
        th, tw = output_size
        if w == tw and h == th:
            return 0, 0, h, w

        i = random.randint(0, h - th)
        j = random.randint(0, w - tw)
        return i, j, th, tw

    def __call__(self, img):
        """
        Args:
            img (PIL Image): Image to be cropped.

        Returns:
            PIL Image: Cropped image.
        """
464
465
        if self.padding is not None:
            img = F.pad(img, self.padding, self.fill, self.padding_mode)
466

467
468
        # pad the width if needed
        if self.pad_if_needed and img.size[0] < self.size[1]:
469
            img = F.pad(img, (self.size[1] - img.size[0], 0), self.fill, self.padding_mode)
470
471
        # pad the height if needed
        if self.pad_if_needed and img.size[1] < self.size[0]:
472
            img = F.pad(img, (0, self.size[0] - img.size[1]), self.fill, self.padding_mode)
473

474
475
476
477
        i, j, h, w = self.get_params(img, self.size)

        return F.crop(img, i, j, h, w)

478
    def __repr__(self):
479
        return self.__class__.__name__ + '(size={0}, padding={1})'.format(self.size, self.padding)
480

481
482

class RandomHorizontalFlip(object):
483
484
485
486
487
488
489
490
    """Horizontally flip the given PIL Image randomly with a given probability.

    Args:
        p (float): probability of the image being flipped. Default value is 0.5
    """

    def __init__(self, p=0.5):
        self.p = p
491
492
493
494
495
496
497
498
499

    def __call__(self, img):
        """
        Args:
            img (PIL Image): Image to be flipped.

        Returns:
            PIL Image: Randomly flipped image.
        """
500
        if random.random() < self.p:
501
502
503
            return F.hflip(img)
        return img

504
    def __repr__(self):
505
        return self.__class__.__name__ + '(p={})'.format(self.p)
506

507
508

class RandomVerticalFlip(object):
509
510
511
512
513
514
515
516
    """Vertically flip the given PIL Image randomly with a given probability.

    Args:
        p (float): probability of the image being flipped. Default value is 0.5
    """

    def __init__(self, p=0.5):
        self.p = p
517
518
519
520
521
522
523
524
525

    def __call__(self, img):
        """
        Args:
            img (PIL Image): Image to be flipped.

        Returns:
            PIL Image: Randomly flipped image.
        """
526
        if random.random() < self.p:
527
528
529
            return F.vflip(img)
        return img

530
    def __repr__(self):
531
        return self.__class__.__name__ + '(p={})'.format(self.p)
532

533

534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
class RandomPerspective(object):
    """Performs Perspective transformation of the given PIL Image randomly with a given probability.

    Args:
        interpolation : Default- Image.BICUBIC

        p (float): probability of the image being perspectively transformed. Default value is 0.5

        distortion_scale(float): it controls the degree of distortion and ranges from 0 to 1. Default value is 0.5.

    """

    def __init__(self, distortion_scale=0.5, p=0.5, interpolation=Image.BICUBIC):
        self.p = p
        self.interpolation = interpolation
        self.distortion_scale = distortion_scale

    def __call__(self, img):
        """
        Args:
            img (PIL Image): Image to be Perspectively transformed.

        Returns:
            PIL Image: Random perspectivley transformed image.
        """
        if not F._is_pil_image(img):
            raise TypeError('img should be PIL Image. Got {}'.format(type(img)))

        if random.random() < self.p:
            width, height = img.size
            startpoints, endpoints = self.get_params(width, height, self.distortion_scale)
            return F.perspective(img, startpoints, endpoints, self.interpolation)
        return img

    @staticmethod
    def get_params(width, height, distortion_scale):
        """Get parameters for ``perspective`` for a random perspective transform.

        Args:
            width : width of the image.
            height : height of the image.

        Returns:
577
            List containing [top-left, top-right, bottom-right, bottom-left] of the original image,
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
            List containing [top-left, top-right, bottom-right, bottom-left] of the transformed image.
        """
        half_height = int(height / 2)
        half_width = int(width / 2)
        topleft = (random.randint(0, int(distortion_scale * half_width)),
                   random.randint(0, int(distortion_scale * half_height)))
        topright = (random.randint(width - int(distortion_scale * half_width) - 1, width - 1),
                    random.randint(0, int(distortion_scale * half_height)))
        botright = (random.randint(width - int(distortion_scale * half_width) - 1, width - 1),
                    random.randint(height - int(distortion_scale * half_height) - 1, height - 1))
        botleft = (random.randint(0, int(distortion_scale * half_width)),
                   random.randint(height - int(distortion_scale * half_height) - 1, height - 1))
        startpoints = [(0, 0), (width - 1, 0), (width - 1, height - 1), (0, height - 1)]
        endpoints = [topleft, topright, botright, botleft]
        return startpoints, endpoints

    def __repr__(self):
        return self.__class__.__name__ + '(p={})'.format(self.p)


598
599
600
class RandomResizedCrop(object):
    """Crop the given PIL Image to random size and aspect ratio.

601
602
    A crop of random size (default: of 0.08 to 1.0) of the original size and a random
    aspect ratio (default: of 3/4 to 4/3) of the original aspect ratio is made. This crop
603
604
605
606
607
    is finally resized to given size.
    This is popularly used to train the Inception networks.

    Args:
        size: expected output size of each edge
608
609
        scale: range of size of the origin size cropped
        ratio: range of aspect ratio of the origin aspect ratio cropped
610
611
612
        interpolation: Default: PIL.Image.BILINEAR
    """

613
    def __init__(self, size, scale=(0.08, 1.0), ratio=(3. / 4., 4. / 3.), interpolation=Image.BILINEAR):
614
615
616
617
618
619
620
        if isinstance(size, tuple):
            self.size = size
        else:
            self.size = (size, size)
        if (scale[0] > scale[1]) or (ratio[0] > ratio[1]):
            warnings.warn("range should be of kind (min, max)")

621
        self.interpolation = interpolation
622
623
        self.scale = scale
        self.ratio = ratio
624
625

    @staticmethod
626
    def get_params(img, scale, ratio):
627
628
629
630
        """Get parameters for ``crop`` for a random sized crop.

        Args:
            img (PIL Image): Image to be cropped.
631
632
            scale (tuple): range of size of the origin size cropped
            ratio (tuple): range of aspect ratio of the origin aspect ratio cropped
633
634
635
636
637

        Returns:
            tuple: params (i, j, h, w) to be passed to ``crop`` for a random
                sized crop.
        """
638
639
        area = img.size[0] * img.size[1]

640
        for attempt in range(10):
641
            target_area = random.uniform(*scale) * area
642
643
            log_ratio = (math.log(ratio[0]), math.log(ratio[1]))
            aspect_ratio = math.exp(random.uniform(*log_ratio))
644
645
646
647

            w = int(round(math.sqrt(target_area * aspect_ratio)))
            h = int(round(math.sqrt(target_area / aspect_ratio)))

648
            if 0 < w <= img.size[0] and 0 < h <= img.size[1]:
649
650
651
652
                i = random.randint(0, img.size[1] - h)
                j = random.randint(0, img.size[0] - w)
                return i, j, h, w

653
654
655
656
        # Fallback to central crop
        in_ratio = img.size[0] / img.size[1]
        if (in_ratio < min(ratio)):
            w = img.size[0]
657
            h = int(round(w / min(ratio)))
658
659
        elif (in_ratio > max(ratio)):
            h = img.size[1]
660
            w = int(round(h * max(ratio)))
661
662
663
664
        else:  # whole image
            w = img.size[0]
            h = img.size[1]
        i = (img.size[1] - h) // 2
665
        j = (img.size[0] - w) // 2
666
        return i, j, h, w
667
668
669
670

    def __call__(self, img):
        """
        Args:
671
            img (PIL Image): Image to be cropped and resized.
672
673

        Returns:
674
            PIL Image: Randomly cropped and resized image.
675
        """
676
        i, j, h, w = self.get_params(img, self.scale, self.ratio)
677
678
        return F.resized_crop(img, i, j, h, w, self.size, self.interpolation)

679
    def __repr__(self):
680
681
        interpolate_str = _pil_interpolation_to_str[self.interpolation]
        format_string = self.__class__.__name__ + '(size={0}'.format(self.size)
682
683
        format_string += ', scale={0}'.format(tuple(round(s, 4) for s in self.scale))
        format_string += ', ratio={0}'.format(tuple(round(r, 4) for r in self.ratio))
684
685
        format_string += ', interpolation={0})'.format(interpolate_str)
        return format_string
686

687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732

class RandomSizedCrop(RandomResizedCrop):
    """
    Note: This transform is deprecated in favor of RandomResizedCrop.
    """
    def __init__(self, *args, **kwargs):
        warnings.warn("The use of the transforms.RandomSizedCrop transform is deprecated, " +
                      "please use transforms.RandomResizedCrop instead.")
        super(RandomSizedCrop, self).__init__(*args, **kwargs)


class FiveCrop(object):
    """Crop the given PIL Image into four corners and the central crop

    .. Note::
         This transform returns a tuple of images and there may be a mismatch in the number of
         inputs and targets your Dataset returns. See below for an example of how to deal with
         this.

    Args:
         size (sequence or int): Desired output size of the crop. If size is an ``int``
            instead of sequence like (h, w), a square crop of size (size, size) is made.

    Example:
         >>> transform = Compose([
         >>>    FiveCrop(size), # this is a list of PIL Images
         >>>    Lambda(lambda crops: torch.stack([ToTensor()(crop) for crop in crops])) # returns a 4D tensor
         >>> ])
         >>> #In your test loop you can do the following:
         >>> input, target = batch # input is a 5d tensor, target is 2d
         >>> bs, ncrops, c, h, w = input.size()
         >>> result = model(input.view(-1, c, h, w)) # fuse batch size and ncrops
         >>> result_avg = result.view(bs, ncrops, -1).mean(1) # avg over crops
    """

    def __init__(self, size):
        self.size = size
        if isinstance(size, numbers.Number):
            self.size = (int(size), int(size))
        else:
            assert len(size) == 2, "Please provide only two dimensions (h, w) for size."
            self.size = size

    def __call__(self, img):
        return F.five_crop(img, self.size)

733
734
735
    def __repr__(self):
        return self.__class__.__name__ + '(size={0})'.format(self.size)

736
737
738
739
740
741
742
743
744
745
746
747
748
749

class TenCrop(object):
    """Crop the given PIL Image into four corners and the central crop plus the flipped version of
    these (horizontal flipping is used by default)

    .. Note::
         This transform returns a tuple of images and there may be a mismatch in the number of
         inputs and targets your Dataset returns. See below for an example of how to deal with
         this.

    Args:
        size (sequence or int): Desired output size of the crop. If size is an
            int instead of sequence like (h, w), a square crop (size, size) is
            made.
750
        vertical_flip (bool): Use vertical flipping instead of horizontal
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775

    Example:
         >>> transform = Compose([
         >>>    TenCrop(size), # this is a list of PIL Images
         >>>    Lambda(lambda crops: torch.stack([ToTensor()(crop) for crop in crops])) # returns a 4D tensor
         >>> ])
         >>> #In your test loop you can do the following:
         >>> input, target = batch # input is a 5d tensor, target is 2d
         >>> bs, ncrops, c, h, w = input.size()
         >>> result = model(input.view(-1, c, h, w)) # fuse batch size and ncrops
         >>> result_avg = result.view(bs, ncrops, -1).mean(1) # avg over crops
    """

    def __init__(self, size, vertical_flip=False):
        self.size = size
        if isinstance(size, numbers.Number):
            self.size = (int(size), int(size))
        else:
            assert len(size) == 2, "Please provide only two dimensions (h, w) for size."
            self.size = size
        self.vertical_flip = vertical_flip

    def __call__(self, img):
        return F.ten_crop(img, self.size, self.vertical_flip)

776
    def __repr__(self):
777
        return self.__class__.__name__ + '(size={0}, vertical_flip={1})'.format(self.size, self.vertical_flip)
778

779

780
class LinearTransformation(object):
ekka's avatar
ekka committed
781
    """Transform a tensor image with a square transformation matrix and a mean_vector computed
782
    offline.
ekka's avatar
ekka committed
783
784
785
    Given transformation_matrix and mean_vector, will flatten the torch.*Tensor and
    subtract mean_vector from it which is then followed by computing the dot
    product with the transformation matrix and then reshaping the tensor to its
786
    original shape.
787

788
    Applications:
789
        whitening transformation: Suppose X is a column vector zero-centered data.
790
791
792
        Then compute the data covariance matrix [D x D] with torch.mm(X.t(), X),
        perform SVD on this matrix and pass it as transformation_matrix.

793
794
    Args:
        transformation_matrix (Tensor): tensor [D x D], D = C x H x W
ekka's avatar
ekka committed
795
        mean_vector (Tensor): tensor [D], D = C x H x W
796
797
    """

ekka's avatar
ekka committed
798
    def __init__(self, transformation_matrix, mean_vector):
799
800
801
        if transformation_matrix.size(0) != transformation_matrix.size(1):
            raise ValueError("transformation_matrix should be square. Got " +
                             "[{} x {}] rectangular matrix.".format(*transformation_matrix.size()))
ekka's avatar
ekka committed
802
803
804
805
806
807

        if mean_vector.size(0) != transformation_matrix.size(0):
            raise ValueError("mean_vector should have the same length {}".format(mean_vector.size(0)) +
                             " as any one of the dimensions of the transformation_matrix [{} x {}]"
                             .format(transformation_matrix.size()))

808
        self.transformation_matrix = transformation_matrix
ekka's avatar
ekka committed
809
        self.mean_vector = mean_vector
810
811
812
813
814
815
816
817
818
819
820
821
822

    def __call__(self, tensor):
        """
        Args:
            tensor (Tensor): Tensor image of size (C, H, W) to be whitened.

        Returns:
            Tensor: Transformed image.
        """
        if tensor.size(0) * tensor.size(1) * tensor.size(2) != self.transformation_matrix.size(0):
            raise ValueError("tensor and transformation matrix have incompatible shape." +
                             "[{} x {} x {}] != ".format(*tensor.size()) +
                             "{}".format(self.transformation_matrix.size(0)))
ekka's avatar
ekka committed
823
        flat_tensor = tensor.view(1, -1) - self.mean_vector
824
825
826
827
        transformed_tensor = torch.mm(flat_tensor, self.transformation_matrix)
        tensor = transformed_tensor.view(tensor.size())
        return tensor

828
    def __repr__(self):
ekka's avatar
ekka committed
829
830
831
        format_string = self.__class__.__name__ + '(transformation_matrix='
        format_string += (str(self.transformation_matrix.tolist()) + ')')
        format_string += (", (mean_vector=" + str(self.mean_vector.tolist()) + ')')
832
833
        return format_string

834
835
836
837
838

class ColorJitter(object):
    """Randomly change the brightness, contrast and saturation of an image.

    Args:
yaox12's avatar
yaox12 committed
839
840
841
842
843
844
845
846
847
848
849
850
        brightness (float or tuple of float (min, max)): How much to jitter brightness.
            brightness_factor is chosen uniformly from [max(0, 1 - brightness), 1 + brightness]
            or the given [min, max]. Should be non negative numbers.
        contrast (float or tuple of float (min, max)): How much to jitter contrast.
            contrast_factor is chosen uniformly from [max(0, 1 - contrast), 1 + contrast]
            or the given [min, max]. Should be non negative numbers.
        saturation (float or tuple of float (min, max)): How much to jitter saturation.
            saturation_factor is chosen uniformly from [max(0, 1 - saturation), 1 + saturation]
            or the given [min, max]. Should be non negative numbers.
        hue (float or tuple of float (min, max)): How much to jitter hue.
            hue_factor is chosen uniformly from [-hue, hue] or the given [min, max].
            Should have 0<= hue <= 0.5 or -0.5 <= min <= max <= 0.5.
851
852
    """
    def __init__(self, brightness=0, contrast=0, saturation=0, hue=0):
yaox12's avatar
yaox12 committed
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
        self.brightness = self._check_input(brightness, 'brightness')
        self.contrast = self._check_input(contrast, 'contrast')
        self.saturation = self._check_input(saturation, 'saturation')
        self.hue = self._check_input(hue, 'hue', center=0, bound=(-0.5, 0.5),
                                     clip_first_on_zero=False)

    def _check_input(self, value, name, center=1, bound=(0, float('inf')), clip_first_on_zero=True):
        if isinstance(value, numbers.Number):
            if value < 0:
                raise ValueError("If {} is a single number, it must be non negative.".format(name))
            value = [center - value, center + value]
            if clip_first_on_zero:
                value[0] = max(value[0], 0)
        elif isinstance(value, (tuple, list)) and len(value) == 2:
            if not bound[0] <= value[0] <= value[1] <= bound[1]:
                raise ValueError("{} values should be between {}".format(name, bound))
        else:
            raise TypeError("{} should be a single number or a list/tuple with lenght 2.".format(name))

        # if value is 0 or (1., 1.) for brightness/contrast/saturation
        # or (0., 0.) for hue, do nothing
        if value[0] == value[1] == center:
            value = None
        return value
877
878
879
880
881
882
883
884
885
886
887
888

    @staticmethod
    def get_params(brightness, contrast, saturation, hue):
        """Get a randomized transform to be applied on image.

        Arguments are same as that of __init__.

        Returns:
            Transform which randomly adjusts brightness, contrast and
            saturation in a random order.
        """
        transforms = []
yaox12's avatar
yaox12 committed
889
890
891

        if brightness is not None:
            brightness_factor = random.uniform(brightness[0], brightness[1])
892
893
            transforms.append(Lambda(lambda img: F.adjust_brightness(img, brightness_factor)))

yaox12's avatar
yaox12 committed
894
895
        if contrast is not None:
            contrast_factor = random.uniform(contrast[0], contrast[1])
896
897
            transforms.append(Lambda(lambda img: F.adjust_contrast(img, contrast_factor)))

yaox12's avatar
yaox12 committed
898
899
        if saturation is not None:
            saturation_factor = random.uniform(saturation[0], saturation[1])
900
901
            transforms.append(Lambda(lambda img: F.adjust_saturation(img, saturation_factor)))

yaox12's avatar
yaox12 committed
902
903
        if hue is not None:
            hue_factor = random.uniform(hue[0], hue[1])
904
905
            transforms.append(Lambda(lambda img: F.adjust_hue(img, hue_factor)))

vfdev's avatar
vfdev committed
906
        random.shuffle(transforms)
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
        transform = Compose(transforms)

        return transform

    def __call__(self, img):
        """
        Args:
            img (PIL Image): Input image.

        Returns:
            PIL Image: Color jittered image.
        """
        transform = self.get_params(self.brightness, self.contrast,
                                    self.saturation, self.hue)
        return transform(img)
922

923
    def __repr__(self):
924
925
926
927
928
929
        format_string = self.__class__.__name__ + '('
        format_string += 'brightness={0}'.format(self.brightness)
        format_string += ', contrast={0}'.format(self.contrast)
        format_string += ', saturation={0}'.format(self.saturation)
        format_string += ', hue={0})'.format(self.hue)
        return format_string
930

931
932
933
934
935
936
937
938
939

class RandomRotation(object):
    """Rotate the image by angle.

    Args:
        degrees (sequence or float or int): Range of degrees to select from.
            If degrees is a number instead of sequence like (min, max), the range of degrees
            will be (-degrees, +degrees).
        resample ({PIL.Image.NEAREST, PIL.Image.BILINEAR, PIL.Image.BICUBIC}, optional):
940
            An optional resampling filter. See `filters`_ for more information.
941
942
943
944
945
946
947
948
            If omitted, or if the image has mode "1" or "P", it is set to PIL.Image.NEAREST.
        expand (bool, optional): Optional expansion flag.
            If true, expands the output to make it large enough to hold the entire rotated image.
            If false or omitted, make the output image the same size as the input image.
            Note that the expand flag assumes rotation around the center and no translation.
        center (2-tuple, optional): Optional center of rotation.
            Origin is the upper left corner.
            Default is the center of the image.
949
950
        fill (3-tuple or int): RGB pixel fill value for area outside the rotated image.
            If int, it is used for all channels respectively.
951
952
953

    .. _filters: https://pillow.readthedocs.io/en/latest/handbook/concepts.html#filters

954
955
    """

956
    def __init__(self, degrees, resample=False, expand=False, center=None, fill=0):
957
958
959
960
961
962
963
964
965
966
967
968
        if isinstance(degrees, numbers.Number):
            if degrees < 0:
                raise ValueError("If degrees is a single number, it must be positive.")
            self.degrees = (-degrees, degrees)
        else:
            if len(degrees) != 2:
                raise ValueError("If degrees is a sequence, it must be of len 2.")
            self.degrees = degrees

        self.resample = resample
        self.expand = expand
        self.center = center
969
        self.fill = fill
970
971
972
973
974
975
976
977

    @staticmethod
    def get_params(degrees):
        """Get parameters for ``rotate`` for a random rotation.

        Returns:
            sequence: params to be passed to ``rotate`` for random rotation.
        """
vfdev's avatar
vfdev committed
978
        angle = random.uniform(degrees[0], degrees[1])
979
980
981
982
983

        return angle

    def __call__(self, img):
        """
984
        Args:
985
986
987
988
989
990
991
992
            img (PIL Image): Image to be rotated.

        Returns:
            PIL Image: Rotated image.
        """

        angle = self.get_params(self.degrees)

993
        return F.rotate(img, angle, self.resample, self.expand, self.center, self.fill)
994

995
    def __repr__(self):
996
997
998
999
1000
1001
1002
        format_string = self.__class__.__name__ + '(degrees={0}'.format(self.degrees)
        format_string += ', resample={0}'.format(self.resample)
        format_string += ', expand={0}'.format(self.expand)
        if self.center is not None:
            format_string += ', center={0}'.format(self.center)
        format_string += ')'
        return format_string
1003

1004

1005
1006
1007
1008
1009
1010
class RandomAffine(object):
    """Random affine transformation of the image keeping center invariant

    Args:
        degrees (sequence or float or int): Range of degrees to select from.
            If degrees is a number instead of sequence like (min, max), the range of degrees
1011
            will be (-degrees, +degrees). Set to 0 to deactivate rotations.
1012
1013
1014
1015
1016
1017
1018
        translate (tuple, optional): tuple of maximum absolute fraction for horizontal
            and vertical translations. For example translate=(a, b), then horizontal shift
            is randomly sampled in the range -img_width * a < dx < img_width * a and vertical shift is
            randomly sampled in the range -img_height * b < dy < img_height * b. Will not translate by default.
        scale (tuple, optional): scaling factor interval, e.g (a, b), then scale is
            randomly sampled from the range a <= scale <= b. Will keep original scale by default.
        shear (sequence or float or int, optional): Range of degrees to select from.
ptrblck's avatar
ptrblck committed
1019
1020
1021
1022
1023
            If shear is a number, a shear parallel to the x axis in the range (-shear, +shear)
            will be apllied. Else if shear is a tuple or list of 2 values a shear parallel to the x axis in the
            range (shear[0], shear[1]) will be applied. Else if shear is a tuple or list of 4 values,
            a x-axis shear in (shear[0], shear[1]) and y-axis shear in (shear[2], shear[3]) will be applied.
            Will not apply shear by default
1024
        resample ({PIL.Image.NEAREST, PIL.Image.BILINEAR, PIL.Image.BICUBIC}, optional):
1025
            An optional resampling filter. See `filters`_ for more information.
1026
            If omitted, or if the image has mode "1" or "P", it is set to PIL.Image.NEAREST.
Surgan Jandial's avatar
Surgan Jandial committed
1027
1028
        fillcolor (tuple or int): Optional fill color (Tuple for RGB Image And int for grayscale) for the area
            outside the transform in the output image.(Pillow>=5.0.0)
1029
1030
1031

    .. _filters: https://pillow.readthedocs.io/en/latest/handbook/concepts.html#filters

1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
    """

    def __init__(self, degrees, translate=None, scale=None, shear=None, resample=False, fillcolor=0):
        if isinstance(degrees, numbers.Number):
            if degrees < 0:
                raise ValueError("If degrees is a single number, it must be positive.")
            self.degrees = (-degrees, degrees)
        else:
            assert isinstance(degrees, (tuple, list)) and len(degrees) == 2, \
                "degrees should be a list or tuple and it must be of length 2."
            self.degrees = degrees

        if translate is not None:
            assert isinstance(translate, (tuple, list)) and len(translate) == 2, \
                "translate should be a list or tuple and it must be of length 2."
            for t in translate:
                if not (0.0 <= t <= 1.0):
                    raise ValueError("translation values should be between 0 and 1")
        self.translate = translate

        if scale is not None:
            assert isinstance(scale, (tuple, list)) and len(scale) == 2, \
                "scale should be a list or tuple and it must be of length 2."
            for s in scale:
                if s <= 0:
                    raise ValueError("scale values should be positive")
        self.scale = scale

        if shear is not None:
            if isinstance(shear, numbers.Number):
                if shear < 0:
                    raise ValueError("If shear is a single number, it must be positive.")
                self.shear = (-shear, shear)
            else:
ptrblck's avatar
ptrblck committed
1066
1067
1068
1069
1070
1071
1072
1073
                assert isinstance(shear, (tuple, list)) and \
                    (len(shear) == 2 or len(shear) == 4), \
                    "shear should be a list or tuple and it must be of length 2 or 4."
                # X-Axis shear with [min, max]
                if len(shear) == 2:
                    self.shear = [shear[0], shear[1], 0., 0.]
                elif len(shear) == 4:
                    self.shear = [s for s in shear]
1074
1075
1076
1077
1078
1079
1080
1081
1082
1083
1084
1085
1086
1087
1088
1089
1090
1091
1092
1093
1094
1095
1096
1097
1098
1099
1100
1101
        else:
            self.shear = shear

        self.resample = resample
        self.fillcolor = fillcolor

    @staticmethod
    def get_params(degrees, translate, scale_ranges, shears, img_size):
        """Get parameters for affine transformation

        Returns:
            sequence: params to be passed to the affine transformation
        """
        angle = random.uniform(degrees[0], degrees[1])
        if translate is not None:
            max_dx = translate[0] * img_size[0]
            max_dy = translate[1] * img_size[1]
            translations = (np.round(random.uniform(-max_dx, max_dx)),
                            np.round(random.uniform(-max_dy, max_dy)))
        else:
            translations = (0, 0)

        if scale_ranges is not None:
            scale = random.uniform(scale_ranges[0], scale_ranges[1])
        else:
            scale = 1.0

        if shears is not None:
ptrblck's avatar
ptrblck committed
1102
1103
1104
1105
1106
            if len(shears) == 2:
                shear = [random.uniform(shears[0], shears[1]), 0.]
            elif len(shears) == 4:
                shear = [random.uniform(shears[0], shears[1]),
                         random.uniform(shears[2], shears[3])]
1107
1108
1109
1110
1111
1112
1113
1114
1115
1116
1117
1118
1119
1120
1121
1122
1123
1124
1125
1126
1127
1128
1129
1130
1131
1132
1133
1134
1135
1136
1137
1138
1139
        else:
            shear = 0.0

        return angle, translations, scale, shear

    def __call__(self, img):
        """
            img (PIL Image): Image to be transformed.

        Returns:
            PIL Image: Affine transformed image.
        """
        ret = self.get_params(self.degrees, self.translate, self.scale, self.shear, img.size)
        return F.affine(img, *ret, resample=self.resample, fillcolor=self.fillcolor)

    def __repr__(self):
        s = '{name}(degrees={degrees}'
        if self.translate is not None:
            s += ', translate={translate}'
        if self.scale is not None:
            s += ', scale={scale}'
        if self.shear is not None:
            s += ', shear={shear}'
        if self.resample > 0:
            s += ', resample={resample}'
        if self.fillcolor != 0:
            s += ', fillcolor={fillcolor}'
        s += ')'
        d = dict(self.__dict__)
        d['resample'] = _pil_interpolation_to_str[d['resample']]
        return s.format(name=self.__class__.__name__, **d)


1140
1141
class Grayscale(object):
    """Convert image to grayscale.
1142

1143
1144
1145
1146
    Args:
        num_output_channels (int): (1 or 3) number of channels desired for output image

    Returns:
1147
1148
1149
        PIL Image: Grayscale version of the input.
        - If num_output_channels == 1 : returned image is single channel
        - If num_output_channels == 3 : returned image is 3 channel with r == g == b
1150
1151
1152
1153
1154
1155
1156
1157
1158
1159
1160
1161
1162
1163
1164
1165

    """

    def __init__(self, num_output_channels=1):
        self.num_output_channels = num_output_channels

    def __call__(self, img):
        """
        Args:
            img (PIL Image): Image to be converted to grayscale.

        Returns:
            PIL Image: Randomly grayscaled image.
        """
        return F.to_grayscale(img, num_output_channels=self.num_output_channels)

1166
    def __repr__(self):
1167
        return self.__class__.__name__ + '(num_output_channels={0})'.format(self.num_output_channels)
1168

1169
1170
1171

class RandomGrayscale(object):
    """Randomly convert image to grayscale with a probability of p (default 0.1).
1172

1173
1174
1175
1176
    Args:
        p (float): probability that image should be converted to grayscale.

    Returns:
1177
1178
1179
1180
        PIL Image: Grayscale version of the input image with probability p and unchanged
        with probability (1-p).
        - If input image is 1 channel: grayscale version is 1 channel
        - If input image is 3 channel: grayscale version is 3 channel with r == g == b
1181
1182
1183
1184
1185
1186
1187
1188
1189
1190
1191
1192
1193
1194
1195
1196
1197
1198

    """

    def __init__(self, p=0.1):
        self.p = p

    def __call__(self, img):
        """
        Args:
            img (PIL Image): Image to be converted to grayscale.

        Returns:
            PIL Image: Randomly grayscaled image.
        """
        num_output_channels = 1 if img.mode == 'L' else 3
        if random.random() < self.p:
            return F.to_grayscale(img, num_output_channels=num_output_channels)
        return img
1199
1200

    def __repr__(self):
1201
        return self.__class__.__name__ + '(p={0})'.format(self.p)
1202
1203
1204
1205
1206
1207
1208
1209
1210
1211
1212
1213
1214
1215


class RandomErasing(object):
    """ Randomly selects a rectangle region in an image and erases its pixels.
        'Random Erasing Data Augmentation' by Zhong et al.
        See https://arxiv.org/pdf/1708.04896.pdf
    Args:
         p: probability that the random erasing operation will be performed.
         scale: range of proportion of erased area against input image.
         ratio: range of aspect ratio of erased area.
         value: erasing value. Default is 0. If a single int, it is used to
            erase all pixels. If a tuple of length 3, it is used to erase
            R, G, B channels respectively.
            If a str of 'random', erasing each pixel with random values.
Zhun Zhong's avatar
Zhun Zhong committed
1216
         inplace: boolean to make this transform inplace. Default set to False.
1217

1218
1219
1220
1221
1222
1223
1224
1225
1226
1227
1228
    Returns:
        Erased Image.
    # Examples:
        >>> transform = transforms.Compose([
        >>> transforms.RandomHorizontalFlip(),
        >>> transforms.ToTensor(),
        >>> transforms.Normalize((0.485, 0.456, 0.406), (0.229, 0.224, 0.225)),
        >>> transforms.RandomErasing(),
        >>> ])
    """

Zhun Zhong's avatar
Zhun Zhong committed
1229
    def __init__(self, p=0.5, scale=(0.02, 0.33), ratio=(0.3, 3.3), value=0, inplace=False):
1230
1231
1232
1233
1234
        assert isinstance(value, (numbers.Number, str, tuple, list))
        if (scale[0] > scale[1]) or (ratio[0] > ratio[1]):
            warnings.warn("range should be of kind (min, max)")
        if scale[0] < 0 or scale[1] > 1:
            raise ValueError("range of scale should be between 0 and 1")
1235
1236
        if p < 0 or p > 1:
            raise ValueError("range of random erasing probability should be between 0 and 1")
1237
1238
1239
1240
1241

        self.p = p
        self.scale = scale
        self.ratio = ratio
        self.value = value
1242
        self.inplace = inplace
1243
1244
1245
1246
1247
1248
1249
1250
1251
1252
1253
1254
1255

    @staticmethod
    def get_params(img, scale, ratio, value=0):
        """Get parameters for ``erase`` for a random erasing.

        Args:
            img (Tensor): Tensor image of size (C, H, W) to be erased.
            scale: range of proportion of erased area against input image.
            ratio: range of aspect ratio of erased area.

        Returns:
            tuple: params (i, j, h, w, v) to be passed to ``erase`` for random erasing.
        """
Zhun Zhong's avatar
Zhun Zhong committed
1256
        img_c, img_h, img_w = img.shape
1257
        area = img_h * img_w
1258

Zhun Zhong's avatar
Zhun Zhong committed
1259
        for attempt in range(10):
1260
1261
1262
1263
1264
1265
            erase_area = random.uniform(scale[0], scale[1]) * area
            aspect_ratio = random.uniform(ratio[0], ratio[1])

            h = int(round(math.sqrt(erase_area * aspect_ratio)))
            w = int(round(math.sqrt(erase_area / aspect_ratio)))

1266
1267
1268
            if h < img_h and w < img_w:
                i = random.randint(0, img_h - h)
                j = random.randint(0, img_w - w)
1269
1270
1271
                if isinstance(value, numbers.Number):
                    v = value
                elif isinstance(value, torch._six.string_classes):
Zhun Zhong's avatar
Zhun Zhong committed
1272
                    v = torch.empty([img_c, h, w], dtype=torch.float32).normal_()
1273
1274
1275
1276
                elif isinstance(value, (list, tuple)):
                    v = torch.tensor(value, dtype=torch.float32).view(-1, 1, 1).expand(-1, h, w)
                return i, j, h, w, v

Zhun Zhong's avatar
Zhun Zhong committed
1277
1278
1279
        # Return original image
        return 0, 0, img_h, img_w, img

1280
1281
1282
1283
1284
1285
1286
1287
1288
1289
    def __call__(self, img):
        """
        Args:
            img (Tensor): Tensor image of size (C, H, W) to be erased.

        Returns:
            img (Tensor): Erased Tensor image.
        """
        if random.uniform(0, 1) < self.p:
            x, y, h, w, v = self.get_params(img, scale=self.scale, ratio=self.ratio, value=self.value)
1290
            return F.erase(img, x, y, h, w, v, self.inplace)
1291
        return img