transforms.py 74.8 KB
Newer Older
1
import math
vfdev's avatar
vfdev committed
2
import numbers
3
import random
vfdev's avatar
vfdev committed
4
import warnings
vfdev's avatar
vfdev committed
5
from collections.abc import Sequence
6
from typing import Tuple, List, Optional
vfdev's avatar
vfdev committed
7
8
9
10

import torch
from torch import Tensor

11
12
13
14
15
16
try:
    import accimage
except ImportError:
    accimage = None

from . import functional as F
17
from .functional import InterpolationMode, _interpolation_modes_from_int
18

19

20
21
22
23
__all__ = ["Compose", "ToTensor", "PILToTensor", "ConvertImageDtype", "ToPILImage", "Normalize", "Resize", "Scale",
           "CenterCrop", "Pad", "Lambda", "RandomApply", "RandomChoice", "RandomOrder", "RandomCrop",
           "RandomHorizontalFlip", "RandomVerticalFlip", "RandomResizedCrop", "RandomSizedCrop", "FiveCrop", "TenCrop",
           "LinearTransformation", "ColorJitter", "RandomRotation", "RandomAffine", "Grayscale", "RandomGrayscale",
24
25
           "RandomPerspective", "RandomErasing", "GaussianBlur", "InterpolationMode", "RandomInvert", "RandomPosterize",
           "RandomSolarize", "RandomAdjustSharpness", "RandomAutocontrast", "RandomEqualize"]
26

27

28
class Compose:
29
30
    """Composes several transforms together. This transform does not support torchscript.
    Please, see the note below.
31
32
33
34
35
36
37
38
39

    Args:
        transforms (list of ``Transform`` objects): list of transforms to compose.

    Example:
        >>> transforms.Compose([
        >>>     transforms.CenterCrop(10),
        >>>     transforms.ToTensor(),
        >>> ])
40
41
42
43
44
45
46
47
48
49
50
51
52

    .. note::
        In order to script the transformations, please use ``torch.nn.Sequential`` as below.

        >>> transforms = torch.nn.Sequential(
        >>>     transforms.CenterCrop(10),
        >>>     transforms.Normalize((0.485, 0.456, 0.406), (0.229, 0.224, 0.225)),
        >>> )
        >>> scripted_transforms = torch.jit.script(transforms)

        Make sure to use only scriptable transformations, i.e. that work with ``torch.Tensor``, does not require
        `lambda` functions or ``PIL.Image``.

53
54
55
56
57
58
59
60
61
62
    """

    def __init__(self, transforms):
        self.transforms = transforms

    def __call__(self, img):
        for t in self.transforms:
            img = t(img)
        return img

63
64
65
66
67
68
69
70
    def __repr__(self):
        format_string = self.__class__.__name__ + '('
        for t in self.transforms:
            format_string += '\n'
            format_string += '    {0}'.format(t)
        format_string += '\n)'
        return format_string

71

72
class ToTensor:
73
    """Convert a ``PIL Image`` or ``numpy.ndarray`` to tensor. This transform does not support torchscript.
74
75

    Converts a PIL Image or numpy.ndarray (H x W x C) in the range
surgan12's avatar
surgan12 committed
76
77
78
79
80
    [0, 255] to a torch.FloatTensor of shape (C x H x W) in the range [0.0, 1.0]
    if the PIL Image belongs to one of the modes (L, LA, P, I, F, RGB, YCbCr, RGBA, CMYK, 1)
    or if the numpy.ndarray has dtype = np.uint8

    In the other cases, tensors are returned without scaling.
81
82
83
84
85
86

    .. note::
        Because the input image is scaled to [0.0, 1.0], this transformation should not be used when
        transforming target image masks. See the `references`_ for implementing the transforms for image masks.

    .. _references: https://github.com/pytorch/vision/tree/master/references/segmentation
87
88
89
90
91
92
93
94
95
96
97
98
    """

    def __call__(self, pic):
        """
        Args:
            pic (PIL Image or numpy.ndarray): Image to be converted to tensor.

        Returns:
            Tensor: Converted image.
        """
        return F.to_tensor(pic)

99
100
101
    def __repr__(self):
        return self.__class__.__name__ + '()'

102

103
class PILToTensor:
104
    """Convert a ``PIL Image`` to a tensor of the same type. This transform does not support torchscript.
105

vfdev's avatar
vfdev committed
106
    Converts a PIL Image (H x W x C) to a Tensor of shape (C x H x W).
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
    """

    def __call__(self, pic):
        """
        Args:
            pic (PIL Image): Image to be converted to tensor.

        Returns:
            Tensor: Converted image.
        """
        return F.pil_to_tensor(pic)

    def __repr__(self):
        return self.__class__.__name__ + '()'


123
class ConvertImageDtype(torch.nn.Module):
124
    """Convert a tensor image to the given ``dtype`` and scale the values accordingly
125
    This function does not support PIL Image.
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142

    Args:
        dtype (torch.dtype): Desired data type of the output

    .. note::

        When converting from a smaller to a larger integer ``dtype`` the maximum values are **not** mapped exactly.
        If converted back and forth, this mismatch has no effect.

    Raises:
        RuntimeError: When trying to cast :class:`torch.float32` to :class:`torch.int32` or :class:`torch.int64` as
            well as for trying to cast :class:`torch.float64` to :class:`torch.int64`. These conversions might lead to
            overflow errors since the floating point ``dtype`` cannot store consecutive integers over the whole range
            of the integer ``dtype``.
    """

    def __init__(self, dtype: torch.dtype) -> None:
143
        super().__init__()
144
145
        self.dtype = dtype

vfdev's avatar
vfdev committed
146
    def forward(self, image):
147
148
149
        return F.convert_image_dtype(image, self.dtype)


150
class ToPILImage:
151
    """Convert a tensor or an ndarray to PIL Image. This transform does not support torchscript.
152
153
154
155
156
157
158

    Converts a torch.*Tensor of shape C x H x W or a numpy ndarray of shape
    H x W x C to a PIL Image while preserving the value range.

    Args:
        mode (`PIL.Image mode`_): color space and pixel depth of input data (optional).
            If ``mode`` is ``None`` (default) there are some assumptions made about the input data:
vfdev's avatar
vfdev committed
159
160
161
162
163
            - If the input has 4 channels, the ``mode`` is assumed to be ``RGBA``.
            - If the input has 3 channels, the ``mode`` is assumed to be ``RGB``.
            - If the input has 2 channels, the ``mode`` is assumed to be ``LA``.
            - If the input has 1 channel, the ``mode`` is determined by the data type (i.e ``int``, ``float``,
            ``short``).
164

csukuangfj's avatar
csukuangfj committed
165
    .. _PIL.Image mode: https://pillow.readthedocs.io/en/latest/handbook/concepts.html#concept-modes
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
    """
    def __init__(self, mode=None):
        self.mode = mode

    def __call__(self, pic):
        """
        Args:
            pic (Tensor or numpy.ndarray): Image to be converted to PIL Image.

        Returns:
            PIL Image: Image converted to PIL Image.

        """
        return F.to_pil_image(pic, self.mode)

181
    def __repr__(self):
182
183
184
185
186
        format_string = self.__class__.__name__ + '('
        if self.mode is not None:
            format_string += 'mode={0}'.format(self.mode)
        format_string += ')'
        return format_string
187

188

189
class Normalize(torch.nn.Module):
Fang Gao's avatar
Fang Gao committed
190
    """Normalize a tensor image with mean and standard deviation.
191
    This transform does not support PIL Image.
192
193
194
    Given mean: ``(mean[1],...,mean[n])`` and std: ``(std[1],..,std[n])`` for ``n``
    channels, this transform will normalize each channel of the input
    ``torch.*Tensor`` i.e.,
abdjava's avatar
abdjava committed
195
    ``output[channel] = (input[channel] - mean[channel]) / std[channel]``
196

197
    .. note::
198
        This transform acts out of place, i.e., it does not mutate the input tensor.
199

200
201
202
    Args:
        mean (sequence): Sequence of means for each channel.
        std (sequence): Sequence of standard deviations for each channel.
203
204
        inplace(bool,optional): Bool to make this operation in-place.

205
206
    """

surgan12's avatar
surgan12 committed
207
    def __init__(self, mean, std, inplace=False):
208
        super().__init__()
209
210
        self.mean = mean
        self.std = std
surgan12's avatar
surgan12 committed
211
        self.inplace = inplace
212

213
    def forward(self, tensor: Tensor) -> Tensor:
214
215
        """
        Args:
vfdev's avatar
vfdev committed
216
            tensor (Tensor): Tensor image to be normalized.
217
218
219
220

        Returns:
            Tensor: Normalized Tensor image.
        """
surgan12's avatar
surgan12 committed
221
        return F.normalize(tensor, self.mean, self.std, self.inplace)
222

223
224
225
    def __repr__(self):
        return self.__class__.__name__ + '(mean={0}, std={1})'.format(self.mean, self.std)

226

vfdev's avatar
vfdev committed
227
228
class Resize(torch.nn.Module):
    """Resize the input image to the given size.
229
    If the image is torch Tensor, it is expected
vfdev's avatar
vfdev committed
230
    to have [..., H, W] shape, where ... means an arbitrary number of leading dimensions
231
232
233
234
235
236

    Args:
        size (sequence or int): Desired output size. If size is a sequence like
            (h, w), output size will be matched to this. If size is an int,
            smaller edge of the image will be matched to this number.
            i.e, if height > width, then image will be rescaled to
vfdev's avatar
vfdev committed
237
            (size * height / width, size).
238
            In torchscript mode size as single int is not supported, use a sequence of length 1: ``[size, ]``.
239
240
241
242
        interpolation (InterpolationMode): Desired interpolation enum defined by
            :class:`torchvision.transforms.InterpolationMode`. Default is ``InterpolationMode.BILINEAR``.
            If input is Tensor, only ``InterpolationMode.NEAREST``, ``InterpolationMode.BILINEAR`` and
            ``InterpolationMode.BICUBIC`` are supported.
243
244
            For backward compatibility integer values (e.g. ``PIL.Image.NEAREST``) are still acceptable.

245
246
    """

247
    def __init__(self, size, interpolation=InterpolationMode.BILINEAR):
vfdev's avatar
vfdev committed
248
        super().__init__()
249
250
251
252
253
        if not isinstance(size, (int, Sequence)):
            raise TypeError("Size should be int or sequence. Got {}".format(type(size)))
        if isinstance(size, Sequence) and len(size) not in (1, 2):
            raise ValueError("If size is a sequence, it should have 1 or 2 values")
        self.size = size
254
255
256
257

        # Backward compatibility with integer value
        if isinstance(interpolation, int):
            warnings.warn(
258
259
                "Argument interpolation should be of type InterpolationMode instead of int. "
                "Please, use InterpolationMode enum."
260
261
262
            )
            interpolation = _interpolation_modes_from_int(interpolation)

263
264
        self.interpolation = interpolation

vfdev's avatar
vfdev committed
265
    def forward(self, img):
266
267
        """
        Args:
vfdev's avatar
vfdev committed
268
            img (PIL Image or Tensor): Image to be scaled.
269
270

        Returns:
vfdev's avatar
vfdev committed
271
            PIL Image or Tensor: Rescaled image.
272
273
274
        """
        return F.resize(img, self.size, self.interpolation)

275
    def __repr__(self):
276
        interpolate_str = self.interpolation.value
277
        return self.__class__.__name__ + '(size={0}, interpolation={1})'.format(self.size, interpolate_str)
278

279
280
281
282
283
284
285
286
287
288
289

class Scale(Resize):
    """
    Note: This transform is deprecated in favor of Resize.
    """
    def __init__(self, *args, **kwargs):
        warnings.warn("The use of the transforms.Scale transform is deprecated, " +
                      "please use transforms.Resize instead.")
        super(Scale, self).__init__(*args, **kwargs)


vfdev's avatar
vfdev committed
290
291
class CenterCrop(torch.nn.Module):
    """Crops the given image at the center.
292
    If the image is torch Tensor, it is expected
vfdev's avatar
vfdev committed
293
    to have [..., H, W] shape, where ... means an arbitrary number of leading dimensions
294
295
296
297

    Args:
        size (sequence or int): Desired output size of the crop. If size is an
            int instead of sequence like (h, w), a square crop (size, size) is
298
            made. If provided a sequence of length 1, it will be interpreted as (size[0], size[0]).
299
300
301
    """

    def __init__(self, size):
vfdev's avatar
vfdev committed
302
        super().__init__()
303
        self.size = _setup_size(size, error_msg="Please provide only two dimensions (h, w) for size.")
304

vfdev's avatar
vfdev committed
305
    def forward(self, img):
306
307
        """
        Args:
vfdev's avatar
vfdev committed
308
            img (PIL Image or Tensor): Image to be cropped.
309
310

        Returns:
vfdev's avatar
vfdev committed
311
            PIL Image or Tensor: Cropped image.
312
313
314
        """
        return F.center_crop(img, self.size)

315
316
317
    def __repr__(self):
        return self.__class__.__name__ + '(size={0})'.format(self.size)

318

319
320
class Pad(torch.nn.Module):
    """Pad the given image on all sides with the given "pad" value.
321
    If the image is torch Tensor, it is expected
322
323
324
    to have [..., H, W] shape, where ... means at most 2 leading dimensions for mode reflect and symmetric,
    at most 3 leading dimensions for mode edge,
    and an arbitrary number of leading dimensions for mode constant
325
326

    Args:
327
328
329
        padding (int or sequence): Padding on each border. If a single int is provided this
            is used to pad all borders. If sequence of length 2 is provided this is the padding
            on left/right and top/bottom respectively. If a sequence of length 4 is provided
330
            this is the padding for the left, top, right and bottom borders respectively.
331
332
            In torchscript mode padding as single int is not supported, use a sequence of length 1: ``[padding, ]``.
        fill (number or str or tuple): Pixel fill value for constant fill. Default is 0. If a tuple of
333
            length 3, it is used to fill R, G, B channels respectively.
334
335
336
            This value is only used when the padding_mode is constant.
            Only number is supported for torch Tensor.
            Only int or str or tuple value is supported for PIL Image.
337
        padding_mode (str): Type of padding. Should be: constant, edge, reflect or symmetric.
338
            Default is constant.
339
340
341

            - constant: pads with a constant value, this value is specified with fill

342
343
            - edge: pads with the last value at the edge of the image,
                    if input a 5D torch Tensor, the last 3 dimensions will be padded instead of the last 2
344
345
346
347

            - reflect: pads with reflection of image without repeating the last value on the edge

                For example, padding [1, 2, 3, 4] with 2 elements on both sides in reflect mode
348
                will result in [3, 2, 1, 2, 3, 4, 3, 2]
349
350
351
352

            - symmetric: pads with reflection of image repeating the last value on the edge

                For example, padding [1, 2, 3, 4] with 2 elements on both sides in symmetric mode
353
                will result in [2, 1, 1, 2, 3, 4, 4, 3]
354
355
    """

356
357
358
359
360
361
362
363
364
365
366
367
368
    def __init__(self, padding, fill=0, padding_mode="constant"):
        super().__init__()
        if not isinstance(padding, (numbers.Number, tuple, list)):
            raise TypeError("Got inappropriate padding arg")

        if not isinstance(fill, (numbers.Number, str, tuple)):
            raise TypeError("Got inappropriate fill arg")

        if padding_mode not in ["constant", "edge", "reflect", "symmetric"]:
            raise ValueError("Padding mode should be either constant, edge, reflect or symmetric")

        if isinstance(padding, Sequence) and len(padding) not in [1, 2, 4]:
            raise ValueError("Padding must be an int or a 1, 2, or 4 element tuple, not a " +
369
370
371
372
                             "{} element tuple".format(len(padding)))

        self.padding = padding
        self.fill = fill
373
        self.padding_mode = padding_mode
374

375
    def forward(self, img):
376
377
        """
        Args:
378
            img (PIL Image or Tensor): Image to be padded.
379
380

        Returns:
381
            PIL Image or Tensor: Padded image.
382
        """
383
        return F.pad(img, self.padding, self.fill, self.padding_mode)
384

385
    def __repr__(self):
386
387
        return self.__class__.__name__ + '(padding={0}, fill={1}, padding_mode={2})'.\
            format(self.padding, self.fill, self.padding_mode)
388

389

390
class Lambda:
391
    """Apply a user-defined lambda as a transform. This transform does not support torchscript.
392
393
394
395
396
397

    Args:
        lambd (function): Lambda/function to be used for transform.
    """

    def __init__(self, lambd):
398
399
        if not callable(lambd):
            raise TypeError("Argument lambd should be callable, got {}".format(repr(type(lambd).__name__)))
400
401
402
403
404
        self.lambd = lambd

    def __call__(self, img):
        return self.lambd(img)

405
406
407
    def __repr__(self):
        return self.__class__.__name__ + '()'

408

409
class RandomTransforms:
410
411
412
    """Base class for a list of transformations with randomness

    Args:
413
        transforms (sequence): list of transformations
414
415
416
    """

    def __init__(self, transforms):
417
418
        if not isinstance(transforms, Sequence):
            raise TypeError("Argument transforms should be a sequence")
419
420
421
422
423
424
425
426
427
428
429
430
431
432
        self.transforms = transforms

    def __call__(self, *args, **kwargs):
        raise NotImplementedError()

    def __repr__(self):
        format_string = self.__class__.__name__ + '('
        for t in self.transforms:
            format_string += '\n'
            format_string += '    {0}'.format(t)
        format_string += '\n)'
        return format_string


433
class RandomApply(torch.nn.Module):
434
    """Apply randomly a list of transformations with a given probability.
435
436
437
438
439
440
441
442
443
444
445
446

    .. note::
        In order to script the transformation, please use ``torch.nn.ModuleList`` as input instead of list/tuple of
        transforms as shown below:

        >>> transforms = transforms.RandomApply(torch.nn.ModuleList([
        >>>     transforms.ColorJitter(),
        >>> ]), p=0.3)
        >>> scripted_transforms = torch.jit.script(transforms)

        Make sure to use only scriptable transformations, i.e. that work with ``torch.Tensor``, does not require
        `lambda` functions or ``PIL.Image``.
447
448

    Args:
449
        transforms (sequence or torch.nn.Module): list of transformations
450
451
452
453
        p (float): probability
    """

    def __init__(self, transforms, p=0.5):
454
455
        super().__init__()
        self.transforms = transforms
456
457
        self.p = p

458
459
    def forward(self, img):
        if self.p < torch.rand(1):
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
            return img
        for t in self.transforms:
            img = t(img)
        return img

    def __repr__(self):
        format_string = self.__class__.__name__ + '('
        format_string += '\n    p={}'.format(self.p)
        for t in self.transforms:
            format_string += '\n'
            format_string += '    {0}'.format(t)
        format_string += '\n)'
        return format_string


class RandomOrder(RandomTransforms):
476
    """Apply a list of transformations in a random order. This transform does not support torchscript.
477
478
479
480
481
482
483
484
485
486
    """
    def __call__(self, img):
        order = list(range(len(self.transforms)))
        random.shuffle(order)
        for i in order:
            img = self.transforms[i](img)
        return img


class RandomChoice(RandomTransforms):
487
    """Apply single transformation randomly picked from a list. This transform does not support torchscript.
488
489
490
491
492
493
    """
    def __call__(self, img):
        t = random.choice(self.transforms)
        return t(img)


vfdev's avatar
vfdev committed
494
495
class RandomCrop(torch.nn.Module):
    """Crop the given image at a random location.
496
    If the image is torch Tensor, it is expected
497
498
    to have [..., H, W] shape, where ... means an arbitrary number of leading dimensions,
    but if non-constant padding is used, the input is expected to have at most 2 leading dimensions
499
500
501
502

    Args:
        size (sequence or int): Desired output size of the crop. If size is an
            int instead of sequence like (h, w), a square crop (size, size) is
503
            made. If provided a sequence of length 1, it will be interpreted as (size[0], size[0]).
504
        padding (int or sequence, optional): Optional padding on each border
vfdev's avatar
vfdev committed
505
            of the image. Default is None. If a single int is provided this
506
507
            is used to pad all borders. If sequence of length 2 is provided this is the padding
            on left/right and top/bottom respectively. If a sequence of length 4 is provided
vfdev's avatar
vfdev committed
508
            this is the padding for the left, top, right and bottom borders respectively.
509
            In torchscript mode padding as single int is not supported, use a sequence of length 1: ``[padding, ]``.
510
        pad_if_needed (boolean): It will pad the image if smaller than the
ekka's avatar
ekka committed
511
            desired size to avoid raising an exception. Since cropping is done
512
            after padding, the padding seems to be done at a random offset.
513
        fill (number or str or tuple): Pixel fill value for constant fill. Default is 0. If a tuple of
514
            length 3, it is used to fill R, G, B channels respectively.
515
516
517
            This value is only used when the padding_mode is constant.
            Only number is supported for torch Tensor.
            Only int or str or tuple value is supported for PIL Image.
vfdev's avatar
vfdev committed
518
        padding_mode (str): Type of padding. Should be: constant, edge, reflect or symmetric. Default is constant.
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533

             - constant: pads with a constant value, this value is specified with fill

             - edge: pads with the last value on the edge of the image

             - reflect: pads with reflection of image (without repeating the last value on the edge)

                padding [1, 2, 3, 4] with 2 elements on both sides in reflect mode
                will result in [3, 2, 1, 2, 3, 4, 3, 2]

             - symmetric: pads with reflection of image (repeating the last value on the edge)

                padding [1, 2, 3, 4] with 2 elements on both sides in symmetric mode
                will result in [2, 1, 1, 2, 3, 4, 4, 3]

534
535
536
    """

    @staticmethod
vfdev's avatar
vfdev committed
537
    def get_params(img: Tensor, output_size: Tuple[int, int]) -> Tuple[int, int, int, int]:
538
539
540
        """Get parameters for ``crop`` for a random crop.

        Args:
vfdev's avatar
vfdev committed
541
            img (PIL Image or Tensor): Image to be cropped.
542
543
544
545
546
            output_size (tuple): Expected output size of the crop.

        Returns:
            tuple: params (i, j, h, w) to be passed to ``crop`` for random crop.
        """
vfdev's avatar
vfdev committed
547
        w, h = F._get_image_size(img)
548
        th, tw = output_size
vfdev's avatar
vfdev committed
549
550
551
552
553
554

        if h + 1 < th or w + 1 < tw:
            raise ValueError(
                "Required crop size {} is larger then input image size {}".format((th, tw), (h, w))
            )

555
556
557
        if w == tw and h == th:
            return 0, 0, h, w

558
559
        i = torch.randint(0, h - th + 1, size=(1, )).item()
        j = torch.randint(0, w - tw + 1, size=(1, )).item()
560
561
        return i, j, th, tw

vfdev's avatar
vfdev committed
562
563
564
    def __init__(self, size, padding=None, pad_if_needed=False, fill=0, padding_mode="constant"):
        super().__init__()

565
566
567
568
        self.size = tuple(_setup_size(
            size, error_msg="Please provide only two dimensions (h, w) for size."
        ))

vfdev's avatar
vfdev committed
569
570
571
572
573
574
        self.padding = padding
        self.pad_if_needed = pad_if_needed
        self.fill = fill
        self.padding_mode = padding_mode

    def forward(self, img):
575
576
        """
        Args:
vfdev's avatar
vfdev committed
577
            img (PIL Image or Tensor): Image to be cropped.
578
579

        Returns:
vfdev's avatar
vfdev committed
580
            PIL Image or Tensor: Cropped image.
581
        """
582
583
        if self.padding is not None:
            img = F.pad(img, self.padding, self.fill, self.padding_mode)
584

vfdev's avatar
vfdev committed
585
        width, height = F._get_image_size(img)
586
        # pad the width if needed
vfdev's avatar
vfdev committed
587
588
589
        if self.pad_if_needed and width < self.size[1]:
            padding = [self.size[1] - width, 0]
            img = F.pad(img, padding, self.fill, self.padding_mode)
590
        # pad the height if needed
vfdev's avatar
vfdev committed
591
592
593
        if self.pad_if_needed and height < self.size[0]:
            padding = [0, self.size[0] - height]
            img = F.pad(img, padding, self.fill, self.padding_mode)
594

595
596
597
598
        i, j, h, w = self.get_params(img, self.size)

        return F.crop(img, i, j, h, w)

599
    def __repr__(self):
vfdev's avatar
vfdev committed
600
        return self.__class__.__name__ + "(size={0}, padding={1})".format(self.size, self.padding)
601

602

603
604
class RandomHorizontalFlip(torch.nn.Module):
    """Horizontally flip the given image randomly with a given probability.
605
    If the image is torch Tensor, it is expected
606
607
    to have [..., H, W] shape, where ... means an arbitrary number of leading
    dimensions
608
609
610
611
612
613

    Args:
        p (float): probability of the image being flipped. Default value is 0.5
    """

    def __init__(self, p=0.5):
614
        super().__init__()
615
        self.p = p
616

617
    def forward(self, img):
618
619
        """
        Args:
620
            img (PIL Image or Tensor): Image to be flipped.
621
622

        Returns:
623
            PIL Image or Tensor: Randomly flipped image.
624
        """
625
        if torch.rand(1) < self.p:
626
627
628
            return F.hflip(img)
        return img

629
    def __repr__(self):
630
        return self.__class__.__name__ + '(p={})'.format(self.p)
631

632

633
class RandomVerticalFlip(torch.nn.Module):
vfdev's avatar
vfdev committed
634
    """Vertically flip the given image randomly with a given probability.
635
    If the image is torch Tensor, it is expected
636
637
    to have [..., H, W] shape, where ... means an arbitrary number of leading
    dimensions
638
639
640
641
642
643

    Args:
        p (float): probability of the image being flipped. Default value is 0.5
    """

    def __init__(self, p=0.5):
644
        super().__init__()
645
        self.p = p
646

647
    def forward(self, img):
648
649
        """
        Args:
650
            img (PIL Image or Tensor): Image to be flipped.
651
652

        Returns:
653
            PIL Image or Tensor: Randomly flipped image.
654
        """
655
        if torch.rand(1) < self.p:
656
657
658
            return F.vflip(img)
        return img

659
    def __repr__(self):
660
        return self.__class__.__name__ + '(p={})'.format(self.p)
661

662

663
664
class RandomPerspective(torch.nn.Module):
    """Performs a random perspective transformation of the given image with a given probability.
665
    If the image is torch Tensor, it is expected
666
    to have [..., H, W] shape, where ... means an arbitrary number of leading dimensions.
667
668

    Args:
669
670
671
        distortion_scale (float): argument to control the degree of distortion and ranges from 0 to 1.
            Default is 0.5.
        p (float): probability of the image being transformed. Default is 0.5.
672
673
674
        interpolation (InterpolationMode): Desired interpolation enum defined by
            :class:`torchvision.transforms.InterpolationMode`. Default is ``InterpolationMode.BILINEAR``.
            If input is Tensor, only ``InterpolationMode.NEAREST``, ``InterpolationMode.BILINEAR`` are supported.
675
            For backward compatibility integer values (e.g. ``PIL.Image.NEAREST``) are still acceptable.
676
677
        fill (sequence or number, optional): Pixel fill value for the area outside the transformed
            image. If given a number, the value is used for all bands respectively.
678
            If input is PIL Image, the options is only available for ``Pillow>=5.0.0``.
679
680
    """

681
    def __init__(self, distortion_scale=0.5, p=0.5, interpolation=InterpolationMode.BILINEAR, fill=0):
682
        super().__init__()
683
        self.p = p
684
685
686
687

        # Backward compatibility with integer value
        if isinstance(interpolation, int):
            warnings.warn(
688
689
                "Argument interpolation should be of type InterpolationMode instead of int. "
                "Please, use InterpolationMode enum."
690
691
692
            )
            interpolation = _interpolation_modes_from_int(interpolation)

693
694
        self.interpolation = interpolation
        self.distortion_scale = distortion_scale
695
        self.fill = fill
696

697
    def forward(self, img):
698
699
        """
        Args:
700
            img (PIL Image or Tensor): Image to be Perspectively transformed.
701
702

        Returns:
703
            PIL Image or Tensor: Randomly transformed image.
704
        """
705
706
707
708
709
710
711
712

        fill = self.fill
        if isinstance(img, Tensor):
            if isinstance(fill, (int, float)):
                fill = [float(fill)] * F._get_image_num_channels(img)
            else:
                fill = [float(f) for f in fill]

713
714
        if torch.rand(1) < self.p:
            width, height = F._get_image_size(img)
715
            startpoints, endpoints = self.get_params(width, height, self.distortion_scale)
716
            return F.perspective(img, startpoints, endpoints, self.interpolation, fill)
717
718
719
        return img

    @staticmethod
720
    def get_params(width: int, height: int, distortion_scale: float) -> Tuple[List[List[int]], List[List[int]]]:
721
722
723
        """Get parameters for ``perspective`` for a random perspective transform.

        Args:
724
725
726
            width (int): width of the image.
            height (int): height of the image.
            distortion_scale (float): argument to control the degree of distortion and ranges from 0 to 1.
727
728

        Returns:
729
            List containing [top-left, top-right, bottom-right, bottom-left] of the original image,
730
731
            List containing [top-left, top-right, bottom-right, bottom-left] of the transformed image.
        """
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
        half_height = height // 2
        half_width = width // 2
        topleft = [
            int(torch.randint(0, int(distortion_scale * half_width) + 1, size=(1, )).item()),
            int(torch.randint(0, int(distortion_scale * half_height) + 1, size=(1, )).item())
        ]
        topright = [
            int(torch.randint(width - int(distortion_scale * half_width) - 1, width, size=(1, )).item()),
            int(torch.randint(0, int(distortion_scale * half_height) + 1, size=(1, )).item())
        ]
        botright = [
            int(torch.randint(width - int(distortion_scale * half_width) - 1, width, size=(1, )).item()),
            int(torch.randint(height - int(distortion_scale * half_height) - 1, height, size=(1, )).item())
        ]
        botleft = [
            int(torch.randint(0, int(distortion_scale * half_width) + 1, size=(1, )).item()),
            int(torch.randint(height - int(distortion_scale * half_height) - 1, height, size=(1, )).item())
        ]
        startpoints = [[0, 0], [width - 1, 0], [width - 1, height - 1], [0, height - 1]]
751
752
753
754
755
756
757
        endpoints = [topleft, topright, botright, botleft]
        return startpoints, endpoints

    def __repr__(self):
        return self.__class__.__name__ + '(p={})'.format(self.p)


758
759
class RandomResizedCrop(torch.nn.Module):
    """Crop the given image to random size and aspect ratio.
760
    If the image is torch Tensor, it is expected
761
    to have [..., H, W] shape, where ... means an arbitrary number of leading dimensions
762

763
764
    A crop of random size (default: of 0.08 to 1.0) of the original size and a random
    aspect ratio (default: of 3/4 to 4/3) of the original aspect ratio is made. This crop
765
766
767
768
    is finally resized to given size.
    This is popularly used to train the Inception networks.

    Args:
769
770
        size (int or sequence): expected output size of each edge. If size is an
            int instead of sequence like (h, w), a square output size ``(size, size)`` is
771
772
            made. If provided a sequence of length 1, it will be interpreted as (size[0], size[0]).
            In torchscript mode size as single int is not supported, use a sequence of length 1: ``[size, ]``.
773
774
        scale (tuple of float): scale range of the cropped image before resizing, relatively to the origin image.
        ratio (tuple of float): aspect ratio range of the cropped image before resizing.
775
776
777
778
        interpolation (InterpolationMode): Desired interpolation enum defined by
            :class:`torchvision.transforms.InterpolationMode`. Default is ``InterpolationMode.BILINEAR``.
            If input is Tensor, only ``InterpolationMode.NEAREST``, ``InterpolationMode.BILINEAR`` and
            ``InterpolationMode.BICUBIC`` are supported.
779
780
            For backward compatibility integer values (e.g. ``PIL.Image.NEAREST``) are still acceptable.

781
782
    """

783
    def __init__(self, size, scale=(0.08, 1.0), ratio=(3. / 4., 4. / 3.), interpolation=InterpolationMode.BILINEAR):
784
        super().__init__()
785
        self.size = _setup_size(size, error_msg="Please provide only two dimensions (h, w) for size.")
786

787
        if not isinstance(scale, Sequence):
788
            raise TypeError("Scale should be a sequence")
789
        if not isinstance(ratio, Sequence):
790
            raise TypeError("Ratio should be a sequence")
791
        if (scale[0] > scale[1]) or (ratio[0] > ratio[1]):
792
            warnings.warn("Scale and ratio should be of kind (min, max)")
793

794
795
796
        # Backward compatibility with integer value
        if isinstance(interpolation, int):
            warnings.warn(
797
798
                "Argument interpolation should be of type InterpolationMode instead of int. "
                "Please, use InterpolationMode enum."
799
800
801
            )
            interpolation = _interpolation_modes_from_int(interpolation)

802
        self.interpolation = interpolation
803
804
        self.scale = scale
        self.ratio = ratio
805
806

    @staticmethod
807
    def get_params(
808
            img: Tensor, scale: List[float], ratio: List[float]
809
    ) -> Tuple[int, int, int, int]:
810
811
812
        """Get parameters for ``crop`` for a random sized crop.

        Args:
813
            img (PIL Image or Tensor): Input image.
814
815
            scale (list): range of scale of the origin size cropped
            ratio (list): range of aspect ratio of the origin aspect ratio cropped
816
817
818
819
820

        Returns:
            tuple: params (i, j, h, w) to be passed to ``crop`` for a random
                sized crop.
        """
vfdev's avatar
vfdev committed
821
        width, height = F._get_image_size(img)
Zhicheng Yan's avatar
Zhicheng Yan committed
822
        area = height * width
823

824
        for _ in range(10):
825
            target_area = area * torch.empty(1).uniform_(scale[0], scale[1]).item()
826
827
828
829
            log_ratio = torch.log(torch.tensor(ratio))
            aspect_ratio = torch.exp(
                torch.empty(1).uniform_(log_ratio[0], log_ratio[1])
            ).item()
830
831
832
833

            w = int(round(math.sqrt(target_area * aspect_ratio)))
            h = int(round(math.sqrt(target_area / aspect_ratio)))

Zhicheng Yan's avatar
Zhicheng Yan committed
834
            if 0 < w <= width and 0 < h <= height:
835
836
                i = torch.randint(0, height - h + 1, size=(1,)).item()
                j = torch.randint(0, width - w + 1, size=(1,)).item()
837
838
                return i, j, h, w

839
        # Fallback to central crop
Zhicheng Yan's avatar
Zhicheng Yan committed
840
        in_ratio = float(width) / float(height)
841
        if in_ratio < min(ratio):
Zhicheng Yan's avatar
Zhicheng Yan committed
842
            w = width
843
            h = int(round(w / min(ratio)))
844
        elif in_ratio > max(ratio):
Zhicheng Yan's avatar
Zhicheng Yan committed
845
            h = height
846
            w = int(round(h * max(ratio)))
847
        else:  # whole image
Zhicheng Yan's avatar
Zhicheng Yan committed
848
849
850
851
            w = width
            h = height
        i = (height - h) // 2
        j = (width - w) // 2
852
        return i, j, h, w
853

854
    def forward(self, img):
855
856
        """
        Args:
857
            img (PIL Image or Tensor): Image to be cropped and resized.
858
859

        Returns:
860
            PIL Image or Tensor: Randomly cropped and resized image.
861
        """
862
        i, j, h, w = self.get_params(img, self.scale, self.ratio)
863
864
        return F.resized_crop(img, i, j, h, w, self.size, self.interpolation)

865
    def __repr__(self):
866
        interpolate_str = self.interpolation.value
867
        format_string = self.__class__.__name__ + '(size={0}'.format(self.size)
868
869
        format_string += ', scale={0}'.format(tuple(round(s, 4) for s in self.scale))
        format_string += ', ratio={0}'.format(tuple(round(r, 4) for r in self.ratio))
870
871
        format_string += ', interpolation={0})'.format(interpolate_str)
        return format_string
872

873
874
875
876
877
878
879
880
881
882
883

class RandomSizedCrop(RandomResizedCrop):
    """
    Note: This transform is deprecated in favor of RandomResizedCrop.
    """
    def __init__(self, *args, **kwargs):
        warnings.warn("The use of the transforms.RandomSizedCrop transform is deprecated, " +
                      "please use transforms.RandomResizedCrop instead.")
        super(RandomSizedCrop, self).__init__(*args, **kwargs)


vfdev's avatar
vfdev committed
884
885
class FiveCrop(torch.nn.Module):
    """Crop the given image into four corners and the central crop.
886
    If the image is torch Tensor, it is expected
vfdev's avatar
vfdev committed
887
888
    to have [..., H, W] shape, where ... means an arbitrary number of leading
    dimensions
889
890
891
892
893
894
895
896
897

    .. Note::
         This transform returns a tuple of images and there may be a mismatch in the number of
         inputs and targets your Dataset returns. See below for an example of how to deal with
         this.

    Args:
         size (sequence or int): Desired output size of the crop. If size is an ``int``
            instead of sequence like (h, w), a square crop of size (size, size) is made.
898
            If provided a sequence of length 1, it will be interpreted as (size[0], size[0]).
899
900
901
902
903
904
905
906
907
908
909
910
911
912

    Example:
         >>> transform = Compose([
         >>>    FiveCrop(size), # this is a list of PIL Images
         >>>    Lambda(lambda crops: torch.stack([ToTensor()(crop) for crop in crops])) # returns a 4D tensor
         >>> ])
         >>> #In your test loop you can do the following:
         >>> input, target = batch # input is a 5d tensor, target is 2d
         >>> bs, ncrops, c, h, w = input.size()
         >>> result = model(input.view(-1, c, h, w)) # fuse batch size and ncrops
         >>> result_avg = result.view(bs, ncrops, -1).mean(1) # avg over crops
    """

    def __init__(self, size):
vfdev's avatar
vfdev committed
913
        super().__init__()
914
        self.size = _setup_size(size, error_msg="Please provide only two dimensions (h, w) for size.")
915

vfdev's avatar
vfdev committed
916
917
918
919
920
921
922
923
    def forward(self, img):
        """
        Args:
            img (PIL Image or Tensor): Image to be cropped.

        Returns:
            tuple of 5 images. Image can be PIL Image or Tensor
        """
924
925
        return F.five_crop(img, self.size)

926
927
928
    def __repr__(self):
        return self.__class__.__name__ + '(size={0})'.format(self.size)

929

vfdev's avatar
vfdev committed
930
931
932
class TenCrop(torch.nn.Module):
    """Crop the given image into four corners and the central crop plus the flipped version of
    these (horizontal flipping is used by default).
933
    If the image is torch Tensor, it is expected
vfdev's avatar
vfdev committed
934
935
    to have [..., H, W] shape, where ... means an arbitrary number of leading
    dimensions
936
937
938
939
940
941
942
943
944

    .. Note::
         This transform returns a tuple of images and there may be a mismatch in the number of
         inputs and targets your Dataset returns. See below for an example of how to deal with
         this.

    Args:
        size (sequence or int): Desired output size of the crop. If size is an
            int instead of sequence like (h, w), a square crop (size, size) is
945
            made. If provided a sequence of length 1, it will be interpreted as (size[0], size[0]).
946
        vertical_flip (bool): Use vertical flipping instead of horizontal
947
948
949
950
951
952
953
954
955
956
957
958
959
960

    Example:
         >>> transform = Compose([
         >>>    TenCrop(size), # this is a list of PIL Images
         >>>    Lambda(lambda crops: torch.stack([ToTensor()(crop) for crop in crops])) # returns a 4D tensor
         >>> ])
         >>> #In your test loop you can do the following:
         >>> input, target = batch # input is a 5d tensor, target is 2d
         >>> bs, ncrops, c, h, w = input.size()
         >>> result = model(input.view(-1, c, h, w)) # fuse batch size and ncrops
         >>> result_avg = result.view(bs, ncrops, -1).mean(1) # avg over crops
    """

    def __init__(self, size, vertical_flip=False):
vfdev's avatar
vfdev committed
961
        super().__init__()
962
        self.size = _setup_size(size, error_msg="Please provide only two dimensions (h, w) for size.")
963
964
        self.vertical_flip = vertical_flip

vfdev's avatar
vfdev committed
965
966
967
968
969
970
971
972
    def forward(self, img):
        """
        Args:
            img (PIL Image or Tensor): Image to be cropped.

        Returns:
            tuple of 10 images. Image can be PIL Image or Tensor
        """
973
974
        return F.ten_crop(img, self.size, self.vertical_flip)

975
    def __repr__(self):
976
        return self.__class__.__name__ + '(size={0}, vertical_flip={1})'.format(self.size, self.vertical_flip)
977

978

979
class LinearTransformation(torch.nn.Module):
ekka's avatar
ekka committed
980
    """Transform a tensor image with a square transformation matrix and a mean_vector computed
981
    offline.
982
    This transform does not support PIL Image.
ekka's avatar
ekka committed
983
984
985
    Given transformation_matrix and mean_vector, will flatten the torch.*Tensor and
    subtract mean_vector from it which is then followed by computing the dot
    product with the transformation matrix and then reshaping the tensor to its
986
    original shape.
987

988
    Applications:
989
        whitening transformation: Suppose X is a column vector zero-centered data.
990
991
992
        Then compute the data covariance matrix [D x D] with torch.mm(X.t(), X),
        perform SVD on this matrix and pass it as transformation_matrix.

993
994
    Args:
        transformation_matrix (Tensor): tensor [D x D], D = C x H x W
ekka's avatar
ekka committed
995
        mean_vector (Tensor): tensor [D], D = C x H x W
996
997
    """

ekka's avatar
ekka committed
998
    def __init__(self, transformation_matrix, mean_vector):
999
        super().__init__()
1000
1001
1002
        if transformation_matrix.size(0) != transformation_matrix.size(1):
            raise ValueError("transformation_matrix should be square. Got " +
                             "[{} x {}] rectangular matrix.".format(*transformation_matrix.size()))
ekka's avatar
ekka committed
1003
1004
1005

        if mean_vector.size(0) != transformation_matrix.size(0):
            raise ValueError("mean_vector should have the same length {}".format(mean_vector.size(0)) +
Francisco Massa's avatar
Francisco Massa committed
1006
1007
                             " as any one of the dimensions of the transformation_matrix [{}]"
                             .format(tuple(transformation_matrix.size())))
ekka's avatar
ekka committed
1008

1009
1010
1011
1012
        if transformation_matrix.device != mean_vector.device:
            raise ValueError("Input tensors should be on the same device. Got {} and {}"
                             .format(transformation_matrix.device, mean_vector.device))

1013
        self.transformation_matrix = transformation_matrix
ekka's avatar
ekka committed
1014
        self.mean_vector = mean_vector
1015

1016
    def forward(self, tensor: Tensor) -> Tensor:
1017
1018
        """
        Args:
vfdev's avatar
vfdev committed
1019
            tensor (Tensor): Tensor image to be whitened.
1020
1021
1022
1023

        Returns:
            Tensor: Transformed image.
        """
1024
1025
1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
        shape = tensor.shape
        n = shape[-3] * shape[-2] * shape[-1]
        if n != self.transformation_matrix.shape[0]:
            raise ValueError("Input tensor and transformation matrix have incompatible shape." +
                             "[{} x {} x {}] != ".format(shape[-3], shape[-2], shape[-1]) +
                             "{}".format(self.transformation_matrix.shape[0]))

        if tensor.device.type != self.mean_vector.device.type:
            raise ValueError("Input tensor should be on the same device as transformation matrix and mean vector. "
                             "Got {} vs {}".format(tensor.device, self.mean_vector.device))

        flat_tensor = tensor.view(-1, n) - self.mean_vector
1036
        transformed_tensor = torch.mm(flat_tensor, self.transformation_matrix)
1037
        tensor = transformed_tensor.view(shape)
1038
1039
        return tensor

1040
    def __repr__(self):
ekka's avatar
ekka committed
1041
1042
1043
        format_string = self.__class__.__name__ + '(transformation_matrix='
        format_string += (str(self.transformation_matrix.tolist()) + ')')
        format_string += (", (mean_vector=" + str(self.mean_vector.tolist()) + ')')
1044
1045
        return format_string

1046

1047
class ColorJitter(torch.nn.Module):
1048
    """Randomly change the brightness, contrast, saturation and hue of an image.
1049
    If the image is torch Tensor, it is expected
1050
1051
    to have [..., 3, H, W] shape, where ... means an arbitrary number of leading dimensions.
    If img is PIL Image, mode "1", "L", "I", "F" and modes with transparency (alpha channel) are not supported.
1052
1053

    Args:
yaox12's avatar
yaox12 committed
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
        brightness (float or tuple of float (min, max)): How much to jitter brightness.
            brightness_factor is chosen uniformly from [max(0, 1 - brightness), 1 + brightness]
            or the given [min, max]. Should be non negative numbers.
        contrast (float or tuple of float (min, max)): How much to jitter contrast.
            contrast_factor is chosen uniformly from [max(0, 1 - contrast), 1 + contrast]
            or the given [min, max]. Should be non negative numbers.
        saturation (float or tuple of float (min, max)): How much to jitter saturation.
            saturation_factor is chosen uniformly from [max(0, 1 - saturation), 1 + saturation]
            or the given [min, max]. Should be non negative numbers.
        hue (float or tuple of float (min, max)): How much to jitter hue.
            hue_factor is chosen uniformly from [-hue, hue] or the given [min, max].
            Should have 0<= hue <= 0.5 or -0.5 <= min <= max <= 0.5.
1066
    """
1067

1068
    def __init__(self, brightness=0, contrast=0, saturation=0, hue=0):
1069
        super().__init__()
yaox12's avatar
yaox12 committed
1070
1071
1072
1073
1074
1075
        self.brightness = self._check_input(brightness, 'brightness')
        self.contrast = self._check_input(contrast, 'contrast')
        self.saturation = self._check_input(saturation, 'saturation')
        self.hue = self._check_input(hue, 'hue', center=0, bound=(-0.5, 0.5),
                                     clip_first_on_zero=False)

1076
    @torch.jit.unused
yaox12's avatar
yaox12 committed
1077
1078
1079
1080
    def _check_input(self, value, name, center=1, bound=(0, float('inf')), clip_first_on_zero=True):
        if isinstance(value, numbers.Number):
            if value < 0:
                raise ValueError("If {} is a single number, it must be non negative.".format(name))
1081
            value = [center - float(value), center + float(value)]
yaox12's avatar
yaox12 committed
1082
            if clip_first_on_zero:
1083
                value[0] = max(value[0], 0.0)
yaox12's avatar
yaox12 committed
1084
1085
1086
1087
1088
1089
1090
1091
1092
1093
1094
        elif isinstance(value, (tuple, list)) and len(value) == 2:
            if not bound[0] <= value[0] <= value[1] <= bound[1]:
                raise ValueError("{} values should be between {}".format(name, bound))
        else:
            raise TypeError("{} should be a single number or a list/tuple with lenght 2.".format(name))

        # if value is 0 or (1., 1.) for brightness/contrast/saturation
        # or (0., 0.) for hue, do nothing
        if value[0] == value[1] == center:
            value = None
        return value
1095
1096

    @staticmethod
1097
1098
1099
1100
1101
1102
    def get_params(brightness: Optional[List[float]],
                   contrast: Optional[List[float]],
                   saturation: Optional[List[float]],
                   hue: Optional[List[float]]
                   ) -> Tuple[Tensor, Optional[float], Optional[float], Optional[float], Optional[float]]:
        """Get the parameters for the randomized transform to be applied on image.
1103

1104
1105
1106
1107
1108
1109
1110
1111
1112
        Args:
            brightness (tuple of float (min, max), optional): The range from which the brightness_factor is chosen
                uniformly. Pass None to turn off the transformation.
            contrast (tuple of float (min, max), optional): The range from which the contrast_factor is chosen
                uniformly. Pass None to turn off the transformation.
            saturation (tuple of float (min, max), optional): The range from which the saturation_factor is chosen
                uniformly. Pass None to turn off the transformation.
            hue (tuple of float (min, max), optional): The range from which the hue_factor is chosen uniformly.
                Pass None to turn off the transformation.
1113
1114

        Returns:
1115
1116
            tuple: The parameters used to apply the randomized transform
            along with their random order.
1117
        """
1118
        fn_idx = torch.randperm(4)
1119

1120
1121
1122
1123
        b = None if brightness is None else float(torch.empty(1).uniform_(brightness[0], brightness[1]))
        c = None if contrast is None else float(torch.empty(1).uniform_(contrast[0], contrast[1]))
        s = None if saturation is None else float(torch.empty(1).uniform_(saturation[0], saturation[1]))
        h = None if hue is None else float(torch.empty(1).uniform_(hue[0], hue[1]))
1124

1125
        return fn_idx, b, c, s, h
1126

1127
    def forward(self, img):
1128
1129
        """
        Args:
1130
            img (PIL Image or Tensor): Input image.
1131
1132

        Returns:
1133
1134
            PIL Image or Tensor: Color jittered image.
        """
1135
1136
1137
        fn_idx, brightness_factor, contrast_factor, saturation_factor, hue_factor = \
            self.get_params(self.brightness, self.contrast, self.saturation, self.hue)

1138
        for fn_id in fn_idx:
1139
            if fn_id == 0 and brightness_factor is not None:
1140
                img = F.adjust_brightness(img, brightness_factor)
1141
            elif fn_id == 1 and contrast_factor is not None:
1142
                img = F.adjust_contrast(img, contrast_factor)
1143
            elif fn_id == 2 and saturation_factor is not None:
1144
                img = F.adjust_saturation(img, saturation_factor)
1145
            elif fn_id == 3 and hue_factor is not None:
1146
1147
1148
                img = F.adjust_hue(img, hue_factor)

        return img
1149

1150
    def __repr__(self):
1151
1152
1153
1154
1155
1156
        format_string = self.__class__.__name__ + '('
        format_string += 'brightness={0}'.format(self.brightness)
        format_string += ', contrast={0}'.format(self.contrast)
        format_string += ', saturation={0}'.format(self.saturation)
        format_string += ', hue={0})'.format(self.hue)
        return format_string
1157

1158

1159
class RandomRotation(torch.nn.Module):
1160
    """Rotate the image by angle.
1161
    If the image is torch Tensor, it is expected
1162
    to have [..., H, W] shape, where ... means an arbitrary number of leading dimensions.
1163
1164

    Args:
1165
        degrees (sequence or number): Range of degrees to select from.
1166
1167
            If degrees is a number instead of sequence like (min, max), the range of degrees
            will be (-degrees, +degrees).
1168
1169
1170
        interpolation (InterpolationMode): Desired interpolation enum defined by
            :class:`torchvision.transforms.InterpolationMode`. Default is ``InterpolationMode.NEAREST``.
            If input is Tensor, only ``InterpolationMode.NEAREST``, ``InterpolationMode.BILINEAR`` are supported.
1171
            For backward compatibility integer values (e.g. ``PIL.Image.NEAREST``) are still acceptable.
1172
1173
1174
1175
        expand (bool, optional): Optional expansion flag.
            If true, expands the output to make it large enough to hold the entire rotated image.
            If false or omitted, make the output image the same size as the input image.
            Note that the expand flag assumes rotation around the center and no translation.
1176
        center (sequence, optional): Optional center of rotation, (x, y). Origin is the upper left corner.
1177
            Default is the center of the image.
1178
1179
        fill (sequence or number, optional): Pixel fill value for the area outside the rotated
            image. If given a number, the value is used for all bands respectively.
1180
            If input is PIL Image, the options is only available for ``Pillow>=5.2.0``.
1181
1182
        resample (int, optional): deprecated argument and will be removed since v0.10.0.
            Please use `arg`:interpolation: instead.
1183
1184
1185

    .. _filters: https://pillow.readthedocs.io/en/latest/handbook/concepts.html#filters

1186
1187
    """

1188
    def __init__(
1189
        self, degrees, interpolation=InterpolationMode.NEAREST, expand=False, center=None, fill=None, resample=None
1190
    ):
1191
        super().__init__()
1192
1193
1194
1195
1196
1197
1198
1199
1200
        if resample is not None:
            warnings.warn(
                "Argument resample is deprecated and will be removed since v0.10.0. Please, use interpolation instead"
            )
            interpolation = _interpolation_modes_from_int(resample)

        # Backward compatibility with integer value
        if isinstance(interpolation, int):
            warnings.warn(
1201
1202
                "Argument interpolation should be of type InterpolationMode instead of int. "
                "Please, use InterpolationMode enum."
1203
1204
1205
            )
            interpolation = _interpolation_modes_from_int(interpolation)

1206
        self.degrees = _setup_angle(degrees, name="degrees", req_sizes=(2, ))
1207
1208

        if center is not None:
1209
            _check_sequence_input(center, "center", req_sizes=(2, ))
1210
1211

        self.center = center
1212

1213
        self.resample = self.interpolation = interpolation
1214
        self.expand = expand
1215
        self.fill = fill
1216
1217

    @staticmethod
1218
    def get_params(degrees: List[float]) -> float:
1219
1220
1221
        """Get parameters for ``rotate`` for a random rotation.

        Returns:
1222
            float: angle parameter to be passed to ``rotate`` for random rotation.
1223
        """
1224
        angle = float(torch.empty(1).uniform_(float(degrees[0]), float(degrees[1])).item())
1225
1226
        return angle

1227
    def forward(self, img):
1228
        """
1229
        Args:
1230
            img (PIL Image or Tensor): Image to be rotated.
1231
1232

        Returns:
1233
            PIL Image or Tensor: Rotated image.
1234
        """
1235
1236
1237
1238
1239
1240
        fill = self.fill
        if isinstance(img, Tensor):
            if isinstance(fill, (int, float)):
                fill = [float(fill)] * F._get_image_num_channels(img)
            else:
                fill = [float(f) for f in fill]
1241
        angle = self.get_params(self.degrees)
1242
1243

        return F.rotate(img, angle, self.resample, self.expand, self.center, fill)
1244

1245
    def __repr__(self):
1246
        interpolate_str = self.interpolation.value
1247
        format_string = self.__class__.__name__ + '(degrees={0}'.format(self.degrees)
1248
        format_string += ', interpolation={0}'.format(interpolate_str)
1249
1250
1251
        format_string += ', expand={0}'.format(self.expand)
        if self.center is not None:
            format_string += ', center={0}'.format(self.center)
1252
1253
        if self.fill is not None:
            format_string += ', fill={0}'.format(self.fill)
1254
1255
        format_string += ')'
        return format_string
1256

1257

1258
1259
class RandomAffine(torch.nn.Module):
    """Random affine transformation of the image keeping center invariant.
1260
    If the image is torch Tensor, it is expected
1261
    to have [..., H, W] shape, where ... means an arbitrary number of leading dimensions.
1262
1263

    Args:
1264
        degrees (sequence or number): Range of degrees to select from.
1265
            If degrees is a number instead of sequence like (min, max), the range of degrees
1266
            will be (-degrees, +degrees). Set to 0 to deactivate rotations.
1267
1268
1269
1270
1271
1272
        translate (tuple, optional): tuple of maximum absolute fraction for horizontal
            and vertical translations. For example translate=(a, b), then horizontal shift
            is randomly sampled in the range -img_width * a < dx < img_width * a and vertical shift is
            randomly sampled in the range -img_height * b < dy < img_height * b. Will not translate by default.
        scale (tuple, optional): scaling factor interval, e.g (a, b), then scale is
            randomly sampled from the range a <= scale <= b. Will keep original scale by default.
1273
        shear (sequence or number, optional): Range of degrees to select from.
ptrblck's avatar
ptrblck committed
1274
            If shear is a number, a shear parallel to the x axis in the range (-shear, +shear)
1275
1276
            will be applied. Else if shear is a sequence of 2 values a shear parallel to the x axis in the
            range (shear[0], shear[1]) will be applied. Else if shear is a sequence of 4 values,
ptrblck's avatar
ptrblck committed
1277
            a x-axis shear in (shear[0], shear[1]) and y-axis shear in (shear[2], shear[3]) will be applied.
1278
            Will not apply shear by default.
1279
1280
1281
        interpolation (InterpolationMode): Desired interpolation enum defined by
            :class:`torchvision.transforms.InterpolationMode`. Default is ``InterpolationMode.NEAREST``.
            If input is Tensor, only ``InterpolationMode.NEAREST``, ``InterpolationMode.BILINEAR`` are supported.
1282
            For backward compatibility integer values (e.g. ``PIL.Image.NEAREST``) are still acceptable.
1283
1284
        fill (sequence or number, optional): Pixel fill value for the area outside the transformed
            image. If given a number, the value is used for all bands respectively.
1285
            If input is PIL Image, the options is only available for ``Pillow>=5.0.0``.
1286
        fillcolor (sequence or number, optional): deprecated argument and will be removed since v0.10.0.
1287
1288
1289
            Please use `arg`:fill: instead.
        resample (int, optional): deprecated argument and will be removed since v0.10.0.
            Please use `arg`:interpolation: instead.
1290
1291
1292

    .. _filters: https://pillow.readthedocs.io/en/latest/handbook/concepts.html#filters

1293
1294
    """

1295
    def __init__(
1296
        self, degrees, translate=None, scale=None, shear=None, interpolation=InterpolationMode.NEAREST, fill=0,
1297
1298
        fillcolor=None, resample=None
    ):
1299
        super().__init__()
1300
1301
1302
1303
1304
1305
1306
1307
1308
        if resample is not None:
            warnings.warn(
                "Argument resample is deprecated and will be removed since v0.10.0. Please, use interpolation instead"
            )
            interpolation = _interpolation_modes_from_int(resample)

        # Backward compatibility with integer value
        if isinstance(interpolation, int):
            warnings.warn(
1309
1310
                "Argument interpolation should be of type InterpolationMode instead of int. "
                "Please, use InterpolationMode enum."
1311
1312
1313
1314
1315
1316
1317
1318
1319
            )
            interpolation = _interpolation_modes_from_int(interpolation)

        if fillcolor is not None:
            warnings.warn(
                "Argument fillcolor is deprecated and will be removed since v0.10.0. Please, use fill instead"
            )
            fill = fillcolor

1320
        self.degrees = _setup_angle(degrees, name="degrees", req_sizes=(2, ))
1321
1322

        if translate is not None:
1323
            _check_sequence_input(translate, "translate", req_sizes=(2, ))
1324
1325
1326
1327
1328
1329
            for t in translate:
                if not (0.0 <= t <= 1.0):
                    raise ValueError("translation values should be between 0 and 1")
        self.translate = translate

        if scale is not None:
1330
            _check_sequence_input(scale, "scale", req_sizes=(2, ))
1331
1332
1333
1334
1335
1336
            for s in scale:
                if s <= 0:
                    raise ValueError("scale values should be positive")
        self.scale = scale

        if shear is not None:
1337
            self.shear = _setup_angle(shear, name="shear", req_sizes=(2, 4))
1338
1339
1340
        else:
            self.shear = shear

1341
1342
        self.resample = self.interpolation = interpolation
        self.fillcolor = self.fill = fill
1343
1344

    @staticmethod
1345
1346
1347
1348
1349
1350
1351
    def get_params(
            degrees: List[float],
            translate: Optional[List[float]],
            scale_ranges: Optional[List[float]],
            shears: Optional[List[float]],
            img_size: List[int]
    ) -> Tuple[float, Tuple[int, int], float, Tuple[float, float]]:
1352
1353
1354
        """Get parameters for affine transformation

        Returns:
1355
            params to be passed to the affine transformation
1356
        """
1357
        angle = float(torch.empty(1).uniform_(float(degrees[0]), float(degrees[1])).item())
1358
        if translate is not None:
1359
1360
1361
1362
1363
            max_dx = float(translate[0] * img_size[0])
            max_dy = float(translate[1] * img_size[1])
            tx = int(round(torch.empty(1).uniform_(-max_dx, max_dx).item()))
            ty = int(round(torch.empty(1).uniform_(-max_dy, max_dy).item()))
            translations = (tx, ty)
1364
1365
1366
1367
        else:
            translations = (0, 0)

        if scale_ranges is not None:
1368
            scale = float(torch.empty(1).uniform_(scale_ranges[0], scale_ranges[1]).item())
1369
1370
1371
        else:
            scale = 1.0

1372
        shear_x = shear_y = 0.0
1373
        if shears is not None:
1374
1375
1376
1377
1378
            shear_x = float(torch.empty(1).uniform_(shears[0], shears[1]).item())
            if len(shears) == 4:
                shear_y = float(torch.empty(1).uniform_(shears[2], shears[3]).item())

        shear = (shear_x, shear_y)
1379
1380
1381

        return angle, translations, scale, shear

1382
    def forward(self, img):
1383
        """
1384
            img (PIL Image or Tensor): Image to be transformed.
1385
1386

        Returns:
1387
            PIL Image or Tensor: Affine transformed image.
1388
        """
1389
1390
1391
1392
1393
1394
        fill = self.fill
        if isinstance(img, Tensor):
            if isinstance(fill, (int, float)):
                fill = [float(fill)] * F._get_image_num_channels(img)
            else:
                fill = [float(f) for f in fill]
1395
1396
1397
1398

        img_size = F._get_image_size(img)

        ret = self.get_params(self.degrees, self.translate, self.scale, self.shear, img_size)
1399
1400

        return F.affine(img, *ret, interpolation=self.interpolation, fill=fill)
1401
1402
1403
1404
1405
1406
1407
1408
1409

    def __repr__(self):
        s = '{name}(degrees={degrees}'
        if self.translate is not None:
            s += ', translate={translate}'
        if self.scale is not None:
            s += ', scale={scale}'
        if self.shear is not None:
            s += ', shear={shear}'
1410
        if self.interpolation != InterpolationMode.NEAREST:
1411
1412
1413
            s += ', interpolation={interpolation}'
        if self.fill != 0:
            s += ', fill={fill}'
1414
1415
        s += ')'
        d = dict(self.__dict__)
1416
        d['interpolation'] = self.interpolation.value
1417
1418
1419
        return s.format(name=self.__class__.__name__, **d)


1420
class Grayscale(torch.nn.Module):
1421
    """Convert image to grayscale.
1422
1423
    If the image is torch Tensor, it is expected
    to have [..., 3, H, W] shape, where ... means an arbitrary number of leading dimensions
1424

1425
1426
1427
1428
    Args:
        num_output_channels (int): (1 or 3) number of channels desired for output image

    Returns:
1429
        PIL Image: Grayscale version of the input.
1430
1431
         - If ``num_output_channels == 1`` : returned image is single channel
         - If ``num_output_channels == 3`` : returned image is 3 channel with r == g == b
1432
1433
1434
1435

    """

    def __init__(self, num_output_channels=1):
1436
        super().__init__()
1437
1438
        self.num_output_channels = num_output_channels

vfdev's avatar
vfdev committed
1439
    def forward(self, img):
1440
1441
        """
        Args:
1442
            img (PIL Image or Tensor): Image to be converted to grayscale.
1443
1444

        Returns:
1445
            PIL Image or Tensor: Grayscaled image.
1446
        """
1447
        return F.rgb_to_grayscale(img, num_output_channels=self.num_output_channels)
1448

1449
    def __repr__(self):
1450
        return self.__class__.__name__ + '(num_output_channels={0})'.format(self.num_output_channels)
1451

1452

1453
class RandomGrayscale(torch.nn.Module):
1454
    """Randomly convert image to grayscale with a probability of p (default 0.1).
1455
1456
    If the image is torch Tensor, it is expected
    to have [..., 3, H, W] shape, where ... means an arbitrary number of leading dimensions
1457

1458
1459
1460
1461
    Args:
        p (float): probability that image should be converted to grayscale.

    Returns:
1462
        PIL Image or Tensor: Grayscale version of the input image with probability p and unchanged
1463
1464
1465
        with probability (1-p).
        - If input image is 1 channel: grayscale version is 1 channel
        - If input image is 3 channel: grayscale version is 3 channel with r == g == b
1466
1467
1468
1469

    """

    def __init__(self, p=0.1):
1470
        super().__init__()
1471
1472
        self.p = p

vfdev's avatar
vfdev committed
1473
    def forward(self, img):
1474
1475
        """
        Args:
1476
            img (PIL Image or Tensor): Image to be converted to grayscale.
1477
1478

        Returns:
1479
            PIL Image or Tensor: Randomly grayscaled image.
1480
        """
1481
1482
1483
        num_output_channels = F._get_image_num_channels(img)
        if torch.rand(1) < self.p:
            return F.rgb_to_grayscale(img, num_output_channels=num_output_channels)
1484
        return img
1485
1486

    def __repr__(self):
1487
        return self.__class__.__name__ + '(p={0})'.format(self.p)
1488
1489


1490
class RandomErasing(torch.nn.Module):
1491
1492
    """ Randomly selects a rectangle region in an torch Tensor image and erases its pixels.
    This transform does not support PIL Image.
vfdev's avatar
vfdev committed
1493
    'Random Erasing Data Augmentation' by Zhong et al. See https://arxiv.org/abs/1708.04896
1494

1495
1496
1497
1498
1499
1500
1501
1502
    Args:
         p: probability that the random erasing operation will be performed.
         scale: range of proportion of erased area against input image.
         ratio: range of aspect ratio of erased area.
         value: erasing value. Default is 0. If a single int, it is used to
            erase all pixels. If a tuple of length 3, it is used to erase
            R, G, B channels respectively.
            If a str of 'random', erasing each pixel with random values.
Zhun Zhong's avatar
Zhun Zhong committed
1503
         inplace: boolean to make this transform inplace. Default set to False.
1504

1505
1506
    Returns:
        Erased Image.
1507

vfdev's avatar
vfdev committed
1508
    Example:
1509
        >>> transform = transforms.Compose([
1510
1511
1512
1513
        >>>   transforms.RandomHorizontalFlip(),
        >>>   transforms.ToTensor(),
        >>>   transforms.Normalize((0.485, 0.456, 0.406), (0.229, 0.224, 0.225)),
        >>>   transforms.RandomErasing(),
1514
1515
1516
        >>> ])
    """

Zhun Zhong's avatar
Zhun Zhong committed
1517
    def __init__(self, p=0.5, scale=(0.02, 0.33), ratio=(0.3, 3.3), value=0, inplace=False):
1518
1519
1520
1521
1522
1523
1524
1525
1526
        super().__init__()
        if not isinstance(value, (numbers.Number, str, tuple, list)):
            raise TypeError("Argument value should be either a number or str or a sequence")
        if isinstance(value, str) and value != "random":
            raise ValueError("If value is str, it should be 'random'")
        if not isinstance(scale, (tuple, list)):
            raise TypeError("Scale should be a sequence")
        if not isinstance(ratio, (tuple, list)):
            raise TypeError("Ratio should be a sequence")
1527
        if (scale[0] > scale[1]) or (ratio[0] > ratio[1]):
1528
            warnings.warn("Scale and ratio should be of kind (min, max)")
1529
        if scale[0] < 0 or scale[1] > 1:
1530
            raise ValueError("Scale should be between 0 and 1")
1531
        if p < 0 or p > 1:
1532
            raise ValueError("Random erasing probability should be between 0 and 1")
1533
1534
1535
1536
1537

        self.p = p
        self.scale = scale
        self.ratio = ratio
        self.value = value
1538
        self.inplace = inplace
1539
1540

    @staticmethod
1541
1542
1543
    def get_params(
            img: Tensor, scale: Tuple[float, float], ratio: Tuple[float, float], value: Optional[List[float]] = None
    ) -> Tuple[int, int, int, int, Tensor]:
1544
1545
1546
        """Get parameters for ``erase`` for a random erasing.

        Args:
vfdev's avatar
vfdev committed
1547
            img (Tensor): Tensor image to be erased.
1548
1549
            scale (sequence): range of proportion of erased area against input image.
            ratio (sequence): range of aspect ratio of erased area.
1550
1551
1552
            value (list, optional): erasing value. If None, it is interpreted as "random"
                (erasing each pixel with random values). If ``len(value)`` is 1, it is interpreted as a number,
                i.e. ``value[0]``.
1553
1554
1555
1556

        Returns:
            tuple: params (i, j, h, w, v) to be passed to ``erase`` for random erasing.
        """
vfdev's avatar
vfdev committed
1557
        img_c, img_h, img_w = img.shape[-3], img.shape[-2], img.shape[-1]
1558
        area = img_h * img_w
1559

1560
        for _ in range(10):
1561
1562
            erase_area = area * torch.empty(1).uniform_(scale[0], scale[1]).item()
            aspect_ratio = torch.empty(1).uniform_(ratio[0], ratio[1]).item()
1563
1564
1565

            h = int(round(math.sqrt(erase_area * aspect_ratio)))
            w = int(round(math.sqrt(erase_area / aspect_ratio)))
1566
1567
1568
1569
1570
1571
1572
            if not (h < img_h and w < img_w):
                continue

            if value is None:
                v = torch.empty([img_c, h, w], dtype=torch.float32).normal_()
            else:
                v = torch.tensor(value)[:, None, None]
1573

1574
1575
            i = torch.randint(0, img_h - h + 1, size=(1, )).item()
            j = torch.randint(0, img_w - w + 1, size=(1, )).item()
1576
            return i, j, h, w, v
1577

Zhun Zhong's avatar
Zhun Zhong committed
1578
1579
1580
        # Return original image
        return 0, 0, img_h, img_w, img

1581
    def forward(self, img):
1582
1583
        """
        Args:
vfdev's avatar
vfdev committed
1584
            img (Tensor): Tensor image to be erased.
1585
1586
1587
1588

        Returns:
            img (Tensor): Erased Tensor image.
        """
1589
1590
1591
1592
1593
1594
1595
1596
1597
1598
1599
1600
1601
1602
1603
1604
1605
1606
1607
        if torch.rand(1) < self.p:

            # cast self.value to script acceptable type
            if isinstance(self.value, (int, float)):
                value = [self.value, ]
            elif isinstance(self.value, str):
                value = None
            elif isinstance(self.value, tuple):
                value = list(self.value)
            else:
                value = self.value

            if value is not None and not (len(value) in (1, img.shape[-3])):
                raise ValueError(
                    "If value is a sequence, it should have either a single value or "
                    "{} (number of input channels)".format(img.shape[-3])
                )

            x, y, h, w, v = self.get_params(img, scale=self.scale, ratio=self.ratio, value=value)
1608
            return F.erase(img, x, y, h, w, v, self.inplace)
1609
        return img
1610
1611


1612
1613
class GaussianBlur(torch.nn.Module):
    """Blurs image with randomly chosen Gaussian blur.
1614
1615
    If the image is torch Tensor, it is expected
    to have [..., C, H, W] shape, where ... means an arbitrary number of leading dimensions.
1616
1617
1618
1619
1620
1621
1622
1623
1624
1625
1626
1627
1628
1629
1630
1631
1632
1633
1634
1635
1636
1637
1638
1639
1640
1641
1642
1643
1644
1645
1646
1647
1648
1649

    Args:
        kernel_size (int or sequence): Size of the Gaussian kernel.
        sigma (float or tuple of float (min, max)): Standard deviation to be used for
            creating kernel to perform blurring. If float, sigma is fixed. If it is tuple
            of float (min, max), sigma is chosen uniformly at random to lie in the
            given range.

    Returns:
        PIL Image or Tensor: Gaussian blurred version of the input image.

    """

    def __init__(self, kernel_size, sigma=(0.1, 2.0)):
        super().__init__()
        self.kernel_size = _setup_size(kernel_size, "Kernel size should be a tuple/list of two integers")
        for ks in self.kernel_size:
            if ks <= 0 or ks % 2 == 0:
                raise ValueError("Kernel size value should be an odd and positive number.")

        if isinstance(sigma, numbers.Number):
            if sigma <= 0:
                raise ValueError("If sigma is a single number, it must be positive.")
            sigma = (sigma, sigma)
        elif isinstance(sigma, Sequence) and len(sigma) == 2:
            if not 0. < sigma[0] <= sigma[1]:
                raise ValueError("sigma values should be positive and of the form (min, max).")
        else:
            raise ValueError("sigma should be a single number or a list/tuple with length 2.")

        self.sigma = sigma

    @staticmethod
    def get_params(sigma_min: float, sigma_max: float) -> float:
vfdev's avatar
vfdev committed
1650
        """Choose sigma for random gaussian blurring.
1651
1652
1653
1654
1655
1656
1657
1658
1659
1660
1661
1662
1663

        Args:
            sigma_min (float): Minimum standard deviation that can be chosen for blurring kernel.
            sigma_max (float): Maximum standard deviation that can be chosen for blurring kernel.

        Returns:
            float: Standard deviation to be passed to calculate kernel for gaussian blurring.
        """
        return torch.empty(1).uniform_(sigma_min, sigma_max).item()

    def forward(self, img: Tensor) -> Tensor:
        """
        Args:
vfdev's avatar
vfdev committed
1664
            img (PIL Image or Tensor): image to be blurred.
1665
1666
1667
1668
1669
1670
1671
1672
1673
1674
1675
1676
1677

        Returns:
            PIL Image or Tensor: Gaussian blurred image
        """
        sigma = self.get_params(self.sigma[0], self.sigma[1])
        return F.gaussian_blur(img, self.kernel_size, [sigma, sigma])

    def __repr__(self):
        s = '(kernel_size={}, '.format(self.kernel_size)
        s += 'sigma={})'.format(self.sigma)
        return self.__class__.__name__ + s


1678
1679
1680
1681
1682
1683
1684
1685
1686
1687
1688
1689
1690
1691
1692
1693
1694
1695
1696
1697
1698
1699
1700
1701
1702
1703
1704
1705
1706
1707
def _setup_size(size, error_msg):
    if isinstance(size, numbers.Number):
        return int(size), int(size)

    if isinstance(size, Sequence) and len(size) == 1:
        return size[0], size[0]

    if len(size) != 2:
        raise ValueError(error_msg)

    return size


def _check_sequence_input(x, name, req_sizes):
    msg = req_sizes[0] if len(req_sizes) < 2 else " or ".join([str(s) for s in req_sizes])
    if not isinstance(x, Sequence):
        raise TypeError("{} should be a sequence of length {}.".format(name, msg))
    if len(x) not in req_sizes:
        raise ValueError("{} should be sequence of length {}.".format(name, msg))


def _setup_angle(x, name, req_sizes=(2, )):
    if isinstance(x, numbers.Number):
        if x < 0:
            raise ValueError("If {} is a single number, it must be positive.".format(name))
        x = [-x, x]
    else:
        _check_sequence_input(x, name, req_sizes)

    return [float(d) for d in x]
1708
1709
1710
1711


class RandomInvert(torch.nn.Module):
    """Inverts the colors of the given image randomly with a given probability.
1712
1713
1714
    If img is a Tensor, it is expected to be in [..., 1 or 3, H, W] format,
    where ... means it can have an arbitrary number of leading dimensions.
    If img is PIL Image, it is expected to be in mode "L" or "RGB".
1715
1716
1717
1718
1719
1720
1721
1722
1723
1724
1725
1726
1727
1728
1729
1730
1731
1732
1733
1734
1735
1736
1737
1738
1739
1740
1741

    Args:
        p (float): probability of the image being color inverted. Default value is 0.5
    """

    def __init__(self, p=0.5):
        super().__init__()
        self.p = p

    def forward(self, img):
        """
        Args:
            img (PIL Image or Tensor): Image to be inverted.

        Returns:
            PIL Image or Tensor: Randomly color inverted image.
        """
        if torch.rand(1).item() < self.p:
            return F.invert(img)
        return img

    def __repr__(self):
        return self.__class__.__name__ + '(p={})'.format(self.p)


class RandomPosterize(torch.nn.Module):
    """Posterize the image randomly with a given probability by reducing the
1742
1743
1744
    number of bits for each color channel. If the image is torch Tensor, it should be of type torch.uint8,
    and it is expected to have [..., 1 or 3, H, W] shape, where ... means an arbitrary number of leading dimensions.
    If img is PIL Image, it is expected to be in mode "L" or "RGB".
1745
1746
1747
1748
1749
1750
1751
1752
1753
1754
1755
1756
1757
1758
1759
1760
1761
1762
1763
1764
1765
1766
1767
1768
1769
1770
1771
1772
1773

    Args:
        bits (int): number of bits to keep for each channel (0-8)
        p (float): probability of the image being color inverted. Default value is 0.5
    """

    def __init__(self, bits, p=0.5):
        super().__init__()
        self.bits = bits
        self.p = p

    def forward(self, img):
        """
        Args:
            img (PIL Image or Tensor): Image to be posterized.

        Returns:
            PIL Image or Tensor: Randomly posterized image.
        """
        if torch.rand(1).item() < self.p:
            return F.posterize(img, self.bits)
        return img

    def __repr__(self):
        return self.__class__.__name__ + '(bits={},p={})'.format(self.bits, self.p)


class RandomSolarize(torch.nn.Module):
    """Solarize the image randomly with a given probability by inverting all pixel
1774
1775
1776
    values above a threshold. If img is a Tensor, it is expected to be in [..., 1 or 3, H, W] format,
    where ... means it can have an arbitrary number of leading dimensions.
    If img is PIL Image, it is expected to be in mode "L" or "RGB".
1777
1778
1779
1780
1781
1782
1783
1784
1785
1786
1787
1788
1789
1790
1791
1792
1793
1794
1795
1796
1797
1798
1799
1800
1801
1802
1803
1804

    Args:
        threshold (float): all pixels equal or above this value are inverted.
        p (float): probability of the image being color inverted. Default value is 0.5
    """

    def __init__(self, threshold, p=0.5):
        super().__init__()
        self.threshold = threshold
        self.p = p

    def forward(self, img):
        """
        Args:
            img (PIL Image or Tensor): Image to be solarized.

        Returns:
            PIL Image or Tensor: Randomly solarized image.
        """
        if torch.rand(1).item() < self.p:
            return F.solarize(img, self.threshold)
        return img

    def __repr__(self):
        return self.__class__.__name__ + '(threshold={},p={})'.format(self.threshold, self.p)


class RandomAdjustSharpness(torch.nn.Module):
1805
1806
    """Adjust the sharpness of the image randomly with a given probability. If the image is torch Tensor,
    it is expected to have [..., 1 or 3, H, W] shape, where ... means an arbitrary number of leading dimensions.
1807
1808
1809
1810
1811
1812
1813
1814
1815
1816
1817
1818
1819
1820
1821
1822
1823
1824
1825
1826
1827
1828
1829
1830
1831
1832
1833
1834
1835
1836
1837

    Args:
        sharpness_factor (float):  How much to adjust the sharpness. Can be
            any non negative number. 0 gives a blurred image, 1 gives the
            original image while 2 increases the sharpness by a factor of 2.
        p (float): probability of the image being color inverted. Default value is 0.5
    """

    def __init__(self, sharpness_factor, p=0.5):
        super().__init__()
        self.sharpness_factor = sharpness_factor
        self.p = p

    def forward(self, img):
        """
        Args:
            img (PIL Image or Tensor): Image to be sharpened.

        Returns:
            PIL Image or Tensor: Randomly sharpened image.
        """
        if torch.rand(1).item() < self.p:
            return F.adjust_sharpness(img, self.sharpness_factor)
        return img

    def __repr__(self):
        return self.__class__.__name__ + '(sharpness_factor={},p={})'.format(self.sharpness_factor, self.p)


class RandomAutocontrast(torch.nn.Module):
    """Autocontrast the pixels of the given image randomly with a given probability.
1838
1839
1840
    If the image is torch Tensor, it is expected
    to have [..., 1 or 3, H, W] shape, where ... means an arbitrary number of leading dimensions.
    If img is PIL Image, it is expected to be in mode "L" or "RGB".
1841
1842
1843
1844
1845
1846
1847
1848
1849
1850
1851
1852
1853
1854
1855
1856
1857
1858
1859
1860
1861
1862
1863
1864
1865
1866
1867

    Args:
        p (float): probability of the image being autocontrasted. Default value is 0.5
    """

    def __init__(self, p=0.5):
        super().__init__()
        self.p = p

    def forward(self, img):
        """
        Args:
            img (PIL Image or Tensor): Image to be autocontrasted.

        Returns:
            PIL Image or Tensor: Randomly autocontrasted image.
        """
        if torch.rand(1).item() < self.p:
            return F.autocontrast(img)
        return img

    def __repr__(self):
        return self.__class__.__name__ + '(p={})'.format(self.p)


class RandomEqualize(torch.nn.Module):
    """Equalize the histogram of the given image randomly with a given probability.
1868
1869
1870
    If the image is torch Tensor, it is expected
    to have [..., 1 or 3, H, W] shape, where ... means an arbitrary number of leading dimensions.
    If img is PIL Image, it is expected to be in mode "P", "L" or "RGB".
1871
1872
1873
1874
1875
1876
1877
1878
1879
1880
1881
1882
1883
1884
1885
1886
1887
1888
1889
1890
1891
1892
1893

    Args:
        p (float): probability of the image being equalized. Default value is 0.5
    """

    def __init__(self, p=0.5):
        super().__init__()
        self.p = p

    def forward(self, img):
        """
        Args:
            img (PIL Image or Tensor): Image to be equalized.

        Returns:
            PIL Image or Tensor: Randomly equalized image.
        """
        if torch.rand(1).item() < self.p:
            return F.equalize(img)
        return img

    def __repr__(self):
        return self.__class__.__name__ + '(p={})'.format(self.p)