onnx.cpp 58 KB
Newer Older
Paul's avatar
Paul committed
1
2
3
4
5
6
7
8
#include <google/protobuf/text_format.h>
#include <google/protobuf/io/zero_copy_stream_impl.h>
#include <onnx.pb.h>
#include <iostream>
#include <fstream>
#include <unordered_map>
#include <functional>
#include <array>
Paul's avatar
Paul committed
9
#include <utility>
10
#include <vector>
Paul's avatar
Paul committed
11

Paul's avatar
Paul committed
12
13
14
15
16
17
#include <migraphx/fallthrough.hpp>
#include <migraphx/program.hpp>
#include <migraphx/operators.hpp>
#include <migraphx/ranges.hpp>
#include <migraphx/instruction.hpp>
#include <migraphx/config.hpp>
18
#include <migraphx/onnx.hpp>
Paul's avatar
Paul committed
19
20

namespace migraphx {
Paul's avatar
Paul committed
21
inline namespace MIGRAPHX_INLINE_NS {
Paul's avatar
Paul committed
22
23
24
25
26

struct onnx_parser
{
    using attribute_map = std::unordered_map<std::string, onnx::AttributeProto>;
    using node_map      = std::unordered_map<std::string, onnx::NodeProto>;
Paul's avatar
Paul committed
27
28
    using op_func =
        std::function<std::vector<instruction_ref>(attribute_map, std::vector<instruction_ref>)>;
Paul's avatar
Paul committed
29
30
    node_map nodes;
    std::unordered_map<std::string, instruction_ref> instructions;
Scott Thornton's avatar
Scott Thornton committed
31
    program prog    = program();
32
    bool is_pytorch = false;
Paul's avatar
Paul committed
33
34

    std::unordered_map<std::string, op_func> ops;
35
    std::unordered_map<std::string, operation> map_actv_funcs;
Paul's avatar
Paul committed
36
37
38

    onnx_parser()
    {
Khalique's avatar
Khalique committed
39
        add_generic_op("Relu", op::relu{});
Khalique's avatar
Khalique committed
40
41
        add_generic_op("Sigmoid", op::sigmoid{});
        add_generic_op("Abs", op::abs{});
Shucai Xiao's avatar
Shucai Xiao committed
42
43
        add_generic_op("Exp", op::exp{});
        add_generic_op("Log", op::log{});
Khalique's avatar
Khalique committed
44
45
        // disable dropout for inference
        add_generic_op("Dropout", op::identity{});
Khalique's avatar
Khalique committed
46
        add_generic_op("Identity", op::identity{});
Shucai Xiao's avatar
Shucai Xiao committed
47
48
49
        add_generic_op("Sin", op::sin{});
        add_generic_op("Cos", op::cos{});
        add_generic_op("Tan", op::tan{});
50
51
        add_generic_op("Sinh", op::sinh{});
        add_generic_op("Cosh", op::cosh{});
52
        add_generic_op("Tanh", op::tanh{});
53
54
55
        add_generic_op("Asin", op::asin{});
        add_generic_op("Acos", op::acos{});
        add_generic_op("Atan", op::atan{});
Paul's avatar
Paul committed
56

Khalique's avatar
Khalique committed
57
58
59
60
61
        add_binary_op("Add", op::add{});
        add_binary_op("Div", op::div{});
        add_binary_op("Mul", op::mul{});
        add_binary_op("Sub", op::sub{});

Khalique's avatar
Khalique committed
62
63
64
        add_variadic_op("Sum", op::add{});
        add_variadic_op("Max", op::max{});
        add_variadic_op("Min", op::min{});
Paul's avatar
Paul committed
65

Khalique's avatar
Khalique committed
66
        add_mem_op("Clip", &onnx_parser::parse_clip);
Khalique's avatar
Khalique committed
67
        add_mem_op("LRN", &onnx_parser::parse_lrn);
Khalique's avatar
Khalique committed
68
        add_mem_op("ImageScaler", &onnx_parser::parse_imagescaler);
69
        add_mem_op("LeakyRelu", &onnx_parser::parse_leaky_relu);
Khalique's avatar
Khalique committed
70
        add_mem_op("Elu", &onnx_parser::parse_elu);
Paul's avatar
Paul committed
71
72
        add_mem_op("Constant", &onnx_parser::parse_constant);
        add_mem_op("Conv", &onnx_parser::parse_conv);
Paul's avatar
Paul committed
73
74
        add_mem_op("MaxPool", &onnx_parser::parse_pooling);
        add_mem_op("AveragePool", &onnx_parser::parse_pooling);
75
76
        add_mem_op("GlobalMaxPool", &onnx_parser::parse_pooling);
        add_mem_op("GlobalAveragePool", &onnx_parser::parse_pooling);
Paul's avatar
Paul committed
77
        add_mem_op("Reshape", &onnx_parser::parse_reshape);
Paul's avatar
Paul committed
78
79
        add_mem_op("Flatten", &onnx_parser::parse_flatten);
        add_mem_op("Gemm", &onnx_parser::parse_gemm);
80
        add_mem_op("MatMul", &onnx_parser::parse_matmul);
81
        add_mem_op("BatchNormalization", &onnx_parser::parse_batchnorm);
Paul's avatar
Paul committed
82
        add_mem_op("Softmax", &onnx_parser::parse_softmax);
Shucai Xiao's avatar
Shucai Xiao committed
83
        add_mem_op("LogSoftmax", &onnx_parser::parse_logsoftmax);
84
85
86
        add_mem_op("Squeeze", &onnx_parser::parse_squeeze);
        add_mem_op("Unsqueeze", &onnx_parser::parse_unsqueeze);
        add_mem_op("Slice", &onnx_parser::parse_slice);
Scott Thornton's avatar
Scott Thornton committed
87
        add_mem_op("Concat", &onnx_parser::parse_concat);
88
89
90
        add_mem_op("Gather", &onnx_parser::parse_gather);
        add_mem_op("Shape", &onnx_parser::parse_shape);
        add_mem_op("ConstantFill", &onnx_parser::parse_constant_fill);
Khalique's avatar
Khalique committed
91
        add_mem_op("Transpose", &onnx_parser::parse_transpose);
Shucai Xiao's avatar
Shucai Xiao committed
92
        add_mem_op("RNN", &onnx_parser::parse_rnn);
93
        add_mem_op("GRU", &onnx_parser::parse_gru);
Shucai Xiao's avatar
Shucai Xiao committed
94
        add_mem_op("LSTM", &onnx_parser::parse_lstm);
Khalique's avatar
Khalique committed
95
        add_mem_op("Pad", &onnx_parser::parse_pad);
96
97
98
99
100
101
102

        // init the activation function map
        init_actv_func();
    }

    void init_actv_func()
    {
103
104
105
106
107
108
        // Support name format of all lower case or the first letter capital
        map_actv_funcs.insert(std::make_pair("tanh", op::tanh{}));
        map_actv_funcs.insert(std::make_pair("relu", op::relu{}));
        map_actv_funcs.insert(std::make_pair("sigmoid", op::sigmoid{}));
        map_actv_funcs.insert(std::make_pair("leakyrelu", op::leaky_relu{}));
        map_actv_funcs.insert(std::make_pair("elu", op::elu{}));
Paul's avatar
Paul committed
109
110
111
112
    }

    template <class F>
    void add_op(std::string name, F f)
Paul's avatar
Paul committed
113
114
115
116
117
118
119
120
121
    {
        ops.emplace(name, [=](auto&&... xs) {
            return std::vector<instruction_ref>{f(std::forward<decltype(xs)>(xs)...)};
        });
    }

    // Multi output op
    template <class F>
    void add_multi_op(std::string name, F f)
Paul's avatar
Paul committed
122
123
124
125
126
127
128
    {
        ops.emplace(name, f);
    }

    template <class F>
    void add_mem_op(std::string name, F f)
    {
Paul's avatar
Paul committed
129
        add_op(name, [=](auto&&... xs) {
Paul's avatar
Paul committed
130
131
132
            return std::mem_fn(f)(*this, name, std::forward<decltype(xs)>(xs)...);
        });
    }
Khalique's avatar
Khalique committed
133

134
    template <class T>
Khalique's avatar
Khalique committed
135
    void add_binary_op(std::string name, T x)
136
    {
Paul's avatar
Paul committed
137
        add_op(name, [this, x](attribute_map attributes, std::vector<instruction_ref> args) {
Scott Thornton's avatar
Scott Thornton committed
138
            if(args.size() != 2)
Paul's avatar
Paul committed
139
                MIGRAPHX_THROW("binary operators should have 2 operands");
140
            if(contains(attributes, "broadcast") and contains(attributes, "axis"))
141
142
143
144
            {
                uint64_t broadcasted = parse_value(attributes.at("broadcast")).at<uint64_t>();
                if(broadcasted != 0)
                {
145
                    uint64_t axis = parse_value(attributes.at("axis")).at<uint64_t>();
Shucai Xiao's avatar
Shucai Xiao committed
146
147
                    auto l = prog.add_instruction(op::broadcast{axis, args[0]->get_shape().lens()},
                                                  args[1]);
148
149
                    return prog.add_instruction(x, args[0], l);
                }
150
                return prog.add_instruction(x, args);
151
            }
Paul's avatar
Paul committed
152
            else
153
            {
Khalique's avatar
Khalique committed
154
                return add_broadcastable_binary_op(args[0], args[1], x);
155
156
157
158
            }
        });
    }

Shucai Xiao's avatar
Shucai Xiao committed
159
160
    std::vector<std::size_t> compute_broadcasted_lens(std::vector<std::size_t> s0,
                                                      std::vector<std::size_t> s1)
161
162
163
164
165
166
167
168
169
170
171
172
173
    {
        // Example:
        // s0 = (3,2,4,5) and s1 = (2,1,1)
        //
        // In this case we need to broadcast (:,1,1) portion of
        // s1 plus broadcast the 1st dimension of s1
        // giving output_lens = (3,2,4,5)
        //
        // Another example:
        // s0 = (3,2,1,5) and s1 = (2,7,5)
        // In this case we need to broadcast the (:,:,1:,:) axis
        // of s0 plus the 1st dimension of s1 giving
        // output_lens = (3,2,7,5)
Shucai Xiao's avatar
Shucai Xiao committed
174
        if(s0.size() > s1.size())
175
176
177
178
179
180
        {
            s0.swap(s1);
        }

        std::vector<std::size_t> out_lens(s1);
        auto offset = s1.size() - s0.size();
Shucai Xiao's avatar
Shucai Xiao committed
181
182
183
184
        std::transform(s0.begin(),
                       s0.end(),
                       s1.begin() + offset,
                       out_lens.begin() + offset,
185
                       [&](auto a, auto b) {
Shucai Xiao's avatar
Shucai Xiao committed
186
                           if(a != b and a != 1 and b != 1)
187
                           {
Shucai Xiao's avatar
Shucai Xiao committed
188
189
190
191
192
193
                               MIGRAPHX_THROW("COMPUTE_BROADCASTLEN: shape {" +
                                              to_string_range(s0) + "} and {" +
                                              to_string_range(s1) + "} mismatch!");
                           }
                           return std::max(a, b);
                       });
194
195
196
197

        return out_lens;
    }

Khalique's avatar
Khalique committed
198
199
200
    template <class T>
    instruction_ref add_broadcastable_binary_op(instruction_ref arg0, instruction_ref arg1, T x)
    {
Khalique's avatar
Khalique committed
201
        if(arg0->get_shape().lens() != arg1->get_shape().lens())
Khalique's avatar
Khalique committed
202
203
        {
            // Get lengths for both arguments
Shucai Xiao's avatar
Shucai Xiao committed
204
205
            auto s0       = arg0->get_shape().lens();
            auto s1       = arg1->get_shape().lens();
206
            auto out_lens = compute_broadcasted_lens(s0, s1);
Shucai Xiao's avatar
Shucai Xiao committed
207
208
            auto l0       = prog.add_instruction(op::multibroadcast{out_lens}, arg0);
            auto l1       = prog.add_instruction(op::multibroadcast{out_lens}, arg1);
Khalique's avatar
Khalique committed
209
210
211
212
213
214
            return prog.add_instruction(x, l0, l1);
        }
        else
        {
            return prog.add_instruction(x, {arg0, arg1});
        }
215
216
    }

Paul's avatar
Paul committed
217
    template <class T>
Paul's avatar
Paul committed
218
219
    void add_generic_op(std::string name, T x)
    {
Paul's avatar
Paul committed
220
        add_op(name, [this, x](const attribute_map&, std::vector<instruction_ref> args) {
Paul's avatar
Paul committed
221
222
223
224
            return prog.add_instruction(x, args);
        });
    }

Khalique's avatar
Khalique committed
225
    template <class T>
Khalique's avatar
Khalique committed
226
    void add_variadic_op(std::string name, T x)
Khalique's avatar
Khalique committed
227
    {
Paul's avatar
Paul committed
228
        add_op(name, [this, x](const attribute_map&, std::vector<instruction_ref> args) {
Khalique's avatar
Khalique committed
229
            return std::accumulate(std::next(args.begin()),
Khalique's avatar
Khalique committed
230
231
232
233
234
                                   args.end(),
                                   args.front(),
                                   [this, x](instruction_ref a, instruction_ref b) {
                                       return add_broadcastable_binary_op(a, b, x);
                                   });
Khalique's avatar
Khalique committed
235
        });
Khalique's avatar
Khalique committed
236
237
    }

Khalique's avatar
Khalique committed
238
239
240
    instruction_ref parse_clip(const std::string&,
                               const attribute_map& attributes,
                               std::vector<instruction_ref> args)
Khalique's avatar
Khalique committed
241
242
243
244
245
246
247
248
249
250
251
252
253
    {
        op::clip op;
        if(contains(attributes, "max"))
        {
            op.max_val = parse_value(attributes.at("max")).at<float>();
        }
        if(contains(attributes, "min"))
        {
            op.min_val = parse_value(attributes.at("min")).at<float>();
        }
        return prog.add_instruction(op, std::move(args));
    }

Paul's avatar
Paul committed
254
    instruction_ref
Paul's avatar
Paul committed
255
    parse_softmax(const std::string&, const attribute_map&, std::vector<instruction_ref> args)
Paul's avatar
Paul committed
256
257
    {
        auto dims = args.front()->get_shape().lens();
Scott Thornton's avatar
Scott Thornton committed
258
259
        auto r =
            prog.add_instruction(op::reshape{{long(dims[0]), long(dims[1]), 1, 1}}, args.front());
260
261
        auto s = prog.add_instruction(op::softmax{}, r);
        return prog.add_instruction(op::reshape{{long(dims[0]), long(dims[1])}}, s);
Paul's avatar
Paul committed
262
263
    }

Shucai Xiao's avatar
Shucai Xiao committed
264
265
266
    instruction_ref parse_logsoftmax(const std::string&,
                                     const attribute_map& attributes,
                                     std::vector<instruction_ref> args)
Shucai Xiao's avatar
Shucai Xiao committed
267
268
269
270
271
272
273
274
275
276
    {
        int axis = 1;
        if(contains(attributes, "axis"))
        {
            axis = parse_value(attributes.at("axis")).at<int>();
        }

        return prog.add_instruction(op::logsoftmax{axis}, std::move(args));
    }

Paul's avatar
Paul committed
277
    instruction_ref
Paul's avatar
Paul committed
278
    parse_conv(const std::string&, attribute_map attributes, std::vector<instruction_ref> args)
Paul's avatar
Paul committed
279
    {
280
        op::convolution op;
281
        auto l0 = args[0];
Paul's avatar
Paul committed
282
283
        if(contains(attributes, "pads"))
        {
Scott Thornton's avatar
Scott Thornton committed
284
            if(contains(attributes, "auto_pad"))
285
            {
Paul's avatar
Paul committed
286
                MIGRAPHX_THROW("auto_pad and padding cannot be specified simultaneously");
287
            }
288
289
            std::vector<std::int64_t> padding;
            copy(attributes["pads"].ints(), std::back_inserter(padding));
Scott Thornton's avatar
Scott Thornton committed
290
            if(padding.size() != 4)
291
            {
Paul's avatar
Paul committed
292
                MIGRAPHX_THROW("padding should have 4 values");
293
            }
Scott Thornton's avatar
Scott Thornton committed
294
            if(padding[0] != padding[2] || padding[1] != padding[3])
295
            {
296
297
                // insert zeros for pad op (args[0] has 4 dims)
                padding = {0, 0, padding[0], padding[1], 0, 0, padding[2], padding[3]};
Khalique's avatar
Khalique committed
298
                l0      = prog.add_instruction(op::pad{padding}, l0);
299
            }
300
301
302
303
            else
            {
                op.padding[0] = padding[0];
                op.padding[1] = padding[1];
304
            }
Paul's avatar
Paul committed
305
        }
Paul's avatar
Paul committed
306
307
308
309
310
311
312
313
        if(contains(attributes, "strides"))
        {
            copy(attributes["strides"].ints(), op.stride.begin());
        }
        if(contains(attributes, "dilations"))
        {
            copy(attributes["dilations"].ints(), op.dilation.begin());
        }
Scott Thornton's avatar
Scott Thornton committed
314
        if(contains(attributes, "auto_pad"))
315
316
        {
            auto s = attributes["auto_pad"].s();
Scott Thornton's avatar
Scott Thornton committed
317
            if(contains(attributes, "pads") and to_upper(s) != "NOTSET")
318
            {
Paul's avatar
Paul committed
319
                MIGRAPHX_THROW("auto_pad and padding cannot be specified simultaneously");
320
321
            }

wsttiger's avatar
fixes  
wsttiger committed
322
            if(s.find("SAME") != std::string::npos)
323
            {
324
                op.padding_mode = op::padding_mode_t::same;
325
326
            }
        }
Khalique's avatar
Khalique committed
327
328
329
330
        if(contains(attributes, "group"))
        {
            op.group = parse_value(attributes.at("group")).at<int>();
        }
Paul's avatar
Paul committed
331
332
333
334
        if(args.size() == 3)
        {
            uint64_t axis = 1;
            auto l1       = prog.add_instruction(op, args[0], args[1]);
Shucai Xiao's avatar
Shucai Xiao committed
335
            auto l2 = prog.add_instruction(op::broadcast{axis, l1->get_shape().lens()}, args[2]);
336
            return prog.add_instruction(op::add{}, l1, l2);
Paul's avatar
Paul committed
337
        }
338
        return prog.add_instruction(op, l0, args[1]);
Paul's avatar
Paul committed
339
    }
Paul's avatar
Paul committed
340

Paul's avatar
Paul committed
341
342
343
    instruction_ref parse_pooling(const std::string& name,
                                  attribute_map attributes,
                                  std::vector<instruction_ref> args)
Paul's avatar
Paul committed
344
    {
Khalique's avatar
Khalique committed
345
        op::pooling op{ends_with(name, "MaxPool") ? "max" : "average"};
346
        auto l0 = args[0];
Khalique's avatar
Khalique committed
347
        if(starts_with(name, "Global"))
348
        {
Khalique's avatar
Khalique committed
349
350
            auto lens  = args.front()->get_shape().lens();
            op.lengths = {lens[2], lens[3]};
351
        }
Paul's avatar
Paul committed
352
353
        if(contains(attributes, "pads"))
        {
354
355
            std::vector<std::int64_t> padding;
            copy(attributes["pads"].ints(), std::back_inserter(padding));
Scott Thornton's avatar
Scott Thornton committed
356
            if(padding.size() != 4)
357
            {
Paul's avatar
Paul committed
358
                MIGRAPHX_THROW("padding should have 4 values");
359
            }
Scott Thornton's avatar
Scott Thornton committed
360
            if(padding[0] != padding[2] || padding[1] != padding[3])
361
            {
362
363
                // insert zeros for pad op (args[0] has 4 dims)
                padding = {0, 0, padding[0], padding[1], 0, 0, padding[2], padding[3]};
Khalique's avatar
Khalique committed
364
365
                l0 = prog.add_instruction(op::pad{padding, std::numeric_limits<float>::lowest()},
                                          l0);
366
367
368
369
370
            }
            else
            {
                op.padding[0] = padding[0];
                op.padding[1] = padding[1];
371
            }
Paul's avatar
Paul committed
372
373
374
375
376
377
378
379
380
        }
        if(contains(attributes, "strides"))
        {
            copy(attributes["strides"].ints(), op.stride.begin());
        }
        if(contains(attributes, "kernel_shape"))
        {
            copy(attributes["kernel_shape"].ints(), op.lengths.begin());
        }
Scott Thornton's avatar
Scott Thornton committed
381
        if(contains(attributes, "auto_pad"))
382
383
        {
            auto s = attributes["auto_pad"].s();
384
            if(s.find("SAME_UPPER") == std::string::npos)
385
            {
386
                MIGRAPHX_THROW("auto_pad only supports SAME_UPPER for pooling");
387
            }
388
            op.padding_mode = op::padding_mode_t::same;
389
390
        }

391
        return prog.add_instruction(op, l0);
Paul's avatar
Paul committed
392
393
    }

Paul's avatar
Paul committed
394
    instruction_ref
Paul's avatar
Paul committed
395
    parse_reshape(const std::string&, attribute_map attributes, std::vector<instruction_ref> args)
Paul's avatar
Paul committed
396
    {
397
        op::reshape op;
Paul's avatar
Paul committed
398
399
400
401
402
403
404
        if(args.size() == 1)
        {
            literal s = parse_value(attributes.at("shape"));
            s.visit([&](auto v) { copy(v, std::back_inserter(op.dims)); });
        }
        if(args.size() == 2)
        {
Paul's avatar
Paul committed
405
            auto s = args[1]->eval();
Paul's avatar
Paul committed
406
            if(s.empty())
Paul's avatar
Paul committed
407
                MIGRAPHX_THROW("Dynamic shape is not supported.");
Paul's avatar
Paul committed
408
            s.visit([&](auto v) { copy(v, std::back_inserter(op.dims)); });
Paul's avatar
Paul committed
409
        }
Paul's avatar
Paul committed
410
411
412
        return prog.add_instruction(op, args[0]);
    }

Paul's avatar
Paul committed
413
    instruction_ref
Paul's avatar
Paul committed
414
    parse_flatten(const std::string&, attribute_map attributes, std::vector<instruction_ref> args)
Paul's avatar
Paul committed
415
    {
416
        uint64_t axis = 1;
Paul's avatar
Paul committed
417
418
419
420
        if(contains(attributes, "axis"))
        {
            axis = parse_value(attributes.at("axis")).at<int>();
        }
421
        return prog.add_instruction(op::flatten{axis}, args[0]);
Paul's avatar
Paul committed
422
423
    }

424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
    instruction_ref
    parse_squeeze(const std::string&, attribute_map attributes, std::vector<instruction_ref> args)
    {
        op::squeeze op;
        literal s = parse_value(attributes.at("axes"));
        s.visit([&](auto v) { copy(v, std::back_inserter(op.axes)); });
        return prog.add_instruction(op, args[0]);
    }

    instruction_ref
    parse_unsqueeze(const std::string&, attribute_map attributes, std::vector<instruction_ref> args)
    {
        op::unsqueeze op;
        literal s = parse_value(attributes.at("axes"));
        s.visit([&](auto v) { copy(v, std::back_inserter(op.axes)); });
        return prog.add_instruction(op, args[0]);
    }

Scott Thornton's avatar
Scott Thornton committed
442
443
444
445
446
447
448
    instruction_ref
    parse_concat(const std::string&, attribute_map attributes, std::vector<instruction_ref> args)
    {
        std::size_t axis = parse_value(attributes.at("axis")).at<int>();
        op::concat op{axis};
        return prog.add_instruction(op, std::move(args));
    }
449

450
451
452
    instruction_ref
    parse_gather(const std::string&, attribute_map attributes, std::vector<instruction_ref> args)
    {
453
        int axis = 0;
454
455
456
457
        if(contains(attributes, "axis"))
        {
            axis = parse_value(attributes.at("axis")).at<int>();
        }
458
        op::gather op{axis};
459
460
461
        return prog.add_instruction(op, std::move(args));
    }

462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
    instruction_ref
    parse_slice(const std::string&, attribute_map attributes, std::vector<instruction_ref> args)
    {
        op::slice op;
        if(contains(attributes, "axes"))
        {
            literal s = parse_value(attributes.at("axes"));
            s.visit([&](auto v) { copy(v, std::back_inserter(op.axes)); });
        }
        {
            literal s = parse_value(attributes.at("ends"));
            s.visit([&](auto v) { copy(v, std::back_inserter(op.ends)); });
        }
        {
            literal s = parse_value(attributes.at("starts"));
            s.visit([&](auto v) { copy(v, std::back_inserter(op.starts)); });
        }
        return prog.add_instruction(op, args[0]);
    }

Paul's avatar
Paul committed
482
483
484
    instruction_ref parse_constant(const std::string&,
                                   attribute_map attributes,
                                   const std::vector<instruction_ref>&)
Paul's avatar
Paul committed
485
    {
Shucai Xiao's avatar
Shucai Xiao committed
486
        literal v     = parse_value(attributes.at("value"));
487
488
489
        auto dim_size = attributes.at("value").t().dims_size();
        // if dim_size is 0, it is a scalar
        if(dim_size == 0)
490
        {
491
            migraphx::shape scalar_shape{v.get_shape().type()};
492
493
494
            return prog.add_literal(migraphx::literal{scalar_shape, v.data()});
        }

Paul's avatar
Paul committed
495
496
        return prog.add_literal(v);
    }
Paul's avatar
Paul committed
497

Paul's avatar
Paul committed
498
    instruction_ref
Paul's avatar
Paul committed
499
    parse_gemm(const std::string&, attribute_map attributes, std::vector<instruction_ref> args)
Paul's avatar
Paul committed
500
501
    {
        float alpha = 1.0f;
Khalique's avatar
Khalique committed
502
        float beta  = 1.0f;
Paul's avatar
Paul committed
503
504
505
506
507
508
509
510
        bool transa = false;
        bool transb = false;
        if(contains(attributes, "alpha"))
        {
            alpha = parse_value(attributes.at("alpha")).at<float>();
        }
        if(contains(attributes, "beta"))
        {
511
            beta = parse_value(attributes.at("beta")).at<float>();
Paul's avatar
Paul committed
512
513
514
515
516
517
518
519
520
        }
        if(contains(attributes, "transA"))
        {
            transa = parse_value(attributes.at("transA")).at<bool>();
        }
        if(contains(attributes, "transB"))
        {
            transb = parse_value(attributes.at("transB")).at<bool>();
        }
521
522
523
524
525
526

        std::vector<int64_t> perm(args[0]->get_shape().lens().size());
        std::iota(perm.begin(), perm.end(), int64_t{0});
        // swap the last two elements
        std::swap(*perm.rbegin(), *(perm.rbegin() + 1));

527
528
        auto l1 = (transa) ? prog.add_instruction(op::transpose{perm}, args[0]) : args[0];
        auto l2 = (transb) ? prog.add_instruction(op::transpose{perm}, args[1]) : args[1];
Paul's avatar
Paul committed
529
530
        if(args.size() == 3)
        {
531
            if(beta != 0.f && args[2]->get_shape().elements() > 0)
532
            {
Shucai Xiao's avatar
Shucai Xiao committed
533
                auto out_lens   = l1->get_shape().lens();
534
                out_lens.back() = l2->get_shape().lens().back();
Shucai Xiao's avatar
Shucai Xiao committed
535
                auto l3         = args[2];
Shucai Xiao's avatar
Shucai Xiao committed
536
537
                auto l3_lens    = l3->get_shape().lens();
                if(!std::equal(out_lens.begin(), out_lens.end(), l3_lens.begin(), l3_lens.end()))
Khalique's avatar
Khalique committed
538
                {
539
                    l3 = prog.add_instruction(op::multibroadcast{out_lens}, args[2]);
Khalique's avatar
Khalique committed
540
                }
541
                return prog.add_instruction(op::dot{alpha, beta}, l1, l2, l3);
542
            }
Paul's avatar
Paul committed
543
        }
544
545

        return prog.add_instruction(op::dot{alpha, beta}, l1, l2);
Paul's avatar
Paul committed
546
547
    }

548
    instruction_ref
Shucai Xiao's avatar
Shucai Xiao committed
549
    parse_matmul(const std::string&, const attribute_map&, std::vector<instruction_ref> args)
550
    {
Shucai Xiao's avatar
Shucai Xiao committed
551
552
        auto l0      = args[0];
        auto l1      = args[1];
553
554
555
556
557
        auto l0_lens = l0->get_shape().lens();
        auto l1_lens = l1->get_shape().lens();

        // args[0] is a vector, prepend 1 to the shape
        bool is_a_prepended = false;
Shucai Xiao's avatar
Shucai Xiao committed
558
        if(l0_lens.size() == 1)
559
560
561
562
563
564
565
        {
            is_a_prepended = true;
            l0_lens.insert(l0_lens.begin(), 1);
            l0 = prog.add_instruction(op::unsqueeze{{0}}, args[0]);
        }

        bool is_b_appended = false;
Shucai Xiao's avatar
Shucai Xiao committed
566
        if(l1_lens.size() == 1)
567
568
569
570
571
572
573
574
        {
            is_b_appended = true;
            l1_lens.push_back(1);
            l1 = prog.add_instruction(op::unsqueeze{{1}}, args[1]);
        }

        instruction_ref bl0 = l0;
        instruction_ref bl1 = l1;
Shucai Xiao's avatar
Shucai Xiao committed
575
        if(!std::equal(l0_lens.rbegin() + 2, l0_lens.rend(), l1_lens.rbegin() + 2, l1_lens.rend()))
576
577
578
579
580
581
        {
            auto l0_it = l0_lens.begin() + l0_lens.size() - 2;
            std::vector<std::size_t> l0_broadcasted_lens(l0_lens.begin(), l0_it);
            auto l1_it = l1_lens.begin() + l1_lens.size() - 2;
            std::vector<std::size_t> l1_broadcasted_lens(l1_lens.begin(), l1_it);
            auto output_lens = compute_broadcasted_lens(l0_broadcasted_lens, l1_broadcasted_lens);
582
            l0_broadcasted_lens = output_lens;
583
            l0_broadcasted_lens.insert(l0_broadcasted_lens.end(), l0_it, l0_lens.end());
584
            l1_broadcasted_lens = output_lens;
585
            l1_broadcasted_lens.insert(l1_broadcasted_lens.end(), l1_it, l1_lens.end());
Shucai Xiao's avatar
Shucai Xiao committed
586
            if(l0_lens != l0_broadcasted_lens)
587
588
589
            {
                bl0 = prog.add_instruction(op::multibroadcast{l0_broadcasted_lens}, l0);
            }
Shucai Xiao's avatar
Shucai Xiao committed
590
            if(l1_lens != l1_broadcasted_lens)
591
592
593
594
595
            {
                bl1 = prog.add_instruction(op::multibroadcast{l1_broadcasted_lens}, l1);
            }
        }

Shucai Xiao's avatar
Shucai Xiao committed
596
        auto dot_res     = prog.add_instruction(op::dot{1.0f, 0.0f}, bl0, bl1);
597
        int64_t num_axis = static_cast<int64_t>(dot_res->get_shape().lens().size());
Shucai Xiao's avatar
Shucai Xiao committed
598
        if(is_a_prepended)
599
600
601
602
        {
            dot_res = prog.add_instruction(op::squeeze{{num_axis - 2}}, dot_res);
            --num_axis;
        }
Shucai Xiao's avatar
Shucai Xiao committed
603
        if(is_b_appended)
604
605
606
        {
            dot_res = prog.add_instruction(op::squeeze{{num_axis - 1}}, dot_res);
        }
Shucai Xiao's avatar
Shucai Xiao committed
607

608
609
610
        return dot_res;
    }

611
    instruction_ref
Paul's avatar
Paul committed
612
    parse_batchnorm(const std::string&, attribute_map attributes, std::vector<instruction_ref> args)
613
    {
Scott Thornton's avatar
Scott Thornton committed
614
615
        float epsilon                                     = 1e-5f;
        float momentum                                    = 0.9f;
616
        op::batch_norm_inference::bn_infer_mode_t bn_mode = op::batch_norm_inference::spatial;
Scott Thornton's avatar
Scott Thornton committed
617
        bool is_test                                      = false;
618
619
620
621
622
623
        if(contains(attributes, "epsilon"))
        {
            epsilon = parse_value(attributes.at("epsilon")).at<float>();
        }
        if(contains(attributes, "momentum"))
        {
624
            momentum = parse_value(attributes.at("momentum")).at<float>();
625
626
627
        }
        if(contains(attributes, "is_test"))
        {
wsttiger's avatar
wsttiger committed
628
            is_test = parse_value(attributes.at("is_test")).at<uint64_t>() > 0;
629
630
631
        }
        if(contains(attributes, "spatial"))
        {
632
            bn_mode = (parse_value(attributes.at("spatial")).at<uint64_t>() > 0)
633
634
                          ? op::batch_norm_inference::spatial
                          : op::batch_norm_inference::per_activation;
635
        }
Paul's avatar
Paul committed
636
        (void)is_test;
Paul's avatar
Paul committed
637
        op::batch_norm_inference op{epsilon, momentum, bn_mode};
Paul's avatar
Paul committed
638
        return prog.add_instruction(op, std::move(args));
639
640
    }

641
642
643
644
    instruction_ref parse_leaky_relu(const std::string&,
                                     attribute_map attributes,
                                     std::vector<instruction_ref> args)
    {
Khalique's avatar
Khalique committed
645
        float alpha = 0.01; // default alpha val for leaky relu
646
647
648
649
650
651
652
653
        if(contains(attributes, "alpha"))
        {
            alpha = parse_value(attributes.at("alpha")).at<float>();
        }
        op::leaky_relu op{alpha};
        return prog.add_instruction(op, args.front());
    }

Khalique's avatar
Khalique committed
654
655
    instruction_ref
    parse_elu(const std::string&, attribute_map attributes, std::vector<instruction_ref> args)
Khalique's avatar
Khalique committed
656
657
658
659
660
661
662
663
664
665
    {
        float alpha = 1.0; // default alpha val for elu
        if(contains(attributes, "alpha"))
        {
            alpha = parse_value(attributes.at("alpha")).at<float>();
        }
        op::elu op{alpha};
        return prog.add_instruction(op, args.front());
    }

Khalique's avatar
Khalique committed
666
667
    instruction_ref
    parse_lrn(const std::string&, attribute_map attributes, std::vector<instruction_ref> args)
Khalique's avatar
Khalique committed
668
669
    {
        float alpha = 0.0001;
Khalique's avatar
Khalique committed
670
671
672
        float beta  = 0.75;
        float bias  = 1.0;
        int size    = 1;
Khalique's avatar
Khalique committed
673
674
675
676
677
678
679
680
681
682
683
684
        if(contains(attributes, "alpha"))
            alpha = parse_value(attributes.at("alpha")).at<float>();
        if(contains(attributes, "beta"))
            beta = parse_value(attributes.at("beta")).at<float>();
        if(contains(attributes, "bias"))
            bias = parse_value(attributes.at("bias")).at<float>();
        if(contains(attributes, "size"))
            size = parse_value(attributes.at("size")).at<int>();
        op::lrn op{alpha, beta, bias, size};
        return prog.add_instruction(op, args.front());
    }

Khalique's avatar
Khalique committed
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
    instruction_ref parse_imagescaler(const std::string&,
                                      attribute_map attributes,
                                      std::vector<instruction_ref> args)
    {
        float scale = 1.0;
        std::vector<float> bias{};
        if(contains(attributes, "scale"))
        {
            scale = parse_value(attributes.at("scale")).at<float>();
        }

        if(contains(attributes, "bias"))
        {
            auto&& bias_floats = attributes["bias"].floats();
            bias               = std::vector<float>(bias_floats.begin(), bias_floats.end());
        }
701
        auto input_lens = args.front()->get_shape().lens();
Khalique's avatar
Khalique committed
702

Khalique's avatar
Khalique committed
703
704
        auto scale_val = prog.add_literal(scale);
        auto bias_vals = prog.add_literal(
Paul's avatar
Paul committed
705
            migraphx::literal{migraphx::shape{migraphx::shape::float_type, {bias.size()}}, bias});
Khalique's avatar
Khalique committed
706

707
        auto scale_tensor = prog.add_instruction(migraphx::op::scalar{input_lens}, scale_val);
Paul's avatar
Paul committed
708
        auto img_scaled   = prog.add_instruction(migraphx::op::mul{}, args.front(), scale_tensor);
Shucai Xiao's avatar
Shucai Xiao committed
709
        auto bias_bcast   = prog.add_instruction(migraphx::op::broadcast{1, input_lens}, bias_vals);
Paul's avatar
Paul committed
710
        return prog.add_instruction(migraphx::op::add{}, img_scaled, bias_bcast);
Khalique's avatar
Khalique committed
711
    }
Khalique's avatar
Khalique committed
712

Khalique's avatar
Khalique committed
713
714
    instruction_ref
    parse_transpose(const std::string&, attribute_map attributes, std::vector<instruction_ref> args)
Khalique's avatar
Khalique committed
715
716
717
718
719
720
721
    {
        std::vector<int64_t> perm{};
        if(contains(attributes, "perm"))
        {
            auto&& perm_vals = attributes["perm"].ints();
            perm             = std::vector<int64_t>(perm_vals.begin(), perm_vals.end());
        }
Paul's avatar
Paul committed
722
        return prog.add_instruction(migraphx::op::transpose{perm}, args.front());
Khalique's avatar
Khalique committed
723
724
    }

Khalique's avatar
Khalique committed
725
726
727
728
729
730
731
732
733
734
    instruction_ref
    parse_pad(const std::string&, attribute_map attributes, std::vector<instruction_ref> args)
    {
        std::vector<int64_t> pads{};
        float value = 0.0f;
        if(contains(attributes, "pads"))
        {
            auto&& pad_vals = attributes["pads"].ints();
            pads            = std::vector<int64_t>(pad_vals.begin(), pad_vals.end());
        }
735
        // check if padding is actually being done (at least one value is nonzero)
Khalique's avatar
Khalique committed
736
        if(std::all_of(pads.begin(), pads.end(), [](const int& i) { return i == 0; }))
737
738
739
        {
            return prog.add_instruction(migraphx::op::identity{}, args.front());
        }
Khalique's avatar
Khalique committed
740
741
742
743
744
745
746
747
748
749
750
751
        if(contains(attributes, "value"))
        {
            value = parse_value(attributes.at("value")).at<float>();
        }
        if(contains(attributes, "mode"))
        {
            auto mode = attributes.at("mode").s();
            if(mode != "constant")
                MIGRAPHX_THROW("migraphx currently only supports constant padding");
        }
        return prog.add_instruction(migraphx::op::pad{pads, value}, args.front());
    }
752
753
754
    // Use a literal instruction to replace the shape since, output of
    // shape operator are literals in migraphx
    instruction_ref
Shucai Xiao's avatar
Shucai Xiao committed
755
    parse_shape(const std::string&, const attribute_map&, std::vector<instruction_ref> args)
756
757
    {
        if(args.size() != 1)
758
            MIGRAPHX_THROW("Shape: operator should have 1 operand");
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
        std::vector<std::size_t> arg_shape = args[0]->get_shape().lens();
        std::vector<int64_t> vec_shape(arg_shape.size());
        migraphx::shape s(migraphx::shape::int64_type, {arg_shape.size()});
        std::transform(arg_shape.begin(), arg_shape.end(), vec_shape.begin(), [](auto i) {
            return int64_t(i);
        });
        return prog.add_literal(migraphx::literal{s, vec_shape});
    }

    // Use a literal instruction to replace the constantFill operator. In RNN, input shape
    // and value are fixed, so no need to do the actual computation for the constantFill
    // operator
    instruction_ref parse_constant_fill(const std::string&,
                                        attribute_map attributes,
                                        std::vector<instruction_ref> args)
    {
        int input_as_shape = 0;
        int dtype          = 1;
        float value        = 0.0f;

        if(contains(attributes, "dtype"))
        {
            dtype = parse_value(attributes.at("dtype")).at<int>();
        }
        migraphx::shape::type_t type = get_type(dtype);

        if(contains(attributes, "input_as_shape"))
        {
            input_as_shape = parse_value(attributes.at("input_as_shape")).at<int>();
        }

        if(contains(attributes, "value"))
        {
            value = parse_value(attributes.at("value")).at<float>();
        }

Shucai Xiao's avatar
Shucai Xiao committed
795
796
        if(contains(attributes, "extra_shape"))
        {
797
            MIGRAPHX_THROW("ConstantFill: cannot handle extra shape attribute");
798
799
        }

800
801
        if(input_as_shape == 1)
        {
Shucai Xiao's avatar
Shucai Xiao committed
802
            if(args.size() != 1)
803
            {
804
                MIGRAPHX_THROW("ConstantFill: need an input argument as output shape");
805
806
            }

Shucai Xiao's avatar
Shucai Xiao committed
807
808
            if(contains(attributes, "shape"))
            {
809
                MIGRAPHX_THROW("ConstantFill: cannot set the shape argument and pass in an input "
Shucai Xiao's avatar
Shucai Xiao committed
810
                               "at the same time");
811
812
            }

813
814
815
            migraphx::argument in = args[0]->eval();
            if(in.empty())
            {
816
                MIGRAPHX_THROW("ConstantFill: cannot handle dynamic shape as input");
817
            }
818

819
820
821
            std::vector<std::size_t> dims;
            in.visit([&](auto input) { dims.assign(input.begin(), input.end()); });
            migraphx::shape s(type, dims);
822
823
            std::vector<float> values(s.elements(), value);
            return prog.add_literal(migraphx::literal(s, values));
824
825
826
        }
        else if(input_as_shape == 0)
        {
Shucai Xiao's avatar
Shucai Xiao committed
827
828
            if(!contains(attributes, "shape"))
            {
829
                MIGRAPHX_THROW("ConstantFill: attribute output shape is needed");
830
831
832
            }

            literal ls = parse_value(attributes.at("shape"));
833
            std::vector<std::size_t> dims;
Shucai Xiao's avatar
Shucai Xiao committed
834
            ls.visit([&](auto s) { dims.assign(s.begin(), s.end()); });
835
            migraphx::shape s{type, dims};
836
837
            std::vector<float> values(s.elements(), value);
            return prog.add_literal(migraphx::literal(s, values));
838
839
840
        }
        else
        {
841
            MIGRAPHX_THROW("ConstantFill: wrong value of attribute input_as_shape");
842
843
844
        }
    }

Shucai Xiao's avatar
Shucai Xiao committed
845
    std::vector<instruction_ref>
Shucai Xiao's avatar
Shucai Xiao committed
846
847
848
    parse_rnn(const std::string&, attribute_map attributes, std::vector<instruction_ref> args)
    {
        migraphx::shape input_shape = args[0]->get_shape();
849
        std::size_t hidden_size     = args[1]->get_shape().lens()[1];
Shucai Xiao's avatar
Shucai Xiao committed
850
851
852

        if(contains(attributes, "hidden_size"))
        {
Shucai Xiao's avatar
Shucai Xiao committed
853
            std::size_t hidden_size_att = parse_value(attributes.at("hidden_size")).at<int>();
Shucai Xiao's avatar
Shucai Xiao committed
854
            if(hidden_size != hidden_size_att)
Shucai Xiao's avatar
Shucai Xiao committed
855
856
857
            {
                MIGRAPHX_THROW("RNN: hidden size mismatch in input and attribute");
            }
Shucai Xiao's avatar
Shucai Xiao committed
858
859
860
861
862
863
864
865
866
        }

        // Handling of direction to be added later
        std::string direction{"forward"};
        if(contains(attributes, "direction"))
        {
            direction = attributes.at("direction").s();
        }

867
        op::rnn_direction dirct = op::rnn_direction::forward;
Shucai Xiao's avatar
Shucai Xiao committed
868
869
        if(direction == "bidirectional")
        {
870
            dirct = op::rnn_direction::bidirectional;
Shucai Xiao's avatar
Shucai Xiao committed
871
872
873
        }
        else if(direction == "reverse")
        {
874
            dirct = op::rnn_direction::reverse;
Shucai Xiao's avatar
Shucai Xiao committed
875
876
        }

877
        std::vector<std::string> vec_names{"tanh"};
878
879
880
881
        if(contains(attributes, "activations"))
        {
            auto names = attributes.at("activations").strings();
            vec_names.clear();
882
            vec_names.resize(names.size());
Shucai Xiao's avatar
Shucai Xiao committed
883
884
885
            std::transform(names.begin(), names.end(), vec_names.begin(), [](auto name) {
                return to_lower(name);
            });
886
887
        }

888
889
890
        auto name_it = std::find_if(vec_names.begin(), vec_names.end(), [&](auto& name) {
            return (map_actv_funcs.count(name) == 0);
        });
Shucai Xiao's avatar
Shucai Xiao committed
891
        if(name_it != vec_names.end())
892
893
894
        {
            MIGRAPHX_THROW("RNN: activation function " + std::string(*name_it) + " not supported");
        }
895

Shucai Xiao's avatar
Shucai Xiao committed
896
        // bidirectional case should have two activation functions.
Shucai Xiao's avatar
Shucai Xiao committed
897
        // one is for forward, and the other is for reverse.
Shucai Xiao's avatar
Shucai Xiao committed
898
        // if only one actv function is provided, we use it in both
899
        // forward and reverse direction
900
        if(dirct == op::rnn_direction::bidirectional)
901
        {
Shucai Xiao's avatar
Shucai Xiao committed
902
            if(vec_names.size() == 1)
903
904
905
906
907
            {
                vec_names.push_back(vec_names.at(0));
            }
        }

Shucai Xiao's avatar
Shucai Xiao committed
908
909
910
        std::vector<operation> vec_actv_funcs(vec_names.size());
        std::transform(vec_names.begin(), vec_names.end(), vec_actv_funcs.begin(), [&](auto& fn) {
            return map_actv_funcs[fn];
911
        });
Shucai Xiao's avatar
Shucai Xiao committed
912

Shucai Xiao's avatar
Shucai Xiao committed
913
914
915
916
917
918
919
        // To be added later
        float clip = 0.0;
        if(contains(attributes, "clip"))
        {
            clip = parse_value(attributes.at("clip")).at<float>();
        }

920
921
        // if the number of arguments is less than 6, append
        // undefined operator to have 6 arguments
Shucai Xiao's avatar
Shucai Xiao committed
922
        if(args.size() < 6)
923
924
925
926
927
        {
            auto ins = prog.add_instruction(op::undefined{});
            args.insert(args.end(), (6 - args.size()), ins);
        }

Shucai Xiao's avatar
Shucai Xiao committed
928
929
        // first output for the concatenation of hidden states
        auto hidden_states = prog.add_instruction(op::rnn{hidden_size, vec_actv_funcs, dirct, clip},
Shucai Xiao's avatar
Shucai Xiao committed
930
                                                  std::move(args));
Shucai Xiao's avatar
Shucai Xiao committed
931

932
        // second output for the last hidden state
Shucai Xiao's avatar
Shucai Xiao committed
933
        auto last_output = prog.add_instruction(op::rnn_last_output{}, hidden_states);
Shucai Xiao's avatar
Shucai Xiao committed
934

Shucai Xiao's avatar
Shucai Xiao committed
935
        return {hidden_states, last_output};
Shucai Xiao's avatar
Shucai Xiao committed
936
937
    }

938
    std::vector<instruction_ref>
939
940
941
942
943
944
945
    parse_gru(const std::string&, attribute_map attributes, std::vector<instruction_ref> args)
    {
        migraphx::shape input_shape = args[0]->get_shape();
        std::size_t hidden_size     = args[2]->get_shape().lens()[2];

        if(contains(attributes, "hidden_size"))
        {
Shucai Xiao's avatar
Shucai Xiao committed
946
            std::size_t hidden_size_att = parse_value(attributes.at("hidden_size")).at<int>();
Shucai Xiao's avatar
Shucai Xiao committed
947
            if(hidden_size != hidden_size_att)
Shucai Xiao's avatar
Shucai Xiao committed
948
949
950
            {
                MIGRAPHX_THROW("GRU: hidden size mismatch in input and attribute");
            }
951
952
953
954
955
956
957
958
959
        }

        // Handling of direction to be added later
        std::string direction{"forward"};
        if(contains(attributes, "direction"))
        {
            direction = attributes.at("direction").s();
        }

960
        op::rnn_direction dirct = op::rnn_direction::forward;
961
962
        if(direction == "bidirectional")
        {
963
            dirct = op::rnn_direction::bidirectional;
964
965
966
        }
        else if(direction == "reverse")
        {
967
            dirct = op::rnn_direction::reverse;
968
969
        }

970
        std::vector<std::string> vec_names = {"sigmoid", "tanh"};
971
972
        if(contains(attributes, "activations"))
        {
973
            auto names = attributes.at("activations").strings();
974
            vec_names.clear();
Shucai Xiao's avatar
Shucai Xiao committed
975
            vec_names.resize(names.size());
Shucai Xiao's avatar
Shucai Xiao committed
976
977
978
            std::transform(names.begin(), names.end(), vec_names.begin(), [](auto name) {
                return to_lower(name);
            });
979
980
        }

981
        // need 4 activation functions
982
        if(dirct == op::rnn_direction::bidirectional)
983
        {
Shucai Xiao's avatar
Shucai Xiao committed
984
            // 4 activation functions are used in the bidirectional
985
            // scenario. No spec is provided in onnx::operator. we
Shucai Xiao's avatar
Shucai Xiao committed
986
987
            // use the algorithm that: if 1 actv function is provided,
            // repeat 1 four times. If 2 actv functins are provided,
988
989
            // assume forward and reverse use the same pair of actv
            // functions. For the case of 3 actv functions provided,
Shucai Xiao's avatar
Shucai Xiao committed
990
991
992
            // assume the 3rd one is repeated once and used by the
            // reverse direction.
            // This may need change later
993
            if(vec_names.size() == 1)
994
            {
995
                vec_names.insert(vec_names.end(), 3, vec_names.at(0));
996
            }
997
            else if(vec_names.size() == 2)
998
            {
999
1000
1001
                // repeat the activation functions
                vec_names.push_back(vec_names.at(0));
                vec_names.push_back(vec_names.at(1));
1002
            }
1003
            else if(vec_names.size() == 3)
1004
            {
1005
                vec_names.push_back(vec_names.at(2));
1006
1007
            }
        }
Shucai Xiao's avatar
Shucai Xiao committed
1008
        else
1009
        {
1010
            if(vec_names.size() == 1)
1011
            {
1012
                vec_names.push_back(vec_names.at(0));
1013
1014
1015
            }
        }

1016
1017
1018
        auto name_it = std::find_if(vec_names.begin(), vec_names.end(), [&](auto& name) {
            return (map_actv_funcs.count(name) == 0);
        });
Shucai Xiao's avatar
Shucai Xiao committed
1019
        if(name_it != vec_names.end())
1020
1021
1022
        {
            MIGRAPHX_THROW("GRU: activation function " + std::string(*name_it) + " not supported");
        }
1023

Shucai Xiao's avatar
Shucai Xiao committed
1024
1025
1026
        std::vector<operation> vec_actv_funcs(vec_names.size());
        std::transform(vec_names.begin(), vec_names.end(), vec_actv_funcs.begin(), [&](auto& name) {
            return map_actv_funcs[name];
Shucai Xiao's avatar
Shucai Xiao committed
1027
        });
1028
1029
1030
1031
1032
1033
1034
1035

        float clip = 0.0;
        if(contains(attributes, "clip"))
        {
            clip = parse_value(attributes.at("clip")).at<float>();
        }

        int linear_before_reset = 0;
Shucai Xiao's avatar
Shucai Xiao committed
1036
        if(contains(attributes, "linear_before_reset"))
1037
1038
1039
1040
        {
            linear_before_reset = parse_value(attributes.at("linear_before_reset")).at<int>();
        }

Shucai Xiao's avatar
Shucai Xiao committed
1041
        // append undefined opeator to make 6 arguments
Shucai Xiao's avatar
Shucai Xiao committed
1042
        if(args.size() < 6)
Shucai Xiao's avatar
Shucai Xiao committed
1043
1044
1045
1046
1047
        {
            auto ins = prog.add_instruction(op::undefined{});
            args.insert(args.end(), 6 - args.size(), ins);
        }

1048
1049
        // first output for concatenation of hidden states
        auto hidden_states = prog.add_instruction(
Shucai Xiao's avatar
Shucai Xiao committed
1050
            op::gru{hidden_size, vec_actv_funcs, dirct, clip, linear_before_reset},
Shucai Xiao's avatar
Shucai Xiao committed
1051
            std::move(args));
1052
1053

        // second output for last gru output
1054
        auto last_output = prog.add_instruction(op::rnn_last_output{}, hidden_states);
1055

Shucai Xiao's avatar
Shucai Xiao committed
1056
        return {hidden_states, last_output};
1057
1058
    }

Shucai Xiao's avatar
Shucai Xiao committed
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079
1080
    std::vector<instruction_ref>
    parse_lstm(const std::string&, attribute_map attributes, std::vector<instruction_ref> args)
    {
        migraphx::shape input_shape = args[0]->get_shape();
        std::size_t hidden_size     = args[2]->get_shape().lens()[2];

        if(contains(attributes, "hidden_size"))
        {
            std::size_t hidden_size_att = parse_value(attributes.at("hidden_size")).at<int>();
            if(hidden_size != hidden_size_att)
            {
                MIGRAPHX_THROW("LSTM: hidden size mismatch in input and attribute");
            }
        }

        // Handling of direction to be added later
        std::string direction{"forward"};
        if(contains(attributes, "direction"))
        {
            direction = attributes.at("direction").s();
        }

Shucai Xiao's avatar
Shucai Xiao committed
1081
        op::rnn_direction dirct = op::rnn_direction::forward;
Shucai Xiao's avatar
Shucai Xiao committed
1082
1083
        if(direction == "bidirectional")
        {
Shucai Xiao's avatar
Shucai Xiao committed
1084
            dirct = op::rnn_direction::bidirectional;
Shucai Xiao's avatar
Shucai Xiao committed
1085
1086
1087
        }
        else if(direction == "reverse")
        {
Shucai Xiao's avatar
Shucai Xiao committed
1088
            dirct = op::rnn_direction::reverse;
Shucai Xiao's avatar
Shucai Xiao committed
1089
        }
Shucai Xiao's avatar
Shucai Xiao committed
1090
        else if(direction == "forward")
Shucai Xiao's avatar
Shucai Xiao committed
1091
        {
Shucai Xiao's avatar
Shucai Xiao committed
1092
            dirct = op::rnn_direction::forward;
Shucai Xiao's avatar
Shucai Xiao committed
1093
1094
1095
1096
1097
1098
        }
        else
        {
            MIGRAPHX_THROW("LSTM: incorrect direction attribute");
        }

1099
        std::vector<std::string> vec_names = {"sigmoid", "tanh", "tanh"};
Shucai Xiao's avatar
Shucai Xiao committed
1100
1101
1102
1103
1104
        if(contains(attributes, "activations"))
        {
            auto names = attributes.at("activations").strings();
            vec_names.clear();
            vec_names.resize(names.size());
Shucai Xiao's avatar
Shucai Xiao committed
1105
1106
1107
            std::transform(names.begin(), names.end(), vec_names.begin(), [](auto name) {
                return to_lower(name);
            });
Shucai Xiao's avatar
Shucai Xiao committed
1108
1109
1110
        }

        // need 6 activation functions for bidirectional directions
Shucai Xiao's avatar
Shucai Xiao committed
1111
        if(dirct == op::rnn_direction::bidirectional)
Shucai Xiao's avatar
Shucai Xiao committed
1112
1113
1114
1115
1116
1117
        {
            // 6 activation functions are used in the bidirectional
            // scenario. No spec is provided in onnx::operator. we
            // use the algorithm that: if 1 actv function is provided,
            // repeat 1st six times. If 2 actv functins are provided,
            // repeat 2nd once, then repeat all three once
Shucai Xiao's avatar
Shucai Xiao committed
1118
            // if 3 actv funcs are provide, repeat all three once.
Shucai Xiao's avatar
Shucai Xiao committed
1119
1120
1121
1122
            // the same algorithm is used for 4, 5, and 6 actv funcions
            // provided. This may need change later
            switch(vec_names.size())
            {
1123
            case 1:
Shucai Xiao's avatar
Shucai Xiao committed
1124
1125
1126
1127
1128
1129
                vec_names = {vec_names.at(0),
                             vec_names.at(0),
                             vec_names.at(0),
                             vec_names.at(0),
                             vec_names.at(0),
                             vec_names.at(0)};
1130
                break;
Shucai Xiao's avatar
Shucai Xiao committed
1131
1132
1133

            case 2:
                // repeat the 2nd actv func once, then repeat all three another time
Shucai Xiao's avatar
Shucai Xiao committed
1134
1135
1136
1137
1138
1139
                vec_names = {vec_names.at(0),
                             vec_names.at(1),
                             vec_names.at(1),
                             vec_names.at(0),
                             vec_names.at(1),
                             vec_names.at(1)};
Shucai Xiao's avatar
Shucai Xiao committed
1140
1141
1142
1143
                break;

            case 3:
                // repeat all three actv funcs once
Shucai Xiao's avatar
Shucai Xiao committed
1144
1145
1146
1147
1148
1149
                vec_names = {vec_names.at(0),
                             vec_names.at(1),
                             vec_names.at(2),
                             vec_names.at(0),
                             vec_names.at(1),
                             vec_names.at(2)};
Shucai Xiao's avatar
Shucai Xiao committed
1150
1151
                break;

Shucai Xiao's avatar
Shucai Xiao committed
1152
1153
1154
1155
1156
1157
1158
            case 4:
                vec_names = {vec_names.at(0),
                             vec_names.at(1),
                             vec_names.at(2),
                             vec_names.at(3),
                             vec_names.at(3),
                             vec_names.at(3)};
1159
                break;
Shucai Xiao's avatar
Shucai Xiao committed
1160

Shucai Xiao's avatar
Shucai Xiao committed
1161
1162
1163
1164
1165
1166
1167
            case 5:
                vec_names = {vec_names.at(0),
                             vec_names.at(1),
                             vec_names.at(2),
                             vec_names.at(3),
                             vec_names.at(4),
                             vec_names.at(4)};
1168
                break;
Shucai Xiao's avatar
Shucai Xiao committed
1169

Shucai Xiao's avatar
Shucai Xiao committed
1170
            default: break;
Shucai Xiao's avatar
Shucai Xiao committed
1171
1172
1173
1174
1175
1176
            }
        }
        else
        {
            switch(vec_names.size())
            {
Shucai Xiao's avatar
Shucai Xiao committed
1177
            case 1: vec_names = {vec_names.at(0), vec_names.at(0), vec_names.at(0)}; break;
Shucai Xiao's avatar
Shucai Xiao committed
1178
1179
1180

            case 2:
                // repeat the 2nd actv func once, so we have 3 actv funcs
Shucai Xiao's avatar
Shucai Xiao committed
1181
                vec_names = {vec_names.at(0), vec_names.at(1), vec_names.at(1)};
Shucai Xiao's avatar
Shucai Xiao committed
1182
1183
                break;

Shucai Xiao's avatar
Shucai Xiao committed
1184
            default: break;
Shucai Xiao's avatar
Shucai Xiao committed
1185
1186
1187
            }
        }

1188
1189
1190
        auto name_it = std::find_if(vec_names.begin(), vec_names.end(), [&](auto& name) {
            return (map_actv_funcs.count(name) == 0);
        });
Shucai Xiao's avatar
Shucai Xiao committed
1191
        if(name_it != vec_names.end())
1192
1193
1194
        {
            MIGRAPHX_THROW("LSTM: activation function " + std::string(*name_it) + " not supported");
        }
Shucai Xiao's avatar
Shucai Xiao committed
1195
1196
1197
1198
1199
1200
1201
1202
1203
1204
1205
1206
1207
1208
1209
1210
1211
1212
1213
1214
1215
1216

        std::vector<operation> vec_actv_funcs(vec_names.size());
        std::transform(vec_names.begin(), vec_names.end(), vec_actv_funcs.begin(), [&](auto& name) {
            return map_actv_funcs[name];
        });

        float clip = 0.0;
        if(contains(attributes, "clip"))
        {
            clip = parse_value(attributes.at("clip")).at<float>();
        }

        int input_forget = 0;
        if(contains(attributes, "input_forget"))
        {
            input_forget = parse_value(attributes.at("input_forget")).at<int>();
        }

        // append undefined opeator to make 6 arguments
        if(args.size() < 8)
        {
            auto ins = prog.add_instruction(op::undefined{});
Shucai Xiao's avatar
Shucai Xiao committed
1217
            args.insert(args.end(), 8 - args.size(), ins);
Shucai Xiao's avatar
Shucai Xiao committed
1218
1219
1220
1221
        }

        // first output for concatenation of hidden states
        auto hidden_states = prog.add_instruction(
Shucai Xiao's avatar
Shucai Xiao committed
1222
            op::lstm{hidden_size, vec_actv_funcs, dirct, clip, input_forget}, std::move(args));
Shucai Xiao's avatar
Shucai Xiao committed
1223
1224

        // second output for last lstm output
Shucai Xiao's avatar
Shucai Xiao committed
1225
        auto last_output = prog.add_instruction(op::rnn_last_output{}, hidden_states);
Shucai Xiao's avatar
Shucai Xiao committed
1226
1227
1228
1229
1230
1231
1232

        // third output for last cell output
        auto last_cell_output = prog.add_instruction(op::lstm_last_cell_output{}, hidden_states);

        return {hidden_states, last_output, last_cell_output};
    }

Paul's avatar
Paul committed
1233
1234
1235
1236
1237
1238
1239
1240
1241
1242
1243
1244
    void parse_from(std::istream& is)
    {
        onnx::ModelProto model;
        if(model.ParseFromIstream(&is))
        {
            if(model.has_graph())
            {
                this->parse_graph(model.graph());
            }
        }
        else
        {
Paul's avatar
Paul committed
1245
            MIGRAPHX_THROW("Failed reading onnx file.");
Paul's avatar
Paul committed
1246
1247
1248
1249
1250
1251
        }
    }

    void parse_graph(const onnx::GraphProto& graph)
    {
        nodes = get_nodes(graph);
1252
1253
1254
1255
1256
        std::unordered_map<std::string, onnx::TensorProto> initializer_data;
        for(auto&& f : graph.initializer())
        {
            initializer_data[f.name()] = f;
        }
Paul's avatar
Paul committed
1257
1258
1259
        for(auto&& input : graph.input())
        {
            const std::string& name = input.name();
1260
1261
1262
1263
1264
1265
1266
1267
1268
1269
1270
1271
            // Does the input have an initializer?
            if(contains(initializer_data, name))
            {
                auto t             = initializer_data[name];
                instructions[name] = prog.add_literal(parse_tensor(t));
            }
            else
            {
                // TODO: Get shape of input parameter
                shape s            = parse_type(input.type());
                instructions[name] = prog.add_parameter(name, s);
            }
Paul's avatar
Paul committed
1272
        }
Paul's avatar
Paul committed
1273
        for(auto&& output : graph.output())
Paul's avatar
Paul committed
1274
        {
Paul's avatar
Paul committed
1275
            this->parse_node(output.name());
Paul's avatar
Paul committed
1276
1277
1278
        }
    }

Shucai Xiao's avatar
Shucai Xiao committed
1279
    void parse_undefined(const std::string& name)
1280
    {
Shucai Xiao's avatar
Shucai Xiao committed
1281
        auto ins           = prog.add_instruction(op::undefined{});
1282
1283
1284
        instructions[name] = ins;
    }

Paul's avatar
Paul committed
1285
    void parse_node(const std::string& name)
Paul's avatar
Paul committed
1286
    {
Paul's avatar
Paul committed
1287
        if(name.empty())
Paul's avatar
Paul committed
1288
            MIGRAPHX_THROW("Onnx node must have a name");
Paul's avatar
Paul committed
1289
1290
1291
1292
1293
1294
1295
1296
        if(instructions.count(name) == 0)
        {
            auto&& node = nodes.at(name);
            std::vector<instruction_ref> args;
            for(auto&& input : node.input())
            {
                if(nodes.count(input) > 0)
                {
Paul's avatar
Paul committed
1297
1298
                    assert(name != input);
                    this->parse_node(input);
Paul's avatar
Paul committed
1299
                }
Shucai Xiao's avatar
Shucai Xiao committed
1300
                else if(input.empty())
Paul's avatar
Paul committed
1301
                {
1302
                    this->parse_undefined(input);
Paul's avatar
Paul committed
1303
                }
1304
                args.push_back(instructions.at(input));
Paul's avatar
Paul committed
1305
            }
Paul's avatar
Paul committed
1306
            std::vector<instruction_ref> result;
Paul's avatar
Paul committed
1307
1308
            if(ops.count(node.op_type()) == 0)
            {
1309
                result.push_back(prog.add_instruction(op::unknown{node.op_type()}, args));
Paul's avatar
Paul committed
1310
1311
1312
            }
            else
            {
Paul's avatar
Paul committed
1313
                result = ops[node.op_type()](get_attributes(node), args);
Paul's avatar
Paul committed
1314
            }
Paul's avatar
Paul committed
1315
            // Even no output nodes produce output in migraphx
Paul's avatar
Paul committed
1316
            if(node.output().empty() and result.size() == 1)
Paul's avatar
Paul committed
1317
1318
            {
                instructions[name] = result.front();
Paul's avatar
Paul committed
1319
1320
1321
            }
            else
            {
Paul's avatar
Paul committed
1322
1323
1324
1325
1326
1327
                assert(node.output().size() >= result.size());
                std::transform(result.begin(),
                               result.end(),
                               node.output().begin(),
                               std::inserter(instructions, instructions.end()),
                               [](auto&& x, auto&& y) { return std::make_pair(y, x); });
Paul's avatar
Paul committed
1328
1329
1330
1331
1332
1333
1334
1335
1336
1337
1338
1339
1340
1341
1342
1343
1344
            }
        }
    }

    static attribute_map get_attributes(const onnx::NodeProto& node)
    {
        std::unordered_map<std::string, onnx::AttributeProto> result;
        for(auto&& attr : node.attribute())
        {
            result[attr.name()] = attr;
        }
        return result;
    }

    static node_map get_nodes(const onnx::GraphProto& graph)
    {
        std::unordered_map<std::string, onnx::NodeProto> result;
Paul's avatar
Paul committed
1345
        std::size_t n = 0;
Paul's avatar
Paul committed
1346
1347
        for(auto&& node : graph.node())
        {
Paul's avatar
Paul committed
1348
            if(node.output().empty())
Paul's avatar
Paul committed
1349
            {
Paul's avatar
Paul committed
1350
                if(node.name().empty())
Paul's avatar
Paul committed
1351
1352
1353
1354
1355
1356
1357
1358
1359
                {
                    result["migraphx_unamed_node_" + std::to_string(n)] = node;
                    n++;
                }
                else
                {
                    result[node.name()] = node;
                }
            }
Paul's avatar
Paul committed
1360
1361
1362
1363
1364
1365
1366
1367
1368
1369
1370
1371
1372
1373
1374
1375
1376
1377
1378
1379
1380
1381
1382
1383
1384
            for(auto&& output : node.output())
            {
                result[output] = node;
            }
        }
        return result;
    }

    template <class T>
    static literal from_repeated(shape::type_t t, const T& r)
    {
        std::size_t size = r.size();
        return literal{{t, {size}}, r.begin(), r.end()};
    }

    static literal parse_value(const onnx::AttributeProto& attr)
    {
        switch(attr.type())
        {
        case onnx::AttributeProto::UNDEFINED: return {};
        case onnx::AttributeProto::FLOAT: return literal{attr.f()};
        case onnx::AttributeProto::INT: return literal{attr.i()};
        case onnx::AttributeProto::STRING: return {};
        case onnx::AttributeProto::TENSOR: return parse_tensor(attr.t());
        case onnx::AttributeProto::GRAPH: return {};
Paul's avatar
Paul committed
1385
        case onnx::AttributeProto::FLOATS: return from_repeated(shape::float_type, attr.floats());
Paul's avatar
Paul committed
1386
1387
1388
1389
1390
        case onnx::AttributeProto::INTS: return from_repeated(shape::int64_type, attr.ints());
        case onnx::AttributeProto::STRINGS: return {};
        case onnx::AttributeProto::TENSORS: return {};
        case onnx::AttributeProto::GRAPHS: return {};
        }
Paul's avatar
Paul committed
1391
        MIGRAPHX_THROW("Invalid attribute type");
Paul's avatar
Paul committed
1392
1393
1394
1395
1396
    }

    static literal parse_tensor(const onnx::TensorProto& t)
    {
        std::vector<std::size_t> dims(t.dims().begin(), t.dims().end());
1397
1398
        if(t.has_raw_data())
        {
wsttiger's avatar
wsttiger committed
1399
            const std::string& s = t.raw_data();
Scott Thornton's avatar
Scott Thornton committed
1400
1401
1402
            switch(t.data_type())
            {
            case onnx::TensorProto::UNDEFINED: throw std::runtime_error("");
1403
            case onnx::TensorProto::FLOAT: return create_literal(shape::float_type, dims, s.data());
Scott Thornton's avatar
Scott Thornton committed
1404
            case onnx::TensorProto::UINT8: throw std::runtime_error("");
1405
            case onnx::TensorProto::INT8: return create_literal(shape::int32_type, dims, s.data());
Khalique's avatar
Khalique committed
1406
1407
            case onnx::TensorProto::UINT16:
                return create_literal(shape::int32_type, dims, s.data());
1408
1409
1410
            case onnx::TensorProto::INT16: return create_literal(shape::int32_type, dims, s.data());
            case onnx::TensorProto::INT32: return create_literal(shape::int32_type, dims, s.data());
            case onnx::TensorProto::INT64: return create_literal(shape::int64_type, dims, s.data());
Scott Thornton's avatar
Scott Thornton committed
1411
            case onnx::TensorProto::STRING: throw std::runtime_error("");
1412
            case onnx::TensorProto::BOOL: return create_literal(shape::int32_type, dims, s.data());
Khalique's avatar
Khalique committed
1413
1414
1415
1416
            case onnx::TensorProto::FLOAT16:
                return create_literal(shape::half_type, dims, s.data());
            case onnx::TensorProto::DOUBLE:
                return create_literal(shape::double_type, dims, s.data());
Scott Thornton's avatar
Scott Thornton committed
1417
1418
1419
1420
1421
            case onnx::TensorProto::UINT32: throw std::runtime_error("");
            case onnx::TensorProto::UINT64: throw std::runtime_error("");
            case onnx::TensorProto::COMPLEX64: throw std::runtime_error("");
            case onnx::TensorProto::COMPLEX128: throw std::runtime_error("");
            }
Paul's avatar
Paul committed
1422
            MIGRAPHX_THROW("Invalid tensor type");
1423
        }
Paul's avatar
Paul committed
1424
1425
1426
1427
        switch(t.data_type())
        {
        case onnx::TensorProto::UNDEFINED: throw std::runtime_error("");
        case onnx::TensorProto::FLOAT:
Khalique's avatar
Khalique committed
1428
            return create_literal(shape::float_type, dims, t.float_data());
Paul's avatar
Paul committed
1429
1430
        case onnx::TensorProto::UINT8: throw std::runtime_error("");
        case onnx::TensorProto::INT8:
Khalique's avatar
Khalique committed
1431
            return create_literal(shape::int32_type, dims, t.int32_data());
Paul's avatar
Paul committed
1432
        case onnx::TensorProto::UINT16:
Khalique's avatar
Khalique committed
1433
            return create_literal(shape::int32_type, dims, t.int32_data());
Paul's avatar
Paul committed
1434
        case onnx::TensorProto::INT16:
Khalique's avatar
Khalique committed
1435
            return create_literal(shape::int32_type, dims, t.int32_data());
Paul's avatar
Paul committed
1436
        case onnx::TensorProto::INT32:
Khalique's avatar
Khalique committed
1437
            return create_literal(shape::int32_type, dims, t.int32_data());
Paul's avatar
Paul committed
1438
        case onnx::TensorProto::INT64:
Khalique's avatar
Khalique committed
1439
            return create_literal(shape::int64_type, dims, t.int64_data());
Paul's avatar
Paul committed
1440
1441
        case onnx::TensorProto::STRING: throw std::runtime_error("");
        case onnx::TensorProto::BOOL:
Khalique's avatar
Khalique committed
1442
            return create_literal(shape::int32_type, dims, t.int32_data());
Paul's avatar
Paul committed
1443
        case onnx::TensorProto::FLOAT16:
Khalique's avatar
Khalique committed
1444
        {
Khalique's avatar
Khalique committed
1445
            std::vector<uint16_t> data_uint16(t.int32_data().begin(), t.int32_data().end());
1446
            std::vector<half> data_half;
Khalique's avatar
Khalique committed
1447
1448
1449
            std::transform(data_uint16.begin(),
                           data_uint16.end(),
                           std::back_inserter(data_half),
1450
                           [](uint16_t raw_val) { return *reinterpret_cast<half*>(&raw_val); });
1451
            return create_literal(shape::half_type, dims, data_half);
Khalique's avatar
Khalique committed
1452
        }
Paul's avatar
Paul committed
1453
        case onnx::TensorProto::DOUBLE:
Khalique's avatar
Khalique committed
1454
            return create_literal(shape::double_type, dims, t.double_data());
Paul's avatar
Paul committed
1455
1456
1457
1458
1459
        case onnx::TensorProto::UINT32: throw std::runtime_error("");
        case onnx::TensorProto::UINT64: throw std::runtime_error("");
        case onnx::TensorProto::COMPLEX64: throw std::runtime_error("");
        case onnx::TensorProto::COMPLEX128: throw std::runtime_error("");
        }
Paul's avatar
Paul committed
1460
        MIGRAPHX_THROW("Invalid tensor type");
Paul's avatar
Paul committed
1461
1462
    }

Khalique's avatar
Khalique committed
1463
    static literal
1464
    create_literal(shape::type_t shape_type, const std::vector<size_t>& dims, const char* data)
1465
    {
Khalique's avatar
Khalique committed
1466
        // in case of scalar constants in onnx file, use dims=1 to fill initializer data
1467
        if(dims.empty())
1468
            return literal{{shape_type}, data};
1469
1470
1471
        return literal{{shape_type, dims}, data};
    }

1472
    template <class T, MIGRAPHX_REQUIRES(not std::is_pointer<T>{})>
Khalique's avatar
Khalique committed
1473
    static literal create_literal(shape::type_t shape_type, const std::vector<size_t>& dims, T data)
1474
1475
    {
        if(dims.empty())
1476
            return literal{{shape_type}, data.begin(), data.end()};
1477
        return literal{{shape_type, dims}, data.begin(), data.end()};
1478
1479
    }

Paul's avatar
Paul committed
1480
1481
1482
1483
1484
1485
1486
1487
1488
1489
1490
1491
1492
1493
1494
1495
1496
1497
1498
    static shape parse_type(const onnx::TypeProto& t)
    {
        shape::type_t shape_type{};
        switch(t.tensor_type().elem_type())
        {
        case onnx::TensorProto::UNDEFINED:
            break; // throw std::runtime_error("Unsupported type UNDEFINED");
        case onnx::TensorProto::FLOAT: shape_type = shape::float_type; break;
        case onnx::TensorProto::UINT8:
            break; // throw std::runtime_error("Unsupported type UINT8");
        case onnx::TensorProto::INT8: shape_type = shape::int8_type; break;
        case onnx::TensorProto::UINT16: shape_type = shape::uint16_type; break;
        case onnx::TensorProto::INT16: shape_type = shape::int16_type; break;
        case onnx::TensorProto::INT32: shape_type = shape::int32_type; break;
        case onnx::TensorProto::INT64: shape_type = shape::int64_type; break;
        case onnx::TensorProto::STRING:
            break; // throw std::runtime_error("Unsupported type STRING");
        case onnx::TensorProto::BOOL:
            break; // throw std::runtime_error("Unsupported type BOOL");
Paul's avatar
Paul committed
1499
        case onnx::TensorProto::FLOAT16: shape_type = shape::half_type; break;
Paul's avatar
Paul committed
1500
1501
1502
1503
1504
1505
1506
1507
1508
        case onnx::TensorProto::DOUBLE: shape_type = shape::double_type; break;
        case onnx::TensorProto::UINT32: shape_type = shape::uint32_type; break;
        case onnx::TensorProto::UINT64: shape_type = shape::uint64_type; break;
        case onnx::TensorProto::COMPLEX64:
            break; // throw std::runtime_error("Unsupported type COMPLEX64");
        case onnx::TensorProto::COMPLEX128:
            break; // throw std::runtime_error("Unsupported type COMPLEX128");
        }
        std::vector<std::size_t> dims;
Paul's avatar
Paul committed
1509
        auto&& tensor_dims = t.tensor_type().shape().dim();
1510
1511
1512
1513
1514
1515
1516
1517
1518
1519
1520
        std::transform(tensor_dims.begin(),
                       tensor_dims.end(),
                       std::back_inserter(dims),
                       [](auto&& d) -> std::size_t {
                           if(not d.has_dim_value())
                           {
                               long default_batch_size = 1; // FIXME
                               return default_batch_size;
                           }
                           return d.dim_value();
                       });
Paul's avatar
Paul committed
1521
1522
        return {shape_type, dims};
    }
1523
1524
1525
1526
1527
1528
1529
1530
1531
1532
1533
1534
1535
1536
1537
1538
1539
1540
1541
1542
1543
1544

    shape::type_t get_type(int dtype)
    {
        switch(dtype)
        {
        case 1: return shape::float_type;
        case 2: return shape::uint8_type;
        case 3: return shape::int8_type;
        case 4: return shape::uint16_type;
        case 5: return shape::int16_type;
        case 6: return shape::int32_type;
        case 7: return shape::int64_type;
        case 10: return shape::half_type;
        case 11: return shape::double_type;
        case 12: return shape::uint32_type;
        case 13: return shape::uint64_type;
        default:
        {
            MIGRAPHX_THROW("Prototensor data type " + std::to_string(dtype) + " not supported");
        }
        }
    }
Paul's avatar
Paul committed
1545
1546
1547
1548
1549
1550
1551
1552
1553
1554
1555
1556
1557
1558
1559
1560
1561
1562
1563
1564
1565
1566
1567
};

program parse_onnx(const std::string& name)
{
    std::fstream input(name.c_str(), std::ios::in | std::ios::binary);
    onnx_parser parser;
#ifndef NDEBUG
    // Log the program when it can't be parsed
    try
    {
        parser.parse_from(input);
    }
    catch(...)
    {
        std::cerr << parser.prog << std::endl;
        throw;
    }
#else
    parser.parse_from(input);
#endif
    return std::move(parser.prog);
}

Paul's avatar
Paul committed
1568
} // namespace MIGRAPHX_INLINE_NS
Paul's avatar
Paul committed
1569
} // namespace migraphx