task.py 60 KB
Newer Older
Baber's avatar
nit  
Baber committed
1
2
from __future__ import annotations

3
import abc
4
import ast
lintangsutawika's avatar
lintangsutawika committed
5
import logging
6
import random
7
import re
8
from collections.abc import Callable, Iterable, Iterator, Mapping
9
from copy import deepcopy
10
from typing import (
Baber's avatar
Baber committed
11
    TYPE_CHECKING,
12
13
    Any,
    Literal,
Baber's avatar
Baber committed
14
    overload,
15
)
16
17
18

import datasets
import numpy as np
19
from tqdm import tqdm
Baber's avatar
Baber committed
20
from typing_extensions import deprecated
21
22

from lm_eval import utils
23
24
from lm_eval.api.instance import Instance, OutputType
from lm_eval.api.metrics import bits_per_byte, mean, weighted_perplexity
25
from lm_eval.api.utils import check_gold_index_error
26
from lm_eval.caching.cache import load_from_cache, save_to_cache
Baber's avatar
Baber committed
27
28
from lm_eval.config.metric import MetricConfig
from lm_eval.config.task import TaskConfig
29
30
from lm_eval.filters import build_filter_ensemble

31

32
33
34
35
ALL_OUTPUT_TYPES = [
    "loglikelihood",
    "multiple_choice",
    "loglikelihood_rolling",
36
    "generate_until",
37
38
]

Baber's avatar
Baber committed
39
if TYPE_CHECKING:
Baber's avatar
Baber committed
40
    pass
Baber's avatar
Baber committed
41
42


Lintang Sutawika's avatar
Lintang Sutawika committed
43
eval_logger = logging.getLogger(__name__)
44

lintangsutawika's avatar
lintangsutawika committed
45

46
47
48
49
50
51
52
53
54
55
class Task(abc.ABC):
    """A task represents an entire benchmark including its dataset, problems,
    answers, and evaluation methods. See BoolQ for a simple example implementation

    A `doc` can be any python object which represents one instance of evaluation.
    This is usually a dictionary e.g.
        {"question": ..., "answer": ...} or
        {"question": ..., question, answer)
    """

Baber's avatar
nit  
Baber committed
56
    VERSION: int | str | None = None
57

58
59
    # The name of the `Task` benchmark as denoted in the HuggingFace datasets Hub
    # or a path to a custom `datasets` loading script.
Baber's avatar
nit  
Baber committed
60
    DATASET_PATH: str | None = None
61
62

    # The name of a subset within `DATASET_PATH`.
Baber's avatar
nit  
Baber committed
63
    DATASET_NAME: str | None = None
64

Baber's avatar
nit  
Baber committed
65
    OUTPUT_TYPE: OutputType | None = None
lintangsutawika's avatar
lintangsutawika committed
66

67
68
    def __init__(
        self,
Baber's avatar
nit  
Baber committed
69
70
71
72
        data_dir: str | None = None,
        cache_dir: str | None = None,
        download_mode: datasets.DownloadMode | None = None,
        config: Mapping | None = None,  # Union[dict, TaskConfig]
Ethan Smith's avatar
Ethan Smith committed
73
    ) -> None:
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
        """
        :param data_dir: str
            Stores the path to a local folder containing the `Task`'s data files.
            Use this to specify the path to manually downloaded data (usually when
            the dataset is not publicly accessible).
        :param cache_dir: str
            The directory to read/write the `Task` dataset. This follows the
            HuggingFace `datasets` API with the default cache directory located at:
                `~/.cache/huggingface/datasets`
            NOTE: You can change the cache location globally for a given process
            to another directory:
                `export HF_DATASETS_CACHE="/path/to/another/directory"`
        :param download_mode: datasets.DownloadMode
            How to treat pre-existing `Task` downloads and data.
            - `datasets.DownloadMode.REUSE_DATASET_IF_EXISTS`
                Reuse download and reuse dataset.
            - `datasets.DownloadMode.REUSE_CACHE_IF_EXISTS`
                Reuse download with fresh dataset.
            - `datasets.DownloadMode.FORCE_REDOWNLOAD`
                Fresh download and fresh dataset.
        """
        self.download(data_dir, cache_dir, download_mode)
Baber's avatar
nit  
Baber committed
96
97
98
        self._training_docs: list | None = None
        self._fewshot_docs: list | None = None
        self._instances: list[Instance] | None = None
99

100
        self._config: TaskConfig = TaskConfig.from_yaml({**config})
101

102
        self._filters = [build_filter_ensemble("none", [("take_first", None)])]
Baber's avatar
nit  
Baber committed
103
        self.fewshot_rnd: random.Random | None = (
104
105
            None  # purposely induce errors in case of improper usage
        )
106

107
108
    def download(
        self,
Baber's avatar
nit  
Baber committed
109
110
        data_dir: str | None = None,
        cache_dir: str | None = None,
111
112
        download_mode=None,
    ) -> None:
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
        """Downloads and returns the task dataset.
        Override this method to download the dataset from a custom API.

        :param data_dir: str
            Stores the path to a local folder containing the `Task`'s data files.
            Use this to specify the path to manually downloaded data (usually when
            the dataset is not publicly accessible).
        :param cache_dir: str
            The directory to read/write the `Task` dataset. This follows the
            HuggingFace `datasets` API with the default cache directory located at:
                `~/.cache/huggingface/datasets`
            NOTE: You can change the cache location globally for a given process
            by setting the shell environment variable, `HF_DATASETS_CACHE`,
            to another directory:
                `export HF_DATASETS_CACHE="/path/to/another/directory"`
        :param download_mode: datasets.DownloadMode
            How to treat pre-existing `Task` downloads and data.
            - `datasets.DownloadMode.REUSE_DATASET_IF_EXISTS`
                Reuse download and reuse dataset.
            - `datasets.DownloadMode.REUSE_CACHE_IF_EXISTS`
                Reuse download with fresh dataset.
            - `datasets.DownloadMode.FORCE_REDOWNLOAD`
                Fresh download and fresh dataset.
        """
137
138
139
140
141
142
143
        self.dataset = datasets.load_dataset(
            path=self.DATASET_PATH,
            name=self.DATASET_NAME,
            data_dir=data_dir,
            cache_dir=cache_dir,
            download_mode=download_mode,
        )
144

145
    @property
146
    def config(self) -> TaskConfig:
147
148
149
        """Returns the TaskConfig associated with this class."""
        return self._config

150
    @abc.abstractmethod
Baber's avatar
Baber committed
151
    def has_training_docs(self) -> bool:
152
153
154
155
        """Whether the task has a training set"""
        pass

    @abc.abstractmethod
Baber's avatar
Baber committed
156
    def has_validation_docs(self) -> bool:
157
158
159
160
        """Whether the task has a validation set"""
        pass

    @abc.abstractmethod
Baber's avatar
Baber committed
161
    def has_test_docs(self) -> bool:
162
163
164
        """Whether the task has a test set"""
        pass

165
    def training_docs(self) -> Iterable:
166
167
168
169
170
171
        """
        :return: Iterable[obj]
            A iterable of any object, that doc_to_text can handle
        """
        return []

172
    def validation_docs(self) -> Iterable:
173
174
175
176
177
178
        """
        :return: Iterable[obj]
            A iterable of any object, that doc_to_text can handle
        """
        return []

179
    def test_docs(self) -> Iterable:
180
181
182
183
184
185
        """
        :return: Iterable[obj]
            A iterable of any object, that doc_to_text can handle
        """
        return []

186
    def fewshot_docs(self) -> Iterable:
187
188
189
190
191
192
193
194
195
        """
        :return: Iterable[obj]
            A iterable of any object, that doc_to_text can handle
        """
        if self.has_training_docs():
            return self.training_docs()
        elif self.has_validation_docs():
            return self.validation_docs()
        else:
Baber's avatar
Baber committed
196
            if self.config.num_fewshot and self.config.num_fewshot > 0:
Baber Abbasi's avatar
Baber Abbasi committed
197
198
199
200
                eval_logger.warning(
                    f"[Task: {self.config.task}] has_training_docs and has_validation_docs are False"
                    ", using test_docs as fewshot_docs but this is not recommended."
                )
201
202
            return self.test_docs()

203
    def _process_doc(self, doc: dict) -> dict:
204
205
206
207
208
209
210
211
212
        """
        Override this to process (detokenize, strip, replace, etc.) individual
        documents. This can be used in a map over documents of a data split.
        E.g. `map(self._process_doc, self.dataset["validation"])`

        :return: dict
            The processed version of the specified `doc`.
        """
        return doc
lintangsutawika's avatar
lintangsutawika committed
213

214
    @property
Baber's avatar
Baber committed
215
    def instances(self) -> list[Instance]:
216
217
218
219
220
        """After calling `task.build_all_requests()`, tasks
        maintain a list of the dataset instances which will be evaluated.
        """
        return self._instances

Baber's avatar
Baber committed
221
    def fewshot_examples(self, k, rnd) -> Iterable[dict]:
222
223
224
225
226
        if self._training_docs is None:
            self._training_docs = list(self.training_docs())

        return rnd.sample(self._training_docs, k)

Baber's avatar
Baber committed
227
    def doc_to_decontamination_query(self, doc: dict):
228
        raise NotImplementedError(
229
230
231
232
            "Override doc_to_decontamination_query with document specific decontamination query."
        )

    @abc.abstractmethod
Baber's avatar
Baber committed
233
    def doc_to_text(self, doc: dict) -> str:
234
235
236
        pass

    @abc.abstractmethod
Baber's avatar
nit  
Baber committed
237
    def doc_to_target(self, doc: dict) -> str | int:
238
239
        pass

240
    # not an abstractmethod because not every language-only task has to implement this
Baber's avatar
Baber committed
241
    def doc_to_image(self, doc: dict):
242
243
        raise NotImplementedError

Baber's avatar
Baber committed
244
    def doc_to_audio(self, doc: dict):
245
246
        raise NotImplementedError

Baber's avatar
Baber committed
247
    def doc_to_prefix(self, doc: dict) -> str:
Baber Abbasi's avatar
Baber Abbasi committed
248
249
        return ""

250
251
    def build_all_requests(
        self,
252
        *,
Baber's avatar
nit  
Baber committed
253
254
        limit: int | None = None,
        samples: list[int] | None = None,
255
256
257
258
        rank: int = 0,
        world_size: int = 1,
        cache_requests: bool = False,
        rewrite_requests_cache: bool = False,
Baber's avatar
nit  
Baber committed
259
        system_instruction: str | None = None,
260
261
        apply_chat_template: bool = False,
        fewshot_as_multiturn: bool = False,
Baber's avatar
nit  
Baber committed
262
        chat_template: Callable | None = None,
263
        tokenizer_name: str = "",
264
    ) -> None:
265
        """Build a set of Instances for a task, and store them in task.instances"""
266
267
268
269

        # used with caching
        og_limit = limit

270
        cache_key = f"requests-{self._config.task}-{self.config.num_fewshot}shot-rank{rank}-world_size{world_size}"
KonradSzafer's avatar
KonradSzafer committed
271
272
273
274
275
276
277
        cache_key += "-chat_template" if apply_chat_template else ""
        cache_key += "-fewshot_as_multiturn" if fewshot_as_multiturn else ""
        cache_key += (
            f"-system_prompt_hash{utils.hash_string(system_instruction)}"
            if system_instruction is not None
            else ""
        )
278
        cache_key += f"-tokenizer{tokenizer_name}"
279

Baber Abbasi's avatar
Baber Abbasi committed
280
        cached_instances = load_from_cache(file_name=cache_key, cache=cache_requests)
281
282
283
284
285
286
287
288
289
290
291
292
293

        if cache_requests and cached_instances and not rewrite_requests_cache:
            cached_instances = cached_instances[:limit]

            flattened_instances = [
                instance
                for instance_group in cached_instances
                for instance in instance_group
            ]

            self._instances = flattened_instances
            return

Baber Abbasi's avatar
Baber Abbasi committed
294
        eval_logger.info(f"Building contexts for {self.config.task} on rank {rank}...")
295

296
        instances = []
297
298
299
300
301
302
303
304
305
306

        # process all documents when caching is specified for simplicity
        if (
            cache_requests
            and (not cached_instances or rewrite_requests_cache)
            and limit is not None
        ):
            limit = None

        doc_id_docs = list(
307
308
309
            self.doc_iterator(
                rank=rank, limit=limit, samples=samples, world_size=world_size
            )
310
311
312
313
314
315
316
        )

        num_docs = len(doc_id_docs)

        for doc_id, doc in tqdm(
            doc_id_docs,
            total=num_docs,
lintangsutawika's avatar
lintangsutawika committed
317
        ):
318
            # sample fewshot context #TODO: need to offset doc_id by rank now!
319
            fewshot_ctx = self.fewshot_context(
320
                doc,
321
322
323
324
325
326
327
                num_fewshot=0
                if self.config.num_fewshot is None
                else self.config.num_fewshot,
                system_instruction=system_instruction,
                apply_chat_template=apply_chat_template,
                fewshot_as_multiturn=fewshot_as_multiturn,
                chat_template=chat_template,
Baber Abbasi's avatar
Baber Abbasi committed
328
                gen_prefix=self.doc_to_prefix(doc),
329
            )
330

331
            # TODO: we should override self.config.repeats if doing greedy gen so users don't waste time+compute
lintangsutawika's avatar
lintangsutawika committed
332
333
334
            inst = self.construct_requests(
                doc=doc,
                ctx=fewshot_ctx,
Baber's avatar
Baber committed
335
                metadata=(self.config.task, doc_id, self.config.repeats),
336
                apply_chat_template=apply_chat_template,
337
                chat_template=chat_template,
lintangsutawika's avatar
lintangsutawika committed
338
            )
339
340
341
342

            if not isinstance(inst, list):
                inst = [inst]

343
344
345
346
347
348
349
350
351
352
353
354
355
            instances.append(inst)

        # now flatten, this is to allow slicing to work with pickles

        sliced_instances = instances[:og_limit]

        flattened_instances = [
            instance
            for instance_group in sliced_instances
            for instance in instance_group
        ]

        self._instances = flattened_instances
356

357
358
        if len(self._instances) == 0:
            raise ValueError("task.build_requests() did not find any docs!")
359

360
361
362
        if cache_requests and (not cached_instances or rewrite_requests_cache):
            save_to_cache(file_name=cache_key, obj=instances)

363
    @abc.abstractmethod
Baber's avatar
nit  
Baber committed
364
    def construct_requests(self, doc: dict, ctx: list[dict] | str, **kwargs):
365
366
367
368
369
370
371
372
373
374
375
376
377
378
        """Uses RequestFactory to construct Requests and returns an iterable of
        Requests which will be sent to the LM.

        :param doc:
            The document as returned from training_docs, validation_docs, or test_docs.
        :param ctx: str
            The context string, generated by fewshot_context. This includes the natural
            language description, as well as the few shot examples, and the question
            part of the document for `doc`.
        :param doc_idx: int
            The index of a document within `self.test_docs()` or `self.validation_docs()`,
            whichever is the main split used.
        :param repeats: int
        TODO: update this docstring
lintangsutawika's avatar
lintangsutawika committed
379
            The number of times each instance in a dataset is inferred on. Defaults to 1,
380
381
382
383
384
            can be increased for techniques like majority voting.
        """
        pass

    @abc.abstractmethod
385
    def process_results(self, doc: dict, results: list) -> dict[str, Any]:
386
387
388
389
390
391
392
393
394
        """Take a single document and the LM results and evaluates, returning a
        dict where keys are the names of submetrics and values are the values of
        the metric for that one document

        :param doc:
            The document as returned from training_docs, validation_docs, or test_docs.
        :param results:
            The results of the requests created in construct_requests.
        """
395
        raise NotImplementedError
396

Baber's avatar
Baber committed
397
    @deprecated("not used anymore")
398
399
400
401
402
403
    def aggregation(self):
        """
        :returns: {str: [metric_score] -> float}
            A dictionary where keys are the names of submetrics and values are
            functions that aggregate a list of metric scores
        """
Baber's avatar
nit  
Baber committed
404
        return True
405

Baber's avatar
Baber committed
406
    @deprecated("not used anymore")
407
408
409
410
411
412
    def higher_is_better(self):
        """
        :returns: {str: bool}
            A dictionary where keys are the names of submetrics and values are
            whether a higher value of the submetric is better
        """
Baber's avatar
nit  
Baber committed
413
        return True
414

415
416
417
    def get_config(self, key: str) -> Any:
        return getattr(self._config, key, None)

haileyschoelkopf's avatar
haileyschoelkopf committed
418
    @classmethod
Baber's avatar
Baber committed
419
    def count_bytes(cls, doc: str) -> int:
haileyschoelkopf's avatar
haileyschoelkopf committed
420
421
422
423
        """Used for byte-level perplexity metrics in rolling loglikelihood"""
        return len(doc.encode("utf-8"))

    @classmethod
Baber's avatar
Baber committed
424
    def count_words(cls, doc: str) -> int:
haileyschoelkopf's avatar
haileyschoelkopf committed
425
426
427
        """Downstream loglikelihood_rolling perplexity tasks with custom word boundaries should override this!"""
        return len(re.split(r"\s+", doc))

428
    @utils.positional_deprecated
Baber Abbasi's avatar
Baber Abbasi committed
429
    def fewshot_context(self, doc, num_fewshot, rnd=None, description=None, **kwargs):
430
431
432
433
434
435
436
        """Returns a fewshot context string that is made up of a prepended description
        (if provided), the `num_fewshot` number of examples, and an appended prompt example.

        :param doc: str
            The document as returned from training_docs, validation_docs, or test_docs.
        :param num_fewshot: int
            The number of fewshot examples to provide in the returned context string.
lintangsutawika's avatar
lintangsutawika committed
437
438
439
440
441
        :param rnd: random.Random
            The pseudo-random number generator used to randomly sample examples.
            WARNING: This is currently a required arg although it's optionalized with a default `None`.
        :param description: str
            The task's description that will be prepended to the fewshot examples.
442
443
444
        :returns: str
            The fewshot context.
        """
445
        if rnd is None:
446
447
448
449
450
451
            if self.fewshot_rnd is not None:
                rnd = self.fewshot_rnd
            else:
                raise ValueError(
                    "A `random.Random` generator argument must be provided to `rnd`"
                )
lintangsutawika's avatar
lintangsutawika committed
452

453
        description = description if description else ""
454
455

        if num_fewshot == 0:
lintangsutawika's avatar
lintangsutawika committed
456
            labeled_examples = ""
457
        else:
lintangsutawika's avatar
lintangsutawika committed
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
            # for sets with no training docs, draw from other set *but ensure no overlap with current doc*
            if self.has_training_docs():
                fewshotex = self.fewshot_examples(k=num_fewshot, rnd=rnd)
            else:
                if self._fewshot_docs is None:
                    self._fewshot_docs = list(
                        self.validation_docs()
                        if self.has_validation_docs()
                        else self.test_docs()
                    )

                fewshotex = rnd.sample(self._fewshot_docs, num_fewshot + 1)

                # get rid of the doc that's the one we're evaluating, if it's in the fewshot
                fewshotex = [x for x in fewshotex if x != doc][:num_fewshot]

            labeled_examples = (
                "\n\n".join(
                    [
                        self.doc_to_text(doc) + self.doc_to_target(doc)
                        for doc in fewshotex
                    ]
                )
                + "\n\n"
lintangsutawika's avatar
lintangsutawika committed
482
            )
483
484

        example = self.doc_to_text(doc)
lintangsutawika's avatar
lintangsutawika committed
485
        return description + labeled_examples + example
486

Baber's avatar
nit  
Baber committed
487
    def apply_filters(self) -> list[Instance] | None:
Baber Abbasi's avatar
Baber Abbasi committed
488
        """Iterates over FilterEnsembles and applies them to instances"""
Baber's avatar
nit  
Baber committed
489
        if hasattr(self, "_filters") and self._instances:
lintangsutawika's avatar
lintangsutawika committed
490
            for f in self._filters:
491
                f.apply(self._instances)
lintangsutawika's avatar
lintangsutawika committed
492
        else:
Baber's avatar
nit  
Baber committed
493
494
495
            eval_logger.warning(
                "No filter defined or no instances, passing through instances"
            )
lintangsutawika's avatar
lintangsutawika committed
496
            return self._instances
497

baberabb's avatar
baberabb committed
498
    def dump_config(self) -> dict:
Baber Abbasi's avatar
Baber Abbasi committed
499
        """Returns the config as a dictionary."""
500
        # TODO: this should only return the overrides applied to a non-YAML task's configuration.
501
        # (num_fewshot)
502
        return self.config.to_dict()
503

Baber Abbasi's avatar
Baber Abbasi committed
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
    def set_config(self, key: str, value: Any, update: bool = False) -> None:
        """Set or update the configuration for a given key."""
        if update:
            current_value = getattr(self._config, key, {})
            if not isinstance(current_value, dict):
                raise TypeError(
                    f"Expected a dict for key '{key}', got {type(current_value).__name__} instead."
                )
            current_value.update(value)
        else:
            setattr(self._config, key, value)

    def override_metric(self, metric_name: str) -> None:
        """
        Override the default metrics used for evaluation with custom metrics.

        Parameters:
        - metric_name (str): The name of the custom metric to override. Should be registered in api.metrics.
        """
Baber's avatar
Baber committed
523
524
525
526
527
        # if not isinstance(self, ConfigurableTask):
        #     self.process_results = lambda x, y: {metric_name: get_metric(metric_name)}
        #     self.aggregation = lambda: {
        #         metric_name: get_metric_aggregation(metric_name)
        #     }
528
529
        self._config.metric_list = [MetricConfig(name=metric_name)]
        self._config.process_results = lambda *args: {"bypass": 0}
Baber Abbasi's avatar
Baber Abbasi committed
530

Baber's avatar
nit  
Baber committed
531
    def set_fewshot_seed(self, seed: int | None = None) -> None:
532
533
534
535
        self.fewshot_rnd = random.Random(seed)
        if hasattr(self, "sampler"):
            self.sampler.rnd = self.fewshot_rnd

536
    @property
Baber's avatar
nit  
Baber committed
537
    def eval_docs(self) -> datasets.Dataset | Iterable[dict]:
538
539
540
541
542
        if self.has_test_docs():
            return self.test_docs()
        elif self.has_validation_docs():
            return self.validation_docs()
        else:
543
544
545
            raise ValueError(
                f"Task dataset (path={self.DATASET_PATH}, name={self.DATASET_NAME}) must have valid or test docs!"
            )
546
547

    def doc_iterator(
548
549
550
        self,
        *,
        rank: int = 0,
Baber's avatar
nit  
Baber committed
551
        limit: int | None = None,
552
        world_size: int = 1,
Baber's avatar
nit  
Baber committed
553
554
        samples: list[int] | None = None,
    ) -> Iterator[tuple[int, Any]]:
555
556
        if samples:
            n = len(self.eval_docs)
Baber's avatar
nit  
Baber committed
557
            assert all(e < n for e in samples), (
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
                f"Elements of --samples should be in the interval [0,k-1] where k is the number of total examples. In this case, k={n}."
            )
            eval_logger.info(
                f"{self.config.task}: Evaluating on {len(samples)} examples"
            )
            doc_iterator = utils.create_iterator(
                enumerate(x for i, x in enumerate(self.eval_docs) if i in samples),
                rank=int(rank),
                limit=None,  # limit does not matter here since we are selecting samples directly
                world_size=int(world_size),
            )
        else:
            limit = int(limit) if limit else None
            doc_iterator = utils.create_iterator(
                enumerate(self.eval_docs),
                rank=int(rank),
                limit=limit,
                world_size=int(world_size),
            )
577
578
        return doc_iterator

579
580

class ConfigurableTask(Task):
581
    VERSION = "Yaml"
582
    OUTPUT_TYPE = None
583
    CONFIG = None
584
585

    def __init__(
586
587
588
589
        self,
        data_dir=None,
        cache_dir=None,
        download_mode=None,
Baber's avatar
nit  
Baber committed
590
        config: dict | None = None,
Baber's avatar
Baber committed
591
    ) -> None:
592
        # Get pre-configured attributes
593
        self._config = self.CONFIG
594

595
        # Use new configurations if there was no preconfiguration
596
        if self.config is None:
597
            self._config = TaskConfig(**config)
598
599
        # Overwrite configs
        else:
lintangsutawika's avatar
lintangsutawika committed
600
            if config is not None:
601
                self._config.__dict__.update(config)
602

603
        if self.config is None:
lintangsutawika's avatar
lintangsutawika committed
604
605
606
            raise ValueError(
                "Must pass a config to ConfigurableTask, either in cls.CONFIG or `config` kwarg"
            )
607

Baber's avatar
nit  
Baber committed
608
609
        if isinstance(self.config.metadata, dict) and "version" in self.config.metadata:
            self.VERSION = self.config.metadata["version"]
610

611
        if self.config.output_type is not None:
612
613
614
615
            if self.config.output_type not in ALL_OUTPUT_TYPES:
                raise ValueError(
                    f"Got invalid output_type '{self.config.output_type}', must be in '{','.join(ALL_OUTPUT_TYPES)}'"
                )
616
            self.OUTPUT_TYPE = self.config.output_type
617

618
619
620
621
        if self.config.doc_to_image is not None:
            # mark the task as requiring multimodality.
            self.MULTIMODAL = True

622
623
624
625
        if self.config.doc_to_audio:
            # mark the task as requiring multimodality.
            self.MULTIMODAL = True

Hojin Lee's avatar
Hojin Lee committed
626
627
628
        if self.config.unsafe_code is not False:
            self.UNSAFE_CODE = True

629
630
        if self.config.dataset_path is not None:
            self.DATASET_PATH = self.config.dataset_path
631

632
633
        if self.config.dataset_name is not None:
            self.DATASET_NAME = self.config.dataset_name
634

635
        # self.metric_list: list[MetricConfig] = self.config.get_metrics
636

637
        self.download(self.config.dataset_kwargs)
638
639
640
        self._training_docs = None
        self._fewshot_docs = None

Baber's avatar
Baber committed
641
        self._filters = self.config.get_filters
Baber's avatar
Baber committed
642

Baber's avatar
Baber committed
643
644
645
646
647
648
649
        # if self.config.use_prompt is not None:
        #     eval_logger.info(f"loading prompt {self.config.use_prompt}")
        #     self.prompt = get_prompt(
        #         self.config.use_prompt, self.DATASET_PATH, self.DATASET_NAME
        #     )
        # else:
        #     self.prompt = None
650

651
652
653
654
        if (
            self.config.fewshot_cfg.num_fewshot() > 0
            and self.fewshot_docs() is not None
        ):
Baber's avatar
Baber committed
655
656
657
            self.fewshot_rnd = random.Random()
            self.sampler = self.config.fewshot_cfg.init_sampler(
                list(self.fewshot_docs()), self, rnd=self.fewshot_rnd
658
            )
659
        self.task_docs = self.eval_docs
660

661
        # Test One Doc
Baber's avatar
Baber committed
662
        self.features: list[str] = list(self.task_docs.features.keys())
Baber's avatar
Baber committed
663
        self.multiple_input = self.config.multiple_input
664
        self.multiple_target = 0
665
        test_doc = self.task_docs[0]
666
        test_text = self.doc_to_text(test_doc)
667
        test_target = self.doc_to_target(test_doc)
lintangsutawika's avatar
lintangsutawika committed
668

669
        if self.config.doc_to_choice is not None:
lintangsutawika's avatar
lintangsutawika committed
670
            test_choice = self.doc_to_choice(test_doc)
671
            if not isinstance(test_choice, list):
lintangsutawika's avatar
lintangsutawika committed
672
                eval_logger.error("doc_to_choice must return list")
673
674
            else:
                num_choice = len(test_choice)
675

676
            if isinstance(test_text, int):
Baber Abbasi's avatar
Baber Abbasi committed
677
678
679
                eval_logger.debug(
                    "doc_to_text returned an int. Assuming multiple inputs."
                )
680
                self.multiple_input = num_choice
681
682
        else:
            test_choice = None
683

684
        if isinstance(test_target, list):
Baber Abbasi's avatar
Baber Abbasi committed
685
686
687
            eval_logger.debug(
                "doc_to_target returned a list. Assuming multiple targets."
            )
688
            self.multiple_target = len(test_target)
689
        else:
690
            if (isinstance(test_target, int)) and (test_choice is not None):
lintangsutawika's avatar
lintangsutawika committed
691
                test_target = test_choice[test_target]
692
            else:
lintangsutawika's avatar
lintangsutawika committed
693
                test_target = str(test_target)
694

Baber's avatar
nit  
Baber committed
695
        check_choices = test_choice if test_choice is not None else [test_target]
696
697
        if self.config.doc_to_choice is not None:
            for choice in check_choices:
Baber's avatar
nit  
Baber committed
698
                choice_has_whitespace = choice[0].isspace()
699
                delimiter_has_whitespace = (
Baber's avatar
nit  
Baber committed
700
                    self.config.target_delimiter.rstrip()
701
                    != self.config.target_delimiter
702
                )
703

704
                if delimiter_has_whitespace and choice_has_whitespace:
705
706
                    eval_logger.debug(
                        f'Both target_delimiter "{self.config.target_delimiter}" and target choice: "{choice}" have whitespace'
707
708
                    )
                elif (not delimiter_has_whitespace) and (not choice_has_whitespace):
709
                    eval_logger.debug(
710
                        f'Both target_delimiter "{self.config.target_delimiter}" and target choice: "{choice}" do not have whitespace, ignore if the language you are evaluating on does not require/use whitespace'
711
712
                    )

Baber's avatar
nit  
Baber committed
713
    def download(self, dataset_kwargs: dict[str, Any] | None = None, **kwargs) -> None:
714
715
716
717
718
        self.config.dataset_kwargs, self.config.metadata = (
            self.config.dataset_kwargs or {},
            self.config.metadata or {},
        )
        if isinstance(df := self.config.custom_dataset, Callable):
Baber Abbasi's avatar
Baber Abbasi committed
719
720
721
722
            eval_logger.warning(
                f"{self.config.task}: Custom kwargs can be passed to `--metadata` in console (as json string) or to the TaskManager."
                + "\nFor example --metadata='{\"max_seq_lengths\":[4096, 8192]}'. For details see task Readme."
            )
723
            self.dataset = df(**(self.config.dataset_kwargs | self.config.metadata))
Baber Abbasi's avatar
Baber Abbasi committed
724
725
        else:
            self.dataset = datasets.load_dataset(
726
727
728
                path=self.config.dataset_path,
                name=self.config.dataset_name,
                **self.config.dataset_kwargs,
Baber Abbasi's avatar
Baber Abbasi committed
729
            )
730

baberabb's avatar
baberabb committed
731
    def has_training_docs(self) -> bool:
Baber's avatar
nit  
Baber committed
732
        return self.config.training_split is not None
733

baberabb's avatar
baberabb committed
734
    def has_validation_docs(self) -> bool:
Baber's avatar
nit  
Baber committed
735
        return self.config.validation_split is not None
736

baberabb's avatar
baberabb committed
737
    def has_test_docs(self) -> bool:
Baber's avatar
nit  
Baber committed
738
        return self.config.test_split is not None
739

Baber's avatar
nit  
Baber committed
740
    def training_docs(self) -> datasets.Dataset | None:
741
        if self.has_training_docs():
742
743
744
            if self.config.process_docs is not None:
                return self.config.process_docs(
                    self.dataset[self.config.training_split]
745
                )
746
            return self.dataset[self.config.training_split]
747

Baber's avatar
nit  
Baber committed
748
    def validation_docs(self) -> datasets.Dataset | None:
749
        if self.has_validation_docs():
750
751
752
            if self.config.process_docs is not None:
                return self.config.process_docs(
                    self.dataset[self.config.validation_split]
753
                )
754
            return self.dataset[self.config.validation_split]
755

Baber's avatar
nit  
Baber committed
756
    def test_docs(self) -> datasets.Dataset | None:
757
        if self.has_test_docs():
758
759
760
            if self.config.process_docs is not None:
                return self.config.process_docs(self.dataset[self.config.test_split])
            return self.dataset[self.config.test_split]
761

762
    def fewshot_docs(self):
Baber's avatar
Baber committed
763
764
765
766
767
768
        docs = self.config.fewshot_cfg.get_docs(self.dataset)

        if docs is not None:
            return docs

        # Fallback to parent implementation
Baber's avatar
nit  
Baber committed
769
770
771
772
773
774
775
776
777
778
        if (
            (_num_fewshot := self.config.num_fewshot)
            and isinstance(_num_fewshot, int)
            and _num_fewshot > 0
        ):
            eval_logger.warning(
                f"[Task: {self.config.task}] "
                "num_fewshot > 0 but no fewshot source configured. "
                "Using preconfigured rule."
            )
Baber's avatar
Baber committed
779
780

        return super().fewshot_docs()
781

KonradSzafer's avatar
KonradSzafer committed
782
783
    @staticmethod
    def append_target_question(
Baber's avatar
nit  
Baber committed
784
        labeled_examples: list[dict[str, str]],
KonradSzafer's avatar
KonradSzafer committed
785
786
        question: str,
        fewshot_as_multiturn: bool = False,
Baber's avatar
nit  
Baber committed
787
        gen_prefix: str | None = None,
KonradSzafer's avatar
KonradSzafer committed
788
789
790
791
792
793
794
795
    ) -> None:
        """Adds a target question to the labeled examples list.
        If fewshot_as_multiturn is True, or labeled_examples is empty, or the last entry is a system turn, appends the question as a new user entry.
        Otherwise, it is appended to the last user entry, ensuring that the conversation alternates between the user and the assistant.
        """
        if not fewshot_as_multiturn:
            # if no messages or last message is system, append as new user entry
            if len(labeled_examples) == 0 or labeled_examples[-1]["role"] == "system":
796
                labeled_examples.append({"role": "user", "content": question})
KonradSzafer's avatar
KonradSzafer committed
797
798
            # if last message is user, append to it to avoid two user messages in a row
            else:
799
                labeled_examples[-1]["content"] += question
KonradSzafer's avatar
KonradSzafer committed
800
801
        else:
            # if fewshot_as_multiturn is True, append as next user entry (last is always assistant)
802
            labeled_examples.append({"role": "user", "content": question})
Baber Abbasi's avatar
Baber Abbasi committed
803
804
        if gen_prefix:
            labeled_examples.append({"role": "assistant", "content": gen_prefix})
KonradSzafer's avatar
KonradSzafer committed
805

lintangsutawika's avatar
lintangsutawika committed
806
    @utils.positional_deprecated
KonradSzafer's avatar
KonradSzafer committed
807
808
    def fewshot_context(
        self,
Baber Abbasi's avatar
Baber Abbasi committed
809
        doc: dict,
KonradSzafer's avatar
KonradSzafer committed
810
        num_fewshot: int,
Baber's avatar
nit  
Baber committed
811
        system_instruction: str | None = None,
KonradSzafer's avatar
KonradSzafer committed
812
813
        apply_chat_template: bool = False,
        fewshot_as_multiturn: bool = False,
Baber's avatar
nit  
Baber committed
814
815
816
        chat_template: Callable | None = None,
        gen_prefix: str | None = None,
    ) -> str | list[str] | None:
lintangsutawika's avatar
lintangsutawika committed
817
818
819
820
821
822
823
        """Returns a fewshot context string that is made up of a prepended description
        (if provided), the `num_fewshot` number of examples, and an appended prompt example.

        :param doc: str
            The document as returned from training_docs, validation_docs, or test_docs.
        :param num_fewshot: int
            The number of fewshot examples to provide in the returned context string.
KonradSzafer's avatar
KonradSzafer committed
824
825
826
827
828
829
        :param  system_instruction: str
            System instruction to be applied to the prompt.
        :param apply_chat_template: bool
            Whether to apply the chat template to the fewshot context.
        :param fewshot_as_multiturn: bool
            Whether to provide the fewshot examples as a multiturn conversation or a single user turn.
830
831
        :param chat_template:
            callable (from lm.apply_chat_template) that takes in a list[Dict] chat transcript and renders it into a string.
832
833
        :param gen_prefix:
            String to append after the <|assistant|> token.
lintangsutawika's avatar
lintangsutawika committed
834
835
836
        :returns: str
            The fewshot context.
        """
Baber's avatar
nit  
Baber committed
837
        labeled_examples = [] if apply_chat_template else ""
KonradSzafer's avatar
KonradSzafer committed
838
839

        # get task description
840
841
        if description := self.config.description:
            description = utils.apply_template(self.config.description, doc)
lintangsutawika's avatar
lintangsutawika committed
842

KonradSzafer's avatar
KonradSzafer committed
843
844
845
846
847
848
849
850
851
        # create system prompt based on the provided system instruction and description
        if system_instruction is not None and description:
            system_prompt = (
                f"{system_instruction}{self.sampler.fewshot_delimiter}{description}"
            )
        elif system_instruction is not None:
            system_prompt = system_instruction
        elif description:
            system_prompt = description
lintangsutawika's avatar
lintangsutawika committed
852
        else:
KonradSzafer's avatar
KonradSzafer committed
853
854
855
856
857
858
859
860
861
862
863
864
865
            system_prompt = ""

        # add system prompt if specified
        if system_prompt:
            if apply_chat_template:
                labeled_examples.append({"role": "system", "content": system_prompt})
            else:
                labeled_examples = system_prompt
        # if few-shot - append examples after the system prompt
        if num_fewshot > 0:
            if apply_chat_template:
                labeled_examples.extend(
                    self.sampler.get_chat_context(
Baber Abbasi's avatar
Baber Abbasi committed
866
867
868
                        doc,
                        num_fewshot,
                        fewshot_as_multiturn,
Baber Abbasi's avatar
Baber Abbasi committed
869
                        gen_prefix=gen_prefix,
KonradSzafer's avatar
KonradSzafer committed
870
871
872
                    )
                )
            else:
Baber Abbasi's avatar
Baber Abbasi committed
873
                labeled_examples += self.sampler.get_context(
Baber Abbasi's avatar
Baber Abbasi committed
874
                    doc, num_fewshot, gen_prefix=gen_prefix
Baber Abbasi's avatar
Baber Abbasi committed
875
                )
lintangsutawika's avatar
lintangsutawika committed
876
877

        example = self.doc_to_text(doc)
KonradSzafer's avatar
KonradSzafer committed
878
879
        if apply_chat_template:
            if self.multiple_input:
Baber Abbasi's avatar
Baber Abbasi committed
880
                # TODO: append prefill?
881
882
                if not labeled_examples:
                    return ""
883
                return chat_template(labeled_examples)
KonradSzafer's avatar
KonradSzafer committed
884
885
            if isinstance(example, str):
                self.append_target_question(
Baber Abbasi's avatar
Baber Abbasi committed
886
887
888
                    labeled_examples,
                    example,
                    fewshot_as_multiturn,
Baber Abbasi's avatar
Baber Abbasi committed
889
                    gen_prefix=gen_prefix,
KonradSzafer's avatar
KonradSzafer committed
890
891
892
893
894
895
896
                )
            # for loglikelihood create a list of questions with appended choices
            elif isinstance(example, list):
                labeled_examples_list = []
                # copy chat history for each example and append the answer
                for ex in example:
                    chat = deepcopy(labeled_examples)
Baber Abbasi's avatar
Baber Abbasi committed
897
898
899
900
                    self.append_target_question(
                        chat,
                        ex,
                        fewshot_as_multiturn,
Baber Abbasi's avatar
Baber Abbasi committed
901
                        gen_prefix=gen_prefix,
Baber Abbasi's avatar
Baber Abbasi committed
902
903
904
905
906
                    )
                    # TODO: append prefill?
                    labeled_examples_list.append(
                        chat_template(
                            chat,
Baber's avatar
nit  
Baber committed
907
                            add_generation_prompt=not gen_prefix,
Baber Abbasi's avatar
Baber Abbasi committed
908
909
                        )
                    )
KonradSzafer's avatar
KonradSzafer committed
910
911
912
913
914
915
                return labeled_examples_list
            # if example is an integer, append the choice or convert to string
            elif isinstance(example, int):
                if self.config.doc_to_choice is not None:
                    choices = self.doc_to_choice(doc)
                    self.append_target_question(
Baber Abbasi's avatar
Baber Abbasi committed
916
917
918
                        labeled_examples,
                        choices[example],
                        fewshot_as_multiturn,
Baber Abbasi's avatar
Baber Abbasi committed
919
                        gen_prefix=gen_prefix,
KonradSzafer's avatar
KonradSzafer committed
920
921
922
                    )
                else:
                    self.append_target_question(
Baber Abbasi's avatar
Baber Abbasi committed
923
924
925
                        labeled_examples,
                        str(example),
                        fewshot_as_multiturn,
Baber Abbasi's avatar
Baber Abbasi committed
926
                        gen_prefix=gen_prefix,
KonradSzafer's avatar
KonradSzafer committed
927
928
                    )
                # return lm.apply_chat_template(labeled_examples)
Baber Abbasi's avatar
Baber Abbasi committed
929
930
            return chat_template(
                labeled_examples,
Baber's avatar
nit  
Baber committed
931
                add_generation_prompt=not gen_prefix,
Baber Abbasi's avatar
Baber Abbasi committed
932
            )
933
        else:
Baber Abbasi's avatar
Baber Abbasi committed
934
            prefix = (
Baber Abbasi's avatar
Baber Abbasi committed
935
936
                self.config.target_delimiter + gen_prefix
                if gen_prefix is not None
Baber Abbasi's avatar
Baber Abbasi committed
937
938
                else ""
            )
KonradSzafer's avatar
KonradSzafer committed
939
940
            if self.multiple_input:
                return labeled_examples
941
            if isinstance(example, str):
Baber Abbasi's avatar
Baber Abbasi committed
942
                return labeled_examples + example + prefix
943
            elif isinstance(example, list):
Baber Abbasi's avatar
Baber Abbasi committed
944
                return [labeled_examples + ex + prefix for ex in example]
945
946
947
            elif isinstance(example, int):
                if self.config.doc_to_choice is not None:
                    choices = self.doc_to_choice(doc)
Baber Abbasi's avatar
Baber Abbasi committed
948
                    return labeled_examples + choices[example] + prefix
949
                else:
Baber Abbasi's avatar
Baber Abbasi committed
950
                    return labeled_examples + str(example) + prefix
lintangsutawika's avatar
lintangsutawika committed
951

Baber's avatar
nit  
Baber committed
952
    def apply_filters(self) -> list[Instance] | None:
Baber Abbasi's avatar
Baber Abbasi committed
953
        """Iterates over FilterEnsembles and applies them to instances"""
954
        if hasattr(self, "_filters") and self._instances:
955
            for f in self._filters:
956
                f.ensemble.apply(self._instances)
957
        else:
958
959
960
            eval_logger.warning(
                "No filter defined or instances found. Passing through instances"
            )
961
962
            return self._instances

963
    def should_decontaminate(self):
964
        return self.config.should_decontaminate
965

Baber Abbasi's avatar
Baber Abbasi committed
966
    def doc_to_decontamination_query(self, doc: dict):
967
        if self.config.should_decontaminate:
968
969
            if self.config.doc_to_decontamination_query is None:
                return self.doc_to_text(doc)
970
            else:
971
972
973
974
975
976
977
978
979
980
981
                doc_to_decontamination_query = self.config.doc_to_decontamination_query
                if doc_to_decontamination_query in self.features:
                    return doc[doc_to_decontamination_query]
                elif callable(doc_to_decontamination_query):
                    return doc_to_decontamination_query(doc)
                else:
                    return ast.literal_eval(
                        utils.apply_template(
                            self.config.doc_to_decontamination_query, doc
                        )
                    )
982

983
    def _process_doc(self, doc: dict) -> dict:
984
985
986
987
988
989
990
991
992
993
        """
        Override this to process (detokenize, strip, replace, etc.) individual
        documents. This can be used in a map over documents of a data split.
        E.g. `map(self._process_doc, self.dataset["validation"])`

        :return: dict
            The processed version of the specified `doc`.
        """
        return doc

Baber's avatar
Baber committed
994
995
996
997
998
999
1000
1001
1002
1003
1004
1005
    @overload
    def doc_to_text(self, doc: dict, doc_to_text: None = None) -> str | int: ...

    @overload
    def doc_to_text(self, doc: dict, doc_to_text: int) -> int: ...

    @overload
    def doc_to_text(self, doc: dict, doc_to_text: str) -> str: ...

    @overload
    def doc_to_text(self, doc: dict, doc_to_text: Callable[..., str]) -> str: ...

Baber's avatar
nit  
Baber committed
1006
1007
    def doc_to_text(
        self, doc: dict, doc_to_text: int | str | Callable[..., str] | None = None
Baber's avatar
Baber committed
1008
    ) -> str | int:
Baber's avatar
Baber committed
1009
1010
        # if self.prompt is not None:
        #     doc_to_text = self.prompt
Baber's avatar
nit  
Baber committed
1011
        doc_to_text = doc_to_text or self.config.doc_to_text
lintangsutawika's avatar
lintangsutawika committed
1012

1013
        if isinstance(doc_to_text, int):
1014
            return doc_to_text
1015
        elif isinstance(doc_to_text, str):
1016
            if doc_to_text in self.features:
1017
                # if self.config.doc_to_choice is not None:
1018
1019
                #     return self.doc_to_choice(doc)[doc[doc_to_text]]
                # else:
1020
1021
                return doc[doc_to_text]
            else:
lintangsutawika's avatar
lintangsutawika committed
1022
                text_string = utils.apply_template(doc_to_text, doc)
Baber's avatar
nit  
Baber committed
1023
                if text_string.isdigit() and self.config.doc_to_choice is not None:
lintangsutawika's avatar
lintangsutawika committed
1024
1025
1026
                    return ast.literal_eval(text_string)
                else:
                    return text_string
1027
        elif callable(doc_to_text):
1028
            return doc_to_text(doc)
lintangsutawika's avatar
lintangsutawika committed
1029
        # Used when applying a Promptsource template
Baber's avatar
Baber committed
1030
1031
1032
1033
1034
1035
1036
        # elif hasattr(doc_to_text, "apply"):
        #     applied_prompt = doc_to_text.apply(doc)
        #     if len(applied_prompt) == 2:
        #         return applied_prompt[0]
        #     else:
        #         eval_logger.warning("Applied prompt returns empty string")
        #         return self.config.fewshot_delimiter
1037
        else:
1038
            print(type(doc_to_text))
1039
            raise TypeError
1040

Baber's avatar
Baber committed
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
    @overload
    def doc_to_target(
        self, doc: dict, doc_to_target: None = None
    ) -> int | str | list[int]: ...

    @overload
    def doc_to_target(self, doc: dict, doc_to_target: int) -> int: ...

    @overload
    def doc_to_target(self, doc: dict, doc_to_target: str) -> int | str | list[int]: ...

    @overload
    def doc_to_target(self, doc: dict, doc_to_target: list) -> list[int]: ...

    @overload
    def doc_to_target(
        self, doc: dict, doc_to_target: Callable[..., int | str | list[int]]
    ) -> int | str | list[int]: ...

Baber's avatar
nit  
Baber committed
1060
    def doc_to_target(self, doc: dict, doc_to_target=None) -> int | str | list[int]:
Baber's avatar
Baber committed
1061
1062
1063
        # if self.prompt is not None:
        #     doc_to_target = self.prompt
        if doc_to_target is not None:
Yu Shi Jie's avatar
Yu Shi Jie committed
1064
            doc_to_target = doc_to_target
1065
        else:
1066
            doc_to_target = self.config.doc_to_target
1067

1068
        if isinstance(doc_to_target, int):
1069
            return doc_to_target
1070
        elif isinstance(doc_to_target, str):
1071
            if doc_to_target in self.features:
1072
                # if self.config.doc_to_choice is not None:
1073
1074
1075
                #     return self.doc_to_choice(doc)[doc[doc_to_target]]
                # else:
                return doc[doc_to_target]
1076
            else:
lintangsutawika's avatar
lintangsutawika committed
1077
                target_string = utils.apply_template(doc_to_target, doc)
Baber's avatar
nit  
Baber committed
1078
                if target_string.isdigit() and self.config.doc_to_choice is not None:
lintangsutawika's avatar
lintangsutawika committed
1079
                    return ast.literal_eval(target_string)
lintangsutawika's avatar
lintangsutawika committed
1080
1081
1082
1083
1084
                elif (
                    len(target_string) >= 2
                    and (target_string[0] == "[")
                    and (target_string[-1] == "]")
                ):
baberabb's avatar
baberabb committed
1085
1086
1087
1088
                    try:
                        return ast.literal_eval(target_string)
                    except (SyntaxError, ValueError):
                        return target_string
lintangsutawika's avatar
lintangsutawika committed
1089
1090
                else:
                    return target_string
1091
        elif isinstance(doc_to_target, list):
1092
            return doc_to_target
1093
        elif callable(doc_to_target):
1094
            return doc_to_target(doc)
Baber's avatar
Baber committed
1095
1096
1097
1098
1099
1100
1101
1102
        # # Used when applying a Promptsource template
        # elif hasattr(doc_to_target, "apply"):
        #     applied_prompt = doc_to_target.apply(doc)
        #     if len(applied_prompt) == 2:
        #         return applied_prompt[1]
        #     else:
        #         eval_logger.warning("Applied prompt returns empty string")
        #         return self.config.fewshot_delimiter
1103
1104
        else:
            raise TypeError
1105

Baber's avatar
Baber committed
1106
1107
1108
1109
1110
1111
1112
1113
1114
1115
1116
1117
1118
1119
1120
1121
1122
    @overload
    def doc_to_choice(self, doc: dict, doc_to_choice: None = None) -> list[str]: ...

    @overload
    def doc_to_choice(self, doc: dict, doc_to_choice: str) -> list[str]: ...

    @overload
    def doc_to_choice(self, doc: dict, doc_to_choice: list) -> list[str]: ...

    @overload
    def doc_to_choice(self, doc: dict, doc_to_choice: dict) -> list[str]: ...

    @overload
    def doc_to_choice(
        self, doc: dict, doc_to_choice: Callable[..., list[str]]
    ) -> list[str]: ...

Baber's avatar
Baber committed
1123
    def doc_to_choice(
Baber's avatar
Baber committed
1124
1125
        self,
        doc: dict,
Baber's avatar
nit  
Baber committed
1126
1127
        doc_to_choice: str | list | dict | Callable[..., list[str]] | None = None,
    ) -> list[str]:
Baber's avatar
Baber committed
1128
1129
1130
        # if self.prompt is not None:
        #     doc_to_choice = self.prompt
        if doc_to_choice is not None:
Yu Shi Jie's avatar
Yu Shi Jie committed
1131
            doc_to_choice = doc_to_choice
1132
        elif self.config.doc_to_choice is None:
1133
            eval_logger.error("doc_to_choice was called but not set in config")
Baber's avatar
Baber committed
1134
            doc_to_choice = None
1135
        else:
1136
            doc_to_choice = self.config.doc_to_choice
1137

1138
        if isinstance(doc_to_choice, str):
1139
1140
1141
1142
            if doc_to_choice in self.features:
                return doc[doc_to_choice]
            else:
                return ast.literal_eval(utils.apply_template(doc_to_choice, doc))
1143
        elif isinstance(doc_to_choice, list):
1144
            return doc_to_choice
1145
        elif isinstance(doc_to_choice, dict):
1146
1147
1148
            return list(doc_to_choice.values())
        elif callable(doc_to_choice):
            return doc_to_choice(doc)
Baber's avatar
Baber committed
1149
1150
        # elif hasattr(doc_to_choice, "get_answer_choices_list"):
        #     return doc_to_choice.get_answer_choices_list(doc)
1151
1152
        else:
            raise TypeError
1153

Baber's avatar
Baber committed
1154
1155
1156
1157
1158
1159
1160
1161
1162
1163
1164
1165
    @overload
    def doc_to_image(self, doc: dict, doc_to_image: None = None) -> None: ...

    @overload
    def doc_to_image(self, doc: dict, doc_to_image: list) -> list: ...

    @overload
    def doc_to_image(self, doc: dict, doc_to_image: str) -> int | str | None: ...

    @overload
    def doc_to_image(self, doc: dict, doc_to_image: Callable[..., Any]) -> Any: ...

Baber's avatar
nit  
Baber committed
1166
    def doc_to_image(self, doc: dict, doc_to_image=None) -> int | str | list | None:
1167
1168
1169
1170
1171
1172
1173
1174
1175
1176
1177
1178
1179
1180
1181
1182
1183
1184
1185
1186
1187
1188
        if doc_to_image is not None:
            doc_to_image = doc_to_image
        elif self.config.doc_to_image is not None:
            doc_to_image = self.config.doc_to_image
        else:
            return None

        if isinstance(doc_to_image, list):
            image_feature = [
                self.doc_to_image(doc, feature) for feature in doc_to_image
            ]
            return [feature for feature in image_feature if feature is not None]
        elif isinstance(doc_to_image, str):
            if doc_to_image in self.features:
                return doc[doc_to_image]
            else:
                return ast.literal_eval(utils.apply_template(doc_to_image, doc))
        elif callable(doc_to_image):
            return doc_to_image(doc)
        else:
            return None

Baber's avatar
Baber committed
1189
1190
1191
1192
1193
1194
1195
1196
1197
1198
1199
1200
    @overload
    def doc_to_audio(self, doc: Any, doc_to_audio: None = None) -> None: ...

    @overload
    def doc_to_audio(self, doc: Any, doc_to_audio: list) -> list: ...

    @overload
    def doc_to_audio(self, doc: Any, doc_to_audio: str) -> int | str | None: ...

    @overload
    def doc_to_audio(self, doc: Any, doc_to_audio: Callable[..., Any]) -> Any: ...

Baber's avatar
nit  
Baber committed
1201
    def doc_to_audio(self, doc: Any, doc_to_audio=None) -> int | str | list | None:
1202
1203
1204
1205
1206
1207
1208
1209
1210
1211
1212
1213
1214
1215
1216
1217
1218
1219
1220
1221
1222
1223
        if doc_to_audio is not None:
            doc_to_audio = doc_to_audio
        elif self.config.doc_to_audio is not None:
            doc_to_audio = self.config.doc_to_audio
        else:
            return None

        if isinstance(doc_to_audio, list):
            audio_feature = [
                self.doc_to_audio(doc, feature) for feature in doc_to_audio
            ]
            return [feature for feature in audio_feature if feature is not None]
        elif isinstance(doc_to_audio, str):
            if doc_to_audio in self.features:
                return doc[doc_to_audio]
            else:
                return ast.literal_eval(utils.apply_template(doc_to_audio, doc))
        elif callable(doc_to_audio):
            return doc_to_audio(doc)
        else:
            return None

Baber's avatar
nit  
Baber committed
1224
    def doc_to_prefix(self, doc: dict) -> str | None:
Baber Abbasi's avatar
Baber Abbasi committed
1225
1226
1227
1228
1229
1230
1231
        if (gen_prefix := self.config.gen_prefix) is not None:
            if gen_prefix in self.features:
                return doc[gen_prefix]
            else:
                return utils.apply_template(gen_prefix, doc)
        return None

baberabb's avatar
baberabb committed
1232
1233
    def construct_requests(
        self, doc: dict, ctx: str, **kwargs
Baber's avatar
nit  
Baber committed
1234
    ) -> list[Instance] | Instance:
1235
        apply_chat_template = kwargs.pop("apply_chat_template", False)
1236
        chat_template: Callable | None = kwargs.pop("chat_template", None)
1237

1238
1239
        aux_arguments = None

1240
        if self.OUTPUT_TYPE == "loglikelihood":
lintangsutawika's avatar
lintangsutawika committed
1241
            arguments = (ctx, self.doc_to_target(doc))
1242
        elif self.OUTPUT_TYPE == "loglikelihood_rolling":
lintangsutawika's avatar
lintangsutawika committed
1243
            arguments = (self.doc_to_target(doc),)
1244
        elif self.OUTPUT_TYPE == "multiple_choice":
1245
            choices = self.doc_to_choice(doc)
1246
            target_delimiter = self.config.target_delimiter
1247
1248
            if apply_chat_template:
                target_delimiter = ""
1249
1250
            if self.multiple_input:
                # If there are multiple inputs, choices are placed in the ctx
1251
                # apply chat_template to choices if apply_chat_template
1252
                cont = self.doc_to_target(doc)
1253

1254
                arguments = [
1255
1256
1257
1258
1259
1260
1261
1262
1263
1264
                    (
                        ctx
                        + (
                            chat_template([{"role": "user", "content": choice}])
                            if apply_chat_template
                            else choice
                        ),
                        f"{target_delimiter}{cont}",
                    )
                    for choice in choices
1265
                ]
1266
            else:
1267
                # Otherwise they are placed in the continuation
1268
                arguments = [(ctx, f"{target_delimiter}{cont}") for cont in choices]
1269

1270
            # TODO: we should raise a warning telling users this will at most ~2x runtime.
Baber's avatar
Baber committed
1271
            if "acc_mutual_info" in [m.metric_name for m in self.config._metric_list]:
1272
1273
1274
1275
1276
1277
                # if we are calculating multiple choice accuracy
                # using mutual information instead of raw loglikelihood as metric, need unconditional lls.

                # here mutual info refers to calculating
                # log(P(choice|ctx) / P(choice)) = log(P(choice|ctx)) - log(P(choice))
                # in other words normalizing by subtracting the unconditional logprob of each choice.
1278
1279
1280
1281
                # TODO: should these be strided? will have to modify the processing in process_results if so
                aux_arguments = [
                    ("", f"{target_delimiter}{choice}") for choice in choices
                ]
1282
1283
1284
1285
1286
1287
1288
1289
1290
1291
1292
1293
1294
1295
1296

                arguments.extend(aux_arguments)

        elif self.OUTPUT_TYPE == "generate_until":
            arguments = (ctx, deepcopy(self.config.generation_kwargs))

        multimodal_arg = {}
        if (
            self.config.doc_to_image
        ):  # TODO: ensure that non-multimodal tasks aren't getting visual args
            multimodal_arg = {
                **multimodal_arg,
                **{"visual": self.doc_to_image(doc)},
            }

1297
1298
1299
1300
1301
1302
1303
1304
        if (
            self.config.doc_to_audio
        ):  # TODO: ensure that non-multimodal tasks aren't getting audio args
            multimodal_arg = {
                **multimodal_arg,
                **{"audio": self.doc_to_audio(doc)},
            }

1305
1306
1307
1308
1309
1310
1311
        if bool(multimodal_arg):
            if isinstance(arguments, list):
                arguments = [arg + (multimodal_arg,) for arg in arguments]
            else:
                arguments = arguments + (multimodal_arg,)

        if self.OUTPUT_TYPE == "multiple_choice":
1312
            request_list = [
1313
1314
                Instance(
                    request_type="loglikelihood",
lintangsutawika's avatar
lintangsutawika committed
1315
                    doc=doc,
1316
                    arguments=arg,
1317
                    idx=i,
1318
1319
                    **kwargs,
                )
1320
                for i, arg in enumerate(arguments)
1321
            ]
1322
1323

            return request_list
lintangsutawika's avatar
lintangsutawika committed
1324

lintangsutawika's avatar
lintangsutawika committed
1325
        return Instance(
1326
1327
1328
1329
1330
            request_type=self.OUTPUT_TYPE,
            doc=doc,
            arguments=arguments,
            idx=0,
            **kwargs,
lintangsutawika's avatar
lintangsutawika committed
1331
        )
1332

1333
    def process_results(self, doc: dict, results: list) -> dict[str, Any]:
1334
1335
        if callable(self.config.process_results):
            return self.config.process_results(doc, results)
lintangsutawika's avatar
lintangsutawika committed
1336

1337
        result_dict = {}
Baber's avatar
fixup  
Baber committed
1338
        use_metric = list(m.metric_name for m in self.config._metric_list)
1339
1340
1341
        if self.OUTPUT_TYPE == "loglikelihood":
            results = results[0]
            ll, is_greedy = results
1342
1343
1344
1345
            return {
                **({"perplexity": ll} if "perplexity" in use_metric else {}),
                **({"acc": int(is_greedy)} if "acc" in use_metric else {}),
            }
1346
        elif self.OUTPUT_TYPE == "loglikelihood_rolling":
1347
1348
1349
1350
1351
1352
            (loglikelihood, *_) = results
            assert isinstance(_target := self.doc_to_target(doc), str), (
                "Require target to be a string for loglikelihood_rolling"
            )
            _words = self.count_words(_target)
            _bytes = self.count_bytes(_target)
haileyschoelkopf's avatar
haileyschoelkopf committed
1353
            return {
1354
1355
1356
1357
1358
1359
1360
1361
1362
1363
1364
1365
1366
1367
1368
                **(
                    {"word_perplexity": (loglikelihood, _words)}
                    if "word_perplexity" in use_metric
                    else {}
                ),
                **(
                    {"byte_perplexity": (loglikelihood, _bytes)}
                    if "byte_perplexity" in use_metric
                    else {}
                ),
                **(
                    {"bits_per_byte": (loglikelihood, _bytes)}
                    if "bits_per_byte" in use_metric
                    else {}
                ),
haileyschoelkopf's avatar
haileyschoelkopf committed
1369
            }
1370
        elif self.OUTPUT_TYPE == "multiple_choice":
1371
            lls, is_greedy = zip(*results)
lintangsutawika's avatar
lintangsutawika committed
1372

Baber's avatar
nit  
Baber committed
1373
            # retrieve choices in list[str] form, to compute choice lengths, etc.
1374
            choices = self.doc_to_choice(doc)
1375
1376
            completion_len = np.array([float(len(i)) for i in choices])

Baber's avatar
Baber committed
1377
            if 2 * len(choices) == len(lls) and "acc_mutual_info" in use_metric:
1378
1379
                # then we are doing mutual info.
                # this stores the "dryrun" / unconditional answer loglikelihoods
1380
1381
                # as we extend the args list with unconditional ("", continuation) pairs
                lls_unconditional = lls[len(choices) :]
1382
1383
                if len(lls_unconditional) != len(choices):
                    raise ValueError
1384
                # and this stores our "regular" conditional loglikelihoods
1385
                lls = lls[: len(choices)]
Baber's avatar
Baber committed
1386
1387
            else:
                lls_unconditional = None
1388

1389
1390
            pred = np.argmax(lls)
            pred_norm = np.argmax(lls / completion_len)
lintangsutawika's avatar
lintangsutawika committed
1391

1392
1393
            if self.multiple_input:
                gold = self.doc_to_text(doc)
1394
            else:
1395
                gold = self.doc_to_target(doc)
1396

1397
            gold, gold_index_error = check_gold_index_error(choices, gold)
1398
1399
1400

            if gold_index_error:
                eval_logger.warning(
lintangsutawika's avatar
lintangsutawika committed
1401
                    f"Label index was not in within range of available choices,"
1402
1403
                    f"Sample:\n\n{doc}\n\n"
                )
lintangsutawika's avatar
lintangsutawika committed
1404

1405
            if self.multiple_target:
lintangsutawika's avatar
lintangsutawika committed
1406
1407
                acc = 1.0 if pred in gold else 0.0
                acc_norm = 1.0 if pred_norm in gold else 0.0
Baber's avatar
nit  
Baber committed
1408
                exact_match = int(any(is_greedy[i] if i != -100 else 0 for i in gold))
lintangsutawika's avatar
lintangsutawika committed
1409
1410
1411
            else:
                acc = 1.0 if pred == gold else 0.0
                acc_norm = 1.0 if pred_norm == gold else 0.0
1412
                # TODO: this gets score of 0 on arc_challenge for pythia-70m. need to test that this works properly
Lintang Sutawika's avatar
Lintang Sutawika committed
1413
                exact_match = int(is_greedy[gold]) if gold != -100 else 0
1414

Lintang Sutawika's avatar
Lintang Sutawika committed
1415
1416
1417
1418
            prob_norm = utils.softmax(lls)

            # TODO use keyword arguments to the metric?
            # gold, pred, norm stuff, the original lls,
1419
            result_dict = {
1420
                **({"acc": acc} if "acc" in use_metric else {}),
1421
1422
                **({"f1": (gold, pred)} if "f1" in use_metric else {}),
                **({"mcc": (gold, pred)} if "mcc" in use_metric else {}),
1423
                **({"acc_norm": acc_norm} if "acc_norm" in use_metric else {}),
1424
                **({"exact_match": exact_match} if "exact_match" in use_metric else {}),
Lintang Sutawika's avatar
Lintang Sutawika committed
1425
1426
1427
1428
1429
                **(
                    {"brier_score": (gold, prob_norm)}
                    if "brier_score" in use_metric
                    else {}
                ),
1430
1431
            }

1432
            if "acc_mutual_info" in use_metric:
Baber's avatar
Baber committed
1433
1434
1435
                assert lls_unconditional is not None, (
                    "lls_unconditional should not be None if acc_mutual_info is in use_metric"
                )
lintangsutawika's avatar
lintangsutawika committed
1436
1437
1438
                lls_mutual_info = [
                    ll_c - ll_u for ll_c, ll_u in zip(lls, lls_unconditional)
                ]
1439
1440
1441
                acc_mutual_info = 1.0 if np.argmax(lls_mutual_info) == gold else 0.0
                result_dict["acc_mutual_info"] = acc_mutual_info

1442
        elif self.OUTPUT_TYPE == "generate_until":
1443
            gold = self.doc_to_target(doc)
Chris's avatar
Chris committed
1444
            result = results[0]
Baber's avatar
Baber committed
1445
            for metric in self.config._metric_list:
Baber's avatar
Baber committed
1446
                try:
Baber's avatar
Baber committed
1447
                    result_score = metric.fn(
Baber's avatar
Baber committed
1448
1449
                        references=[gold] if not isinstance(gold, list) else gold,
                        predictions=[result],
Baber's avatar
Baber committed
1450
                        **metric.kwargs,
Baber's avatar
Baber committed
1451
1452
                    )
                except TypeError:  # needed for now in order to use a different interface between our own metrics and HF Evaluate metrics
Baber's avatar
Baber committed
1453
                    result_score = metric.fn([gold, result])
1454
1455
1456
1457
1458
1459
1460
                if isinstance(result_score, dict):
                    # TODO: this handles the case where HF evaluate returns a dict.
                    # This allows for multiple metrics to be returned from the same function
                    for k, v in result_score.items():
                        result_dict[k] = v
                else:
                    result_dict[metric] = result_score
1461
        else:
lintangsutawika's avatar
lintangsutawika committed
1462
1463
            raise ValueError(
                f"Passed invalid output_type '{self.OUTPUT_TYPE}' ! Please use one of ",
1464
                "'loglikelihood', 'loglikelihood_rolling', 'generate_until' or 'multiple_choice'",
1465
            )
1466
1467
1468

        return result_dict

Baber Abbasi's avatar
Baber Abbasi committed
1469
    def aggregation(self) -> dict:
Baber's avatar
fixup  
Baber committed
1470
        return {k.name: k.aggregation_fn for k in self.config._metric_list}
1471

Baber Abbasi's avatar
Baber Abbasi committed
1472
    def higher_is_better(self) -> dict:
Baber's avatar
fixup  
Baber committed
1473
        return {k.name: k.higher_is_better for k in self.config._metric_list}
1474

Baber Abbasi's avatar
Baber Abbasi committed
1475
1476
1477
    def get_config(self, key: str) -> Any:
        return getattr(self._config, key, None)

Lintang Sutawika's avatar
Lintang Sutawika committed
1478
    @property
Baber's avatar
nit  
Baber committed
1479
    def task_name(self) -> str | None:
Lintang Sutawika's avatar
Lintang Sutawika committed
1480
1481
        return getattr(self.config, "task", None)

1482
1483
1484
1485
1486
    def __repr__(self):
        return (
            f"ConfigurableTask(task_name={getattr(self.config, 'task', None)},"
            f"output_type={self.OUTPUT_TYPE},"
            f"num_fewshot={getattr(self.config, 'num_fewshot', None)},"
Baber Abbasi's avatar
Baber Abbasi committed
1487
            f"num_samples={len(self.eval_docs)})"
1488
1489
        )

1490
1491

class MultipleChoiceTask(Task):
1492
    OUTPUT_TYPE = "loglikelihood"
1493

baberabb's avatar
baberabb committed
1494
    def doc_to_target(self, doc: dict) -> str:
1495
1496
        return " " + doc["choices"][doc["gold"]]

Baber's avatar
nit  
Baber committed
1497
    def construct_requests(self, doc: dict, ctx: str, **kwargs) -> list[Instance]:
1498
        # TODO: add mutual info here?
lintangsutawika's avatar
lintangsutawika committed
1499
1500
        return [
            Instance(
haileyschoelkopf's avatar
haileyschoelkopf committed
1501
                request_type="loglikelihood",
lintangsutawika's avatar
lintangsutawika committed
1502
                doc=doc,
1503
                arguments=(ctx, f" {choice}"),
1504
                idx=i,
1505
1506
                **kwargs,
            )
lintangsutawika's avatar
lintangsutawika committed
1507
1508
            for i, choice in enumerate(doc["choices"])
        ]
1509

Baber's avatar
nit  
Baber committed
1510
    def process_results(self, doc: dict, results: Iterable[tuple[float, bool]]) -> dict:
lintangsutawika's avatar
lintangsutawika committed
1511
1512
1513
        results = [
            res[0] for res in results
        ]  # only retain loglikelihoods, discard is_greedy TODO: do we need is_greedy anywhere?
1514
1515
1516
1517
1518
1519
1520
1521
1522
1523
1524
        gold = doc["gold"]

        acc = 1.0 if np.argmax(results) == gold else 0.0
        completion_len = np.array([float(len(i)) for i in doc["choices"]])
        acc_norm = 1.0 if np.argmax(results / completion_len) == gold else 0.0

        return {
            "acc": acc,
            "acc_norm": acc_norm,
        }

baberabb's avatar
baberabb committed
1525
    def higher_is_better(self) -> dict:
1526
1527
1528
1529
1530
        return {
            "acc": True,
            "acc_norm": True,
        }

baberabb's avatar
baberabb committed
1531
    def aggregation(self) -> dict:
1532
1533
1534
1535
1536
1537
        return {
            "acc": mean,
            "acc_norm": mean,
        }


lintangsutawika's avatar
lintangsutawika committed
1538
class PerplexityTask(Task):
1539
1540
    OUTPUT_TYPE = "loglikelihood_rolling"

baberabb's avatar
baberabb committed
1541
    def has_training_docs(self) -> bool:
1542
1543
        return False

Baber's avatar
nit  
Baber committed
1544
    def fewshot_examples(self, k: int, rnd) -> list:
1545
1546
1547
1548
        if k != 0:
            raise ValueError(
                "The number of fewshot examples must be 0 for perplexity tasks."
            )
1549
1550
        return []

baberabb's avatar
baberabb committed
1551
    def fewshot_context(self, doc: dict, num_fewshot: int) -> Literal[""]:
1552
1553
1554
1555
        if num_fewshot != 0:
            raise ValueError(
                "The number of fewshot examples must be 0 for perplexity tasks."
            )
1556
1557
1558

        return ""

baberabb's avatar
baberabb committed
1559
    def higher_is_better(self) -> dict:
1560
1561
1562
1563
1564
1565
1566
1567
1568
        return {
            "word_perplexity": False,
            "byte_perplexity": False,
            "bits_per_byte": False,
        }

    def doc_to_decontamination_query(self, doc):
        return doc

Ethan Smith's avatar
Ethan Smith committed
1569
    def doc_to_text(self, doc) -> str:
1570
1571
1572
1573
1574
        return ""

    def doc_to_target(self, doc):
        return doc

Baber's avatar
nit  
Baber committed
1575
    def construct_requests(self, doc: dict, ctx: str | None, **kwargs):
1576
1577
        if bool(ctx):
            raise ValueError
1578

lintangsutawika's avatar
lintangsutawika committed
1579
1580
1581
1582
1583
1584
1585
        return Instance(
            request_type=self.OUTPUT_TYPE,
            doc=doc,
            arguments=(self.doc_to_target(doc),),
            idx=0,
            **kwargs,
        )
1586

Baber's avatar
nit  
Baber committed
1587
    def process_results(self, doc: dict, results: tuple[float]) -> dict:
1588
        (loglikelihood,) = results
haileyschoelkopf's avatar
haileyschoelkopf committed
1589
1590
        words = self.count_words(self.doc_to_target(doc))
        bytes_ = self.count_bytes(self.doc_to_target(doc))
1591
1592
1593
1594
1595
1596
        return {
            "word_perplexity": (loglikelihood, words),
            "byte_perplexity": (loglikelihood, bytes_),
            "bits_per_byte": (loglikelihood, bytes_),
        }

baberabb's avatar
baberabb committed
1597
    def aggregation(self) -> dict:
1598
1599
1600
1601
1602
1603
1604
        return {
            "word_perplexity": weighted_perplexity,
            "byte_perplexity": weighted_perplexity,
            "bits_per_byte": bits_per_byte,
        }

    @classmethod
baberabb's avatar
baberabb committed
1605
    def count_bytes(cls, doc) -> int:
1606
1607
1608
        return len(doc.encode("utf-8"))

    @classmethod
baberabb's avatar
baberabb committed
1609
    def count_words(cls, doc) -> int:
1610
        """Downstream tasks with custom word boundaries should override this!"""
Lintang Sutawika's avatar
Lintang Sutawika committed
1611
        return len(re.split(r"\s+", doc))