task.py 59 KB
Newer Older
1
import abc
2
import ast
lintangsutawika's avatar
lintangsutawika committed
3
import logging
4
import random
5
import re
6
from collections.abc import Callable, Iterable, Iterator, Mapping
7
from copy import deepcopy
8
from typing import (
Baber's avatar
Baber committed
9
    TYPE_CHECKING,
10
11
12
13
14
15
16
17
    Any,
    Dict,
    List,
    Literal,
    Optional,
    Tuple,
    Union,
)
18
19
20

import datasets
import numpy as np
21
from tqdm import tqdm
Baber's avatar
Baber committed
22
from typing_extensions import deprecated
23
24

from lm_eval import utils
25
26
from lm_eval.api.instance import Instance, OutputType
from lm_eval.api.metrics import bits_per_byte, mean, weighted_perplexity
27
from lm_eval.caching.cache import load_from_cache, save_to_cache
Baber's avatar
Baber committed
28
29
from lm_eval.config.metric import MetricConfig
from lm_eval.config.task import TaskConfig
30
31
from lm_eval.filters import build_filter_ensemble

32

33
34
35
36
ALL_OUTPUT_TYPES = [
    "loglikelihood",
    "multiple_choice",
    "loglikelihood_rolling",
37
    "generate_until",
38
39
]

Baber's avatar
Baber committed
40
if TYPE_CHECKING:
Baber's avatar
Baber committed
41
    pass
Baber's avatar
Baber committed
42
43


Lintang Sutawika's avatar
Lintang Sutawika committed
44
eval_logger = logging.getLogger(__name__)
45

lintangsutawika's avatar
lintangsutawika committed
46

47
48
49
50
51
52
53
54
55
56
class Task(abc.ABC):
    """A task represents an entire benchmark including its dataset, problems,
    answers, and evaluation methods. See BoolQ for a simple example implementation

    A `doc` can be any python object which represents one instance of evaluation.
    This is usually a dictionary e.g.
        {"question": ..., "answer": ...} or
        {"question": ..., question, answer)
    """

57
    VERSION: Optional[Union[int, str]] = None
58

59
60
    # The name of the `Task` benchmark as denoted in the HuggingFace datasets Hub
    # or a path to a custom `datasets` loading script.
61
    DATASET_PATH: Optional[str] = None
62
63

    # The name of a subset within `DATASET_PATH`.
64
    DATASET_NAME: Optional[str] = None
65

66
    OUTPUT_TYPE: Optional[OutputType] = None
lintangsutawika's avatar
lintangsutawika committed
67

68
69
    def __init__(
        self,
70
71
72
73
        data_dir: Optional[str] = None,
        cache_dir: Optional[str] = None,
        download_mode: Optional[datasets.DownloadMode] = None,
        config: Optional[Mapping] = None,  # Union[dict, TaskConfig]
Ethan Smith's avatar
Ethan Smith committed
74
    ) -> None:
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
        """
        :param data_dir: str
            Stores the path to a local folder containing the `Task`'s data files.
            Use this to specify the path to manually downloaded data (usually when
            the dataset is not publicly accessible).
        :param cache_dir: str
            The directory to read/write the `Task` dataset. This follows the
            HuggingFace `datasets` API with the default cache directory located at:
                `~/.cache/huggingface/datasets`
            NOTE: You can change the cache location globally for a given process
            to another directory:
                `export HF_DATASETS_CACHE="/path/to/another/directory"`
        :param download_mode: datasets.DownloadMode
            How to treat pre-existing `Task` downloads and data.
            - `datasets.DownloadMode.REUSE_DATASET_IF_EXISTS`
                Reuse download and reuse dataset.
            - `datasets.DownloadMode.REUSE_CACHE_IF_EXISTS`
                Reuse download with fresh dataset.
            - `datasets.DownloadMode.FORCE_REDOWNLOAD`
                Fresh download and fresh dataset.
        """
        self.download(data_dir, cache_dir, download_mode)
97
98
99
        self._training_docs: Optional[list] = None
        self._fewshot_docs: Optional[list] = None
        self._instances: Optional[List[Instance]] = None
100

101
        self._config: TaskConfig = TaskConfig.from_yaml({**config})
102

103
        self._filters = [build_filter_ensemble("none", [("take_first", None)])]
104
105
106
        self.fewshot_rnd: Optional[random.Random] = (
            None  # purposely induce errors in case of improper usage
        )
107

108
109
110
111
112
113
    def download(
        self,
        data_dir: Optional[str] = None,
        cache_dir: Optional[str] = None,
        download_mode=None,
    ) -> None:
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
        """Downloads and returns the task dataset.
        Override this method to download the dataset from a custom API.

        :param data_dir: str
            Stores the path to a local folder containing the `Task`'s data files.
            Use this to specify the path to manually downloaded data (usually when
            the dataset is not publicly accessible).
        :param cache_dir: str
            The directory to read/write the `Task` dataset. This follows the
            HuggingFace `datasets` API with the default cache directory located at:
                `~/.cache/huggingface/datasets`
            NOTE: You can change the cache location globally for a given process
            by setting the shell environment variable, `HF_DATASETS_CACHE`,
            to another directory:
                `export HF_DATASETS_CACHE="/path/to/another/directory"`
        :param download_mode: datasets.DownloadMode
            How to treat pre-existing `Task` downloads and data.
            - `datasets.DownloadMode.REUSE_DATASET_IF_EXISTS`
                Reuse download and reuse dataset.
            - `datasets.DownloadMode.REUSE_CACHE_IF_EXISTS`
                Reuse download with fresh dataset.
            - `datasets.DownloadMode.FORCE_REDOWNLOAD`
                Fresh download and fresh dataset.
        """
138
139
140
141
142
143
144
        self.dataset = datasets.load_dataset(
            path=self.DATASET_PATH,
            name=self.DATASET_NAME,
            data_dir=data_dir,
            cache_dir=cache_dir,
            download_mode=download_mode,
        )
145

146
    @property
147
    def config(self) -> TaskConfig:
148
149
150
        """Returns the TaskConfig associated with this class."""
        return self._config

151
    @abc.abstractmethod
Baber's avatar
Baber committed
152
    def has_training_docs(self) -> bool:
153
154
155
156
        """Whether the task has a training set"""
        pass

    @abc.abstractmethod
Baber's avatar
Baber committed
157
    def has_validation_docs(self) -> bool:
158
159
160
161
        """Whether the task has a validation set"""
        pass

    @abc.abstractmethod
Baber's avatar
Baber committed
162
    def has_test_docs(self) -> bool:
163
164
165
        """Whether the task has a test set"""
        pass

166
    def training_docs(self) -> Iterable:
167
168
169
170
171
172
        """
        :return: Iterable[obj]
            A iterable of any object, that doc_to_text can handle
        """
        return []

173
    def validation_docs(self) -> Iterable:
174
175
176
177
178
179
        """
        :return: Iterable[obj]
            A iterable of any object, that doc_to_text can handle
        """
        return []

180
    def test_docs(self) -> Iterable:
181
182
183
184
185
186
        """
        :return: Iterable[obj]
            A iterable of any object, that doc_to_text can handle
        """
        return []

187
    def fewshot_docs(self) -> Iterable:
188
189
190
191
192
193
194
195
196
        """
        :return: Iterable[obj]
            A iterable of any object, that doc_to_text can handle
        """
        if self.has_training_docs():
            return self.training_docs()
        elif self.has_validation_docs():
            return self.validation_docs()
        else:
Baber Abbasi's avatar
Baber Abbasi committed
197
198
199
200
201
            if self.config.get("num_fewshot", 0) > 0:
                eval_logger.warning(
                    f"[Task: {self.config.task}] has_training_docs and has_validation_docs are False"
                    ", using test_docs as fewshot_docs but this is not recommended."
                )
202
203
            return self.test_docs()

204
    def _process_doc(self, doc: dict) -> dict:
205
206
207
208
209
210
211
212
213
        """
        Override this to process (detokenize, strip, replace, etc.) individual
        documents. This can be used in a map over documents of a data split.
        E.g. `map(self._process_doc, self.dataset["validation"])`

        :return: dict
            The processed version of the specified `doc`.
        """
        return doc
lintangsutawika's avatar
lintangsutawika committed
214

215
    @property
Baber's avatar
Baber committed
216
    def instances(self) -> list[Instance]:
217
218
219
220
221
        """After calling `task.build_all_requests()`, tasks
        maintain a list of the dataset instances which will be evaluated.
        """
        return self._instances

Baber's avatar
Baber committed
222
    def fewshot_examples(self, k, rnd) -> Iterable[dict]:
223
224
225
226
227
        if self._training_docs is None:
            self._training_docs = list(self.training_docs())

        return rnd.sample(self._training_docs, k)

Baber's avatar
Baber committed
228
    def doc_to_decontamination_query(self, doc: dict):
229
        raise NotImplementedError(
230
231
232
233
            "Override doc_to_decontamination_query with document specific decontamination query."
        )

    @abc.abstractmethod
Baber's avatar
Baber committed
234
    def doc_to_text(self, doc: dict) -> str:
235
236
237
        pass

    @abc.abstractmethod
Baber's avatar
Baber committed
238
    def doc_to_target(self, doc: dict) -> Union[str, int]:
239
240
        pass

241
    # not an abstractmethod because not every language-only task has to implement this
Baber's avatar
Baber committed
242
    def doc_to_image(self, doc: dict):
243
244
        raise NotImplementedError

Baber's avatar
Baber committed
245
    def doc_to_audio(self, doc: dict):
246
247
        raise NotImplementedError

Baber's avatar
Baber committed
248
    def doc_to_prefix(self, doc: dict) -> str:
Baber Abbasi's avatar
Baber Abbasi committed
249
250
        return ""

251
252
    def build_all_requests(
        self,
253
        *,
254
        limit: Union[int, None] = None,
255
        samples: Optional[List[int]] = None,
256
257
258
259
260
261
262
263
264
        rank: int = 0,
        world_size: int = 1,
        cache_requests: bool = False,
        rewrite_requests_cache: bool = False,
        system_instruction: Optional[str] = None,
        apply_chat_template: bool = False,
        fewshot_as_multiturn: bool = False,
        chat_template: Optional[Callable] = None,
        tokenizer_name: str = "",
265
    ) -> None:
266
        """Build a set of Instances for a task, and store them in task.instances"""
267
268
269
270

        # used with caching
        og_limit = limit

271
        cache_key = f"requests-{self._config.task}-{self.config.num_fewshot}shot-rank{rank}-world_size{world_size}"
KonradSzafer's avatar
KonradSzafer committed
272
273
274
275
276
277
278
        cache_key += "-chat_template" if apply_chat_template else ""
        cache_key += "-fewshot_as_multiturn" if fewshot_as_multiturn else ""
        cache_key += (
            f"-system_prompt_hash{utils.hash_string(system_instruction)}"
            if system_instruction is not None
            else ""
        )
279
        cache_key += f"-tokenizer{tokenizer_name}"
280

Baber Abbasi's avatar
Baber Abbasi committed
281
        cached_instances = load_from_cache(file_name=cache_key, cache=cache_requests)
282
283
284
285
286
287
288
289
290
291
292
293
294

        if cache_requests and cached_instances and not rewrite_requests_cache:
            cached_instances = cached_instances[:limit]

            flattened_instances = [
                instance
                for instance_group in cached_instances
                for instance in instance_group
            ]

            self._instances = flattened_instances
            return

Baber Abbasi's avatar
Baber Abbasi committed
295
        eval_logger.info(f"Building contexts for {self.config.task} on rank {rank}...")
296

297
        instances = []
298
299
300
301
302
303
304
305
306
307

        # process all documents when caching is specified for simplicity
        if (
            cache_requests
            and (not cached_instances or rewrite_requests_cache)
            and limit is not None
        ):
            limit = None

        doc_id_docs = list(
308
309
310
            self.doc_iterator(
                rank=rank, limit=limit, samples=samples, world_size=world_size
            )
311
312
313
314
315
316
317
        )

        num_docs = len(doc_id_docs)

        for doc_id, doc in tqdm(
            doc_id_docs,
            total=num_docs,
lintangsutawika's avatar
lintangsutawika committed
318
        ):
319
            # sample fewshot context #TODO: need to offset doc_id by rank now!
320
            fewshot_ctx = self.fewshot_context(
321
                doc,
322
323
324
325
326
327
328
                num_fewshot=0
                if self.config.num_fewshot is None
                else self.config.num_fewshot,
                system_instruction=system_instruction,
                apply_chat_template=apply_chat_template,
                fewshot_as_multiturn=fewshot_as_multiturn,
                chat_template=chat_template,
Baber Abbasi's avatar
Baber Abbasi committed
329
                gen_prefix=self.doc_to_prefix(doc),
330
            )
331

332
            # TODO: we should override self.config.repeats if doing greedy gen so users don't waste time+compute
lintangsutawika's avatar
lintangsutawika committed
333
334
335
            inst = self.construct_requests(
                doc=doc,
                ctx=fewshot_ctx,
336
                metadata=(self.config["task"], doc_id, self.config.repeats),
337
                apply_chat_template=apply_chat_template,
338
                chat_template=chat_template,
lintangsutawika's avatar
lintangsutawika committed
339
            )
340
341
342
343

            if not isinstance(inst, list):
                inst = [inst]

344
345
346
347
348
349
350
351
352
353
354
355
356
            instances.append(inst)

        # now flatten, this is to allow slicing to work with pickles

        sliced_instances = instances[:og_limit]

        flattened_instances = [
            instance
            for instance_group in sliced_instances
            for instance in instance_group
        ]

        self._instances = flattened_instances
357

358
359
        if len(self._instances) == 0:
            raise ValueError("task.build_requests() did not find any docs!")
360

361
362
363
        if cache_requests and (not cached_instances or rewrite_requests_cache):
            save_to_cache(file_name=cache_key, obj=instances)

364
    @abc.abstractmethod
Baber's avatar
Baber committed
365
    def construct_requests(self, doc: dict, ctx: Union[list[dict], str], **kwargs):
366
367
368
369
370
371
372
373
374
375
376
377
378
379
        """Uses RequestFactory to construct Requests and returns an iterable of
        Requests which will be sent to the LM.

        :param doc:
            The document as returned from training_docs, validation_docs, or test_docs.
        :param ctx: str
            The context string, generated by fewshot_context. This includes the natural
            language description, as well as the few shot examples, and the question
            part of the document for `doc`.
        :param doc_idx: int
            The index of a document within `self.test_docs()` or `self.validation_docs()`,
            whichever is the main split used.
        :param repeats: int
        TODO: update this docstring
lintangsutawika's avatar
lintangsutawika committed
380
            The number of times each instance in a dataset is inferred on. Defaults to 1,
381
382
383
384
385
            can be increased for techniques like majority voting.
        """
        pass

    @abc.abstractmethod
Baber's avatar
Baber committed
386
    def process_results(self, doc: dict, results: list):
387
388
389
390
391
392
393
394
395
396
397
        """Take a single document and the LM results and evaluates, returning a
        dict where keys are the names of submetrics and values are the values of
        the metric for that one document

        :param doc:
            The document as returned from training_docs, validation_docs, or test_docs.
        :param results:
            The results of the requests created in construct_requests.
        """
        pass

Baber's avatar
Baber committed
398
    @deprecated("not used anymore")
399
400
401
402
403
404
405
406
    def aggregation(self):
        """
        :returns: {str: [metric_score] -> float}
            A dictionary where keys are the names of submetrics and values are
            functions that aggregate a list of metric scores
        """
        pass

Baber's avatar
Baber committed
407
    @deprecated("not used anymore")
408
409
410
411
412
413
414
415
    def higher_is_better(self):
        """
        :returns: {str: bool}
            A dictionary where keys are the names of submetrics and values are
            whether a higher value of the submetric is better
        """
        pass

416
417
418
    def get_config(self, key: str) -> Any:
        return getattr(self._config, key, None)

haileyschoelkopf's avatar
haileyschoelkopf committed
419
    @classmethod
Baber's avatar
Baber committed
420
    def count_bytes(cls, doc: str) -> int:
haileyschoelkopf's avatar
haileyschoelkopf committed
421
422
423
424
        """Used for byte-level perplexity metrics in rolling loglikelihood"""
        return len(doc.encode("utf-8"))

    @classmethod
Baber's avatar
Baber committed
425
    def count_words(cls, doc: str) -> int:
haileyschoelkopf's avatar
haileyschoelkopf committed
426
427
428
        """Downstream loglikelihood_rolling perplexity tasks with custom word boundaries should override this!"""
        return len(re.split(r"\s+", doc))

429
    @utils.positional_deprecated
Baber Abbasi's avatar
Baber Abbasi committed
430
    def fewshot_context(self, doc, num_fewshot, rnd=None, description=None, **kwargs):
431
432
433
434
435
436
437
        """Returns a fewshot context string that is made up of a prepended description
        (if provided), the `num_fewshot` number of examples, and an appended prompt example.

        :param doc: str
            The document as returned from training_docs, validation_docs, or test_docs.
        :param num_fewshot: int
            The number of fewshot examples to provide in the returned context string.
lintangsutawika's avatar
lintangsutawika committed
438
439
440
441
442
        :param rnd: random.Random
            The pseudo-random number generator used to randomly sample examples.
            WARNING: This is currently a required arg although it's optionalized with a default `None`.
        :param description: str
            The task's description that will be prepended to the fewshot examples.
443
444
445
        :returns: str
            The fewshot context.
        """
446
        if rnd is None:
447
448
449
450
451
452
            if self.fewshot_rnd is not None:
                rnd = self.fewshot_rnd
            else:
                raise ValueError(
                    "A `random.Random` generator argument must be provided to `rnd`"
                )
lintangsutawika's avatar
lintangsutawika committed
453

454
        description = description if description else ""
455
456

        if num_fewshot == 0:
lintangsutawika's avatar
lintangsutawika committed
457
            labeled_examples = ""
458
        else:
lintangsutawika's avatar
lintangsutawika committed
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
            # for sets with no training docs, draw from other set *but ensure no overlap with current doc*
            if self.has_training_docs():
                fewshotex = self.fewshot_examples(k=num_fewshot, rnd=rnd)
            else:
                if self._fewshot_docs is None:
                    self._fewshot_docs = list(
                        self.validation_docs()
                        if self.has_validation_docs()
                        else self.test_docs()
                    )

                fewshotex = rnd.sample(self._fewshot_docs, num_fewshot + 1)

                # get rid of the doc that's the one we're evaluating, if it's in the fewshot
                fewshotex = [x for x in fewshotex if x != doc][:num_fewshot]

            labeled_examples = (
                "\n\n".join(
                    [
                        self.doc_to_text(doc) + self.doc_to_target(doc)
                        for doc in fewshotex
                    ]
                )
                + "\n\n"
lintangsutawika's avatar
lintangsutawika committed
483
            )
484
485

        example = self.doc_to_text(doc)
lintangsutawika's avatar
lintangsutawika committed
486
        return description + labeled_examples + example
487

488
    def apply_filters(self) -> Optional[List[Instance]]:
Baber Abbasi's avatar
Baber Abbasi committed
489
        """Iterates over FilterEnsembles and applies them to instances"""
lintangsutawika's avatar
lintangsutawika committed
490
491
        if hasattr(self, "_filters"):
            for f in self._filters:
492
                f.apply(self._instances)
lintangsutawika's avatar
lintangsutawika committed
493
494
495
        else:
            eval_logger.warning("No filter defined, passing through instances")
            return self._instances
496

baberabb's avatar
baberabb committed
497
    def dump_config(self) -> dict:
Baber Abbasi's avatar
Baber Abbasi committed
498
        """Returns the config as a dictionary."""
499
        # TODO: this should only return the overrides applied to a non-YAML task's configuration.
500
        # (num_fewshot)
501
        return self.config.to_dict()
502

Baber Abbasi's avatar
Baber Abbasi committed
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
    def set_config(self, key: str, value: Any, update: bool = False) -> None:
        """Set or update the configuration for a given key."""
        if key is None:
            raise ValueError("Key must be provided.")

        if update:
            current_value = getattr(self._config, key, {})
            if not isinstance(current_value, dict):
                raise TypeError(
                    f"Expected a dict for key '{key}', got {type(current_value).__name__} instead."
                )
            current_value.update(value)
        else:
            setattr(self._config, key, value)

    def override_metric(self, metric_name: str) -> None:
        """
        Override the default metrics used for evaluation with custom metrics.

        Parameters:
        - metric_name (str): The name of the custom metric to override. Should be registered in api.metrics.
        """
Baber's avatar
Baber committed
525
526
527
528
529
        # if not isinstance(self, ConfigurableTask):
        #     self.process_results = lambda x, y: {metric_name: get_metric(metric_name)}
        #     self.aggregation = lambda: {
        #         metric_name: get_metric_aggregation(metric_name)
        #     }
530
531
        self._config.metric_list = [MetricConfig(name=metric_name)]
        self._config.process_results = lambda *args: {"bypass": 0}
Baber Abbasi's avatar
Baber Abbasi committed
532

533
534
535
536
537
    def set_fewshot_seed(self, seed: Optional[int] = None) -> None:
        self.fewshot_rnd = random.Random(seed)
        if hasattr(self, "sampler"):
            self.sampler.rnd = self.fewshot_rnd

538
    @property
Baber's avatar
Baber committed
539
    def eval_docs(self) -> Union[datasets.Dataset, Iterable[dict]]:
540
541
542
543
544
        if self.has_test_docs():
            return self.test_docs()
        elif self.has_validation_docs():
            return self.validation_docs()
        else:
545
546
547
            raise ValueError(
                f"Task dataset (path={self.DATASET_PATH}, name={self.DATASET_NAME}) must have valid or test docs!"
            )
548
549

    def doc_iterator(
550
551
552
553
554
555
        self,
        *,
        rank: int = 0,
        limit: Union[int, None] = None,
        world_size: int = 1,
        samples: Optional[List[int]] = None,
556
    ) -> Iterator[Tuple[int, Any]]:
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
        if samples:
            n = len(self.eval_docs)
            assert all([e < n for e in samples]), (
                f"Elements of --samples should be in the interval [0,k-1] where k is the number of total examples. In this case, k={n}."
            )
            eval_logger.info(
                f"{self.config.task}: Evaluating on {len(samples)} examples"
            )
            doc_iterator = utils.create_iterator(
                enumerate(x for i, x in enumerate(self.eval_docs) if i in samples),
                rank=int(rank),
                limit=None,  # limit does not matter here since we are selecting samples directly
                world_size=int(world_size),
            )
        else:
            limit = int(limit) if limit else None
            doc_iterator = utils.create_iterator(
                enumerate(self.eval_docs),
                rank=int(rank),
                limit=limit,
                world_size=int(world_size),
            )
579
580
        return doc_iterator

581
582

class ConfigurableTask(Task):
583
    VERSION = "Yaml"
584
    OUTPUT_TYPE = None
585
    CONFIG = None
586
587

    def __init__(
588
589
590
591
592
        self,
        data_dir=None,
        cache_dir=None,
        download_mode=None,
        config: Optional[dict] = None,
Baber's avatar
Baber committed
593
    ) -> None:
594
        # Get pre-configured attributes
595
        self._config = self.CONFIG
596

597
        # Use new configurations if there was no preconfiguration
598
        if self.config is None:
599
            self._config = TaskConfig(**config)
600
601
        # Overwrite configs
        else:
lintangsutawika's avatar
lintangsutawika committed
602
            if config is not None:
603
                self._config.__dict__.update(config)
604

605
        if self.config is None:
lintangsutawika's avatar
lintangsutawika committed
606
607
608
            raise ValueError(
                "Must pass a config to ConfigurableTask, either in cls.CONFIG or `config` kwarg"
            )
609

610
611
612
613
        if isinstance(self.config.metadata, dict):
            if "version" in self.config.metadata:
                self.VERSION = self.config.metadata["version"]

614
        if self.config.output_type is not None:
615
616
617
618
            if self.config.output_type not in ALL_OUTPUT_TYPES:
                raise ValueError(
                    f"Got invalid output_type '{self.config.output_type}', must be in '{','.join(ALL_OUTPUT_TYPES)}'"
                )
619
            self.OUTPUT_TYPE = self.config.output_type
620

621
622
623
624
        if self.config.doc_to_image is not None:
            # mark the task as requiring multimodality.
            self.MULTIMODAL = True

625
626
627
628
        if self.config.doc_to_audio:
            # mark the task as requiring multimodality.
            self.MULTIMODAL = True

Hojin Lee's avatar
Hojin Lee committed
629
630
631
        if self.config.unsafe_code is not False:
            self.UNSAFE_CODE = True

632
633
        if self.config.dataset_path is not None:
            self.DATASET_PATH = self.config.dataset_path
634

635
636
        if self.config.dataset_name is not None:
            self.DATASET_NAME = self.config.dataset_name
637

638
        # self.metric_list: list[MetricConfig] = self.config.get_metrics
639

640
        self.download(self.config.dataset_kwargs)
641
642
643
        self._training_docs = None
        self._fewshot_docs = None

Baber's avatar
Baber committed
644
        self._filters = self.config.get_filters
Baber's avatar
Baber committed
645

Baber's avatar
Baber committed
646
647
648
649
650
651
652
        # if self.config.use_prompt is not None:
        #     eval_logger.info(f"loading prompt {self.config.use_prompt}")
        #     self.prompt = get_prompt(
        #         self.config.use_prompt, self.DATASET_PATH, self.DATASET_NAME
        #     )
        # else:
        #     self.prompt = None
653

654
655
656
657
        if (
            self.config.fewshot_cfg.num_fewshot() > 0
            and self.fewshot_docs() is not None
        ):
Baber's avatar
Baber committed
658
659
660
            self.fewshot_rnd = random.Random()
            self.sampler = self.config.fewshot_cfg.init_sampler(
                list(self.fewshot_docs()), self, rnd=self.fewshot_rnd
661
            )
662
        self.task_docs = self.eval_docs
663

664
        # Test One Doc
Baber's avatar
Baber committed
665
        self.features: list[str] = list(self.task_docs.features.keys())
666
667
        self.multiple_input = 0
        self.multiple_target = 0
668
        test_doc = self.task_docs[0]
669
        test_text = self.doc_to_text(test_doc)
670
        test_target = self.doc_to_target(test_doc)
lintangsutawika's avatar
lintangsutawika committed
671

672
        if self.config.doc_to_choice is not None:
lintangsutawika's avatar
lintangsutawika committed
673
            test_choice = self.doc_to_choice(test_doc)
674
            if not isinstance(test_choice, list):
lintangsutawika's avatar
lintangsutawika committed
675
                eval_logger.error("doc_to_choice must return list")
676
677
            else:
                num_choice = len(test_choice)
678

679
            if isinstance(test_text, int):
Baber Abbasi's avatar
Baber Abbasi committed
680
681
682
                eval_logger.debug(
                    "doc_to_text returned an int. Assuming multiple inputs."
                )
683
                self.multiple_input = num_choice
684
685
        else:
            test_choice = None
686

687
        if isinstance(test_target, list):
Baber Abbasi's avatar
Baber Abbasi committed
688
689
690
            eval_logger.debug(
                "doc_to_target returned a list. Assuming multiple targets."
            )
691
            self.multiple_target = len(test_target)
692
        else:
693
            if (isinstance(test_target, int)) and (test_choice is not None):
lintangsutawika's avatar
lintangsutawika committed
694
                test_target = test_choice[test_target]
695
            else:
lintangsutawika's avatar
lintangsutawika committed
696
                test_target = str(test_target)
697

698
699
700
        if test_choice is not None:
            check_choices = test_choice
        else:
lintangsutawika's avatar
lintangsutawika committed
701
            check_choices = [test_target]
702
703
704
705
        if self.config.doc_to_choice is not None:
            for choice in check_choices:
                choice_has_whitespace = True if choice[0].isspace() else False
                delimiter_has_whitespace = (
706
707
                    True
                    if self.config.target_delimiter.rstrip()
708
                    != self.config.target_delimiter
709
                    else False
710
                )
711

712
                if delimiter_has_whitespace and choice_has_whitespace:
713
714
                    eval_logger.debug(
                        f'Both target_delimiter "{self.config.target_delimiter}" and target choice: "{choice}" have whitespace'
715
716
                    )
                elif (not delimiter_has_whitespace) and (not choice_has_whitespace):
717
                    eval_logger.debug(
718
                        f'Both target_delimiter "{self.config.target_delimiter}" and target choice: "{choice}" do not have whitespace, ignore if the language you are evaluating on does not require/use whitespace'
719
720
                    )

Baber Abbasi's avatar
Baber Abbasi committed
721
722
723
    def download(
        self, dataset_kwargs: Optional[Dict[str, Any]] = None, **kwargs
    ) -> None:
724
725
726
727
728
        self.config.dataset_kwargs, self.config.metadata = (
            self.config.dataset_kwargs or {},
            self.config.metadata or {},
        )
        if isinstance(df := self.config.custom_dataset, Callable):
Baber Abbasi's avatar
Baber Abbasi committed
729
730
731
732
            eval_logger.warning(
                f"{self.config.task}: Custom kwargs can be passed to `--metadata` in console (as json string) or to the TaskManager."
                + "\nFor example --metadata='{\"max_seq_lengths\":[4096, 8192]}'. For details see task Readme."
            )
733
            self.dataset = df(**(self.config.dataset_kwargs | self.config.metadata))
Baber Abbasi's avatar
Baber Abbasi committed
734
735
        else:
            self.dataset = datasets.load_dataset(
736
737
738
                path=self.config.dataset_path,
                name=self.config.dataset_name,
                **self.config.dataset_kwargs,
Baber Abbasi's avatar
Baber Abbasi committed
739
            )
740

baberabb's avatar
baberabb committed
741
    def has_training_docs(self) -> bool:
742
        if self.config.training_split is not None:
743
744
745
746
            return True
        else:
            return False

baberabb's avatar
baberabb committed
747
    def has_validation_docs(self) -> bool:
748
        if self.config.validation_split is not None:
749
750
751
752
            return True
        else:
            return False

baberabb's avatar
baberabb committed
753
    def has_test_docs(self) -> bool:
754
        if self.config.test_split is not None:
755
756
757
758
            return True
        else:
            return False

Baber's avatar
Baber committed
759
    def training_docs(self) -> Optional[datasets.Dataset]:
760
        if self.has_training_docs():
761
762
763
            if self.config.process_docs is not None:
                return self.config.process_docs(
                    self.dataset[self.config.training_split]
764
                )
765
            return self.dataset[self.config.training_split]
766

Baber's avatar
Baber committed
767
    def validation_docs(self) -> Optional[datasets.Dataset]:
768
        if self.has_validation_docs():
769
770
771
            if self.config.process_docs is not None:
                return self.config.process_docs(
                    self.dataset[self.config.validation_split]
772
                )
773
            return self.dataset[self.config.validation_split]
774

Baber's avatar
Baber committed
775
    def test_docs(self) -> Optional[datasets.Dataset]:
776
        if self.has_test_docs():
777
778
779
            if self.config.process_docs is not None:
                return self.config.process_docs(self.dataset[self.config.test_split])
            return self.dataset[self.config.test_split]
780

781
    def fewshot_docs(self):
Baber's avatar
Baber committed
782
783
784
785
786
787
        docs = self.config.fewshot_cfg.get_docs(self.dataset)

        if docs is not None:
            return docs

        # Fallback to parent implementation
788
        if _num_fewshot := self.config.num_fewshot:
Baber's avatar
Baber committed
789
            if isinstance(_num_fewshot, int) and _num_fewshot > 0:
790
                eval_logger.warning(
Lintang Sutawika's avatar
Lintang Sutawika committed
791
                    f"[Task: {self.config.task}] "
Baber's avatar
Baber committed
792
793
                    "num_fewshot > 0 but no fewshot source configured. "
                    "Using preconfigured rule."
794
                )
Baber's avatar
Baber committed
795
796

        return super().fewshot_docs()
797

KonradSzafer's avatar
KonradSzafer committed
798
799
800
801
802
    @staticmethod
    def append_target_question(
        labeled_examples: List[Dict[str, str]],
        question: str,
        fewshot_as_multiturn: bool = False,
Baber Abbasi's avatar
Baber Abbasi committed
803
        gen_prefix: Optional[str] = None,
KonradSzafer's avatar
KonradSzafer committed
804
805
806
807
808
809
810
811
    ) -> None:
        """Adds a target question to the labeled examples list.
        If fewshot_as_multiturn is True, or labeled_examples is empty, or the last entry is a system turn, appends the question as a new user entry.
        Otherwise, it is appended to the last user entry, ensuring that the conversation alternates between the user and the assistant.
        """
        if not fewshot_as_multiturn:
            # if no messages or last message is system, append as new user entry
            if len(labeled_examples) == 0 or labeled_examples[-1]["role"] == "system":
812
                labeled_examples.append({"role": "user", "content": question})
KonradSzafer's avatar
KonradSzafer committed
813
814
            # if last message is user, append to it to avoid two user messages in a row
            else:
815
                labeled_examples[-1]["content"] += question
KonradSzafer's avatar
KonradSzafer committed
816
817
        else:
            # if fewshot_as_multiturn is True, append as next user entry (last is always assistant)
818
            labeled_examples.append({"role": "user", "content": question})
Baber Abbasi's avatar
Baber Abbasi committed
819
820
        if gen_prefix:
            labeled_examples.append({"role": "assistant", "content": gen_prefix})
KonradSzafer's avatar
KonradSzafer committed
821

lintangsutawika's avatar
lintangsutawika committed
822
    @utils.positional_deprecated
KonradSzafer's avatar
KonradSzafer committed
823
824
    def fewshot_context(
        self,
Baber Abbasi's avatar
Baber Abbasi committed
825
        doc: dict,
KonradSzafer's avatar
KonradSzafer committed
826
827
828
829
        num_fewshot: int,
        system_instruction: Optional[str] = None,
        apply_chat_template: bool = False,
        fewshot_as_multiturn: bool = False,
830
        chat_template: Optional[Callable] = None,
Baber Abbasi's avatar
Baber Abbasi committed
831
        gen_prefix: Optional[str] = None,
Baber's avatar
Baber committed
832
    ) -> Union[str, List[str], None]:
lintangsutawika's avatar
lintangsutawika committed
833
834
835
836
837
838
839
        """Returns a fewshot context string that is made up of a prepended description
        (if provided), the `num_fewshot` number of examples, and an appended prompt example.

        :param doc: str
            The document as returned from training_docs, validation_docs, or test_docs.
        :param num_fewshot: int
            The number of fewshot examples to provide in the returned context string.
KonradSzafer's avatar
KonradSzafer committed
840
841
842
843
844
845
        :param  system_instruction: str
            System instruction to be applied to the prompt.
        :param apply_chat_template: bool
            Whether to apply the chat template to the fewshot context.
        :param fewshot_as_multiturn: bool
            Whether to provide the fewshot examples as a multiturn conversation or a single user turn.
846
847
        :param chat_template:
            callable (from lm.apply_chat_template) that takes in a list[Dict] chat transcript and renders it into a string.
848
849
        :param gen_prefix:
            String to append after the <|assistant|> token.
lintangsutawika's avatar
lintangsutawika committed
850
851
852
        :returns: str
            The fewshot context.
        """
KonradSzafer's avatar
KonradSzafer committed
853
854
855
856
857
858
        if apply_chat_template:
            labeled_examples = []
        else:
            labeled_examples = ""

        # get task description
859
860
        if description := self.config.description:
            description = utils.apply_template(self.config.description, doc)
lintangsutawika's avatar
lintangsutawika committed
861

KonradSzafer's avatar
KonradSzafer committed
862
863
864
865
866
867
868
869
870
        # create system prompt based on the provided system instruction and description
        if system_instruction is not None and description:
            system_prompt = (
                f"{system_instruction}{self.sampler.fewshot_delimiter}{description}"
            )
        elif system_instruction is not None:
            system_prompt = system_instruction
        elif description:
            system_prompt = description
lintangsutawika's avatar
lintangsutawika committed
871
        else:
KonradSzafer's avatar
KonradSzafer committed
872
873
874
875
876
877
878
879
880
881
882
883
884
            system_prompt = ""

        # add system prompt if specified
        if system_prompt:
            if apply_chat_template:
                labeled_examples.append({"role": "system", "content": system_prompt})
            else:
                labeled_examples = system_prompt
        # if few-shot - append examples after the system prompt
        if num_fewshot > 0:
            if apply_chat_template:
                labeled_examples.extend(
                    self.sampler.get_chat_context(
Baber Abbasi's avatar
Baber Abbasi committed
885
886
887
                        doc,
                        num_fewshot,
                        fewshot_as_multiturn,
Baber Abbasi's avatar
Baber Abbasi committed
888
                        gen_prefix=gen_prefix,
KonradSzafer's avatar
KonradSzafer committed
889
890
891
                    )
                )
            else:
Baber Abbasi's avatar
Baber Abbasi committed
892
                labeled_examples += self.sampler.get_context(
Baber Abbasi's avatar
Baber Abbasi committed
893
                    doc, num_fewshot, gen_prefix=gen_prefix
Baber Abbasi's avatar
Baber Abbasi committed
894
                )
lintangsutawika's avatar
lintangsutawika committed
895
896

        example = self.doc_to_text(doc)
KonradSzafer's avatar
KonradSzafer committed
897
898
        if apply_chat_template:
            if self.multiple_input:
Baber Abbasi's avatar
Baber Abbasi committed
899
                # TODO: append prefill?
900
901
                if not labeled_examples:
                    return ""
902
                return chat_template(labeled_examples)
KonradSzafer's avatar
KonradSzafer committed
903
904
            if isinstance(example, str):
                self.append_target_question(
Baber Abbasi's avatar
Baber Abbasi committed
905
906
907
                    labeled_examples,
                    example,
                    fewshot_as_multiturn,
Baber Abbasi's avatar
Baber Abbasi committed
908
                    gen_prefix=gen_prefix,
KonradSzafer's avatar
KonradSzafer committed
909
910
911
912
913
914
915
                )
            # for loglikelihood create a list of questions with appended choices
            elif isinstance(example, list):
                labeled_examples_list = []
                # copy chat history for each example and append the answer
                for ex in example:
                    chat = deepcopy(labeled_examples)
Baber Abbasi's avatar
Baber Abbasi committed
916
917
918
919
                    self.append_target_question(
                        chat,
                        ex,
                        fewshot_as_multiturn,
Baber Abbasi's avatar
Baber Abbasi committed
920
                        gen_prefix=gen_prefix,
Baber Abbasi's avatar
Baber Abbasi committed
921
922
923
924
925
                    )
                    # TODO: append prefill?
                    labeled_examples_list.append(
                        chat_template(
                            chat,
Baber Abbasi's avatar
Baber Abbasi committed
926
                            add_generation_prompt=False if gen_prefix else True,
Baber Abbasi's avatar
Baber Abbasi committed
927
928
                        )
                    )
KonradSzafer's avatar
KonradSzafer committed
929
930
931
932
933
934
                return labeled_examples_list
            # if example is an integer, append the choice or convert to string
            elif isinstance(example, int):
                if self.config.doc_to_choice is not None:
                    choices = self.doc_to_choice(doc)
                    self.append_target_question(
Baber Abbasi's avatar
Baber Abbasi committed
935
936
937
                        labeled_examples,
                        choices[example],
                        fewshot_as_multiturn,
Baber Abbasi's avatar
Baber Abbasi committed
938
                        gen_prefix=gen_prefix,
KonradSzafer's avatar
KonradSzafer committed
939
940
941
                    )
                else:
                    self.append_target_question(
Baber Abbasi's avatar
Baber Abbasi committed
942
943
944
                        labeled_examples,
                        str(example),
                        fewshot_as_multiturn,
Baber Abbasi's avatar
Baber Abbasi committed
945
                        gen_prefix=gen_prefix,
KonradSzafer's avatar
KonradSzafer committed
946
947
                    )
                # return lm.apply_chat_template(labeled_examples)
Baber Abbasi's avatar
Baber Abbasi committed
948
949
            return chat_template(
                labeled_examples,
Baber Abbasi's avatar
Baber Abbasi committed
950
                add_generation_prompt=False if gen_prefix else True,
Baber Abbasi's avatar
Baber Abbasi committed
951
            )
952
        else:
Baber Abbasi's avatar
Baber Abbasi committed
953
            prefix = (
Baber Abbasi's avatar
Baber Abbasi committed
954
955
                self.config.target_delimiter + gen_prefix
                if gen_prefix is not None
Baber Abbasi's avatar
Baber Abbasi committed
956
957
                else ""
            )
KonradSzafer's avatar
KonradSzafer committed
958
959
            if self.multiple_input:
                return labeled_examples
960
            if isinstance(example, str):
Baber Abbasi's avatar
Baber Abbasi committed
961
                return labeled_examples + example + prefix
962
            elif isinstance(example, list):
Baber Abbasi's avatar
Baber Abbasi committed
963
                return [labeled_examples + ex + prefix for ex in example]
964
965
966
            elif isinstance(example, int):
                if self.config.doc_to_choice is not None:
                    choices = self.doc_to_choice(doc)
Baber Abbasi's avatar
Baber Abbasi committed
967
                    return labeled_examples + choices[example] + prefix
968
                else:
Baber Abbasi's avatar
Baber Abbasi committed
969
                    return labeled_examples + str(example) + prefix
lintangsutawika's avatar
lintangsutawika committed
970

Baber Abbasi's avatar
Baber Abbasi committed
971
    def apply_filters(self) -> Optional[List[Instance]]:
Baber Abbasi's avatar
Baber Abbasi committed
972
        """Iterates over FilterEnsembles and applies them to instances"""
973
974
        if hasattr(self, "_filters"):
            for f in self._filters:
975
                f.ensemble.apply(self._instances)
976
977
978
979
        else:
            eval_logger.warning("No filter defined, passing through instances")
            return self._instances

980
    def should_decontaminate(self):
981
        return self.config.should_decontaminate
982

Baber Abbasi's avatar
Baber Abbasi committed
983
    def doc_to_decontamination_query(self, doc: dict):
984
        if self.config.should_decontaminate:
985
986
            if self.config.doc_to_decontamination_query is None:
                return self.doc_to_text(doc)
987
            else:
988
989
990
991
992
993
994
995
996
997
998
                doc_to_decontamination_query = self.config.doc_to_decontamination_query
                if doc_to_decontamination_query in self.features:
                    return doc[doc_to_decontamination_query]
                elif callable(doc_to_decontamination_query):
                    return doc_to_decontamination_query(doc)
                else:
                    return ast.literal_eval(
                        utils.apply_template(
                            self.config.doc_to_decontamination_query, doc
                        )
                    )
999

1000
    def _process_doc(self, doc: dict) -> dict:
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
        """
        Override this to process (detokenize, strip, replace, etc.) individual
        documents. This can be used in a map over documents of a data split.
        E.g. `map(self._process_doc, self.dataset["validation"])`

        :return: dict
            The processed version of the specified `doc`.
        """
        return doc

Baber's avatar
Baber committed
1011
1012
1013
1014
1015
1016
    def doc_to_text(
        self, doc: dict, doc_to_text: Union[int, str, Callable, None] = None
    ):
        # if self.prompt is not None:
        #     doc_to_text = self.prompt
        if doc_to_text is not None:
Yu Shi Jie's avatar
Yu Shi Jie committed
1017
            doc_to_text = doc_to_text
1018
        else:
1019
            doc_to_text = self.config.doc_to_text
lintangsutawika's avatar
lintangsutawika committed
1020

1021
        if isinstance(doc_to_text, int):
1022
            return doc_to_text
1023
        elif isinstance(doc_to_text, str):
1024
            if doc_to_text in self.features:
1025
                # if self.config.doc_to_choice is not None:
1026
1027
                #     return self.doc_to_choice(doc)[doc[doc_to_text]]
                # else:
1028
1029
                return doc[doc_to_text]
            else:
lintangsutawika's avatar
lintangsutawika committed
1030
                text_string = utils.apply_template(doc_to_text, doc)
Baber's avatar
nit  
Baber committed
1031
                if text_string.isdigit() and self.config.doc_to_choice is not None:
lintangsutawika's avatar
lintangsutawika committed
1032
1033
1034
                    return ast.literal_eval(text_string)
                else:
                    return text_string
1035
        elif callable(doc_to_text):
1036
            return doc_to_text(doc)
lintangsutawika's avatar
lintangsutawika committed
1037
        # Used when applying a Promptsource template
Baber's avatar
Baber committed
1038
1039
1040
1041
1042
1043
1044
        # elif hasattr(doc_to_text, "apply"):
        #     applied_prompt = doc_to_text.apply(doc)
        #     if len(applied_prompt) == 2:
        #         return applied_prompt[0]
        #     else:
        #         eval_logger.warning("Applied prompt returns empty string")
        #         return self.config.fewshot_delimiter
1045
        else:
1046
            print(type(doc_to_text))
1047
            raise TypeError
1048

Baber's avatar
Baber committed
1049
1050
1051
    def doc_to_target(
        self, doc: dict, doc_to_target=None
    ) -> Union[int, str, list[int]]:
Baber's avatar
Baber committed
1052
1053
1054
        # if self.prompt is not None:
        #     doc_to_target = self.prompt
        if doc_to_target is not None:
Yu Shi Jie's avatar
Yu Shi Jie committed
1055
            doc_to_target = doc_to_target
1056
        else:
1057
            doc_to_target = self.config.doc_to_target
1058

1059
        if isinstance(doc_to_target, int):
1060
            return doc_to_target
1061
        elif isinstance(doc_to_target, str):
1062
            if doc_to_target in self.features:
1063
                # if self.config.doc_to_choice is not None:
1064
1065
1066
                #     return self.doc_to_choice(doc)[doc[doc_to_target]]
                # else:
                return doc[doc_to_target]
1067
            else:
lintangsutawika's avatar
lintangsutawika committed
1068
                target_string = utils.apply_template(doc_to_target, doc)
Baber's avatar
nit  
Baber committed
1069
                if target_string.isdigit() and self.config.doc_to_choice is not None:
lintangsutawika's avatar
lintangsutawika committed
1070
                    return ast.literal_eval(target_string)
lintangsutawika's avatar
lintangsutawika committed
1071
1072
1073
1074
1075
                elif (
                    len(target_string) >= 2
                    and (target_string[0] == "[")
                    and (target_string[-1] == "]")
                ):
baberabb's avatar
baberabb committed
1076
1077
1078
1079
                    try:
                        return ast.literal_eval(target_string)
                    except (SyntaxError, ValueError):
                        return target_string
lintangsutawika's avatar
lintangsutawika committed
1080
1081
                else:
                    return target_string
1082
        elif isinstance(doc_to_target, list):
1083
            return doc_to_target
1084
        elif callable(doc_to_target):
1085
            return doc_to_target(doc)
Baber's avatar
Baber committed
1086
1087
1088
1089
1090
1091
1092
1093
        # # Used when applying a Promptsource template
        # elif hasattr(doc_to_target, "apply"):
        #     applied_prompt = doc_to_target.apply(doc)
        #     if len(applied_prompt) == 2:
        #         return applied_prompt[1]
        #     else:
        #         eval_logger.warning("Applied prompt returns empty string")
        #         return self.config.fewshot_delimiter
1094
1095
        else:
            raise TypeError
1096

Baber's avatar
Baber committed
1097
    def doc_to_choice(
Baber's avatar
Baber committed
1098
1099
1100
        self,
        doc: dict,
        doc_to_choice: Union[str, list, dict, Callable[..., list[str]], None] = None,
Baber's avatar
Baber committed
1101
    ) -> List[str]:
Baber's avatar
Baber committed
1102
1103
1104
        # if self.prompt is not None:
        #     doc_to_choice = self.prompt
        if doc_to_choice is not None:
Yu Shi Jie's avatar
Yu Shi Jie committed
1105
            doc_to_choice = doc_to_choice
1106
        elif self.config.doc_to_choice is None:
1107
            eval_logger.error("doc_to_choice was called but not set in config")
Baber's avatar
Baber committed
1108
            doc_to_choice = None
1109
        else:
1110
            doc_to_choice = self.config.doc_to_choice
1111

1112
        if isinstance(doc_to_choice, str):
1113
1114
1115
1116
            if doc_to_choice in self.features:
                return doc[doc_to_choice]
            else:
                return ast.literal_eval(utils.apply_template(doc_to_choice, doc))
1117
        elif isinstance(doc_to_choice, list):
1118
            return doc_to_choice
1119
        elif isinstance(doc_to_choice, dict):
1120
1121
1122
            return list(doc_to_choice.values())
        elif callable(doc_to_choice):
            return doc_to_choice(doc)
Baber's avatar
Baber committed
1123
1124
        # elif hasattr(doc_to_choice, "get_answer_choices_list"):
        #     return doc_to_choice.get_answer_choices_list(doc)
1125
1126
        else:
            raise TypeError
1127

Baber's avatar
Baber committed
1128
    def doc_to_image(self, doc: dict, doc_to_image=None) -> Union[int, str, list, None]:
1129
1130
1131
1132
1133
1134
1135
1136
1137
1138
1139
1140
1141
1142
1143
1144
1145
1146
1147
1148
1149
1150
        if doc_to_image is not None:
            doc_to_image = doc_to_image
        elif self.config.doc_to_image is not None:
            doc_to_image = self.config.doc_to_image
        else:
            return None

        if isinstance(doc_to_image, list):
            image_feature = [
                self.doc_to_image(doc, feature) for feature in doc_to_image
            ]
            return [feature for feature in image_feature if feature is not None]
        elif isinstance(doc_to_image, str):
            if doc_to_image in self.features:
                return doc[doc_to_image]
            else:
                return ast.literal_eval(utils.apply_template(doc_to_image, doc))
        elif callable(doc_to_image):
            return doc_to_image(doc)
        else:
            return None

Baber's avatar
Baber committed
1151
    def doc_to_audio(self, doc: Any, doc_to_audio=None) -> Union[int, str, list, None]:
1152
1153
1154
1155
1156
1157
1158
1159
1160
1161
1162
1163
1164
1165
1166
1167
1168
1169
1170
1171
1172
1173
        if doc_to_audio is not None:
            doc_to_audio = doc_to_audio
        elif self.config.doc_to_audio is not None:
            doc_to_audio = self.config.doc_to_audio
        else:
            return None

        if isinstance(doc_to_audio, list):
            audio_feature = [
                self.doc_to_audio(doc, feature) for feature in doc_to_audio
            ]
            return [feature for feature in audio_feature if feature is not None]
        elif isinstance(doc_to_audio, str):
            if doc_to_audio in self.features:
                return doc[doc_to_audio]
            else:
                return ast.literal_eval(utils.apply_template(doc_to_audio, doc))
        elif callable(doc_to_audio):
            return doc_to_audio(doc)
        else:
            return None

Baber's avatar
Baber committed
1174
    def doc_to_prefix(self, doc: dict) -> Optional[str]:
Baber Abbasi's avatar
Baber Abbasi committed
1175
1176
1177
1178
1179
1180
1181
        if (gen_prefix := self.config.gen_prefix) is not None:
            if gen_prefix in self.features:
                return doc[gen_prefix]
            else:
                return utils.apply_template(gen_prefix, doc)
        return None

baberabb's avatar
baberabb committed
1182
1183
1184
    def construct_requests(
        self, doc: dict, ctx: str, **kwargs
    ) -> Union[List[Instance], Instance]:
1185
        apply_chat_template = kwargs.pop("apply_chat_template", False)
1186
        chat_template: Callable | None = kwargs.pop("chat_template", None)
1187

1188
1189
        aux_arguments = None

1190
        if self.OUTPUT_TYPE == "loglikelihood":
lintangsutawika's avatar
lintangsutawika committed
1191
            arguments = (ctx, self.doc_to_target(doc))
1192
        elif self.OUTPUT_TYPE == "loglikelihood_rolling":
lintangsutawika's avatar
lintangsutawika committed
1193
            arguments = (self.doc_to_target(doc),)
1194
        elif self.OUTPUT_TYPE == "multiple_choice":
1195
            choices = self.doc_to_choice(doc)
1196
            target_delimiter = self.config.target_delimiter
1197
1198
            if apply_chat_template:
                target_delimiter = ""
1199
1200
            if self.multiple_input:
                # If there are multiple inputs, choices are placed in the ctx
1201
                # apply chat_template to choices if apply_chat_template
1202
                cont = self.doc_to_target(doc)
1203

1204
                arguments = [
1205
1206
1207
1208
1209
1210
1211
1212
1213
1214
                    (
                        ctx
                        + (
                            chat_template([{"role": "user", "content": choice}])
                            if apply_chat_template
                            else choice
                        ),
                        f"{target_delimiter}{cont}",
                    )
                    for choice in choices
1215
                ]
1216
            else:
1217
                # Otherwise they are placed in the continuation
1218
                arguments = [(ctx, f"{target_delimiter}{cont}") for cont in choices]
1219

1220
            # TODO: we should raise a warning telling users this will at most ~2x runtime.
Baber's avatar
Baber committed
1221
            if "acc_mutual_info" in [m.metric_name for m in self.config._metric_list]:
1222
1223
1224
1225
1226
1227
                # if we are calculating multiple choice accuracy
                # using mutual information instead of raw loglikelihood as metric, need unconditional lls.

                # here mutual info refers to calculating
                # log(P(choice|ctx) / P(choice)) = log(P(choice|ctx)) - log(P(choice))
                # in other words normalizing by subtracting the unconditional logprob of each choice.
1228
1229
1230
1231
                # TODO: should these be strided? will have to modify the processing in process_results if so
                aux_arguments = [
                    ("", f"{target_delimiter}{choice}") for choice in choices
                ]
1232
1233
1234
1235
1236
1237
1238
1239
1240
1241
1242
1243
1244
1245
1246

                arguments.extend(aux_arguments)

        elif self.OUTPUT_TYPE == "generate_until":
            arguments = (ctx, deepcopy(self.config.generation_kwargs))

        multimodal_arg = {}
        if (
            self.config.doc_to_image
        ):  # TODO: ensure that non-multimodal tasks aren't getting visual args
            multimodal_arg = {
                **multimodal_arg,
                **{"visual": self.doc_to_image(doc)},
            }

1247
1248
1249
1250
1251
1252
1253
1254
        if (
            self.config.doc_to_audio
        ):  # TODO: ensure that non-multimodal tasks aren't getting audio args
            multimodal_arg = {
                **multimodal_arg,
                **{"audio": self.doc_to_audio(doc)},
            }

1255
1256
1257
1258
1259
1260
1261
        if bool(multimodal_arg):
            if isinstance(arguments, list):
                arguments = [arg + (multimodal_arg,) for arg in arguments]
            else:
                arguments = arguments + (multimodal_arg,)

        if self.OUTPUT_TYPE == "multiple_choice":
1262
            request_list = [
1263
1264
                Instance(
                    request_type="loglikelihood",
lintangsutawika's avatar
lintangsutawika committed
1265
                    doc=doc,
1266
                    arguments=arg,
1267
                    idx=i,
1268
1269
                    **kwargs,
                )
1270
                for i, arg in enumerate(arguments)
1271
            ]
1272
1273

            return request_list
lintangsutawika's avatar
lintangsutawika committed
1274

lintangsutawika's avatar
lintangsutawika committed
1275
        return Instance(
1276
1277
1278
1279
1280
            request_type=self.OUTPUT_TYPE,
            doc=doc,
            arguments=arguments,
            idx=0,
            **kwargs,
lintangsutawika's avatar
lintangsutawika committed
1281
        )
1282

Baber's avatar
Baber committed
1283
    def process_results(self, doc: dict, results: list) -> dict:
1284
1285
        if callable(self.config.process_results):
            return self.config.process_results(doc, results)
lintangsutawika's avatar
lintangsutawika committed
1286

1287
        result_dict = {}
Baber's avatar
fixup  
Baber committed
1288
        use_metric = list(m.metric_name for m in self.config._metric_list)
1289
1290
1291
        if self.OUTPUT_TYPE == "loglikelihood":
            results = results[0]
            ll, is_greedy = results
1292
1293
1294
1295
            return {
                **({"perplexity": ll} if "perplexity" in use_metric else {}),
                **({"acc": int(is_greedy)} if "acc" in use_metric else {}),
            }
1296
        elif self.OUTPUT_TYPE == "loglikelihood_rolling":
haileyschoelkopf's avatar
haileyschoelkopf committed
1297
            (loglikelihood,) = results
1298
1299
            _words = self.count_words(self.doc_to_target(doc))
            _bytes = self.count_bytes(self.doc_to_target(doc))
haileyschoelkopf's avatar
haileyschoelkopf committed
1300
            return {
1301
1302
1303
1304
1305
1306
1307
1308
1309
1310
1311
1312
1313
1314
1315
                **(
                    {"word_perplexity": (loglikelihood, _words)}
                    if "word_perplexity" in use_metric
                    else {}
                ),
                **(
                    {"byte_perplexity": (loglikelihood, _bytes)}
                    if "byte_perplexity" in use_metric
                    else {}
                ),
                **(
                    {"bits_per_byte": (loglikelihood, _bytes)}
                    if "bits_per_byte" in use_metric
                    else {}
                ),
haileyschoelkopf's avatar
haileyschoelkopf committed
1316
            }
1317
        elif self.OUTPUT_TYPE == "multiple_choice":
1318
            lls, is_greedy = zip(*results)
lintangsutawika's avatar
lintangsutawika committed
1319

1320
            # retrieve choices in List[str] form, to compute choice lengths, etc.
1321
            choices = self.doc_to_choice(doc)
1322
1323
            completion_len = np.array([float(len(i)) for i in choices])

Baber's avatar
Baber committed
1324
            if 2 * len(choices) == len(lls) and "acc_mutual_info" in use_metric:
1325
1326
                # then we are doing mutual info.
                # this stores the "dryrun" / unconditional answer loglikelihoods
1327
1328
                # as we extend the args list with unconditional ("", continuation) pairs
                lls_unconditional = lls[len(choices) :]
1329
1330
                if len(lls_unconditional) != len(choices):
                    raise ValueError
1331
                # and this stores our "regular" conditional loglikelihoods
1332
                lls = lls[: len(choices)]
Baber's avatar
Baber committed
1333
1334
            else:
                lls_unconditional = None
1335

1336
1337
            pred = np.argmax(lls)
            pred_norm = np.argmax(lls / completion_len)
lintangsutawika's avatar
lintangsutawika committed
1338

1339
1340
            if self.multiple_input:
                gold = self.doc_to_text(doc)
1341
            else:
1342
                gold = self.doc_to_target(doc)
1343
1344

            gold_index_error = False
1345
            if isinstance(gold, list):
Lintang Sutawika's avatar
Lintang Sutawika committed
1346
1347
                gold = [i if i < len(choices) else -100 for i in gold]
                if -100 in gold:
1348
1349
                    gold_index_error = True
            else:
1350
                if isinstance(gold, int):
Lintang Sutawika's avatar
Lintang Sutawika committed
1351
                    gold = gold if gold < len(choices) else -100
1352
                elif isinstance(gold, str):
Lintang Sutawika's avatar
Lintang Sutawika committed
1353
                    gold = choices.index(gold) if gold in choices else -100
lintangsutawika's avatar
lintangsutawika committed
1354

Lintang Sutawika's avatar
Lintang Sutawika committed
1355
                if gold == -100:
1356
1357
1358
1359
                    gold_index_error = True

            if gold_index_error:
                eval_logger.warning(
lintangsutawika's avatar
lintangsutawika committed
1360
                    f"Label index was not in within range of available choices,"
1361
1362
                    f"Sample:\n\n{doc}\n\n"
                )
lintangsutawika's avatar
lintangsutawika committed
1363

1364
            if self.multiple_target:
lintangsutawika's avatar
lintangsutawika committed
1365
1366
                acc = 1.0 if pred in gold else 0.0
                acc_norm = 1.0 if pred_norm in gold else 0.0
Lintang Sutawika's avatar
Lintang Sutawika committed
1367
                exact_match = int(any([is_greedy[i] if i != -100 else 0 for i in gold]))
lintangsutawika's avatar
lintangsutawika committed
1368
1369
1370
            else:
                acc = 1.0 if pred == gold else 0.0
                acc_norm = 1.0 if pred_norm == gold else 0.0
1371
                # TODO: this gets score of 0 on arc_challenge for pythia-70m. need to test that this works properly
Lintang Sutawika's avatar
Lintang Sutawika committed
1372
                exact_match = int(is_greedy[gold]) if gold != -100 else 0
1373

Lintang Sutawika's avatar
Lintang Sutawika committed
1374
1375
1376
1377
            prob_norm = utils.softmax(lls)

            # TODO use keyword arguments to the metric?
            # gold, pred, norm stuff, the original lls,
1378
            result_dict = {
1379
                **({"acc": acc} if "acc" in use_metric else {}),
1380
1381
                **({"f1": (gold, pred)} if "f1" in use_metric else {}),
                **({"mcc": (gold, pred)} if "mcc" in use_metric else {}),
1382
                **({"acc_norm": acc_norm} if "acc_norm" in use_metric else {}),
1383
                **({"exact_match": exact_match} if "exact_match" in use_metric else {}),
Lintang Sutawika's avatar
Lintang Sutawika committed
1384
1385
1386
1387
1388
                **(
                    {"brier_score": (gold, prob_norm)}
                    if "brier_score" in use_metric
                    else {}
                ),
1389
1390
            }

1391
            if "acc_mutual_info" in use_metric:
Baber's avatar
Baber committed
1392
1393
1394
                assert lls_unconditional is not None, (
                    "lls_unconditional should not be None if acc_mutual_info is in use_metric"
                )
lintangsutawika's avatar
lintangsutawika committed
1395
1396
1397
                lls_mutual_info = [
                    ll_c - ll_u for ll_c, ll_u in zip(lls, lls_unconditional)
                ]
1398
1399
1400
                acc_mutual_info = 1.0 if np.argmax(lls_mutual_info) == gold else 0.0
                result_dict["acc_mutual_info"] = acc_mutual_info

1401
        elif self.OUTPUT_TYPE == "generate_until":
1402
            gold = self.doc_to_target(doc)
Chris's avatar
Chris committed
1403
            result = results[0]
1404
            if self.config.doc_to_choice is not None:
lintangsutawika's avatar
lintangsutawika committed
1405
                # If you set doc_to_choice,
lintangsutawika's avatar
lintangsutawika committed
1406
                # it assumes that doc_to_target returns a number.
1407
1408
                choices = self.doc_to_choice(doc)
                gold = choices[gold]
lintangsutawika's avatar
lintangsutawika committed
1409
            for metric in self._metric_fn_list.keys():
Baber's avatar
Baber committed
1410
1411
1412
1413
1414
1415
1416
1417
                try:
                    result_score = self._metric_fn_list[metric](
                        references=[gold] if not isinstance(gold, list) else gold,
                        predictions=[result],
                        **self._metric_fn_kwargs[metric],
                    )
                except TypeError:  # needed for now in order to use a different interface between our own metrics and HF Evaluate metrics
                    result_score = self._metric_fn_list[metric]([gold, result])
1418
1419
1420
1421
1422
1423
1424
                if isinstance(result_score, dict):
                    # TODO: this handles the case where HF evaluate returns a dict.
                    # This allows for multiple metrics to be returned from the same function
                    for k, v in result_score.items():
                        result_dict[k] = v
                else:
                    result_dict[metric] = result_score
1425
        else:
lintangsutawika's avatar
lintangsutawika committed
1426
1427
            raise ValueError(
                f"Passed invalid output_type '{self.OUTPUT_TYPE}' ! Please use one of ",
1428
                "'loglikelihood', 'loglikelihood_rolling', 'generate_until' or 'multiple_choice'",
1429
            )
1430
1431
1432

        return result_dict

Baber Abbasi's avatar
Baber Abbasi committed
1433
    def aggregation(self) -> dict:
Baber's avatar
fixup  
Baber committed
1434
        return {k.name: k.aggregation_fn for k in self.config._metric_list}
1435

Baber Abbasi's avatar
Baber Abbasi committed
1436
    def higher_is_better(self) -> dict:
Baber's avatar
fixup  
Baber committed
1437
        return {k.name: k.higher_is_better for k in self.config._metric_list}
1438

Baber Abbasi's avatar
Baber Abbasi committed
1439
1440
1441
    def get_config(self, key: str) -> Any:
        return getattr(self._config, key, None)

Lintang Sutawika's avatar
Lintang Sutawika committed
1442
    @property
Baber's avatar
Baber committed
1443
    def task_name(self) -> Optional[str]:
Lintang Sutawika's avatar
Lintang Sutawika committed
1444
1445
        return getattr(self.config, "task", None)

1446
1447
1448
1449
1450
    def __repr__(self):
        return (
            f"ConfigurableTask(task_name={getattr(self.config, 'task', None)},"
            f"output_type={self.OUTPUT_TYPE},"
            f"num_fewshot={getattr(self.config, 'num_fewshot', None)},"
Baber Abbasi's avatar
Baber Abbasi committed
1451
            f"num_samples={len(self.eval_docs)})"
1452
1453
        )

1454
1455

class MultipleChoiceTask(Task):
1456
    OUTPUT_TYPE = "loglikelihood"
1457

baberabb's avatar
baberabb committed
1458
    def doc_to_target(self, doc: dict) -> str:
1459
1460
        return " " + doc["choices"][doc["gold"]]

baberabb's avatar
baberabb committed
1461
    def construct_requests(self, doc: dict, ctx: str, **kwargs) -> List[Instance]:
1462
        # TODO: add mutual info here?
lintangsutawika's avatar
lintangsutawika committed
1463
1464
        return [
            Instance(
haileyschoelkopf's avatar
haileyschoelkopf committed
1465
                request_type="loglikelihood",
lintangsutawika's avatar
lintangsutawika committed
1466
                doc=doc,
1467
                arguments=(ctx, f" {choice}"),
1468
                idx=i,
1469
1470
                **kwargs,
            )
lintangsutawika's avatar
lintangsutawika committed
1471
1472
            for i, choice in enumerate(doc["choices"])
        ]
1473

1474
    def process_results(self, doc: dict, results: Iterable[Tuple[float, bool]]) -> dict:
lintangsutawika's avatar
lintangsutawika committed
1475
1476
1477
        results = [
            res[0] for res in results
        ]  # only retain loglikelihoods, discard is_greedy TODO: do we need is_greedy anywhere?
1478
1479
1480
1481
1482
1483
1484
1485
1486
1487
1488
        gold = doc["gold"]

        acc = 1.0 if np.argmax(results) == gold else 0.0
        completion_len = np.array([float(len(i)) for i in doc["choices"]])
        acc_norm = 1.0 if np.argmax(results / completion_len) == gold else 0.0

        return {
            "acc": acc,
            "acc_norm": acc_norm,
        }

baberabb's avatar
baberabb committed
1489
    def higher_is_better(self) -> dict:
1490
1491
1492
1493
1494
        return {
            "acc": True,
            "acc_norm": True,
        }

baberabb's avatar
baberabb committed
1495
    def aggregation(self) -> dict:
1496
1497
1498
1499
1500
1501
        return {
            "acc": mean,
            "acc_norm": mean,
        }


lintangsutawika's avatar
lintangsutawika committed
1502
class PerplexityTask(Task):
1503
1504
    OUTPUT_TYPE = "loglikelihood_rolling"

baberabb's avatar
baberabb committed
1505
    def has_training_docs(self) -> bool:
1506
1507
        return False

baberabb's avatar
baberabb committed
1508
    def fewshot_examples(self, k: int, rnd) -> List:
1509
1510
1511
1512
        if k != 0:
            raise ValueError(
                "The number of fewshot examples must be 0 for perplexity tasks."
            )
1513
1514
        return []

baberabb's avatar
baberabb committed
1515
    def fewshot_context(self, doc: dict, num_fewshot: int) -> Literal[""]:
1516
1517
1518
1519
        if num_fewshot != 0:
            raise ValueError(
                "The number of fewshot examples must be 0 for perplexity tasks."
            )
1520
1521
1522

        return ""

baberabb's avatar
baberabb committed
1523
    def higher_is_better(self) -> dict:
1524
1525
1526
1527
1528
1529
1530
1531
1532
        return {
            "word_perplexity": False,
            "byte_perplexity": False,
            "bits_per_byte": False,
        }

    def doc_to_decontamination_query(self, doc):
        return doc

Ethan Smith's avatar
Ethan Smith committed
1533
    def doc_to_text(self, doc) -> str:
1534
1535
1536
1537
1538
        return ""

    def doc_to_target(self, doc):
        return doc

1539
1540
1541
    def construct_requests(self, doc: dict, ctx: Optional[str], **kwargs):
        if bool(ctx):
            raise ValueError
1542

lintangsutawika's avatar
lintangsutawika committed
1543
1544
1545
1546
1547
1548
1549
        return Instance(
            request_type=self.OUTPUT_TYPE,
            doc=doc,
            arguments=(self.doc_to_target(doc),),
            idx=0,
            **kwargs,
        )
1550

1551
    def process_results(self, doc: dict, results: Tuple[float]) -> dict:
1552
        (loglikelihood,) = results
haileyschoelkopf's avatar
haileyschoelkopf committed
1553
1554
        words = self.count_words(self.doc_to_target(doc))
        bytes_ = self.count_bytes(self.doc_to_target(doc))
1555
1556
1557
1558
1559
1560
        return {
            "word_perplexity": (loglikelihood, words),
            "byte_perplexity": (loglikelihood, bytes_),
            "bits_per_byte": (loglikelihood, bytes_),
        }

baberabb's avatar
baberabb committed
1561
    def aggregation(self) -> dict:
1562
1563
1564
1565
1566
1567
1568
        return {
            "word_perplexity": weighted_perplexity,
            "byte_perplexity": weighted_perplexity,
            "bits_per_byte": bits_per_byte,
        }

    @classmethod
baberabb's avatar
baberabb committed
1569
    def count_bytes(cls, doc) -> int:
1570
1571
1572
        return len(doc.encode("utf-8"))

    @classmethod
baberabb's avatar
baberabb committed
1573
    def count_words(cls, doc) -> int:
1574
        """Downstream tasks with custom word boundaries should override this!"""
Lintang Sutawika's avatar
Lintang Sutawika committed
1575
        return len(re.split(r"\s+", doc))